
1.  Introduction
Microbially Induced Desaturation and Precipitation (MIDP) via denitrification is being investigated for its 
potential as a novel bio-mediated ground improvement method to mitigate earthquake induced liquefaction 
(He et al., 2013, 2014; O’Donnell, 2016; O’Donnell, Kavazanjian, & Rittmann, 2017, O’Donnell, Rittmann, & 
Kavazanjian, 2017; Wang, Van Paassen, et al., 2020, Wang, Van Paassen, Gao, et al., 2020; Wu et al., 2018). By 
injecting a solution in the ground, which contains nitrate and dissolved organic carbon, nitrate reducing bacteria 
are stimulated to produce nitrogen gas and inorganic carbon. This catabolic redox reaction produces energy, 
which can be used by the nitrate reducing bacteria for growth and maintenance, while the nitrate and organic 
carbon can also serve as nitrogen and carbon source for cell synthesis. When providing nitrate and/or dissolved 
organic carbon as calcium salts (e.g., calcium nitrate and calcium acetate), the production of inorganic carbon 
results in the precipitation of calcium carbonate minerals.

The three main products of calcium-based denitrification, that is, biogenic gas bubbles (nitrogen and carbon 
dioxide), calcium carbonate minerals, and biomass, affect the soil properties and consequently change the soil 
behavior. The formation of gas bubbles desaturates the soil, increases the compressibility of the fluid, and reduces 
the buildup of excess pore pressures during undrained loading (He & Chu, 2014; Okamura & Noguchi, 2009; 
Okamura & Soga, 2006; O’Donnell, Kavazanjian, & Rittmann, 2017; Wang et al., 2021). Precipitation of calcium 
carbonate minerals can either cement the surface or the contact points of soil grains which affects the engineer-
ing properties of soil similar to Microbially Induced Carbonate Precipitation (MICP) by urea hydrolysis, that 
is, increasing the strength and stiffness of granular soils (DeJong et al., 2010, 2013; El Mountassir et al., 2018; 
Ivanov & Chu, 2008; Phillips et al., 2013; Whiffin et al., 2007). The increased strength through precipitation of 
biominerals also helps to increase the liquefaction resistance of loose granular soils (Gao et al., 2022; O’Donnell, 
Rittmann, & Kavazanjian, 2017; Wang, Van Paassen, Gao, et al., 2020; Wang et al., 2021).
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However, gas bubbles and minerals fill the pore space and consequently can also affect the permeability of the 
soil. Soares et  al.  (1988,  1991) and Ronen et  al.  (1989) observed that desaturation through accumulation of 
entrapped gas formed by nitrate-reducing bacteria significantly reduces the hydraulic conductivity. However, 
when the gas is removed, the hydraulic conductivity can be recovered. To reduce the hydraulic conductivity 
through mineral precipitation, a significant amount of mineral precipitation is required. For example, Al Qabany 
and Soga (2013) and Dadda et al. (2017) showed when using MICP that more than 6% calcium carbonate was 
needed to reduce the permeability by one order of magnitude, which may be advantageous when applying MICP 
for bio-cementation as it allows substrates to be distributed over large distances, before significant clogging 
occurs (Whiffin et al., 2007). The third product of the denitrifying metabolism, biomass, also reduces hydraulic 
conductivity (Baveye et al., 1998; Cunningham et al., 1991; Thullner, 2010; Vandevivere, 1995; Vandevivere 
et al., 1995). As these biochemical conversions happen simultaneously in the aqueous state, changes in porosity, 
saturation and permeability, in turn, affect the flow field and consequent distribution of substrates and products 
of the biochemical processes. The interaction between the biochemical reactions and soil properties makes MIDP 
a complex coupled process.

This study aims to evaluate the permeability reduction during the MIDP process and develop a simpli-
fied zero-dimensional model for the porous media which couples the bio-chemical-physical processes in 
MIDP to changes in porosity, permeability, and saturation. Many models have been developed for MICP by 
urea hydrolysis at different scales and with varying levels of complexity (Cunningham et al., 2019; Ebigbo 
et  al.,  2012; Gai & Sánchez,  2019; Hommel et  al.,  2015; Minto et  al.,  2019; Qin et  al.,  2016; van Paas-
sen, 2009; van Wijngaarden et al., 2011). Van Wijngaarden et al. (2011) built a model for MICP treated soil, 
which includes urea hydrolysis reaction, transportation of substrates, porosity changes caused by calcium 
carbonate precipitation and permeability reduction modeled with Kozeny-Carman relation. Later, van Wijn-
gaarden et al. (2013) and van Wijngaarden et al. (2016) improved it by including the fixation and decay of 
bacteria. Martinez et al. (2014) adopted different rates to describe the urea hydrolysis and precipitation rate 
to model the concentrations of compounds and pH, neglecting the permeability changes. Ebigbo et al. (2012) 
included the precipitation kinetics in the model and two-phase flow when simulating the process using MICP 
to set up a hydraulic barrier for CO2 storage site. Hommel et al. (2015) and Hommel et al. (2016) improved 
the model further by including bacteria transportation, complex solution chemistry, dissolution of calcite 
and the effects of biomass and calcite on porosity changes. Cuthbert et al. (2013), Qin et al. (2016), Nassar 
et  al.  (2018), Cunningham et  al.  (2019) and Minto et  al.  (2019) extended the model to simulate the field 
tests using MICP.  For biomass clogging, Vandevivere et  al.  (1995) and Baveye et  al.  (1998) reviewed a 
lot of models which simulate the permeability reduction caused by biomass based on the Kozeny-Carman 
equations, most of which neglected the biomass growth. Ebigo et al. (2010) included the biofilm growth and 
its effect on permeability when simulating the biofilm and flow process in CO2 storage reservoir. Hommel 
et  al.  (2018) summarized a lot of models which studies the porosity-permeability relations in MICP and 
biomass clogging.

