
Springer Nature 2021 LATEX template

Parameter identifiability in PDE models of1

fluorescence recovery after photobleaching2

Maria-Veronica Ciocanel1*, Lee Ding2,6, Lucas3

Mastromatteo2,7, Sarah Reichheld3, Sarah4

Cabral4,5, Kimberly Mowry4 and Björn Sandstede2
5

1Department of Mathematics and Biology, Duke University,6

Durham, NC 27710, USA.7

2Division of Applied Mathematics, Brown University, Providence,8

RI 02912, USA.9

3Department of Neuroscience, Brown University, Providence,10

RI 02912, USA.11

4Department of Molecular Biology, Cell Biology & Biochemistry,12

Brown University, Providence, RI 02912, USA.13

5Current address: Remix Therapeutics, Waltham, MA 02139,14

USA.15

6Current address: Department of Biostatistics, Harvard16

University, Boston, MA 02115, USA.17

7Current address: GlaxoSmithKline, Cambridge, MA 02140, USA.18

*Corresponding author(s). E-mail(s): ciocanel@math.duke.edu;19

Contributing authors: lee ding@alumni.brown.edu;20

lucas mastromatteo@alumni.brown.edu;21

sarah reichheld@alumni.brown.edu;22

sarah cabral@alumni.brown.edu; kimberly mowry@brown.edu;23

bjorn sandstede@brown.edu;24

Abstract25

Identifying unique parameters for mathematical models describing bio-26

logical data can be challenging and often impossible. Parameter identifia-27

bility for partial differential equations models in cell biology is especially28

difficult given that many established in vivo measurements of protein29

dynamics average out the spatial dimensions. Here, we are motivated30
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by recent experiments on the binding dynamics of the RNA-binding31

protein PTBP3 in RNP granules of frog oocytes based on fluores-32

cence recovery after photobleaching (FRAP) measurements. FRAP is a33

widely-used experimental technique for probing protein dynamics in liv-34

ing cells, and is often modeled using simple reaction-diffusion models35

of the protein dynamics. We show that current methods of struc-36

tural and practical parameter identifiability provide limited insights37

into identifiability of kinetic parameters for these PDE models and38

spatially-averaged FRAP data. We thus propose a pipeline for assess-39

ing parameter identifiability and for learning parameter combinations40

based on re-parametrization and profile likelihoods analysis. We show41

that this method is able to recover parameter combinations for synthetic42

FRAP datasets and investigate its application to real experimental data.43

Keywords: parameter identifiability, partial differential equations, profile44

likelihood, FRAP, RNA binding proteins45

1 Introduction46

Many mathematical models of biological processes aim to test relevant bio-47

logical mechanisms, which are characterized using parameters. Estimating the48

underlying parameters helps connect and validate mathematical models with49

existing measurements and thus provide insights into mechanistic understand-50

ing of the biological process. However, mathematical models can suffer from51

identifiability issues, meaning that it may not be possible to uniquely determine52

the model parameters from the available data. Identifiability is thus a cru-53

cial problem in parameter estimation, and various approaches from statistics,54

applied mathematics, and engineering have been devised to address it [1–8].55

Identifiability problems are typically categorized into structural identifiabil-56

ity, which involves issues arising from the model structure alone, and practical57

identifiability, which involves issues with parameter estimation stemming from58

the incorporation of real and noisy data [9].59

In mathematical biology, many of these approaches have been more exten-60

sively tested and used in models of epidemic and disease treatment dynamics61

or in systems biology models [10]. For example, [6, 7, 11, 12] review theoretical62

results and algorithms for structural and practical identifiability of linear and63

nonlinear ordinary differential equations (ODE) models, with applications to64

disease dynamics and systems biology processes.65

In the study of macromolecular dynamics inside cells, spatial movement -66

characterized by diffusion, transport, and binding dynamics - can be significant67

and has an impact on the parameters that describe a given model. As a result,68

partial differential equations (PDEs) that incorporate the dynamics of proteins69

as a function of time and space are often an appropriate modeling framework.70

However, PDEs present challenges when studying identifiability measures,71

since these equations have more variables, contain derivatives, and include72
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boundary conditions [10]. Fewer studies have thus dealt with identifiability for73

PDE models [10, 13].74

Here, we focus on biological data obtained from a versatile experimental75

technique for probing protein dynamics in living cells: FRAP (fluorescence76

recovery after photobleaching). Our prior results suggest that parameters in77

PDE systems that model data obtained from FRAP experiments may not78

be identifiable. In particular, when estimating kinetic parameters describing79

mRNA dynamics based on FRAP data, we observed that the predicted param-80

eters (especially binding rates) could vary across orders of magnitude for the81

same experimental settings [14]. Similarly, the theoretical studies in [15, 16]82

have found that only specific model parameters could be identified from FRAP83

data in certain parameter regimes. These identifiability issues with estimating84

kinetic parameters from FRAP data can thus result in potentially spurious85

predictions of cellular dynamics.86

We are particularly motivated by questions surrounding protein and RNA87

dynamics in Xenopus laevis frog oocytes [17, 18]. Proteins and RNAs organize88

into membraneless compartments called biomolecular condensates (also called89

RNP granules, localization bodies, or L-bodies) in the developing oocytes.90

FRAP has been playing a key role as a technique to study newly-discovered91

biological processes such as the formation and organization of biomolecu-92

lar condensates [19]. We consider a reaction-diffusion PDE model of FRAP93

microscopy experiments for the dynamics of an RNA-binding protein that is94

enriched in RNP granules and investigate the limitations of existing structural95

and practical identifiability techniques for this model and data. We propose96

an alternative custom pipeline for extracting identifiable parameter combi-97

nations for the PDE model based on time-series FRAP data. This approach98

allows the prediction of the protein diffusion coefficient and of the relationship99

between binding and unbinding rates of the RNA-binding protein. We illus-100

trate the application of this framework for both synthetic and experimental101

FRAP datasets. Given additional biological information on relevant binding102

rate parameters, this approach may allow the inference of all individual model103

parameters.104

2 Biological motivation and fluorescence105

microscopy data106

RNP granules are membraneless compartments containing RNA and other107

proteins, serving diverse biological functions. In developing Xenopus laevis108

oocytes, maternal mRNAs are packaged into large RNP granules that localize109

to specific subcellular locations, in a process that is required for embryonic pat-110

terning [17] (see Figure 1A). The assembly of RNAs into these RNP granules111

(termed localization bodies or L-bodies) requires the interaction of RNAs with112

RNA-binding proteins (RBPs). The data suggest that the protein dynamics113

are influenced by the strength and number of interactions of RBPs with the114

non-dynamic RNA in L-bodies [18]. An example of a multivalent RNA-binding115
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protein is PTBP3, which is highly co-localized with L-bodies in Xenopus lae-116

vis oocytes [18]. PTBP3 has four domains (termed RRM1, RRM2, RRM3,117

and RRM4) that can bind to RNA, making it an ideal model for studying the118

strength of interactions within L-bodies. In particular, experimental manipu-119

lations in this system can generate PTBP3 RNA-binding mutants, where the120

ability of one or more RNA-binding domains to bind to RNA is abolished [18].121

Quantifying the binding of PTBP3, and its mutants, to RNA would therefore122

be useful in contributing to our understanding of how protein dynamics are123

regulated in L-bodies and other RNP granules. An important experimental124

technique for assessing protein dynamics in vivo is fluorescence recovery after125

photobleaching (FRAP). FRAP is a well-established approach to studying the126

binding and diffusion of molecules in cells [19]. FRAP is also considered to127

be one of the most versatile methods of studying protein dynamics and bind-128

ing characteristics in living cells [20]. This microscopy experiment relies on129

bleaching a small region in a cell expressing a fluorescent protein or nucleic130

acid, and quantifying the recovery of fluorescence in that bleach spot over time131

