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Abstract

Identifying unique parameters for mathematical models describing bio-
logical data can be challenging and often impossible. Parameter identifia-
bility for partial differential equations models in cell biology is especially
difficult given that many established in vivo measurements of protein
dynamics average out the spatial dimensions. Here, we are motivated
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2 Parameter identifiability in PDE models for FRAP

by recent experiments on the binding dynamics of the RNA-binding
protein PTBP3 in RNP granules of frog oocytes based on fluores-
cence recovery after photobleaching (FRAP) measurements. FRAP is a
widely-used experimental technique for probing protein dynamics in liv-
ing cells, and is often modeled using simple reaction-diffusion models
of the protein dynamics. We show that current methods of struc-
tural and practical parameter identifiability provide limited insights
into identifiability of kinetic parameters for these PDE models and
spatially-averaged FRAP data. We thus propose a pipeline for assess-
ing parameter identifiability and for learning parameter combinations
based on re-parametrization and profile likelihoods analysis. We show
that this method is able to recover parameter combinations for synthetic
FRAP datasets and investigate its application to real experimental data.

Keywords: parameter identifiability, partial differential equations, profile
likelihood, FRAP, RNA binding proteins

1 Introduction

Many mathematical models of biological processes aim to test relevant bio-
logical mechanisms, which are characterized using parameters. Estimating the
underlying parameters helps connect and validate mathematical models with
existing measurements and thus provide insights into mechanistic understand-
ing of the biological process. However, mathematical models can suffer from
identifiability issues, meaning that it may not be possible to uniquely determine
the model parameters from the available data. Identifiability is thus a cru-
cial problem in parameter estimation, and various approaches from statistics,
applied mathematics, and engineering have been devised to address it [1-8].
Identifiability problems are typically categorized into structural identifiabil-
ity, which involves issues arising from the model structure alone, and practical
identifiability, which involves issues with parameter estimation stemming from
the incorporation of real and noisy data [9].

In mathematical biology, many of these approaches have been more exten-
sively tested and used in models of epidemic and disease treatment dynamics
or in systems biology models [10]. For example, [6, 7, 11, 12] review theoretical
results and algorithms for structural and practical identifiability of linear and
nonlinear ordinary differential equations (ODE) models, with applications to
disease dynamics and systems biology processes.

In the study of macromolecular dynamics inside cells, spatial movement -
characterized by diffusion, transport, and binding dynamics - can be significant
and has an impact on the parameters that describe a given model. As a result,
partial differential equations (PDEs) that incorporate the dynamics of proteins
as a function of time and space are often an appropriate modeling framework.
However, PDEs present challenges when studying identifiability measures,
since these equations have more variables, contain derivatives, and include
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Parameter identifiability in PDE models for FRAP 3

boundary conditions [10]. Fewer studies have thus dealt with identifiability for
PDE models [10, 13].

Here, we focus on biological data obtained from a versatile experimental
technique for probing protein dynamics in living cells: FRAP (fluorescence
recovery after photobleaching). Our prior results suggest that parameters in
PDE systems that model data obtained from FRAP experiments may not
be identifiable. In particular, when estimating kinetic parameters describing
mRNA dynamics based on FRAP data, we observed that the predicted param-
eters (especially binding rates) could vary across orders of magnitude for the
same experimental settings [14]. Similarly, the theoretical studies in [15, 16]
have found that only specific model parameters could be identified from FRAP
data in certain parameter regimes. These identifiability issues with estimating
kinetic parameters from FRAP data can thus result in potentially spurious
predictions of cellular dynamics.