Limited modeling efforts are reported so far on MIDP (O’Donnell et  al.,  2019; Pham,  2017). The models 
on MIDP mostly focused on the biochemical conversions but did not couple the products of the biochemical 
reactions to the resulting soil properties. O’Donnell et al.  (2019) proposed an upgraded model by including 
intermediates, inhibition of microbes because of toxic intermediates, the chemical constituents and also consid-
ered various organic substrates in biochemical reactions, but pore-scale processes were ignored. The numerical 
model developed in this study, includes the metabolic (anabolic and catabolic) denitrification reactions, the 
formation of biogas, biominerals and biomass, and their effects on the degree of saturation, porosity, and perme-
ability of the soil. A method to account for potential variations in the stoichiometry of the metabolic reaction 
is introduced and partial differential equations are used to describe changes in liquid fraction and porosity 
caused by the metabolic products (biogas, biomass, and biominerals). Finally, the changes in permeability were 
determined, considering the combined effects of biogas, biomass, and biominerals using two separate power 
law equations, which relate changes in degree of saturation and porosity to changes in permeability. Data from 
liquid batch experiments and column tests in modified triaxial test set-up were used to calibrate the model and 
fit the input parameters. Based on the combined experimental and numerical simulation results, the interaction 
between biogas, biominerals and biomass in the evolution of the pore space and permeability reduction are 
discussed.
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2.  Theory
The model considers the metabolic denitrification process in MIDP which produce biomass, biogas, and biomin-
eral. The multicomponent bio-chemical process in porous media with changes in porosity, water saturation and 
permeability make the biogeochemical process of MIDP extremely complex. Our study mainly focuses on the 
(combined) effects of biogas, biomass, and biomineral on soil permeability. So, some assumptions were made to 
simplify the model.

1.	 �The metabolic reaction of denitrification is split in a catabolic and an anabolic reaction, which is combined 
with a factor, fcat, as explain after. Bacteria decay and transportation are not considered.

2.	 �The reaction rate is assumed to follow the Mond equation considering no inhibition.
3.	 �The dry biomass density which is dry biomass per unit wet biomass volume is assumed to be constant at 

50 kg/m 3.
4.	 �The pH is buffered and remains around neutral as Pham, Nakano, et al. (2018) and Wang, Van Paassen, Gao, 

et al. (2020) showed.
5.	 �The precipitation happens simultaneously with denitrification.
6.	 �All produced DIC will either precipitate with calcium or leave the solution as carbon dioxide gas.
7.	 �A zero-dimensional approach is used to describe the average concentration of calcium and nitrate in the 

liquid batch, and the average porosity, water saturation and permeability throughout the unit soil column.
8.	 �The nucleation and growth kinetics of gas bubbles and biominerals are ignored. The capillary pressure is 

ignored, so the gas pressure is assumed to be equal to the water pressure.
9.	 �The viscosity is constant, and the permeability is isotropic.

10.	 �The changes in permeability were determined, considering the combined effects of biogas, biomass and 
biominerals using two separate laws, which relate changes in the degree of saturation and porosity to changes 
in permeability.

2.1.  Biochemical Reactions

In the denitrification process, nitrate is stepwise reduced to nitrogen gas, while a source of organic carbon is 
oxidized to inorganic carbon. When providing calcium acetate and calcium nitrate as the main substrates, acetate 
acts as the carbon source and electron donor. The metabolic reaction can be split in a catabolic and an anabolic 
reaction. The catabolic reaction of the denitrification process can be expressed (per unit of acetate) in a single 
reaction equation using (Thomsen et al., 1994):

CH3COO− + 1.6NO−
3 + 0.6H+ bacteria

←←←←←←←←←←←←←←←←←←←←←←←←→ 0.8N2 ↑ + 2HCO−
3 + 0.8H2O� (1)

The catabolic reaction generates the energy used in the anabolic reaction, in which biomass is produced. Hoh 
and Cord-Ruwisch  (1997) and Şengör et  al.  (2013) recommended that it is necessary to include growth and 
maintenance energy thermodynamics via ATP/ADP cycling when model biosystems. Using CH1.8O0.5N0.2 
as the molecular formula for biomass, the anabolic reaction (per unit of biomass) is described as (Heijnen & 
Kleerebezem, 2009; Pham, Nakano, et al., 2018):

0.725CH3COO
−
+ 0.2NO

−

3
+ 0.475H

+
→ CH1.8O0.5N0.2 + 0.45HCO

−

3
+ 0.2H2O� (2)

Both Equations 1 and 2 are valid for a pH around neutral. Depending on the pH, dissolved inorganic carbon 
(DIC) can take the form of carbonate 𝐴𝐴 (CO

2-
3
) , bicarbonate 𝐴𝐴 (HCO

-
3
) or carbonic acid (H2CO3). For a pH around 

seven bicarbonate 𝐴𝐴 (HCO
-
3
) is the dominant species of DIC. The equations illustrate that at neutral pH both the 

anabolic and catabolic reactions consume protons, and thereby cause the pH to increase. The overall metabolic 
reaction can be determined by combining the catabolic and anabolic equation. The ratio at which these reactions 
are combined depends on the growth rate of the bacteria and can be described using the factor, fcat, which defines 
how many catabolic reactions (per unit of carbon donor) are needed to generate sufficient energy for the growth 
and maintenance of one unit of biomass. Following this definition, the stoichiometric metabolic yield coefficient, 
Y m, of each substrate and product can be calculated using (Heijnen & Kleerebezem, 2009):

𝑌𝑌
m
= 𝑌𝑌

a
+ 𝑓𝑓cat ⋅ 𝑌𝑌

c� (3)

where Y a is the anabolic yield coefficient and Y c is the catabolic yield coefficient.
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Combining Equations 1 and 2 using fcat, the stoichiometric coefficient of the 
main species involved in the metabolic denitrification reaction can be deter-
mined as listed in Table 1. The minimum value for fcat is 0.487, which can be 
derived based on the required energy for biomass growth and maintenance 
following Heijnen and Kleerebezem  (2009) and corresponds to maximum 
growth rate conditions. If biomass growth is completely inhibited and the micro-
bial cells continue to respire for maintenance only, fcat would be equal to infinity.

In the presence of dissolved calcium, the production of DIC may cause 
precipitation of calcium carbonate minerals. At neutral pH the precipitation 
reaction can be described as follows:

Ca2+ + HCO−
3 ⇌ Ca2+ + CO2−

3 + H+ ⇌CaCO3 ↓ + H+� (4)

The precipitation reaction releases a proton. At the same time some of the 
produced bicarbonate may also associate with protons to from carbonic acid, 
which in turn may dissociate and transfer to the gas phase as carbon dioxide gas.

