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Abstract—We introduce a low-complexity message-passing
quantum error correction algorithm for decoding Quantum Low-
Density Parity-Check (QLDPC) stabilizer codes. The proposed
decoder operates on the quaternary stabilizer graph but only
exchanges binary messages. This leads to a significantly reduced
complexity compared to other quaternary belief propagation (BP)
algorithms that pass floating-point messages. The efficacy of the
proposed decoder is evaluated by providing decoding examples,
performance metrics using Monte-Carlo simulations, and com-
plexity analysis. Despite its reduced complexity, the performance
loss of the proposed decoder is modest compared to floating-
point parallel quaternary decoders for a Calderbank-Shor-Steane
(CSS) code family. In particular, experiments obtained over the
[[1054,140,20]] lifted product (LP) Tanner code demonstrated
that for low error rates (< 0.01), the proposed quaternary-
binary message-passing decoder approaches the performance of
quaternary BP by converging in almost the same number of
iterations while requiring less complex operations. Additionally,
for non-CSS codes, our decoder performs similarly as quaternary
floating-point decoders despite its lower complexity.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have been shown
to have near Shannon-capacity performance and have a wide
range of applications, including 5G New Radio (NR) stan-
dards, satellite communication, data storage, and image/video
compression [1]-[4]. Recently, Quantum LDPC (QLDPC)
codes [5]-[8] have become a subject of significant interest
in fault-tolerant quantum computation as stabilizer codes be-
yond traditional topological codes. Recent breakthrough results
showed the existence of ‘good” QLDPC codes belonging to
the Calderbank-Shor-Steane (CSS) family that achieve optimal
scaling in terms of both the number of logical qubits and the
minimum distance, relative to the code length [9]-[11].

However, having codes with good minimum distance is not
enough to realize scalable fault-tolerant quantum computers.
We need decoders that have high throughput and achieve a
low logical error rate. The high throughput criterion is essential
because the qubits have low coherence time. As an illustration,
in recent experiments by Google’s Quantum Artificial Intelli-
gence team, error correction is performed once in every 921
nanoseconds [12]. In another experiment, researchers perform
error correction in every 1.1 microseconds [13]. The need
for fast decoders comes from the fact that if the syndrome
bits are processed slower than the speed at which they are
generated (by measuring the stabilizers), then the running time
of quantum algorithms increases exponentially with the T-depth

of the circuit [14]. As the number of qubits increases, the high
throughput requirement poses serious engineering challenges
in designing decoders, a major block in fault-tolerant quantum
computers.

Most recent research focuses on designing decoders with a
low logical error rate without considering the high throughput
criteria [15]-[19]. The Ordered Statistics Decoder (OSD) [15],
[20] and Stabilizer Inactivation Decoder [16] involve a post-
processing step whose complexity scales polynomially with the
number of qubits, hence unsuitable to meet the high throughput
criteria [21]. Similarly, the Generalized Belief Propagation
(GBP) [17], [18] algorithm achieves low error rate at the
expense of higher complexity. Recently proposed Refined Belief
Propagation (RBP) decoder [19] decodes over the stabilizer
graph (a quaternary graph with edges labeled as X, Y, or
Z as given in Fig. 1) and has the same performance as the
conventional quaternary BP (BP4). RBP passes scalar messages
instead of quaternary vectors as in BP4, hence has less com-
plexity. The performance of RBP can be improved further by
optimizing the normalization factor through heuristics or greedy
approaches [22]. Despite its lower complexity, RBP will not be
able to meet the high throughput criteria as the number of qubits
scales because it relies on full precision implementation.

To meet the high throughput requirement, the authors in [23]
and [24] proposed a sliding window decoder and a parallel
window decoder, respectively. In [25], it is shown that iterative
hard-decision decoders provide throughput in the order of Gbps
while decoding classical LDPC codes without significantly
compromising the error rate. In [26], the authors proposed a
hard-decision decoder that can provably correct a linear fraction
of errors in a linear time. However, the proof relies on the
expansion property of the code’s Tanner graph, which is not
practical neither from the standpoint of code construction nor
from the constraints on spatial placement of physical qubits.
Motivated by the high throughput of hard-decision decoders, it
is interesting to see the possibility of designing hard-decision
iterative decoders to decode both CSS and non-CSS quantum
codes, which performs similarly to the full-precision decoders.
In this paper, we present a low-complexity hard decision itera-
tive decoder, referred to as Quaternary-Binary Message-Passing
decoder (QB-MPD). Decoding is performed by exchanging
binary messages over the quaternary stabilizer graph. Message
passing update rules are derived with the similar spirit of RBP
in Section III, along with decoding examples using the 5-qubit
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code. We evaluate the complexity of our approach, in terms
of both the number of operations and average iterations, by
comparing it to RBP, which is currently the least complex full-
precision quaternary quantum decoder. The lower complexity
of the proposed QB-MPD decoder makes it a suitable solution
for hardware-friendly decoding. For instance, at the parity check
nodes, we require only the XOR logic instead of complex check
operations (see Section V). However, as anticipated with a hard-
decision approach, there is a slight decrease in performance as
shown in the performance analysis in Section V.