(see Figure 1A,B). The output of the FRAP experiment consists of a series of132

images (such as Figure 1C) for each time point. These images are then used133

to calculate the amount of fluorescence intensity inside the bleached region134

as a function of time. It is this time series of real-valued fluorescence intensi-135

ties that is then used in subsequent analysis, and we refer to Figure 10C for136

a sample FRAP intensity curve. We emphasize that the spatial pixel by pixel137

information captured in FRAP experiments is typically not considered to be138

robust enough for analysis. The analysis of FRAP data therefore focuses on139

the time series that tracks the overall integrated fluorescence recovery in the140

bleached region to gain insight into the dynamic processes that the proteins141

undergo [20].142

In this work, we use the FRAP experimental measurements in [18] in order143

to determine parameter regimes of interest. These FRAP datasets consist of144

fluorescence recovery curves that are adjusted to correct for photobleaching145

during image acquisition, as we previously outlined in [21]. In these experi-146

ments, the fluorescence in the bleach spot (a square with side l = 10µm) is147

recorded at 5-second intervals for a total of 500 seconds.148

3 Mathematical modeling of FRAP149

3.1 PDE model of protein dynamics150

We model the dynamics of PTBP3 using a system of linear reaction-diffusion
PDEs. The variables we study correspond to concentrations of PTBP3 in dif-
ferent dynamical states: f(x, y, t) denotes the concentration of free protein and
c(x, y, t) refers to the concentration of bound complexes at location (x, y) and
time t. We assume PTBP3 can transition between the diffusing and stationary



Springer Nature 2021 LATEX template

Parameter identifiability in PDE models for FRAP 5

states, so that the dynamics is described by the PDE system:

∂f

∂t
= D∆f − β2f + β1c ,

∂c

∂t
= β2f − β1c , (1)

where D denotes the diffusion constant in the diffusing state, β1 is the rate of151

transition from the stationary to the diffusing state, and β2 is the rate of tran-152

sition from the diffusing to the stationary state. This model is equivalent to153

the reaction-diffusion system we previously studied in [14] for non-localizing154

RNA dynamics and has also been previously used and analyzed in other works155

on quantifying FRAP experiments, including [15]. Our goal is to estimate the156

reaction rate parameters β1 and β2 and the diffusion constant D from exper-157

imental FRAP data. It is worth noting that RNA and RNA-binding protein158

dynamics are not modelled explicitly in these equations. The binding of PTBP3159

into complexes (i.e., transition rate β2) likely depends on the spatial organi-160

zation of RNAs and other binding proteins in the L-bodies, which remains161

challenging to investigate.162

A key assumption underlying this model is that the binding interactions163

of PTBP3 involve a single binding state. Four binding domains have been164

identified for PTBP3, of which two were shown to bind to the non-dynamic L-165

body RNA [18]. Mathematical models involving multiple independent binding166

sites are more challenging to evaluate due to the increased dimension of the167

parameter space, and generally show similar FRAP behaviors [15]. We there-168

fore proceed with the simplifying assumption of a single binding site for the169

PTBP3 reaction. We comment on the limitations of this assumption in the170

Discussion.171

3.2 Postbleach intensity profile model172

To determine initial conditions for the concentrations of PTBP3 in the PDE
model (1), we consider a model of the experimental FRAP postbleach intensity
profiles on the focal plane of the fluorescence distribution [14]. The photo-
bleaching process in FRAP is usually assumed to be an irreversible first-order
reaction of the form

∂Cb
∂t

(x, y, t) = −αK(x, y)Cb(x, y, t) (2)

for the fluorophore concentration Cb(x, y, t), where α is a bleaching parameter
and K(x, y) is the effective bleaching intensity distribution. Since the initial
condition of model (1) corresponds to the spatial concentration of fluorophores
at the first postbleach time (see Figure 1B), we therefore seek:

Cb(x, y, 0) = C0e−αK(x,y) . (3)
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The FRAP experiments in [18] use square bleach regions of interest (ROIs).
We therefore adapt the approach in [22], which considers a rectangular FRAP
bleach spot. The effective bleaching intensity distribution K(x, y) is calcu-
lated as the convolution of the bleach geometry B(x, y) and the time-averaged
bleaching intensity distribution 〈Ib(x− x′, y − y′, t)〉:

K(x, y) =

∫ ∞
−∞

∫ ∞
−∞

B(x′, y′)〈Ib(x− x′, y − y′, t)〉dx′ dy′ . (4)

We assume a square photobleach area with side length l and a Gaussian
photobleaching intensity distribution [22]:

B(x, y) =

{
1, if |x| < l/2 and |y| < l/2

0, otherwise
, (5)

〈Ib(x, y, t)〉 = I0e−2 x
2+y2

r2 , (6)

where r is the effective radius of the distribution.173

We therefore obtain for the effective bleaching intensity distribution:

K(x, y) = I0

∫ l/2

−l/2
e−

(x−x′)2

r2 dx′
∫ l/2

−l/2
e−

(y−y′)2

r2 dy′ , (7)

= I0

∫ (x+l/2)/r

(x−l/2)/r

e−u
2

du

∫ (y+l/2)/r

(y−l/2)/r

e−v
2

dv , (8)

= Ĩ0

[
erf

(
x+ l/2

r

)
− erf

(
x− l/2

r

)][
erf

(
y + l/2

r

)
− erf

(
y − l/2
r

)]
.

(9)

Plugging this into (3) for the initial fluorophore concentration yields:

Cb(x, y) = C0e−α̃[erf( x+l/2r )−erf( x−l/2r )][erf( y+l/2r )−erf( y−l/2r )] . (10)

Since the experimental postbleach profiles show some asymmetry along the
two spatial dimensions (see Figure 1C), we extract fluorescence profiles Cb(x)
and Cb(y) in the x and y directions from the postbleach intensity data and fit
them to expressions of the form:

Cb(x) = Cxe−αx[erf( x+l/2rx
)−erf( x−l/2rx

)] , (11)

Cb(y) = Cye
−αy

[
erf
(
y+l/2
ry

)
−erf

(
y−l/2
ry

)]
. (12)

In particular, we estimate the parameters rx and αx by fitting the fluorescence174

profile Cb(x) to equation (11) and parameters ry and αy by fitting the fluo-175

rescence profile Cb(y) to equation (12) using standard nonlinear least-squares176
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Fig. 1 A) Schematic of a stage II Xenopus oocyte with RNA granules localizing at the
vegetal cortex (bottom) shown in magenta. The black square region is shown magnified on
the right, with a cartoon of a FRAP bleach spot. B) The timeline of Fluorescence Recovery
After Photobleaching (FRAP) shows bleaching of a small square region (at the bleach time)
in a previously-fluoresced region of the cell (at the pre-bleach time). The first postbleach
time already shows that non-bleached and fluorescent molecules mix between the fluoresced
and bleached regions. C) An image of the vegetal cytoplasm of a Xenopus laevis oocyte
expressing fluorescently-labeled PTBP3 (red) in L-bodies is shown, with a 10 µm photobleach
square ROI. This image corresponds to the postbleach time point in the cartoon in B. Yellow
dashed lines show sample extraction of the fluorescence profiles Cb(x) and Cb(y) in the x
and y directions from the postbleach intensity data, as shown in panel B as well. D) Fitted
fluorescence postbleach profiles along the x and y directions. The estimated parameters are
αx = 2.33, rx = 5.64 (with R2 = 0.39) and αy = 2.72, ry = 3.27 (with R2 = 0.37).

estimation in Matlab using the function nlinfit. Here we use l = 10 µm, con-177

sistent with the experiments in [18]. We illustrate sample postbleach intensity178

profiles and the corresponding fitted curves in Figure 1D. The coefficient of179

determination for the fit to the fluorescence profile Cb(x) is R2 = 0.39, and for180

the fit to the fluorescence profile Cb(y) is R2 = 0.37. We note that the derived181

models (11) and (12) for the postbleach intensity fit the protein distribution182

data in Figure 1C well, particularly in the locations corresponding to the pho-183

tobleached region. This model cannot however account for the variation due184

to the noisy fluorescence in the rest of the oocyte (as illustrated by the edges185

of the spatial domain in Figure 1C,D).186

Since the estimated αx and αy parameter values are very similar for all
datasets considered, we use the following final form for the initial fluorophore
concentration:

Cb(x, y) ∼ C0e
−α̃[erf( x+l/2rx

)−erf( x−l/2rx
)]
[
erf
(
y+l/2
ry

)
−erf

(
y−l/2
ry

)]
. (13)

We note that parameter C0 acts as a normalization constant for the level of187

the intensity profile. This parameter is fitted here, but it is also estimated in188

the final optimization of the parameters of interest, which describe the protein189

dynamics (see Section 3.3).190
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Finally, the initial conditions for the model equations (1) are given by:

f(x, y, t = 0) = pCb(x, y) ,

c(x, y, t = 0) = (1− p)Cb(x, y) , (14)

where the initial postbleach profile Cb(x, y) is given in (13) and the parameter191

p ∈ [0, 1] denotes the initial fraction of PTBP3 protein in the diffusing state,192

which we will also determine from the data as described below. As shown in193

[14], parameter estimation for FRAP experiments is sensitive to the initial194

condition given by the postbleach profile. We therefore use these data-informed195

initial conditions for all the studies carried out in this work.196

3.3 Deterministic parameter estimation197

In testing the techniques proposed here, we consider both synthetic and exper-198

imental FRAP data. The experimental fluorescence intensity data is collected199

in [18] at every 5s intervals up to a total time of 500s. We adjust the microscopy200

data by correcting for background fluorescence and dividing the resulting flu-201

orescence recovery by the intensity of a neighboring ROI for each time point,202

as we previously described in [21].203

We denote the real FRAP data by FRAPtrue(t). The corresponding quan-
tity from the FRAP model described in Section 3.1 is then denoted by
FRAP(t,θ) and calculated as

FRAP(t,θ) =

∫ l/2

−l/2

∫ l/2

−l/2
(f + c)(x, y, t,θ) dxdy . (15)

Here, θ is the vector of parameters of interest and l is the side of the square204

bleach ROI. We let θ = (D,β1, β2, p, C0) and note that D,β1, β2 are kinetic205

parameters describing the dynamics of PTBP3 proteins (equations (1)), while206

p and C0 are parameters that describe the initial postbleach profile in each207

protein population (equations (13) and (14)). We note that p is the initial208

fraction of proteins in the diffusing state and is thus unitless. C0 has units of209

concentration (see equation (3)) and acts as a normalization constant for the210

initial fluorophore concentration. Parameters p and C0 cannot be validated211

with data and do not yield significant insights into the protein dynamics; we212

are therefore most interested in the estimation and identifiability of kinetic213

parameters {D,β1, β2}.214

As in [14], we numerically integrate equations (1) using an efficient expo-
nential time-differencing fourth-order Runge-Kutta scheme [23, 24] for time
integration coupled with Fourier spectral methods for space discretization to
solve for FRAP(t,θ). The settings for the numerical solution of the PDE
system are the same as outlined in [14, Supplementary Material S5], with
the exception that here we use a larger 100 µm × 100 µm spatial domain.
Code for implementing this numerical scheme is available in the Github
repository [25] associated with [14]. We then use the MATLAB optimization
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routine lsqnonlin to determine the parameter set that minimizes the L2-norm
difference between the true and model FRAP curves on the time interval I:

θ̂ = arg min
θ
‖FRAPtrue(·)− FRAP(·,θ)‖2L2(I,R) . (16)

We previously found that the initial guesses for parameters describing215

FRAP dynamics can be key in ensuring convergence in deterministic parame-216

ter estimation for this type of data [14]. In addition, since the data are obtained217

through in vivo cell measurements, there is little prior knowledge on the magni-218

tudes of the kinetic parameters of interest. We therefore use a similar approach219

as employed in prior work [14, 15] and we carry out parameter sweeps that sam-220

ple through a range of values of D,β1, β2, p. Each such parameter combination221

includes a value of D ∈ {10−3, 5×10−3, 10−2, 5×10−2, 10−1, 5×10−1, 1, 1.5, 2},222

a value of β1 = 10n1 with n1 ∈ {−6,−5, ..., 1, 2}, a value of β2 = 10n2 with223

n2 ∈ {−6,−5, ..., 1, 2}, and a value of p ∈ {0, 0.25, 0.5, 0.75, 1}. For each param-224

eter combination in this sweep, we generate FRAP curves using the PDE model225

(1) for the given parameters and evaluate the L2-norm difference between the226

generated FRAP curves and the true data. The sweeps thus require many227

forward evaluations of PDE model (1) with the efficient numerical scheme228

outlined above. We summarize this step in the flowchart Figure 7A.229

We then choose the parameter sets that yield the smallest differences230

between data and generated curves to serve as initial guesses for the rough mag-231

nitudes of the parameters. These initial guesses are then refined using the opti-232

mization routine lsqnonlin to estimate specific values of θ = (D,β1, β2, p, C0).233

We keep the normalization parameter C0 fixed throughout the parameter234

sweeps since the initial guess for this parameter is informed by fitting the initial235

point on the FRAP curve to the form of the initial fluorophore concentration236

in (13). This also allows to reduce the computational cost of these forward237

runs of the model. In the full optimization of parameters of the model, we use238

initial guesses for parameters informed from the parameter sweeps, and we239

allow C0 to be estimated as well. This optimization of the model parameters240

is summarized in the flowchart Figure 7B.241

We apply this framework to FRAP recovery data from experiments in stage242

II oocytes that test the dynamics and interactions of PTBP3 with specific243

RNA Recognition Motifs (RRMs) in L-bodies [18]. In particular, we apply244

deterministic parameter estimation to experiments with wild-type PTBP3245

(WT, Set 1), single RRM mutant PTBP3 (mut3 in [18], Set 2), and double246

RRM mutant PTBP3 (mut34 in [18], Set 3). The estimated kinetic param-247

eters for the dynamics of PTBP3 are given in Table 1 for several FRAP248

datasets from [18]. The resulting squared norm of the residual from each249

fit is given in the last column of Table 1. This quantity corresponds to250

‖FRAPtrue(·) − FRAP(·,θ)‖2L2(I,R), or the resnorm output from the Matlab251

optimization routine lsqnonlin.252
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Table 1 Results of deterministic parameter estimation for several wild-type (WT) and
mutant PTBP3 FRAP datasets from [18].

Cell PTBP3 D β1 β2 p C0 squared norm
Type [µm2/s] [1/s] [1/s] (unitless) (conc.) of residual

1 WT 0.26 7.6 × 10−5 9.6 × 10−9 0.75 2.1 0.045
2 WT 0.22 3.5 × 10−3 2.2 × 10−2 0.66 1.15 0.016
3 WT 0.84 1.0 × 10−3 3.1 × 10−5 0.92 0.64 0.006
1 mut3 0.54 9.4 × 10−5 1.1 × 10−9 0.83 2.7 0.022
2 mut3 0.56 9.9 × 101 7.2 × 10−1 0.23 0.5 0.045
3 mut3 1.6 5.5 × 10−3 4.6 × 10−4 0.31 0.79 0.044
1 mut34 1.93 3.1 × 10−5 5.8 × 10−10 0.73 2.5 0.041
2 mut34 1.41 2.5 × 10−5 4.7 × 10−8 0.82 3.2 0.029
3 mut34 6.2 9.6 × 10−2 1.0 × 10−1 0.24 0.85 0.052

Even though the residuals for these fits are low, it remains challenging to253

determine the level of confidence we can place in the results of the determin-254

istic parameter estimation. Given the space-averaged FRAP data, it is very255

likely that some parameters of the spatio-temporal PDE model are not iden-256

tifiable. As we have previously observed in [14], while some parameters may257

show consistency within each wild-type or mutant setting, there is still wide258

variability, especially in the ranges of the reaction rates β1 and β2. In the fol-259

lowing, we thus focus on synthetic data generated using PDE model (1) in260

order to investigate parameter identifiability of the kinetic parameters given261

FRAP data.262

In generating synthetic FRAP data, we consider three parameter regimes263

roughly inspired from the results of the parameter estimation procedure for264

the three wild-type and mutant settings (Sets 1-3). In addition, we consider265

an effective diffusion parameter regime (Set 4) as previously studied in [15]266

for equations (1). In this regime, the reaction dynamics are much faster than267

diffusion, leading to rapid local equilibrium of the reaction process. This leads268

to FRAP recovery curves which can be characterized by the single parameter269

combination Deff = D
1+β2/β1

termed the effective diffusion coefficient in [15].270

We provide these parameter regimes in Table 2. These parameter values are271

used to generate noiseless synthetic FRAP data using model (1), which we272

further use to assess parameter identifiability using established techniques in273

Section 5 and for benchmarking our proposed method in Section 6.274

4 Methods for practical and structural275

parameter identifiability276

Our goal is to investigate the identifiability of kinetic parameters of FRAP
models. We begin by reviewing established methods for practical and struc-
tural parameter identifiability in differential equations models. Throughout
this work, the parameter learning and identifiability methods considered will
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Table 2 Set of parameter regimes chosen to generate synthetic FRAP data using
model 1. The last two columns display the determinant and eigenvalues of the Fisher
information matrix for each parameter set (Section 4.1 and 5.1).