We are particularly motivated by questions surrounding protein and RNA
dynamics in Xenopus laevis frog oocytes [17, 18]. Proteins and RNAs organize
into membraneless compartments called biomolecular condensates (also called
RNP granules, localization bodies, or L-bodies) in the developing oocytes.
FRAP has been playing a key role as a technique to study newly-discovered
biological processes such as the formation and organization of biomolecu-
lar condensates [19]. We consider a reaction-diffusion PDE model of FRAP
microscopy experiments for the dynamics of an RNA-binding protein that is
enriched in RNP granules and investigate the limitations of existing structural
and practical identifiability techniques for this model and data. We propose
an alternative custom pipeline for extracting identifiable parameter combi-
nations for the PDE model based on time-series FRAP data. This approach
allows the prediction of the protein diffusion coefficient and of the relationship
between binding and unbinding rates of the RNA-binding protein. We illus-
trate the application of this framework for both synthetic and experimental
FRAP datasets. Given additional biological information on relevant binding
rate parameters, this approach may allow the inference of all individual model
parameters.

2 Biological motivation and fluorescence
microscopy data

RNP granules are membraneless compartments containing RNA and other
proteins, serving diverse biological functions. In developing Xenopus laevis
oocytes, maternal mRNAs are packaged into large RNP granules that localize
to specific subcellular locations, in a process that is required for embryonic pat-
terning [17] (see Figure 1A). The assembly of RNAs into these RNP granules
(termed localization bodies or L-bodies) requires the interaction of RNAs with
RNA-binding proteins (RBPs). The data suggest that the protein dynamics
are influenced by the strength and number of interactions of RBPs with the
non-dynamic RNA in L-bodies [18]. An example of a multivalent RNA-binding
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4 Parameter identifiability in PDE models for FRAP

protein is PTBP3, which is highly co-localized with L-bodies in Xenopus lae-
vis oocytes [18]. PTBP3 has four domains (termed RRM1, RRM2, RRM3,
and RRM4) that can bind to RNA, making it an ideal model for studying the
strength of interactions within L-bodies. In particular, experimental manipu-
lations in this system can generate PTBP3 RNA-binding mutants, where the
ability of one or more RNA-binding domains to bind to RNA is abolished [18].
Quantifying the binding of PTBP3, and its mutants, to RNA would therefore
be useful in contributing to our understanding of how protein dynamics are
regulated in I-bodies and other RNP granules. An important experimental
technique for assessing protein dynamics in vivo is fluorescence recovery after
photobleaching (FRAP). FRAP is a well-established approach to studying the
binding and diffusion of molecules in cells [19]. FRAP is also considered to
be one of the most versatile methods of studying protein dynamics and bind-
ing characteristics in living cells [20]. This microscopy experiment relies on
bleaching a small region in a cell expressing a fluorescent protein or nucleic
acid, and quantifying the recovery of fluorescence in that bleach spot over time
(see Figure 1A,B). The output of the FRAP experiment consists of a series of
images (such as Figure 1C) for each time point. These images are then used
to calculate the amount of fluorescence intensity inside the bleached region
as a function of time. It is this time series of real-valued fluorescence intensi-
ties that is then used in subsequent analysis, and we refer to Figure 10C for
a sample FRAP intensity curve. We emphasize that the spatial pixel by pixel
information captured in FRAP experiments is typically not considered to be
robust enough for analysis. The analysis of FRAP data therefore focuses on
the time series that tracks the overall integrated fluorescence recovery in the
bleached region to gain insight into the dynamic processes that the proteins
undergo [20].

In this work, we use the FRAP experimental measurements in [18] in order
to determine parameter regimes of interest. These FRAP datasets consist of
fluorescence recovery curves that are adjusted to correct for photobleaching
during image acquisition, as we previously outlined in [21]. In these experi-
ments, the fluorescence in the bleach spot (a square with side | = 10um) is
recorded at 5-second intervals for a total of 500 seconds.