HCO−
3 + H+ ⇌H2CO3 ⇌ CO2 ↑ + H2O� (5)

Through the combined processes of denitrification, precipitation of calcium 
carbonate and exsolution of carbon dioxide gas, the pH is buffered and 

remains around neutral (between 6 and 8) during the entire MIDP process as demonstrated by Pham, Nakano, 
et al. (2018), Pham, Van Paassen, Van der Star, et al. (2018) and Wang, Van Paassen, Gao, et al. (2020). Consid-
ering that the pH is buffered and remains around neutral and that the water which is used to prepare the substrate 
solutions (e.g., tap water, recycled groundwater or surface water) often already contains DIC and calcium through 
contact with the atmosphere and surrounding environment, the different biochemical reactions can be combined 
and simplified, by assuming all produced DIC will either precipitate as calcium carbonate or leave the solution as 
carbon dioxide gas. Combining Equations 1–5, we can determine the yield coefficients as shown in Table 1, for: 
(a) calcium, which is half of the sum of the yield coefficients for acetate and nitrate; (b) calcium carbonate, which 
is the opposite of the yield coefficient for calcium, that is, calcium consumption is equal to calcium carbonate 
production; (c) carbon dioxide, which is the difference between the amount of bicarbonate produced in the deni-
trification reaction and the bicarbonate consumed by CaCO3 precipitation; (d) bicarbonate and protons, which 
are the opposite in the combined precipitation and gas formation reactions, which means there is no net change 
in bicarbonate and proton concentration and consequent pH or alkalinity. Combining all processes, the metabolic 
reaction can be rewritten in a single equation, in which the stoichiometry only depends on the biomass growth 
rate, that is, the value for fcat, which is illustrated in Figure 1.

The catabolic reaction, which corresponds to the metabolic reaction when 
there is no biomass growth (fcat→∞), normalized per mol of acetate, becomes:

Ca(C2H3O2)2 + 1.6Ca(NO3)2 → 1.6N2 + 2.6CaCO3 + 1.4CO2 + 3H2O� (6)

While the metabolic reaction at maximum growth rate (fcat = 0.487), normal-
ized per mol of acetate, becomes:

Ca(C2H3O2)2 + 0.82Ca(NO3)2
→ 1.62CH1.8O0.5N0.2 + 1.82CaCO3 + 0.66N2 + 0.56CO2

+ 1.54H2O�

(7)

The actual metabolic stoichiometry during the MIDP process may vary 
between the conditions of zero and maximum growth and can be determined 
after treatment based on the measurement of residual substrate concentra-
tions (Pham, 2017).

The kinetics of the coupled reaction equation can be described using a Monod 
kinetic equation (Doran, 2013) which suggests that the reaction rate follows 

Table 1 
The Stoichiometric Coefficients, Y m, of the Substrates and Products in 
the Metabolic Denitrification Reaction for the Equilibrium Speciation 
Reactions per C-Mol of Biomass

Species
Stoichiometric coefficients 

denitrification reaction

Stoichiometric coefficients 
precipitation and gas 
formation reactions

CH3COO − −0.725 − fcat

𝐴𝐴 HCO
-
3
  0.45 + 2 fcat −0.45 − 2 fcat

𝐴𝐴 NO
-
3
  −0.2 − 1.6 fcat

H + −0.475 − 0.6 fcat 0.475 + 0.6 fcat

N2 0.8 fcat

H2O 0.2 + 0.8 fcat −0.0125 + 0.7 fcat

CH1.8O0.5N0.2 1

Ca 2+ −0.4625 − 1.3 fcat

CaCO3 0.4625 + 1.3 fcat

CO2 −0.0125 + 0.7 fcat

Figure 1.  Relative molar percentage of products as a function of 
stoichiometric factor fcat.

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032907 by A

rizona State U
niversity A

cq &
 A

nalysis, L
ib C

ontinuations, W
iley O

nline L
ibrary on [02/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

WANG ET AL.

10.1029/2022WR032907

5 of 15

a first order equation at low substrate concentrations, but reaches a constant maximum value at high substrate 
concentrations:

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
= 𝑟𝑟 = 𝑟𝑟0 ⋅ 𝑌𝑌

m

𝑖𝑖
𝐶𝐶biomass ⋅

𝐶𝐶CH3COO
−

𝐾𝐾m1 + 𝐶𝐶CH3COO
−

⋅

𝐶𝐶NO−

3

𝐾𝐾m2 + 𝐶𝐶NO−

3

� (8)

where r0 (mol substrate/C-mol biomass/s) is the specific uptake rate for one mole of biomass, Ci and 𝐴𝐴 𝐴𝐴
m

𝑖𝑖
 are 

the concentration and yield coefficient of component i, Cbiomass, CCH 3COO −, and 𝐴𝐴 𝐴𝐴NO
-
3
 are the concentrations of 

biomass, acetate, and nitrate, and Km1 and Km2 are the affinity constant for acetate and nitrate, respectively, 
0.06 kmol/m 3. Note that in case of zero growth, the denitrification only includes catabolic reaction as shown in 
Equation 6. The reaction rate then only depends on the initial microbe concentration and the specific uptake rate.

2.2.  Porosity, Permeability, and Saturation Relationships

Calcium carbonate precipitation and the formation of biomass and/or biogenic gas reduce the permeability of 
the soil. However, the mechanism by which they reduce the permeability is different (Brooks & Corey, 1964; 
Ghezzehei et al., 2007; Hommel et al., 2018; Ippisch et al., 2006; Mualem, 1976; Stone, 1970; Thullner, 2010; 
van Genuchten, 1980). Many kinds of equations are used describe the effects of saturation, like van Genuchten 
equation, Brooks equation and power law while power law is commonly used to describe the porosity effects. 
In this study, the permeability change observed during separate MIDP experiments is analyzed using two rela-
tionships: one which relates permeability to porosity and one which relates permeability to the degree of water 
saturation.