D [µm2/s] β1 [1/s] β2 [1/s] p C0 det(F ) eig(F )

Set 1 0.1 10−3 10−3 0.5 1.5 1.3 × 10−4 5 × 10−4, 0.1, 2.9
Set 2 1 10−3 10−4 0.25 0.75 1.0 × 10−2 9 × 10−3, 0.5, 2.5
Set 3 2 10−5 10−3 0.75 2 3.8 × 10−2 3 × 10−2, 0.6, 2.4
Set 4 0.1 5 5 0.5 1.5 7.7 × 10−17 0, 0, 3

apply more generally to a model of the form

∂x

∂t
= f(x, t; θ) , (17)

where θ = (θ1, θ2, ..., θn) is the vector of model parameters of interest and the
model output is given by

y = g(x, t; θ) . (18)

For our application, model (17) will consist of the partial differential equations277

in (1), and the model output y will consist of the time-series FRAP measure-278

ments defined in (15).279

In this section, we provide a brief overview of established methods of param-280

eter identifiability for models and output as in equations (17) and (18). As281

commonly done in studies of identifiability analysis, we distinguish between282

structural identifiability, which considers issues with identifying parameters283

based on the model structure alone, and practical identifiability, which con-284

siders issues that stem from identification based on real and potentially noisy285

data [9].286

4.1 Structural identifiability287

An established technique for assessing the local structural identifiability of
a model consists of constructing the Fisher Information Matrix (FIM). This
matrix, denoted by F , captures the amount of information contained in the
model output y(t) about the set of parameters θ [9]. Here we assume that
the data measurements are available at times t = (t1, t2, ..., tm). Based on the
concept of sensitivity identifiability introduced in [26] and reviewed in [11],
this technique requires calculating the sensitivity matrix:

X =
(
∂y
∂θ1

(t; θ0) ∂y
∂θ2

(t; θ0) . . . ∂y
∂θn

(t; θ0)
)
,

where θ0 is a set of baseline parameters around which the sensitivities are288

evaluated. The Fisher Information Matrix is then given by the symmetric289

n × n matrix F = XTX. Studies [11, 26] show that identifiability of the290
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parameter set θ requires nonsingularity of matrix F . In practice, the parameter291

sensitivities ∂y
∂θi

(t; θ0) are approximated numerically, and the parameter set292

θ is considered unidentifiable when det(F ) is small [9]. The rank of the matrix293

F (or equivalently, the number of non-zero eigenvalues of symmetric matrix294

F ) gives the number of identifiable parameter combinations [9, 11, 27], but295

the method cannot identify the form of the combinations. More recent studies296

have combined the FIM method with techniques for practical identifiability or297

subset selection for ordinary differential equation models to determine subsets298

of parameters that can be estimated from given data [9, 27].299

While FIM reflects local structural identifiability, one framework to assess300

generic structural identifiability is based on differential algebraic methods. This301

framework was initially developed for ordinary differential equations models302

but was recently extended in [10] to age-structured PDE models for disease303

spread. This approach requires converting the model system to input-output304

equations consisting of a set of monic polynomial equations expressed in terms305

of the known model output y and its derivatives, as well as in terms of rational306

coefficients depending on the model parameters θ [10]. This work builds on a307

substitution-based approach as in [28, 29] to eliminate unobserved variables308

and to obtain a system whose identifiability features are equivalent to those309

of the original system. Specifically, identifiability is evaluated based on the310

coefficients of the monomial terms in the reduced system [10].311

4.2 Practical identifiability using Bayesian inference312

A commonly used method for assessing practical identifiability is Bayesian
inference using Markov Chain Monte Carlo (MCMC) sampling [30, 31]. As
described above, suppose we are interested in observed data y and model
parameter θ. Then, according to Bayes’ theorem,

p(θ|y) ∝ p(y|θ)p(θ), (19)

where p(θ) denotes the prior distribution of θ, p(y|θ) denotes the likelihood313

function, and p(θ|y) denotes the posterior distribution of θ. The likelihood314

function represents the extra information that y contributes to our understand-315

ing of θ. In the Bayesian inference approach, we seek to estimate the posterior316

distribution, which specifies the distribution θ given our knowledge of y and317

p(θ). Here, we can consider θ to be identifiable if we can estimate a relatively318

concentrated posterior.319

We estimate the posterior distributions of parameters in the model using
MCMC simulation. Specifically, we use the Delayed Rejection and Adaptive
Metropolis (DRAM) MCMC algorithm, a variation of the Metropolis–Hastings
MCMC algorithm [32]. A standard Metropolis–Hastings algorithm starts with
a Markov Chain at initial position θi and accepts candidate move θi+1 with
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probability α, where

α = min

[
1,
p(θi+1|y)

p(θi|y)

]
. (20)

Proposals in Metropolis–Hastings are sampled from a multivariate normal320

distribution [31].321

The DRAM algorithm has two advantages over the standard Metropolis–322

Hastings: DRAM incorporates (1) delayed rejection and (2) adaptive Metropo-323

lis samplers [32]. After the standard Metropolis–Hastings rejects a candidate324

move, delayed rejection proposes subsequent moves in lieu of remaining at325

the same position. With an adaptive Metropolis approach, the proposal dis-326

tribution of Metropolis–Hastings is based on past samples in the Markov327

chain. Combined, adaptive Metropolis enhances DRAM’s ability to explore the328

range of good proposal distributions, while delayed rejection improves DRAM’s329

flexibility in its local exploration of the parameter space [32].330

Practical identifiability in a Bayesian setting can be determined graphi-331

cally or through diagnostic statistics. In general, characteristics like poorly332

converging Markov Chains, label-switching, and multimodal or overly broad333

distributions indicate poor identifiability [30, 31, 33].334

4.3 Practical identifiability using profile likelihood335

analysis336

Computing the full MCMC posterior distributions for parameters of interest
as described in Section 4.2 is known to be computationally expensive, espe-
cially for partial differential equations models [31]. An alternative approach
to assessing practical parameter identifiability is to carry out a profile likeli-
hood analysis [34]. This method requires setting up the normalized likelihood
function

L(θ; y) =
p(θ; y)

supϑ p(ϑ; y)
,

where p(θ; y) is the likelihood function as in Section 4.2. This normalized
likelihood assumes fixed data y and is a function of the parameters θ. We then
let θ = (ψ,λ), where ψ is a scalar parameter of interest whose identifiability
we are interested in assessing, and λ is a vector of nuisance parameters. The
profile likelihood for the interest parameter ψ is then given by:

Lp(ψ; y) = max
λ
L(ψ,λ; y) . (21)

In practice, this means that for each value of parameter ψ chosen from a grid in337

an appropriate interval around the nominal value, parameters λ are optimized338

out. This yields optimal nuisance parameter values λ∗(ψ) for each grid value339

of ψ; see [31].340
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L
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; 
y
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structural non-identifiability practical non-identifiability structural/practical identifiability

Fig. 2 Interpretation of profile likelihoods in terms of structural and practical identifiability
[35]. A flat likelihood (left) corresponds to structural non-identifiability, a profile that does
not decrease to 0 on one or both sides of the maximum (center) indicates practically non-
identifiability, and a profile with a fast decrease to 0 on both sides of the maximum (right)
shows both structural and practical identifiability.