3 Mathematical modeling of FRAP

3.1 PDE model of protein dynamics

We model the dynamics of PTBP3 using a system of linear reaction-diffusion
PDEs. The variables we study correspond to concentrations of PTBP3 in dif-
ferent dynamical states: f(z,y,t) denotes the concentration of free protein and
c(z,y,t) refers to the concentration of bound complexes at location (z,y) and
time ¢. We assume PTBP3 can transition between the diffusing and stationary
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states, so that the dynamics is described by the PDE system:

O~ DAf~ Bf + Bre.
o = ul e, )

where D denotes the diffusion constant in the diffusing state, ; is the rate of
transition from the stationary to the diffusing state, and 35 is the rate of tran-
sition from the diffusing to the stationary state. This model is equivalent to
the reaction-diffusion system we previously studied in [14] for non-localizing
RNA dynamics and has also been previously used and analyzed in other works
on quantifying FRAP experiments, including [15]. Our goal is to estimate the
reaction rate parameters 51 and (2 and the diffusion constant D from exper-
imental FRAP data. It is worth noting that RNA and RNA-binding protein
dynamics are not modelled explicitly in these equations. The binding of PTBP3
into complexes (i.e., transition rate (32) likely depends on the spatial organi-
zation of RNAs and other binding proteins in the L-bodies, which remains
challenging to investigate.

A key assumption underlying this model is that the binding interactions
of PTBP3 involve a single binding state. Four binding domains have been
identified for PTBP3, of which two were shown to bind to the non-dynamic L-
body RNA [18]. Mathematical models involving multiple independent binding
sites are more challenging to evaluate due to the increased dimension of the
parameter space, and generally show similar FRAP behaviors [15]. We there-
fore proceed with the simplifying assumption of a single binding site for the
PTBP3 reaction. We comment on the limitations of this assumption in the
Discussion.

3.2 Postbleach intensity profile model

To determine initial conditions for the concentrations of PTBP3 in the PDE
model (1), we consider a model of the experimental FRAP postbleach intensity
profiles on the focal plane of the fluorescence distribution [14]. The photo-
bleaching process in FRAP is usually assumed to be an irreversible first-order
reaction of the form

oCy

W(I7y7t) = fozK(x,y)Cb(m,y,t) (2)
for the fluorophore concentration Cy(x,y,t), where « is a bleaching parameter
and K (x,y) is the effective bleaching intensity distribution. Since the initial
condition of model (1) corresponds to the spatial concentration of fluorophores
at the first postbleach time (see Figure 1B), we therefore seek:

Cy(z,y,0) = Coe @K@y (3)
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The FRAP experiments in [18] use square bleach regions of interest (ROIs).

We therefore adapt the approach in [22], which considers a rectangular FRAP
bleach spot. The effective bleaching intensity distribution K (z,y) is calcu-
lated as the convolution of the bleach geometry B(z,y) and the time-averaged

bleaching intensity distribution (I(z — ',y — v/, 1)):

K(z,y) / / NIp(z — ',y — o 1)) da’ dy’ .

We assume a square photobleach area with side length [ and a Gaussian

photobleaching intensity distribution [22]:

Bla.y) = 1, if |z| <l/2 and |y| <1/2
= 0, otherwise ’

2+y2

<Ib(x>y7t)> = 106_21 2 5

where r is the effective radius of the distribution.

We therefore obtain for the effective bleaching intensity distribution:

V2 e )2 V2 oy
K(x,y)z[o/ e~ d:r:/ e” =2 dy,

—1/2 —1/2

(@+i/2)/r (y+i/2)/r
:Io/ e v du/ eV dv,

(x=1/2)/r (y=1/2)/r

ot (Z52) e (202 s (12) o

Plugging this into (3) for the initial fluorophore concentration yields:

Oy, ) = Coe~Fert(2H2) ort (2542 )] erd (2212 _err (15242)]

Since the experimental postbleach profiles show some asymmetry along the

(4)

(7)

(8)

y—1/2

(9)

(10)

two spatial dimensions (see Figure 1C), we extract fluorescence profiles Cy(x)
and Cy(y) in the = and y directions from the postbleach intensity data and fit

them to expressions of the form:

xz+1/2

Cy(x) = Cme*ax[wf( EL/2 ) orp(2512)) 7
Cb( ) C e [erf(%)ferf(%)] .