II. PRELIMINARIES

Let S = {S1,---,Sn} be a set of stabilizer generators
for a [[n,k,dmin]] quantum code, where each generator S;,
1 < ¢ < m is a n-qubit Pauli operator [27], Kk = n — m and
dimin 1s the minimum distance of the code. The Pauli operators
are: I = [{9,X =[98],Y = [907],Z2 = [§ %] The set
of generators S can be represented using a matrix H , called
stabilizer matrix, whose (i,j)" element is given by the Pauli
operator corresponding to the jM qubit in stabilizer S; € S.
The commutator between two operators A, B € {I,X,Z,Y}
is defined as [A, B] = AB— BA. From the definition, it follows
that [4, B] = 0 when A and B commute, otherwise [A, B] = 1.
Note that X, Y, and Z operators anti-commute with each other,
while / commutes with all the Pauli operators.

We consider a depolarizing channel characterized by chan-
nel parameter e (depolarizing error rate), which induces error
pattern E € {I, X, Z, Y }" on the n qubits. In the depolarizing
channel, every qubit goes through either a bit-flip (X), phase-
flip (Z), or both (Y'), each with probability €/3. The probability
of no error (I) on the same qubit equals to 1 — /3. The weight
of E is defined as the number of non-identity operators in F.
Unlike classical error correction, the decoder cannot estimate
the codeword without perturbing the codeword state. This issue
can be circumvented by measuring the syndromes.

Let s; be an indicator function which indicates the com-
mutativity between S; and E, i.e., s; = [S;, E]. The vector
s ={s1,82,...,8m} is referred to as the syndrome vector. In
quantum error correction, the decoder estimates the most likely
error pattern E € {I, X, Z, Y}" given the syndrome vector
s € {0,1}™, and the underlying Tanner graph corresponding
to the stabilizer matrix H. The Tanner graph is a bipartite graph
with a set of variable nodes and check nodes connected by edges
that correspond to non-identity entries of H. An example of a
parity-check matrix and its Tanner graph is given in Fig. 1,
in which edges with X and Z labels are shown in red and
blue colors, respectively (edges with Y labels with green). The
decoding process succeeds when the estimated error pattern E
is equivalent to the actual error pattern up to some stabilizer
(degeneracy effect); otherwise a logical error occurs.

III. QUATERNARY-BINARY MESSAGE-PASSING DECODER

The first part of this Section introduces symbols and notations
used in our decoder, while the next part describes the message-
updating rules through a decoding example.

X z 7z 7 I
Ho|L X Z2 z X
“|\x 1 x z z
Z X I X Z

Fig. 1. Stabilizer matrix and Tanner graph of the 5-qubit code. Red and blue
edges correspond to X and Z Pauli operators, respectively.

A. Notations

For the rest of the paper, vectors are denoted by bold small-
case letters. We denote the natural numbers from 1 to n by [n].
The cardinality of a set .4 is |.A|. We denote the binary message
passed from check node (CN) ¢; to variable node (VN) v; in

the £ iteration by 12{,,.. Similarly, the message from VN v;

to CN ¢; is denoted by V:Uf)_wi. The degree of variable node v;
and check node c; is denoted by d,,; and d.,, respectively. We
denote the neighbors of variable node v; and check node ¢; by
M(v;) and N (¢;), respectively.