If the measurement noise is assumed to be normally distributed as ε ∼
N(0, σ2), then:

p(y; ψ,λ) =

(
1

2πσ2

)n/2
exp

(
− 1

2σ2
‖y − ysim(ψ,λ)‖2

)
, (22)

where ysim consists of the model solutions at n time points [31, 35]. The pro-341

filing calculation in equation (21) is then equivalent to solving a nonlinear342

least-squares optimization problem for each grid value of the parameter of343

interest ψ.344

The shape of the profile likelihoods can provide rich information about345

whether parameters can be inferred from measurement data [35, 36], as can346

be seen in the cartoon in Figure 2 (inspired from [35]). A completely flat347

profile as shown in the left panel of Figure 2 corresponds to a structurally348

non-identifiable parameter of interest, since the likelihood function does not349

change with parameter θ. If the profile achieves a maximum but stays above350

a plateau value on one or both sides as parameter θ is varied, this indicates a351

practically non-identifiable parameter. Finally, a fast decrease of the profile to352

0 on both sides of the maximum shows both structural and practical param-353

eter identifiability [35, 36]. Since flat regions of the likelihood profile indicate354

that the parameter is practically or structurally unidentifiable [9, 35, 36], it is355

sometimes useful to examine the relationship between the interest parameter356

and each fitted nuisance parameter, in the flat regions of the likelihood [9, 28].357

These are called subset profiles and can help uncover the form of potential358

identifiable combinations of parameters for the given model [9, 28].359
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5 Applications of practical and structural360

parameter identifiability to PDE models for361

synthetic FRAP data362

We now turn to applying the parameter identifiability methods outlined in363

Section 4 for the PDE model (1) describing the dynamics of PTBP3 pro-364

tein during fluorescence recovery after photobleaching. We consider noiseless365

synthetic FRAP datasets generated using the parameter regimes outlined in366

Table 2 and determined based on the procedure in Section 3.3. In the notation367

of Section 4, the relevant model output is y(t; θ) = FRAP(t; θ) as defined in368

equation (15).369

5.1 Structural identifiability370

First, we aim to determine the local structural identifiability of kinetic model
parameters D,β1, β2 given completely accurate FRAP data using the Fisher
information matrix method described in Section 4.1. To construct this matrix,
we first calculate the sensitivities of the output with respect to the model
parameters. For example, we seek:

∂FRAP

∂D
(t; θ) =

∫ l/2

−l/2

∫ l/2

−l/2
(fD + cD) (x, y, t; θ) dx dy

where fD = ∂f
∂D and cD = ∂c

∂D . By differentiating the PDE model system (1)
with respect to each parameter of interest, we obtain the following sensitivity
equations for the partial derivatives of the protein concentrations:

∂fD
∂t

= D∆fD − β2fD + β1cD + ∆f ,

∂cD
∂t

= −β1cD + β2fD ,

∂fβ1

∂t
= D∆fβ1

− β2fβ1
+ β1cβ1

+ c ,

∂cβ1

∂t
= β2fβ1 − β1cβ1 − c ,

∂fβ2

∂t
= D∆fβ2

− β2fβ2
+ β1cβ2

− f ,

∂cβ2

∂t
= β2fβ2 − β1cβ2 + f . (23)

We provide additional details on the derivation of these equations in
Appendix A. We solve the above sensitivity equations simultaneously with
integrating model (1) using the numerical methods outlined in Section 3.3.
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Then the sensitivity matrix is given by:

X =

(
∂FRAP
∂D (t; θ0)

‖ ∂FRAP
∂D (t; θ0)‖2

∂FRAP
∂β1

(t; θ0)

‖ ∂FRAP
∂β1

(t; θ0)‖2

∂FRAP
∂β2

(t; θ0)

‖ ∂FRAP
∂β2

(t; θ0)‖2

)
, (24)

where θ0 corresponds to the baseline parameter regimes of interest in Table 2.371

Here we have normalized each column by the L2 norm of the corresponding372

sensitivity vector, to account for the different magnitudes of the parameters.373

The Fisher Information Matrix F = XTX is then a 3 × 3 matrix whose374

determinant and eigenvalues are displayed in the last two columns of Table 2 for375

the relevant parameter regimes considered. As expected, the matrix is singular376

for the effective diffusion parameter regime (Set 4), where we only expect377

to be able to identify one parameter combination (effective diffusion): the378

expectation that we can identify only a single parameter combination is also379

reflected by the observation that two of the three eigenvalues of F vanish. For380

the other parameter regimes corresponding to wild-type and mutant protein381

binding settings (Sets 1-3), the determinant of the matrix is small, however it382

is difficult to conclude whether all or only subsets of the parameters are locally383

structurally identifiable given FRAP recovery data.384

To assess general structural identifiability, we also apply the differential
algebra approach recently outlined in [10] for age-dependent PDE models. We
focus on the simplification of the reaction-diffusion PDE model (1) to one
spatial dimension x. Since FRAP recovery data requires averaging out the
sum of the protein concentrations in each state over a given spatial domain
corresponding to the bleaching region (x ∈ [−l/2, l/2]), we start by considering
model output:

z(x, t) = f(x, t) + c(x, t) .

Re-writing system (1) in terms of the total protein concentration z(x, t) and
the concentration of bound protein complexes c(x, t) yields:

∂z

∂t
= Dzxx −Dcxx ,

∂c

∂t
= β2z − (β1 + β2)c . (25)

The goal is to express this system in terms of model output z and its
derivatives. By differentiating the first equation in (25) with respect to time
and using substitution to eliminate variable c, we obtain:

0 = −ztt +Dztxx + β1Dzxx − (β1 + β2)zt . (26)

This input-output equation is written as a polynomial equation in terms of385

derivatives of z. As in [10], we rank the terms within the polynomial by assum-386

ing that derivatives with respect to time are ranked higher than those with387
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respect to space. To ensure a monic polynomial in ztxx, we therefore divide388

equation (26) by D and obtain the following set of polynomial coefficients:389

{1,− 1
D , β1,−β1+β2

D }. This provides a map from parameter space to the poly-390

nomial coefficients, which can be used to determine identifiability information391

for the model equations [10]. In particular, this set of polynomial coefficients392

is interpreted as a function φ(D,β1, β2) of the model parameters so that, in393

our case, we have φ(D,β1, β2) := (1,− 1
D , β1,−β1+β2

D ). If this map is injective,394

then the model is structurally identifiable. In our case, φ(D,β1, β2) is indeed395

injective, which suggests that the parameters {D,β1, β2} are structurally iden-396

tifiable, provided that the time and spatial derivatives of z in equation (26)397

are available. This is consistent with recent results on structural identifiability398

of reaction-diffusion models in [13].399

In practice, however, the total protein fluorescence concentration through
time and space z(t, x) is often not available from fluorescence recovery exper-
iments or is only accessible as very noisy and diffuse images. In the rare
instances when this is available, derivatives of this concentration would need to
be numerically approximated, incurring additional errors. Typically, the only
available measurement data from FRAP experiments is the spatially-averaged

quantity y(t) =
∫ l/2
−l/2 z(x, t) dx (or equation (15) for the 2-dimensional sys-

tem), which provides substantially less information. As mentioned in Section 2,
this is due to the low spatial resolution of the FRAP experiments and to their
focus on providing insights into the timing of dynamic protein processes [20].
For y(t), Equation (26) becomes:

0 = −ytt + 2Dztx(l/2, t) + 2β1Dzx(l/2, t)− (β1 + β2)yt . (27)

The derivatives of the total concentration of protein at the boundaries of the400

bleach point are however not available from the data. Therefore, the current401

framework for using the differential algebraic approach cannot provide insight402

into structural identifiability of the model parameters in this setting.403

5.2 Practical identifiability using Bayesian inference404

We then investigate the practical identifiability of parameters D,β1, β2 given405