2.2.1.  Porosity-Permeability Relationship

Mineral precipitation and biomass formation in porous media fill the pore space, reducing the pore size and 
the porosity. A reduction in porosity or mean pore size causes the water permeability to decrease. Various rela-
tionships have been developed which relate changes in porosity to changes in permeability. Some are based on 
physical principles, with varying assumptions, others are just fitted to empirical data for various experimental 
conditions (Hommel et al., 2018; Thullner, 2010). One of these relationships, which has been commonly used in 
literature is the power law (Ives & Pienvichitr, 1965). In this study a modified form of the power law (Verma & 
Pruess, 1988) is used:

𝑘𝑘𝑟𝑟𝑟𝑟 =
𝑘𝑘s

𝑘𝑘0

=

(

𝜃𝜃 − 𝜃𝜃cr

𝜃𝜃0 − 𝜃𝜃cr

)𝜂𝜂

� (9)

where krθ is the relative change in permeability due to changes in porosity, ks and k0 are the current and initial satu-
rated permeability, respectively, θ and θ0 are the current and initial porosity, 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 is a critical porosity at which the 
permeability terminates, and η is an empirical constant, which is fitted to the experimental data. In our model we 
assume θcr is zero. The empirical constant η can vary significantly, depending on the process causing the change 
in permeability. For example, reported values range from η = 2.5–3 for plastic deformation of the solid phase, to 
η = 8 for chemical precipitation, η ≥ 10 for chemical alteration, and η ≥ 20 for dissolution in limestone (Bernabé 
et al., 2003; Hommel et al., 2018).

Assuming biominerals and biomass itself have negligible porosity (thus water cannot percolate through them) and 
are not transported with the fluid flow, changes in porosity θ can be directly related to changes in the concentra-
tions of produced biomass and calcium carbonate resulting from the biochemical reaction and can be described 
using:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

𝜕𝜕
(

𝐶𝐶CaCO3
𝜃𝜃𝑙𝑙

)

𝜕𝜕𝜕𝜕

𝑀𝑀CaCO3

𝜌𝜌CaCO3

−
𝜕𝜕(𝐶𝐶biomass𝜃𝜃𝑙𝑙)

𝜕𝜕𝜕𝜕

𝑀𝑀biomass

𝜌𝜌biomass

� (10)

where ∂CCaCO3/∂t is the change in calcium carbonate concentration in time, which follows the overall biochemical 
reaction; MCaCO3, the molar weight of calcium carbonate is 100 g/mol; ρCaCO3, the density of calcium carbonate 
(calcite) is 2,710 kg/m 3; Mbiomass, the molar weight of biomass, which considering CH1.8O0.5N0.2 as the molecular 
formula for biomass is 24.6 g/C-mol; ρbiomass is the dry biomass density, which is the dry mass of biomass per unit 
volume of wet biomass, and the volume of wet biomass is the volume of dry biomass and interstitial water. The 
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dry biomass density is found to vary between 20 and 120 kg/m 3 (Chen & Chen, 2000; Ohashi & Harada, 1994; 
Rabah & Dahab, 2004; Ro & Neethling, 1991; Zhan et al., 2006) where the biomass density decreased with 
increasing biofilm thickness. Considering the confined space in the pores between the sand grains, it is expected 
the biomass density will be in the higher end of this range. For the model we assumed a biomass density of 
50 kg/m 3; ∂Cbiomass/∂t is the change in biomass concentration; and θl is the liquid fraction of the pores or the volu-
metric water content, that is, the ratio between the volume of water and the total soil volume. The initial value for 
porosity of the soil before treatment should be corrected for the initial volume of biomass.

2.2.2.  Saturation-Permeability Relationship

The presence of biogas in the pore fluid reduces the degree of (water) saturation, which consequently reduces the 
permeability. The permeability of a partially saturated soil, k, can be obtained using:

𝑘𝑘 = 𝑘𝑘rs ⋅ 𝑘𝑘s� (11)

where krs is the relative change in permeability as a result of change in saturation and ks is the permeability under 
saturated conditions. Similar as for biomass and biomineral formation, various empirical equations have been 
established which relate the relative permeability to changes in the water saturation, for example, van Genuchten, 
Brooks and Corey, or Stone equations (Brooks & Corey, 1964; Stone, 1970; van Genuchten, 1980). In this study, 
a modified version of Stone equation (Mahabadi & Jang, 2014) is used to describe the relationship between satu-
ration and the relative water permeability:

𝑘𝑘rs = 𝑆𝑆e
𝑛𝑛
=

(

𝜃𝜃𝑙𝑙 − 𝜃𝜃r

𝜃𝜃s − 𝜃𝜃r

)𝑛𝑛

=

(

𝑆𝑆w − 𝑆𝑆r

1 − 𝑆𝑆r

)𝑛𝑛

� (12)

where Se is the effective saturation, θl, is the liquid fraction of the pores or the volumetric water content, θr is the 
residual volumetric water content, θs is the fully saturated volumetric water content (which equals to porosity θ 
corrected for initial biomass concentration), Sw is the water saturation; Sr is the residual water saturation, and n is 
the exponent which may vary for different pore size distributions or gas distributions, which can be fitted to the 
observed data (Mahabadi & Jang, 2014). Following van Genuchten (1980), the value of n can be determined from 
the soil water retention curve (SWRC).

The volume of biogenically produced gas and consequent changes in water saturation depends on several factors, 
including (a) the yield coefficient of nitrogen and carbon dioxide in the biochemical reaction, which defines how 
much moles of gas are produced in time, (b) the gas pressure, which affects the solubility of the gas according to 
Henry's law and relates the amount of moles of gas to its volume following the ideal gas law, and (c) the ability 
of the gas to migrate (van Paassen et al., 2018). When the gas is entrapped (or occluded), the gas pressure, pg, can 
be estimated using the Young-Laplace equation:

𝑝𝑝g = 𝑝𝑝atm + 𝑝𝑝w + 𝑝𝑝c = 𝑝𝑝atm + 𝑝𝑝w +
2𝛾𝛾

𝑅𝑅b

� (13)

where patm is the atmospheric pressure (±101 kPa or 1 atm); pw is the water pressure which is the sum of the 
hydrostatic and excess pore water pressure (similar to back pressure in the triaxial cell), and pc is the capillary 
pressure, which is a function of the water surface tension γ (±0.072 N/m) and the gas bubble radius Rb. The 
bubble radius depends on the pore size distribution. Gas prefers to fill up the large pores first before filling or 
migrating through the smaller pore throats. The capillary pressure can be estimated based on the pore (or soil 
grain-) size distribution or SWRC curve (van Paassen et al., 2018).