Algorithm 1 Quaternary-Binary Message-Passing Decoder
Input: s, H
QOutput: E
Parameters: L: maximum number of iterations, d,: maximum
variable degree.
1) Inmitialization:
¢ =1, success =0
Estimated error vector: E©) = II...1.
variable-to-check messages:
v, =0,q\,.. = (dy,0,0,0),¢”) = (d,,0,0,0).
2) While (¢ < L) and (success == 0)
a) Check node update (CNU):

—1
I, = 80 Buten(en fo; Vf;;.ai (D

b) Variable node update (VNU):
Quaternary messages update:
q’L()l;)—>Cl (W) = qz()t;:)lc)7 (W) + Z ]]'[H(i/,j),W]:M(l;) )
cheM(v;)/ei e

2

where W € {I,X,Z,Y}.
Binary variable-to-check message:

0, if 3 g (W) 2 3 ai)lse (W)
= [H(4,5),W]=0 [H(i,5),W]=1

1, otherwise.

L
V’L()j)—>ci

3)

c) Decision vector update:

¢ -1
)=y + Y LIRS CIRC)
c; EM(vy) -

d) Estimated error vector:

Ej(e) = argmax qj(-l)(W). ®)
we{l,X,Z,Y}
e) Syndrome calculation:

it Y [FE;,H(i,7)] mod 2 =s;, Vi = success = 1,
j=1
else { =/(+1.
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B. Message-passing rules

The binary message uEfL,,j is assigned to either O
or 1 such that the stabilizer at CN ¢; matches syn-
drome s;, given all the extrinsic incoming messages at

CN ¢;. The binary message uf,f)_>p is obtained from

ql(,J)_wl using Eq. (3). The quaternary vector ql(,f)_wi is

¢ ¢ ¢ ¢
((h(;])—wl (]) q/l(]])_>cl (X) qg])_>cz (Z) (Zz()])—n’L (Y)) ’ Whose e]e_
ments regresent a statistics indicating the chances that the
error E commutes with a distinct Pauli operator, given the

. . -1
extrinsic incoming messages to VN v; and its value qf, j—m)i

in the previous iteration. Note that vector qﬁfbci depends
on both past and current messages, implying the dependence
of ngf)_m on both past and current messages. This memory
attribute leads to improvement in logical error rate as shown

in Section V. Next, we define a length four vector qj(_z) =

(qj(-e) (1), q§£) (X), CIJ(-Z)(Z), qj(.f)(Y)), called the decision vector,

in which qj(e) (W), for W € {I, XY, Z}, indicates the chances
of error symbol E( ) being W. From Eq. (4), observe that q( )
also depends on the current messages and its past value. The
decoder message passing rules are summarized in Algorithm 1.

Next, we motivate the message-passing rules of the proposed
QB-MPD through an example. Consider the 5-qubit non-CSS
code whose parity-check matrix and Tanner graph are given in
Fig. 1. This is the smallest stabilizer code that protects against
any arbitrary single error on any qubit [28].

Consider the error pattern £ = XII1I. Observe that all the
stabilizer generators except the stabilizer at CN ¢4 commutes.
Therefore, the syndrome vector is given by s = (0,0,0,1).

The decoding process starts by initializing E( =1Vjen]

a¥%e, = @\ = (4,0,0,0), and uis,, = 0 for H(i, j) #
I,i € [4] and j € [5]. Since E(O) = [ and I commutes with

all the Pauli operators, qq(,J)_m for all the edges is given by

) (4,0,0,0), where 4 is the maximum VN degree.

qv;=c;, =
By substituting qq(,?,)_mi in Eq. (3), 1/1(,?)_>ci = 0 is obtained for
all the edges. Next messages from CNs to VNs are computed
using Eq. (1). Since s; = 0 and uﬁ?)_)ci =0 for ¢ € {1,2,3},
all the outgoing messages from CN 1,2, and 3 are zero. Since
s4 = 1 and the incoming messages at c4 are zero, the outgoing

messages from CN c4 are one. That is,
(1) (1) (1) (1)

:u('4—>1)1 - M('4—>1)2 - ,u‘('4—>1)4 - M(’4—M)d = 13
and all other check-to-variable messages are zero in iteration 1.
Next, consider the computation of qﬁ_)cl. To better understand
the rule in Eq. (2), let us expand the rule for qﬁ)_)cl. Note that
M(vy) ={e1, ¢3, ¢4 }. Expanding Eq. (2), we get
g, (W) =g\, (W) +1