FRAP data using the MCMC DRAM algorithm described in Section 4.2. In406

addition, we use this Bayesian inference approach to study the practical iden-407

tifiability of parameters p (from equation (14)) and C0 (from equation (13)).408

We start with initial parameter guesses D∗, β∗1 , β
∗
2 , p∗, C∗0 determined as out-409

lined in Section 3.3. Since MCMC DRAM requires its sampling intervals to be410

bounded [32], we set parameter bounds that are one order of magnitude lower411

and higher than the initial guesses. The exceptions are p, where the maximum412

bound is 1 (since it denotes a fraction), and C0, where the maximum bound413

is set to C∗0 + 1.414

We carry out MCMC DRAM on synthetic FRAP data generated using415

the parameter sets in Table 2 for 10, 000 sampling iterations. We determine416

convergence of the resulting Markov Chains using the Geweke diagnostic test417
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Fig. 3 MCMC DRAM-estimated A) univariate and B) bivariate marginal distributions for
noiseless FRAP data generated using Parameter Set 2 in Table 2. Scale bars in Panel B
correspond to the number of sampled points in the MCMC simulation for each parameter
pair.

[37]. A higher Geweke test score indicates a higher probability of convergence418

in the corresponding Markov Chain. Table 3 shows that, while the Geweke test419

suggests strong convergence in the Markov Chains at 10, 000 iterations for D,420

p, C0 and moderate convergence for β1, there does not appear to be strong421

evidence of convergence for β2, despite the large number of iterations.422

To determine practical identifiability based on MCMC DRAM, we study423

the univariate and bivariate marginal parameter distributions estimated by the424

inference algorithm. Across the Table 2 parameter regimes, we find that some425

of the MCMC DRAM-estimated marginal distributions for D, β1, β2, p, and426

C0 appear broad or multimodal, suggesting a lack of practical identifiability.427

Figure 3 shows the estimated parameter distributions for Parameter Set 2,428

where the distribution of rate β2 is especially broad.429

In addition, assessing practical identifiability using this Metropo-430

lis–Hastings MCMC algorithm carries a high computational cost. Study [31]431

also observed this for applications to PDE models of cell scratch assays. We432

find that the method is even less computationally feasible for the FRAP model,433

where the concentrations of interest are tracked in two spatial dimensions. In434

particular, parameter distributions estimated using MCMC DRAM as shown435

in Figure 3 take 18–22 hours each to simulate on a standard computer cluster.436

Table 3 Geweke Diagnostic Scores for parameter convergence using MCMC DRAM
carried out for the parameter sets in Table 2.

Parameters D β1 β2 p C0

Set 1 0.878 0.639 0.492 0.838 0.997
Set 2 0.996 0.414 0.129 0.741 0.931
Set 3 0.975 0.602 0.573 0.961 0.936
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Fig. 4 Profile likelihoods for each interest parameter on the x axis given noiseless FRAP
data synthetically generated using model (1) and Parameter Set 2 in Table 2.

5.3 Practical identifiability using profile likelihood437

analysis438

We next compute profile likelihoods for the kinetic parameters of interest439

(D,β1, β2) in the FRAP model. By visualizing the residuals from fitting the440

experimental FRAP data using model (1) as described in Section 3.3, we con-441

clude that the observation noise can be assumed to be normally distributed for442

the purpose of our application. We therefore choose the fixed standard devia-443

tion of the measurement noise in equation (22) as σ = 0.1∗mean(FRAPgen(t))444

based on the true synthetically-generated FRAP curve corresponding to each445

wild-type or mutant parameter regime. The profile likelihood calculation then446

reduces to carrying out nonlinear least-squares optimization to optimize out447

the nuisance parameters, which we carry out using the lsqnonlin function in448

Matlab.449

For example, recall from Section 4.3 that, when interested in the identifia-450

bility of the diffusion coefficient D, we fix values of D from an appropriate grid.451

We use a uniform grid for parameter D on an interval given by [D∗/10, 10D∗],452

where D∗ is the starting parameter guess determined through the initial deter-453

ministic procedure outlined in Section 3.3. For each value of D in this grid, we454

maximize the profile likelihood (equation (21)), which yields values β∗1(D) and455

β∗2(D) for the optimized nuisance parameters. The likelihood of each parameter456

of interest is visualized in Figure 4 for FRAP data generated using Parameter457

Set 2. While D appears to be identifiable given our model and for this gener-458

ated dataset, β1 and β2 are both practically non-identifiable, even with perfect459

synthetic FRAP data. Similar results, where the rates β1 and β2 are both prac-460

tically unidentifiable, are observed in the other parameter regimes. Therefore,461

profile likelihood analysis suggests that the model switching rates are practi-462

cally unidentifiable given the information typically captured in FRAP data.463

This is consistent with the relatively small determinants of the Fisher Infor-464

mation Matrices for assessing structural identifiability of parameters that we465

listed in Table 2 for all parameter sets (see Section 5.1). We summarize this466

step in flowchart Figure 7C.467
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Fig. 5 Subset profiles for each interest rate parameter on the x axis and the corresponding
optimized nuisance rate parameter on the y axis given noiseless FRAP data synthetically
generated using model (1) and Parameter Set 2 in Table 2. The true reaction rate parameters
are indicated with red circles.

Profile likelihood analysis also provides all the information needed to gen-468

erate subset profiles, which in this case help visualize the relationship between469

each rate as an interest parameter and the other rate as the optimized nui-470

sance parameter, following the approach in [28]. Figure 5 shows the inferred471

linear relationship between the rate parameters. Since we explore the applica-472

tion of the methods to synthetically-generated FRAP recovery curves, the true473

values of the parameters are indicated using a red circle in Figure 5. We find474

that the true parameters indeed lie on the curves outlining the relationship475

between the reaction rates.476

6 Investigating parameter relationships in477

FRAP models478

The investigation of established methods of parameter identifiability in479

Section 5 shows that the current strategies do not provide insight into struc-480

tural identifiability of the model parameters and that some of the reaction rates481

may be practically unidentifiable. In this Section, we formulate and imple-482

ment a methodology for investigating practical parameter identifiability in483

PDE models of FRAP experiments that extends the approach proposed in [9,484

Section 3] from ODE models to both PDE models and experimental data. The485

framework we present here builds on the calculation of profile likelihoods for486

these model parameters (see Sections 4.3 and 5.3), which is not computation-487

ally expensive, and allows us to determine which parameters are practically488

identifiable as well as to identify parameter combinations that can be inferred489

given FRAP experimental data.490

To motivate our algorithm, we recall that the reaction rates in our model491

are consistently unidentifiable based on the Bayesian inference and profile492

likelihood methods described in Section 5, while the diffusion constant D is493
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Fig. 6 Contour plots of the least-squares error between FRAP data generated using D =
1µm2/s and rates β1 and β2 from the grid shown and ground-truth synthetic data generated
using Parameter Set 2 in Table 2. The likelihood is minimized along the entire red curve.