Ignoring nucleation and growth kinetics of gas bubbles, gas formation is assumed to start when the dissolved 
concentration exceeds the solubility. The change in liquid fraction due to nitrogen gas production can then be 
described as follows:

⎧

⎪

⎨

⎪

⎩

𝜕𝜕𝜕𝜕𝑙𝑙𝑙N2

𝜕𝜕𝜕𝜕
= 0 𝑖𝑖𝑖𝑖 𝑖𝑖N2

≤ 𝐶𝐶
∗

N2
= 𝐻𝐻

𝑐𝑐𝑐𝑐

N2
𝑝𝑝N2

𝜕𝜕𝜕𝜕𝑙𝑙𝑙N2

𝜕𝜕𝜕𝜕
=

−𝜕𝜕
(

𝐶𝐶N2
𝜃𝜃𝑙𝑙

)

𝜕𝜕𝜕𝜕

𝑅𝑅𝑅𝑅

𝑝𝑝𝑔𝑔
𝑖𝑖𝑖𝑖 𝑖𝑖N2

> 𝐶𝐶
∗

N2

� (14)

where 𝐴𝐴 𝐴𝐴N2
 is the partial pressure of nitrogen in the gas phase, R is the gas constant, 8.314 m 3 ⋅ Pa ⋅ K −1 ⋅ mol −1; T 

is the temperature in K, and 𝐴𝐴 𝐴𝐴
𝑐𝑐𝑐𝑐

N2
 is Henry's constant for nitrogen gas, 6.1 × 10 −4 mol · L −1 · atm −1.
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Following the same procedure, the change in liquid fraction due to exsolution of carbon dioxide is:

⎧

⎪

⎨

⎪

⎩

𝜕𝜕𝜕𝜕𝑙𝑙CO2

𝜕𝜕𝜕𝜕
= 0 𝑖𝑖𝑖𝑖 𝑖𝑖CO2

≤ 𝐶𝐶
∗

CO2

= 𝐻𝐻
𝑐𝑐𝑐𝑐

CO2

𝑝𝑝CO2

𝜕𝜕𝜕𝜕𝑙𝑙CO2

𝜕𝜕𝜕𝜕
= −

𝜕𝜕
(

𝐶𝐶CO2
𝜃𝜃𝑙𝑙

)

𝜕𝜕𝜕𝜕

𝑅𝑅𝑅𝑅

𝑝𝑝g
𝑖𝑖𝑖𝑖 𝑖𝑖CO2

> 𝐶𝐶
∗

CO2

� (15)

where 𝐴𝐴 𝐴𝐴
𝑐𝑐𝑐𝑐

CO2
 is Henry's constant for carbon dioxide, 3.4 × 10 −2 mol/(L · atm).

The liquid fraction can be reduced due to gas formation, until the degree of saturation drops below a certain 
threshold at which the gas forms a continuous pathway and starts to percolate. Further production of the nitrogen 
gas cannot push more liquid out from the soil and the saturation will not be reduced further although the reaction 
may continue. Here this percolation threshold saturation, Sv, is defined as the liquid saturation at which a contin-
uum gas-phase is formed, which allows the gas to escape from the pore space (Sahimi, 1993). Pham, Van Paassen, 
and Van der Star (2018) performed several laboratory tests on sand columns with varying grain size distribution 
and pressure conditions and found that such a threshold exists at a degree of saturation around 75%–85%. In 
natural sediments it may be difficult to get a precise value for Sv, due to the heterogeneity of the pore structure. 
For example, in a sandy-silt stratified soil system this threshold may be higher as silt lenses can prevent upward 
migration of gas and cause the gas phase to spread laterally (Stallings Young et al., 2021). Thus, the change in 
liquid fraction is described using:

⎧

⎪

⎨

⎪

⎩

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
=

𝜕𝜕𝜕𝜕𝑙𝑙N
2

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕𝑙𝑙CO
2

𝜕𝜕𝜕𝜕
, 𝑖𝑖𝑖𝑖 𝑖𝑖𝑙𝑙 ≤ 𝜃𝜃 ⋅ 𝑆𝑆v

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
= 0 𝑖𝑖𝑖𝑖 𝑖𝑖𝑙𝑙 = 𝜃𝜃 ⋅ 𝑆𝑆v

� (16)

Using this model, the concentration of chemical species, porosity, saturation, and the permeability can be 
predicted for different treatment strategies and soil conditions. However, the model is built based on various 
assumptions and requires fitting of several parameters, such as the initial biomass concentration and constants 
fcat, θcr, n, and η. Some of these parameters may be estimated from empirical correlations or lab characterization 
or literature values. However, the presence of gas may affect the location where calcium carbonate and biomass 
are formed. It is still unclear how the simultaneous formation of biogas, biomass and biominerals during MIDP 
will affect the porosity-permeability relationships. Therefore, calibration of the model is required. To this end, 
the model has been used to simulate the results of liquid batch tests and soil column tests that were reported in the 
literature. Experimental details and results of these experiments are presented in the following section.

3.  Results and Analysis
3.1.  Liquid Batch Conditions

MIDP experiments in liquid batch conditions were reported by Pham, Van Paassen, Van der Star, et al. (2018), 
O’Donnell, Kavazanjian, and Rittmann (2017), and Wang, Van Paassen, Gao, et al. (2020). Here the experiments 
reported by Wang, Van Paassen, Gao, et al. (2020) were used to calibrate the model for liquid batch conditions. In 
this experiment a liquid medium containing 25 mmol/L calcium nitrate and 25 mmol/L calcium acetate was inoc-
ulated with a mixed enrichment culture of nitrate-reducing bacteria from one of the earlier cultivations and the 
nitrate and calcium concentrations were monitored in time. COMSOL Multiphysics was used in the simulation 
of the liquid batch test. The specific uptake rate r0, Km1, and Km2, initial biomass concentration and fcat were 
calibrated to fit the model to the measured concentration of nitrate through trial and error. The results are shown 
in Figure 2. The solid blue line shows the simulated nitrate and calcium concentration assuming zero biomass 
growth (catabolic conditions). The dashed green line in Figure 2a shows the best fit between measured and simu-
lated nitrate concentrations, which was obtained with r0 at 1.65 × 10 −4 mol-acetate/mol-biomass/s, Km1 and Km2 
at 0.06 kmol/m 3, an initial concentration of biomass of 0.68 mol/m 3 and fcat at 3.

Using the same values for the fitting parameters to simulate the calcium concentration (Figure 2b), showed that 
final calcium concentration fitted well, but the simulated calcium consumption was faster than measured. The 
delay in calcium consumption could be partly attributed to the fact that nucleation and growth kinetics of calcium 
carbonate precipitation and gas transfer limitations were ignored in the simplified model. The results indicated 
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that simulation considering the biomass growth is more closed to the experimental data. The value of fcat can 
be well fitted on the residual substrate concentrations (acetate, nitrate and/or calcium), which can be measured 
directly or indirectly using a correlation with electrical conductivity (Zeng et al., 2021).