+1

(H(3,1),W]=py" 0,

HE) W=, ©
Recall that Qvl—m (W) represents a statistics that indicate the
chances of E§ = W. Also, recall that ug)_wl represents
whether Eil) commutes with H(é,1). From Eq. (6), observe
that ug)_m for ¢; € M(v1) \ ¢1 contributes to qq(,})_ml(W)
only when W satisfy the condition imposed by uﬁfwl. There-

fore, the update rule in Eq. (2) is intuitive. By substituting,
H(3,1) = X,H(4,1) = Z, s, = 0 and plil,, = 1,
Eq. (2) is simplified to the following

gV W) =g\, (W) + Lixwi—o + Lizwj=1- (D
Now by replacing W with the Pauli operators in Eq. (7), we
obtain q,(ﬁ)_ml = (5,2,1,0). Next, we motivate the update
rule in Eq. (3) through computation of Vl(,})ﬁcl, which indicates
whether E; commutes with H(1,1) = X, given qfﬁ)_,cl. We
expand the condition in Eq. (3) while computing vy, 2s¢,, SO

05 e, (D) + 4y e, (X) 2 afi e, (V) + 0l L, (2). ®)
Observe that the LHS (RHS) in Eq. (8) clubs the statistics cor-
responding to the Pauli operators that commute (anti-commute)
with H(1,1) = X. Intuitively, 5., = 0 since LHS is
greater than RHS. Similarly, qS,JLQ and Vq(,})ﬁc corresponding
to other edges can be computed. Decision vector update at a
VN follows a similar argument and can be done using Eq. (4).
By following the message-updating steps, it can be shown that
the decoder converges in four iterations. It can be also shown
that the decoder succeeds on all weight error patterns except
E=1IIY]I.

Algorithm 1 describes the parallel scheduling version of
the proposed decoder, where each iteration comprises of first
updating all VNs together, then updating the CNs together.
The QB-MPD can also be adapted to sequential scheduling
wherein either column (or row)-wise updates are performed.
In a column-wise scheduled decoder, only a subset of VNs
and their adjacent CNs are updated in each iteration. Though
sequential scheduling is shown to improve decoding conver-
gence [29], they require a higher latency compared to parallel
approaches.

IV. ANALYSIS OF QB-MPD FOR CSS CODES

This section investigates the error patterns on which the pro-

posed QB-MPD decoder fails. We start by stating an observation
about the QB-MPD.
Remark: For QB-MPD, the variable-to-check update message
sent over an edge with a specific label is only a function of the
incoming check-to-variable messages that are sent over edges
with the same label. We skip the proof of the above remark
due to the space constraint.

Therefore, while computing the variable-to-check message
sent along an edge with a particular label, we only need to
consider the incoming check-to-variable messages along the
edges with the same edge label while neglecting the rest. For
codes like CSS codes, in which edges incident on a CN have
the same label, the proposed QB-MPD on the quaternary graph
and two QB-MPD decoders that run separately on the X and
Z sub-graphs have the same performance.

A. Trapping Sets for QB-MPD

At this point we will introduce the notion of trapping sets and
derive sufficient conditions for the cases when cyclic structures
in the Tanner graph lead to trapping sets when quantum codes
are decoded using QB-MPD.
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Definition 1. According to [29], a trapping set for a syndrome-
based iterative decoder is a non-empty set of variable nodes in
a Tanner graph G that are not eventually converged or are
neighbors of the check nodes that are not eventually satisfied.

Trapping sets do not allow the decoder to converge for
low-weight error patterns and therefore determine the iterative
decoding performance in the error floor region [29]. We need
additional notations to state the sufficient conditions for a
trapping set. Next, we introduce them. Let &£, be the set of
edges connected to VN v. Let L(e) denote the label on edge
e. Define L(£) = {L(e) : e € &}.

Lemma 1. Consider Tanner graph G = (VUC, E) correspond-
ing to a quantum code. Let Gy = (V1 UC1,&1) C G be the
sub-graph induced by a stabilizer generator. Sub-graph Gy is a
trapping set if for every v € V1,

1) 1LENE) =1,

2) [L(EN(ENE)) =1,

3) LENENNLENENE))=0.