identifiable. Our goal is therefore to explore the likelihood landscape by vary-494

ing the reaction rates β1 and β2 in a parameter grid for a fixed value of D.495

To do so, we set our ground-truth parameters to the values from Parameter496

Set 2 and compute a ground-truth FRAP curve by integrating model (1) for497

these parameter values. Next, we compute the least-squares error between the498

ground-truth FRAP curve and the FRAP curves from model (1) where we vary499

the reaction rates β1 and β1 on a square grid with 50 equally spaced values500

between 10−4/s and 2× 10−3/s and between 10−5/s and 2× 10−4/s, respec-501

tively, and a fixed value of D = 1µm2/s. Figure 6 shows the contour plot of502

this error as a function of (β1, β2): as is visible there, the likelihood is mini-503

mized along an entire curve (highlighted in red in Figure 6), and we therefore504

cannot distinguish points along this curve. This curve also coincides with the505

relationship between the optimized and interest parameter rates in the profile506

likelihood analysis in Figure 5. While contour plots as in Figure 6 are different507

for each diffusion coefficient D, we observe similar behavior for the diffusion508

coefficients characterizing the other parameter regimes in Table 2.509

We now turn these observations into an algorithm and refer to Figure 7 for a510

flowchart. Our goal is to (1) calculate a base point Q∗ on the minimizing curve511

as a regular minimum of an appropriate likelihood function and (2) use the512

base point Q∗ to compute the entire minimizing curve and therefore the iden-513

tifiable combination of the reaction parameters. To achieve (1), we (i) select a514

curve Γ in the (β1, β2)-plane transverse to the red curve, (ii) parametrize this515

curve in the form (βΓ
1 , β

Γ
2 )(s) by a parameter s so that (βΓ

1 , β
Γ
2 )(s) traces out516

Γ as s varies, and (iii) minimize the likelihood function L(D,βΓ
1 (s), βΓ

2 (s); y)517

over (D, s), where y is the ground-truth FRAP curve. This optimization prob-518

lem has a non-degenerate minimum (D∗, s∗), since the parameters (D, s) are519

identifiable. In particular, we obtain Q∗ = (D∗, βΓ
1 (s∗), βΓ

2 (s∗)). To accomplish520

(2), we fix D = D∗ and use linear interpolation and a forward Euler scheme to521

compute the contour curve of the error function that passes through Q∗, which522

then provides the curve on which the reaction parameters (β1, β2) must lie.523

Next, we discuss in more detail how we implement the proposed parameter-
estimation algorithm. Since the diffusion constant D is identifiable, we set it
to the value found in the profile likelihood analysis. We then select a grid
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Fig. 7 This diagram summarizes our algorithm in a flowchart.

in the (log10 β1, log10 β2)-plane in order to inform our choice of the curve Γ.
For each point on the grid (and the same fixed value of D), we generate
synthetic FRAP recovery datasets from model (1) and calculate the resulting
errors (that is, the L2-differences between ground-truth and generated FRAP
curves) on the parameter grid. We then use linear interpolation to compute
the tangent vectors to the contour curves of the error function at the grid
points. An example of the resulting vector field is shown in Figure 8 (blue
arrows), where we fixed the diffusion coefficient D = 1µm2/s and selected
seven values equally spaced on a log scale from 10−5 to 10−2 for the reaction
rates β1 and β2. We can now choose a curve Γ that crosses the contour curves
of the error function transversely: we can either choose the transverse curve Γ
in explicit analytical form or else again use linear interpolation and a forward
Euler scheme applied to the gradients of the vector field to compute such a
transverse curve Γ numerically. For illustration, we use the explicit analytical
parametrization

log10 β1 = s+
√
s2 + 1− 5 (28)

log10 β2 = −s+
√
s2 + 1− 5 ,
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Fig. 8 Grid of inferred slopes based on profile likelihood analysis for the relationship
between parameters β1 and β2 for FRAP datasets generated using D = 1µm2/s (blue) or
D = 0.8µm2/s (green dashed) and the indicated reaction rates. The curve Γ that crosses
the contour curves of the error function for D = 1µm2/s transversely is shown in yellow.

which yields the yellow curve Γ shown in Figure 8. The assumption we make524

is that the chosen curve Γ intersects each level curve transversely in a unique525

point for all nearby values of D. Figure 8 indicates that the vector field gen-526

erated with D = 0.8µm2/s (green dashed arrows) is very similar to the one527

generated with D = 1µm2/s (blue arrows), and that the curve Γ chosen above528

(yellow) is still appropriate for this different diffusion coefficient. We summarize529

this step in flowchart Figure 7D.530

To demonstrate this proposed framework, we consider a FRAP dataset531

generated using D0 = 0.8µm2/s and the reaction rates β0
1 = 10−3/s and532

β0
2 = 10−4/s from Parameter Set 2 to generate the ground-truth point P shown533

in Figure 9B. We use the parametrization of Γ described in equation (28).534

Figure 9A shows the results of the profile likelihood analysis from Section 5.3535

applied to the parameters (D, s): the clear peaks in the profiles for these536

parameters demonstrate that the diffusion coefficient and the re-parametrized537

parameter s are practically identifiable. The peak in the diffusion coeffi-538

cient profile is achieved at D∗ = 0.785µm2/s, close to its true value of539

D = 0.8µm2/s, while the peak in the s profile is achieved at value s∗ = 0.704,540

which corresponds to the intersection point Q∗ = (log10 β1, log10 β2) of the541

contour curve (green star in Figure 9B) along which the error function is mini-542

mized with the transverse curve Γ. Alternatively, we could have also optimized543

the likelihood function L(D,βΓ
1 (s), βΓ

2 (s); y) as described above. Focusing on544

the identified value of the diffusion coefficient D∗ (roughly 0.8µm2/s), we545

generate contour plots as in Figure 6 and slope grids as in Figure 8. Using546

linear interpolation and a forward Euler scheme for the tangent vector, we547

then numerically compute the contour curve of the error function that passes548

through Q∗, which then provides the curve on which the ground-truth param-549

eters (log10 β1, log10 β2) must lie (green curve in Figure 9B). Notably, the550

ground-truth point P (red star in Figure 9B) is very close to this curve.551
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( g r e e n ).

7 A p pli c a ti o n t o a n e x p e ri m e n t al F R A P5 5 2

d a t a s e t5 5 3

We al s o ill u st r at e t h e a p pli c ati o n of t h e f r a m e w o r k p r o p o s e d i n S e cti o n 65 5 4
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t h e di ff u si o n c o e ffi ci e nt D 0 ≈ 0 .5 3 5 µ m 2 / s . We t h e n fi x t hi s v al u e f o r D a n d5 6 0

v a r y t h e r at e p a r a m et e r s o n a g ri d i n t h e (l o g 1 0 β 1 , l o g1 0 β 2 )- pl a n e t o g e n e r at e5 6 1

s y nt h eti c d at a s et s a n d i nf o r m t h e c h oi c e of t h e t r a n s v e r s e c u r v e Γ. Fi g ur e 1 0 B5 6 2

s h o w s t h at t h e s a m e c h oi c e of c u r v e Γ f r o m e q u ati o n s ( 2 8 ) i s a p p r o p ri at e h e r e5 6 3

a s w ell.5 6 4

A s i n t h e s y nt h eti c d at a s etti n g i n v e sti g at e d i n S e cti o n 6 a n d Fi g u r e 9 , w e5 6 5

c a r r y o ut p r o fil e li k eli h o o d a n al y si s f o r p a r a m et e r s D a n d s f o r t hi s e x p e ri m e n-5 6 6

t al d at a s et. Fi g u r e 1 0 A s h o w s t h at t h e p r o fil e s f o r t h e s e p a r a m et e r s h a v e cl e a r5 6 7

p e a k s, i n di c ati n g t h at t h e y a r e p r a cti c all y i d e nti fi a bl e. T h e p e a k i n t h e di ff u-5 6 8

si o n c o e ffi ci e nt p r o fil e i s a c hi e v e d at D ∗ = 0 .5 4 5 µ m 2 / s , cl o s e t o t h e v al u e w e5 6 9

o ri gi n all y e sti m at e d. T h e p e a k i n t h e s p r o fil e i s a c hi e v e d at v al u e s ∗ = − 0 .0 3 1.5 7 0
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t h e c o nt o ur c u r v e ( g r e e n st a r i n Fi g u r e 1 0 B) al o n g w hi c h t h e e r r o r f u n cti o n5 7 2
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t o n u m e ri c all y c o m p ut e t h e c u r v e o n w hi c h w e p r e di ct t h at t h e t r u e p a r a m-5 7 4

et e r s (l o g 1 0 β 1 , l o g1 0 β 2 ) m u st li e o n ( g r e e n c ur v e i n Fi g u r e 1 0 B). P a n el C of5 7 5