3.2.  Sand Column Tests

Sand column tests on MIDP were performed by O’Donnell, Kavazanjian, and Rittmann  (2017), Pham, 
Van Paassen, Van der Star, et al.  (2018), van Paassen et al.  (2010), Wang, Van Paassen, et al.  (2020), Wang, 
Van Paassen, Gao, et al. (2020), (Wang et al., 2021) for varying sand types and pressure conditions. Selected 
results from these studies were used to test the model.

Figure 3 presents the measured saturation during one of the sand column tests performed by Wang, Van Paassen, 
Gao, et al. (2020). In this experiment, a sand column was treated in a modified triaxial cell. The sample was placed 
at 100 kPa pore pressure and 171 kPa confining pressure, which correspond to hydrostatic stress conditions at 
approximately 10 m below surface and groundwater level. Consequently, the column was injected with a substrate 
solution containing 25 mmol/L calcium acetate, 25 mmol/L calcium nitrate, which was inoculated with a mixed 
culture of denitrifying micro-organisms. Similar to the batch liquid experiments, the numerical simulation was 
able to capture the desaturation trend. A specific uptake rate r0 of 0.9 × 10 −4 mol-substrate/mol biomass/s, initial 
concentration of biomass of 0.1 mol/m 3 and fcat of three were found to be the best fit to calibrate the simulations 
to the measured results. The degree of saturation reached a minimum value of 0.75 after 5 days, similar to the 
expected value based on full conversion of substrates. Deviations between the measured and simulated degree of 

saturation may be due to the fact the kinetics of gas nucleation was ignored 
in the simplified model. After the lowest saturation was reached, the degree 
of saturation gradually increased back to 0.82, which was not captured by the 
simulation. The saturation recovery after day 5–6 could either be attributed 
to dissolution of carbon dioxide and nitrogen gas and diffusion through the 
membrane as suggested by Pham, Van Paassen, Van der Star, et al. (2018) or 
may be due to venting of gas out of the cell. Dissolution of gas transfers the 
volume of the gas phase to aqueous state, but the total amount of gas doesn't 
change for the sample. Venting gas only changes the amount of soil sample 
but not the backpressure system while diffusion through membrane changes 
it in the backpressure system. The percolation threshold saturation was not 
defined by Wang, Van Paassen, Gao, et  al.  (2020), but other tests (Pham, 
Van Paassen, & Van der Star, 2018; Stallings Young et al., 2021) reported the 
water saturation at which gas started to migrate and no further desaturation 
was obtained, ranging between 50% and 80%.

Both the experiments of Pham, Van Paassen, Van der Star, et al. (2018) and 
Wang, Van Paassen, et al. (2020) were used to study the effect of simulta-
neous formation of biogas, biominerals, and biomass on the permeability in 
sand columns exposed to multiple MIDP treatment cycles (Figure 4). Pham, 
Van Paassen, Van der Star, et al.  (2018) performed sand column tests in a 

Figure 3.  Saturation development in the triaxial specimen under 100 kPa pore 
pressure and 171 kPa confining pressure based on experimental data from 
Wang, Van Paassen, Gao, et al. (2020).

Figure 2.  Measured and simulated nitrate (a) and calcium (b) concentrations based on experimental data from Wang, 
Van Paassen, Gao, et al. (2020).
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modified triaxial cell at 200 kPa cell pressure and 100 kPa pore pressure in which a fine poorly graded sand (d50: 
0.138 mm) was flushed with 15 cycles of injection with substrate solution containing 12 mmol/L calcium acetate 
and 10 mmol/L calcium nitrate (Figure 4a). They observed that during the reaction phase of each cycle, water 
was expelled from the sand sample due to the formation of biogenic gas, which reduced the water saturation and 
consequently would reduce the hydraulic conductivity. The water saturation did not fall below 75%–80%, which 
was interpreted as the percolation threshold saturation, Sv, at which a continuous gas phase was formed, and the 
gas starts percolating upwards. Further gas generation did not affect the saturation anymore. During each flush-
ing phase some of the entrapped gas was removed, which consequently led to a partial recovery of the hydraulic 
conductivity. As a result, after multiple treatment cycles both the water saturation and hydraulic conductivity 
shows a fluctuating pattern, relatively immediately after the reaction phase and increasing during the flushing 
phase. In this case, water saturation fluctuates between 75% and 91% around an average value for Sv of 0.82. In 
general, hydraulic conductivity decreased as the number of cycles increased, while at the 11th cycle hydraulic 
conductivity is almost reduced to zero, which presents a complete clogging. The clogging was partly removed 
by increasing the hydraulic gradient, after which the hydraulic conductivity partly recovered. Subsequent flushes 
were injected at a higher hydraulic gradient. Assuming the water saturation did not decrease below the perco-
lation threshold saturation, the decreasing trend in hydraulic conductivity after multiple treatment cycles was 
attributed to the formation and accumulation of biomass and calcium carbonate. From the concentrations of resid-
ual acetate and nitrate in the effluent that were measured by Pham, Van Paassen, Van der Star, et al. (2018), the 
stoichiometry factor, fcat, of the metabolic reaction was calculated for each cycle and the amount of biomass and 
calcium carbonate were determined. From the calculated amount of biomass and calcium carbonate, the change 
in porosity was calculated using Equation 10. The resulting porosity change by calcium carbonate precipitation 
after 15 cycles was still very negligible (only 0.9%). The calculated porosity reduction due to the formation of 
biomass was more significant, which was about 9% after 15 cycles when assuming the value for dry biomass 
density, ρb, is 50 kg/m 3. The value of fcat, the total amount of calcium carbonate and dry biomass, and the resulting 
porosity reductions are listed in Supporting Information S1.