Proof. The main idea behind the proof is to show that the
check-to-variable messages sent by a CN ¢ € (CNCy) to a
VN v € V have no effect on the variable-to-check messages
exchanged inside the sub-graph G;. The details of the proof
will be given in the longer version of the paper. O

Lemma 1 provides sufficient conditions for a cycle to be
harmful under QB-MPD. Consider the sub-graph G; induced by
any length-8 cycles of the Z and X sub-graph. If the variable
degree of both the X and Z sub-graphs is equal to 2, any two
error patterns on G; in which the non-identity operators are
either X or Z satisfy the condition in Lemma 1 and hence,
cannot be corrected. These configurations can be classified as
(4,0) symmetric trapping sets with the critical number equal to
two, based on the definition of trapping sets in [29]. Hence, the
number of these harmful error patterns is (‘21) x Ng =6 x Ng,
where Ng denotes the total number of 8-cycles.

For example, for the [[106,2,9]] code [30], the number
of harmful weight-2 patterns equals 636. Fig. 2 shows two
instances of harmful 8-cycles in the code’s Z sub-graph. An
example of the 8-cycle appearing in the Z sub-graph of the
[[106, 2, 9]] code consists of the VNs: v1, va, 55, v100. Consider
the case of a weight-2 error pattern with X errors on v
and vy (Fig. 2(a)). In this case, the proposed parallel decoder
displays an oscillatory behavior. In particular, the error estimate
on vy, ve, V55, and vigo oscillates between {X, X, X, X} and
{I,1,I,I}. Similar behavior is also observed for the RBP
decoder. That oscillatory behavior is observed if the weight-
2 error corresponds to the diagonal nodes of an 8-cycle;
othe{Wis§, thAe degoder gets stuck at the same estimate, which
is {El,EQ,E55,E100}={X,X,X,X}.

V. PERFORMANCE EVALUATION

A. CSS codes

We compare the performance of the proposed QB-MPD
decoder against a floating-point quaternary RBP decoder. CSS
codes belonging to the generalized bicycle (GB) codes from

L]
(a) (b)

Fig. 2. Two examples of (4,0) symmetric trapping sets of the [[106, 2, 9]]
GB code for QB-MPD. Shaded VNs represent X errors and shaded CNs are
anti-commuting stabilizers. Red and blue edges correspond to X and Z Pauli
operators, respectively. Both examples satisfy Lemma 1.
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Fig. 3. RBP vs. variations of QB-MPD for the [[106,2,9]] GB code [30].
No memory plot corresponds to omitting the first term of the RHS of Eq. (2)
and Eq. (4). QB-MPD* corresponds to applying our decoder to the X and
Z sub-graphs of the code separately. QB-MPD* and QB-MPD curves exactly
overlap.

[30]-[32] and lifted product (LP) codes are chosen for simu-
lation purposes. Each data point in the figures is obtained by
simulating the decoders till we observe 100 logical errors. Also,
all decoders run for a maximum of 10 iterations under parallel
scheduling unless stated otherwise. Fig. 3 depicts the logical
error rate when the [[106,2,9]] GB code [30] with minimum
distance d,in = 9, d. = d,, = 4 and girth g = 8 is decoded
by parallel versions of our decoder and RBP. We observe that
the dependence of the variable-to-check messages (and decision
vector) on their past values improves performance compared
to the case where Eq. (2) and Eq. (4) depend only on the
incoming check-to-variable messages. By adding the memory
component, the decoder becomes more cautious in updating
the estimate value of each variable node and therefore updates
smaller sets of qubits than the non-memory case. Essentially,
the most ‘reliable’ nodes, i.e., the nodes that have accumulated a
certain number of votes over the previous iterations are updated.
The same figure also illustrates a result related to Lemma 1 in
Section IV. Because we deal with a CSS code, the X and Z
sub-graphs can be decoded independently. Hence, we apply our
decoder to each sub-graph separately. The quaternary decoder
now operates on binary graphs but it has knowledge of the edge
labels. For example, when decoding the X sub-graph, the same
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Fig. 4. Logical error rate performance of RBP vs. QB-MPD for
[[1054, 140, 20]] LP Tanner code and the [[48, 6, 8]] GB code. For low error
rates (< 0.01), QB-MPD approaches RBP while requiring less complex
operations (Table II).