Fi g u r e 1 0 s h o w s t h e o ri gi n al F R A P fl u o r e s c e n c e r e c o v e r y d at a (i n bl u e) a s w ell5 7 6

a s t h e fit u si n g t w o p a r a m et e r s et s c h o s e n al o n g t h e g r e e n c u r v e i n Fi g u r e 1 0 B:5 7 7



Springer Nature 2021 LATEX template

Parameter identifiability in PDE models for FRAP 25

A

0 0.5 1

D

0

0.05

0.1

0.15
Li

ke
lih

oo
d

-2 0 2

s

0

0.05

0.1

0.15

-5 -4 -3 -2

log
10

(
1
)

-5

-4.5

-4

-3.5

-3

-2.5

-2

lo
g

10
(

2
)

B

Q*

Q^

C

0 100 200 300 400 500

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

F
R

A
P

 r
ec

ov
er

y

Experiment
Simulation using Q*

Simulation using Q^

Fig. 10 (A) Profile likelihoods for each interest parameter on the x axis (diffusion coefficient
D and parameter s) for a single RRM mutant experimental FRAP dataset. The red star in
the left panel corresponds to the estimated value D0 = 0.535µm2/s, while the maximum of
the profile likelihood is achieved at D∗ = 0.545µm2/s. (B) Grid of inferred slopes for fixed
diffusion coefficient D0 = 0.535µm2/s, overlaid with transverse curve Γ (yellow), and trace
of error-minimizing contour curve. The intersection point Q∗ of the error-minimizing curve
with Γ is denoted by a green star, while another point Q̂ on the error-minimizing curve
is shown as a black circle. (C) Fit of the experimental FRAP curve (blue) with simulated

FRAP data generated using rate parameter sets given by Q∗ (green solid line) and by Q̂
(black dashed line) indicated in panel (B).

Q∗ yields the green solid line curve fit in Figure 10C and Q̂ yields the black578

dashed line curve fit in Figure 10C. As expected, both parameter sets chosen579

along the curve that outlines the predicted relationship between β1 and β2580

yield very close fits to the data.581

8 Discussion582

In the present work, we propose methods for assessing parameter identifiabil-583

ity and for learning identifiable parameter combinations based on fluorescence584

microscopy measurements of protein dynamics and assuming that a partial585

differential equations model appropriately models these dynamics. Here, we586

are specifically motivated by the recent discovery that RNA localizes together587

with RNA-binding proteins in L-body RNP granules during the development588

of frog oocytes [17]. PTBP3 is a specific multivalent RNA-binding protein, for589
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which protein dynamics are regulated by RNA-binding in L-bodies [18]. Exper-590

imental measurements of PTBP3 dynamics are quantified using FRAP. This591

is a commonly used technique to study protein dynamics in living cells, and is592

typically thought to investigate protein diffusion, as well as binding character-593

istics and connections between intracellular compartments [20]. We model the594

recovery of protein fluorescence in these experiments using reaction-diffusion595

partial differential equations, characterized by the diffusion coefficient and the596

binding and unbinding rate parameters. The FRAP model we investigate here597

is a linear two-state PDE system, with a postbleach initial condition that we598

derive based on the square bleach spot used in the experiments in [18].599

We first sought out insights from application of established methods of600

parameter identifiability to our PDE model of protein dynamics during FRAP.601

In particular, we evaluated structural parameter identifiability, which is based602

on model structure alone, using the Fisher Information Matrix [11, 26] and603

differential algebra approaches [10]. Despite the simple linear reaction-diffusion604

structure of the model, we find that structural identifiability is either difficult605

or impossible to establish for the time-series data extracted from the PDE606

model using these methods.607

Practical parameter identifiability considers issues in parameter infer-608

ence due to the noisy features of real data. We therefore use experimental609

datasets for wild-type and mutant PTBP3 protein dynamics from [18] and610

our previously-developed deterministic parameter estimation pipeline in [14]611

to roughly inform parameter regimes of interest. Using synthetic FRAP data612

generated using these parameter regimes, we investigate methods of practical613

identifiability based on Bayesian inference and profile likelihoods for the FRAP614

model. We find that practical identifiability using Bayesian inference has a high615

computational cost, due to the MCMC sampling of the parameter space that616

is required. In addition, both of these methods suggest that certain parameters617

are practically unidentifiable, however it remains challenging to determine the618

parameter relationships that could be inferred based on the available FRAP619

data. Recent work on subdiffusive protein motion in FRAP has also shown620

that only some of the model parameters were able to be identified from FRAP621

data in certain regimes studied [16].622

Since the existing methods point to identifiability issues for the reac-623

tion rates in the FRAP PDE model, we propose an alternative strategy624

for determining the relationship between the kinetic rate parameters using625

synthetically-generated FRAP datasets and contour curves of the error func-626

tion between data and simulated recovery curves for a range of binding and627

unbinding rate parameter choices. The framework we propose for identifying628

parameter combinations builds on the calculation of profile likelihoods in [9]629

and involves constructing a transverse curve to the contour curves of the error630

function. We thus re-parameterize the PDE model of FRAP using the diffusion631

coefficient of the protein and a parameter that describes this transverse curve.632

Carrying out profile likelihoods for these parameters identifies the level curve633

on which the true parameters must lie. We demonstrate that this approach634
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recovers the original protein diffusion coefficient and the relationship between635

binding and unbinding rates for synthetic datasets. The method also predicts636

the relationship between reaction rates for experimental FRAP data. This pre-637

diction of the diffusion coefficient and of the relationship between binding and638

unbinding rates gives us insights into PTBP3 protein dynamics in this work.639

More broadly, this methodology can be used to understand how other protein640

components interact and bind with RNA in L-bodies. This has the potential to641

characterize the strength of binding affinities of the many protein components642

that assemble in the RNP granules in developing Xenopus laevis oocytes and643

other biological systems.644

The pipeline we propose has the potential to extend to identifying param-645

eter relationships in other PDE models of biological systems. However, the646

approach becomes more challenging for larger numbers of parameters that647

need to be identified. For the application motivating this work, we have used648

the simplifying assumption that the PTBP3 reaction uses a single binding site;649

this is appropriate for the mutant studied in Figure 10, which has a single650

RNA binding domain capable of binding to L-body RNA [18]. For systems651

where multiple independent binding sites are appropriate, parameter identifia-652

bility and inference are likely more difficult to investigate due to the increased653

dimension of the parameter space. More generally, the specific insights we pro-654

vide on parameter combinations that are identifiable in FRAP are dependent655

on the assumption that the reaction-diffusion model we use is appropriate. We656

have previously studied settings where active transport of proteins needs to be657

included and impacts parameter estimation [14]. Recent work has also shown658

that experimental FRAP data cannot distinguish between normal diffusive659

and subdiffusive motion in large regions of parameter space [16]. Future work660

could aim to develop broadly-applicable methods of structural and practical661

parameter identifiability for PDE models of fluorescence microscopy data.662
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Appendix A Derivation of the sensitivity670

equations671

We provide details on deriving the sensitivity equations associated with PDE672

model system (1). Here, we show the derivation of the PDE equations for673

the sensitivities with respect to the diffusion coefficient D, since the other674

sensitivities can be derived in a similar way.675
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We first consider the PDE for the free protein concentration:

∂f

∂t
= D∆f − β2f + β1c . (A1)

We denote fD = ∂f
∂D and cD = ∂c

∂D . We differentiate equation (A1) with respect
to the diffusion coefficient D and assume that the protein concentrations are
smooth and thus have continuous partial derivatives. Applying the chain rule
yields:

∂

∂D

(
∂f

∂t

)
=
∂fD
∂t

=
∂

∂D
(D∆f)− ∂

∂D
(β2f) +

∂

∂D
(β1c)

= (fxx + fyy) +D
∂

∂D
(fxx + fyy)− β2fD + β1cD

= ∆f +D∆fD − β2fD + β1cD . (A2)

Similarly, consider the PDE for the bound protein concentration:

∂c

∂t
= β2f − β1c . (A3)

Differentiating this equation with respect to D yields the sensitivity equation:

∂

∂D

(
∂c

∂t

)
=
∂cD
∂t

= β2fD − β1cD . (A4)
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