Wang, Van Paassen, et al. (2020) performed similar column experiments in a modified triaxial test set-up on a 
slightly coarser poorly graded sand (d50: 0.2 mm) at 171 kPa cell pressure and 100 kPa pore pressure with 3, 6, 
and 9 cycles of injection of substrate solution containing 25 mmol/L calcium acetate and 25 mmol/L calcium 
nitrate. The study shows significant clogging up to three orders of magnitude within 4–9 flushes where part of 
the clogging was recovered by building up the hydraulic head. Wang, Van Paassen, et al. (2020) did not report 
any residual concentrations in the expelled liquid, or a degree in saturation during the different flushes. However, 
using the model, the minimum and maximum amounts of biomass and calcium carbonate and consequent poros-
ity reduction can still be calculated, assuming the value for fcat ranging between maximum growth (0.487) and 
zero growth (∞), ρbiomass at 50 kg m −3 and a constant value for Sv after the first flush at 0.82. The results are shown 
in Figure 4b, and the data is provided in Supporting Information S1.

4.  Discussion
Power law Equations  9 and  12 are used to investigate how the MIDP process affects the saturation- and 
porosity-permeability relationships. The simulation results via the proposed coupled biogeochemical model 

Figure 4.  Relative change in hydraulic conductivity, k/k0, water saturation, Sw, and porosity, θ/θ0 after Pham, Van Paassen, 
Van der Star, et al. (2018) (a) and Wang, Van Paassen, et al. (2020) (b).
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using Wang, Van Paassen, et al. (2020) and Pham, Van Paassen, Van der Star, et al. (2018) and the experimental 
results are presented in Figure 5. To illustrate the combined effect of saturation and porosity, which change simul-
taneously during MIDP, the permeability is plotted as a function of the reduction of the liquid fraction of the pore 
space, which corresponds to the mobile porosity or the pore volume in which the liquid fraction can flow. The 
blue lines in Figure 5 show the predicted permeability change as a function of porosity or water saturation using a 
single power law Equation 9 with varying fitting parameters η. The measured and calculated data points based on 
the experimental data suggest that the permeability reduction during multiple cycles of MIDP treatment cannot 
be fully described with a single power law equation. Instead, the effect of desaturation by biogenic gas formation 
and the impact of porosity reduction as a result of the accumulation of calcium carbonate minerals and biomass 
need to be separated, each described with a different power law relationship.

During the first treatment cycle, the amount of biomass and biominerals that was formed was still relatively 
low and the reduction in permeability could mainly be attributed to the effect of desaturation. As in this stage 
the dominating process is desaturation, we can assume that the reduction in liquid fraction (x-axis of Figure 5) 
is equal to the reduction in water saturation. Therefore, a two-phase permeability relation (saturation-relative 
permeability) like Van Genuchten  (1980) or the one-phase power law relation (Equation  12) can be used to 
find the best empirical fit to the measured data points. It was found that using a factor n of 3 provides a good fit 
between measured and simulated permeability reduction using both single-phase power law and two-phase van 
Genuchten relations.

Following by subsequent treatment cycles, accumulation of biomass and biominerals dominates the clogging 
mechanism. A significant permeability reduction is achieved by a relatively small accumulation of biomass and 
biominerals, while the reduction of water saturation is limited. Consequently, the permeability reduction could 
not be described using a single power law for the entire MIDP process. While the factor n that was fitted to relate 
the water saturation to the permeability constant at 3, the fitting factor η for the second power-law that describes 
the porosity-permeability relationship (Equation 9) was estimated to range between 18 and 320 depending on 

Figure 5.  Measured and simulated relationships between the reduction in liquid fraction and relative permeability based on 
the data from the two studies by Pham, Van Paassen, Van der Star, et al. (2018) and Wang, Van Paassen, et al. (2020). The 
blue lines show the simulated permeability using a single power law (Equation 9) for different values for fitting parameter η, 
the black dash-dotted line shows the saturation-permeability relationship calculated using Van Genuchten equation which was 
fitted on the measured SWRC for the sand used by Wang, Van Paassen, et al. (2020) (see Supporting Information S1). Three 
different stages in the development of permeability are identified.
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the metabolic growth rate for the data presented by Wang, Van Paassen, 
et al. (2020). It is hypothesized that at the maximum metabolic growth rate 
(fcat = 0.487), a relatively large amount of biomass fills the pore space, while 
under catabolic conditions at zero biomass growth (fcat→∞) the reduction 
in porosity is only attributed to the formation of CaCO3. The zero growth 
(catabolic) and the maximum growth conditions could serve as the perme-
ability development boundaries for MIDP. For the data presented by Pham, 
Van Paassen, Van der Star, et al. (2018), in which the fcat can be calculated 
based on the substrate consumption ratio, a factor η of 43 provided the best 
fit.

Compared to the values by Bernabé et al. (2003) and Hommel et al. (2016), 
these values for η are very high for MIDP, which suggests that the combined 
formation of biogas, biomass and biominerals in the MIDP process leads to 
efficient clogging, in the sense that only a small amount of products leads to 
a substantial permeability reduction. To illustrate this clogging efficiency, 
Figure 6 compares the permeability reduction as a function of CaCO3 content 
for several studies on biomineralization using MICP by urea hydrolysis 
(including Al Qabany and Soga  (2013), Dadda et  al.  (2017) and Whiffin 
et al. (2007)) with MIDP. While the studies based on MICP by urea hydrol-
ysis demonstrated that CaCO3 contents more than 6%–10% were reduce the 
permeability by one order of magnitude, both studies by Pham, Van Paassen, 
Van der Star, et al. (2018) and Wang, Van Paassen, et al. (2020) which used 
MIDP by denitrification reached two orders of magnitude permeability 
reduction with less than 1% CaCO3.

Similarly, Figure 7 compares the relative change in permeability as a function of the biomass volume ratio from 
different studies on bio-clogging. The biomass volume ratio is defined as the wet volume of biomass divided 
by the pore volume. A study by Vandevivere et al. (1995) showed that to reduce the permeability by two orders 
of magnitude required filling 15%–50% of  the  pores with biomass, depending on the grain size, which ranged 
between 0.09 and 0.7 mm. The study by Pham, Van Paassen, Van der Star, et al. (2018) showed that with biomass 

filling less than 10% of the pores, permeability reduced by more than two 
orders of magnitude. Including the effect of entrapped gas, the volume frac-
tion of both biomass and gas (considering the volume of CaCO3 is negligibly 
small) ranges from 20% to 30%, which is more in line with the observations 
by Vandevivere et al. (1995). It must be noted, as shown in Figure 7, that the 
reduction in permeability is also affected by the particle size distribution. 
Still, when comparing only sands with similar median grain size within the 
range of 0.12–0.21 mm, the reduction in permeability for the MIDP process 
is still larger compared to the studies on urea hydrolysis or clogging through 
biomass formation.