TABLE I
RBP vs. QB-MPD over the number of correctable weight-1 and weight-2
error patterns for various non-CSS codes. Decoders run for 50 iterations.

weight-1 weight-2
non-CSS codes | g \ippy RBP | QB-MPD ~ RBP
15,1, 3]] 14/15  14/15 ; ;
(18,3, 3]] 18/24  18/24 ; ;
[[16, 10, 3]] 27/48  27/48 - -
(16,6, 4]] 40/48  14/48 | 7/1080  32/1080
([11,1,5]] 33/33  32/33 | 5/495  17/495

number of votes is accumulated to both Z and Y operators
of the quaternary messages and decision vectors. However,
the estimated error vector only contains [ and Z operators (1
and X operators for the Z sub-graph respectively). QB-MPD*
performs exactly the same as QB-MPD, confirming that in the
case of CSS codes, decoding on the whole graph using QB-
MPD is equivalent to decoding X and Z sub-graphs separately
by the same decoder.

Fig. 4 shows the decoding performance of the QB-MPD
versus RBP for the [[1054, 140, 20]] LP Tanner code [33] and
the A3 code ([[48, 6, 8]]) [15]. Interestingly, for the case of the
LP Tanner code, in the error-floor regime, both decoders display
a similar performance.

B. Non-CSS codes

Table I outlines the error correction capability of the QB-
MPD and RBP decoder for distance 3, 4, and 5 non-CSS codes
(from [6]). QB-MPD, despite its low complexity, has a similar
error correction capability as that of RBP for the distance-3
codes and has an even better error correction capability than
that of the RBP for the [[16, 6, 4]] code and has almost similar
error correction capability as that of the RBP for the [[11, 1, 5]]
code.

TABLE I
Complexity in terms of (worst-case) required operations for QB-MPD vs.
RBP. The number of operations is computed for each outgoing
check-to-variable (for CNU) and variable-to-check (for VNU) message. For
QB-MPD, operations involve only integers whereas RBP involves only
floating-point numbers.

Step QB-MPD RBP decoder
CNU d. XORs d. multiplications
2 x (d, — 1) increments | 2 x (d, — 1) + 4 multiplications
VNU 2 additions 3 additions
1 subtraction 2 subtractions

C. Complexity Comparison

We compare the QB-MPD with the RBP approach regarding
the number of decoding operations required. Consider the
variable-to-check node update, and for clarity, assume all VNs
receive d, — 1 messages, half corresponding to X and the
other half corresponding to Z labeled edges. Also, assume
all CNs receive d. — 1 messages. In the worst-case scenario,
QB-MPD increments integers 2 x (d, — 1) times and makes
one comparison per outgoing variable-to-check message. In
contrast, RBP needs 2 x (d,, — 1) floating-point multiplications,
a normalization, and a subtraction. QB-MPD needs d. binary
XOR computations for each check-to-variable message, while
RBP requires d. multiplications of floating-point messages.
The complexity comparison is summarized in Table II. Fig. 5
illustrates the average number of iterations required by each
decoder to converge for the case of the [[106, 2, 9]] code and LP
Tanner code. Speaking of the [[106,2,9]] code, for error rates
lower than 0.005, both decoders converge in about 2 iterations.
Similar convergence behavior is observed for the LP Tanner
code, for which QB-MPD approaches the RBP performance in
the error floor region (Fig. 4). Hence, the proposed decoder
offers a good performance/complexity trade-off, especially in
low error rates where it converges in around the same number
of iterations as RBP while requiring far fewer operations and
imposing a modest performance loss.

VI. CONCLUSIONS AND FUTURE WORK

Targeting  hardware-implementation-friendly =~ message-
passing decoding of general QLDPC codes, we proposed a
low-complexity, hard-decision decoder operating on quaternary
graphs. QB-MPD offers a lower complexity, in terms of the
number of operations and the average number of iterations
compared to RBP, at the cost of a modest degradation in
performance. However, the proposed decoder attains a similar
performance to RBP for various non-CSS codes. We also
showed that for the specific case of decoding CSS codes with
QB-MPD, quaternary decoding is equivalent to decoding the
X and Z sub-graphs separately. More detailed investigations
are required to evaluate the performance of general non-CSS
codes with the proposed decoder. QB-MPD will be used to
investigate the error correction capabilities of such codes (as
has been done with Gallager-B in the classical case [34]).
Another research direction could be the enhancement of the
decoding performance of our scheme either by deploying
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Fig. 5. Complexity of different decoders when used to decode the [[106, 2, 9]]
GB code and [[1054, 140, 20]] LP Tanner code. For low error rates (< 0.01),
QB-MPD converges in similar number of iterations as RBP while requiring
less complex operations (Table II). All decoders run for a maximum of 50
iterations.

post-processing or modifying the existing rules based on the
knowledge of quantum trapping sets.
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