To explain the observed interaction clogging efficiency in MIDP, we identify 
three distinct stages in the development of saturation, porosity and permea-
bility as illustrated in Figure 5: (A) non-treated stage; (B) Desaturation domi-
nated stage in which the reduction in permeability is mostly governed by the 
generation of biogenic gas bubbles within the pores and result in a Pore-filling 
dominated mechanism; and (C) Biomineral-Biomass Precipitation domi-
nated stage in which the pre-existence of biogenic gas bubbles stimulates 
the formation of biomineral and biomass in the pore throats (Throat-filling 
dominated stage) which in turn lead to a significant permeability reduction 
by even a negligible biomineral or/and biomass formation.

During the initial stages of treatment, liquids can freely flow through the 
pores and the permeability can be described for the saturated state only 
(stage A). Even during initial stage of gas formation, the gas bubbles can be 

Figure 6.  Relative permeability change as a function of CaCO3 content 
for various studies. Al Qabany and Soga (2013), Dadda et al. (2017), and 
Whiffin et al. (2007) using MICP by urea hydrolysis, which results in CaCO3 
precipitation only; Pham, Van Paassen, Van der Star, et al. (2018), and Wang, 
Van Paassen, et al. (2020) using MIDP (concurrent biogas-biofilm-biomineral 
formation).

Figure 7.  Relative permeability reduction as a function of the reduction in 
liquid fraction reported by Vandevivere et al. (1995) due to biomass only and 
calculated based on Pham, Van Paassen, Van der Star, et al. (2018) due to 
biomass only and due to the combination of biomass and biogas.
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relatively small and freely migrate through the pores. But as the bubbles grow larger to get stuck in the pores 
and become occluded bubbles and pockets filling the larger pores (stage B). Following the Young-Laplace 
equation gas pressure is indirectly correlated to the bubble radius, and according to Henry's law it requires a 
higher concentration to form or maintain gas bubbles in the smaller pores. Consequently, small bubbles tend 
to dissolve, diffuse, and agglomerate into larger bubbles filling the larger pores first (Mahabadi et al., 2018; 
Mahabadi & Van Paassen, 2018). As the entrapped gas pockets continue to grow larger than the pores, they 
start to migrate (preferably upward due to buoyancy) through the pore throats and eventually may form a 
continuous gas phase. While the gas is filling the larger pores, the liquid is forced to the smaller pores and 
forms capillary fringes in the pore throats. This would cause more biominerals and biomass to form in or near 
the smaller pores and narrow pore throats near the particle contacts and consequently could lead to a larger 
reduction in the permeability (stage C). The precipitation of biominerals and biomass at the pore throats may 
also reduce the mobility of the gas phase, which could lead to a further and more permanent reduction of the 
permeability. Cheng et al. (2013) came up with a similar hypothesis as they found that treating sand with MICP 
by urea hydrolysis in unsaturated conditions lead to higher strengths at similar CaCO3 contents than treatment 
under saturated conditions. They suggested that MICP treatment under unsaturated conditions, where liquid 
was only at the capillary fringes surrounding the particle contacts, resulted in more crystals at the particle 
contacts and thereby more efficient cementation. Also, SEM images provided by O’Donnell, Kavazanjian, and 
Rittmann (2017) showed smooth rounded, arch-shaped interface of the biominerals, which they attributed to 
the presence of a gas bubble in the pores. Using pore network model simulations, Nassiri and Mahabadi (2022) 
demonstrated that the relationships between porosity, saturation and/or permeability can vary significantly 
depending on the distribution of precipitated minerals and/or gas phase. Comparing simulations with similar 
CaCO3 content but varying the spatial distribution from a surface coating or a random distribution in the pore 
bodies to a selectively concentrated precipitates at the pore throats, they demonstrated that the fitting factor η 
or n may range from 2 to over 400.

We expect that the obtained factors n and η which were used in the saturation- and porosity-permeability 
relationships and fitted on the experimental data can vary significantly when used in other experiments, 
depending on several factors, such as the grain (pore) size distribution of the sand, stratification (Cunningham 
et  al.,  1991), the growth rate of the bacteria, substrate consumption rate and bio-mass density. Also, the 
flow conditions (1D column, 2D plane strain or 3D), flow direction and velocity may affect the distribu-
tion of substrates and consequently the distribution of products and resulting permeability relationships 
(Thullner, 2010). Finally, the experimental set-up and methodology may also affect the actual values. For 
example, in both studies performed by Pham, Van Paassen, Van der Star, et al. (2018) and Wang, Van Paassen, 
et  al.  (2020), the hydraulic conductivity was determined by measuring the head difference between the 
inlet and outlet tubing where local clogging in the tubing or at the porous stones may have affected the 
measurements.

5.  Conclusions
This study evaluated how changes in saturation and porosity affect the permeability during Microbially Induced 
Desaturation and Precipitation (MIDP) through denitrification. MIDP is a new ground improvement method, 
in which a solution containing calcium, nitrate and acetate is injected to stimulate indigenous nitrate reducing 
bacteria to produce biogas, biominerals, and biomass in the soil matrix. A numerical biogeochemical model is 
developed to evaluate how the combined production of biogas, biominerals, and biomass affects the hydraulic 
conductivity of the treated soil. The model allows to relate changes in substrate concentration, reaction kinetics, 
pore pressure, to changes in saturation, porosity, and permeability. Experimental tests reported in the literature 
were used to calibrate the model and fit the factors defining the reaction stoichiometry and kinetics and the 
relationships between saturation, porosity, and permeability. The study demonstrated that the combined effects 
of biogas, biomass and biomineral formation cannot be properly simulated using a single equation describing the 
relationship between saturation or porosity and permeability. Instead, the effect of desaturation needs to be treated 
separately from the effect of biomass and biominerals. The numerical analysis of the experimental results also 
demonstrates that the MIDP process reduces the permeability very efficiently. Permeability was reduced by more 
than two orders of magnitude at relatively small amount of biomass and biominerals. The clogging efficiency is 
attributed to the interaction between the three phases.
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Data Availability Statement
The data supporting this paper can be found in the Open Science Framework (OSF), at http://doi.org/10.17605/
OSF.IO/NY5GJ. The liquid batch test is simulated with COMSOL Multiphysics® (version 5.3a), available with 
COMSOL license at https://www.comsol.com.
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