In particular, we estimate the parameters r, and o, by fitting the fluorescence

(11)
(12)

profile Cy(x) to equation (11) and parameters r, and «, by fitting the fluo-

rescence profile Cp(y) to equation (12) using standard nonlinear least-squares

i
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Fig. 1 A) Schematic of a stage II Xenopus oocyte with RNA granules localizing at the
vegetal cortex (bottom) shown in magenta. The black square region is shown magnified on
the right, with a cartoon of a FRAP bleach spot. B) The timeline of Fluorescence Recovery
After Photobleaching (FRAP) shows bleaching of a small square region (at the bleach time)
in a previously-fluoresced region of the cell (at the pre-bleach time). The first postbleach
time already shows that non-bleached and fluorescent molecules mix between the fluoresced
and bleached regions. C) An image of the vegetal cytoplasm of a Xenopus laevis oocyte
expressing fluorescently-labeled PTBP3 (red) in L-bodies is shown, with a 10 pm photobleach
square ROI. This image corresponds to the postbleach time point in the cartoon in B. Yellow
dashed lines show sample extraction of the fluorescence profiles Cy(z) and Cp(y) in the x
and y directions from the postbleach intensity data, as shown in panel B as well. D) Fitted
fluorescence postbleach profiles along the z and y directions. The estimated parameters are
ag = 2.33, rp = 5.64 (with R? = 0.39) and ay = 2.72, ry = 3.27 (with R? = 0.37).

estimation in Matlab using the function nlinfit. Here we use [ = 10 pm, con-
sistent with the experiments in [18]. We illustrate sample postbleach intensity
profiles and the corresponding fitted curves in Figure 1D. The coefficient of
determination for the fit to the fluorescence profile Cy(x) is R? = 0.39, and for
the fit to the fluorescence profile Cj(y) is R? = 0.37. We note that the derived
models (11) and (12) for the postbleach intensity fit the protein distribution
data in Figure 1C well, particularly in the locations corresponding to the pho-
tobleached region. This model cannot however account for the variation due
to the noisy fluorescence in the rest of the oocyte (as illustrated by the edges
of the spatial domain in Figure 1C,D).

Since the estimated o, and «, parameter values are very similar for all
datasets considered, we use the following final form for the initial fluorophore
concentration:

Cofony) ~ Cpo LS e ([ (522 e (522)] (1

We note that parameter Cy acts as a normalization constant for the level of
the intensity profile. This parameter is fitted here, but it is also estimated in
the final optimization of the parameters of interest, which describe the protein
dynamics (see Section 3.3).
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8 Parameter identifiability in PDE models for FRAP
Finally, the initial conditions for the model equations (1) are given by:

f(aj>y7t = 0) = pcb(x’y)a
C(Jf,y,t = O) = (1 - p)cb($7y)a (14)

where the initial postbleach profile Cy(x,y) is given in (13) and the parameter
p € [0,1] denotes the initial fraction of PTBP3 protein in the diffusing state,
which we will also determine from the data as described below. As shown in
[14], parameter estimation for FRAP experiments is sensitive to the initial
condition given by the postbleach profile. We therefore use these data-informed
initial conditions for all the studies carried out in this work.

3.3 Deterministic parameter estimation

In testing the techniques proposed here, we consider both synthetic and exper-
imental FRAP data. The experimental fluorescence intensity data is collected
in [18] at every 5s intervals up to a total time of 500s. We adjust the microscopy
data by correcting for background fluorescence and dividing the resulting flu-
orescence recovery by the intensity of a neighboring ROI for each time point,
as we previously described in [21].

We denote the real FRAP data by FRAP¢ue(t). The corresponding quan-
tity from the FRAP model described in Section 3.1 is then denoted by
FRAP(t,0) and calculated as

12 pl/2
FRAP(t,0) / / (f+o)(z,y,t,0)dzdy. (15)
1/2J-1/2

Here, 0 is the vector of parameters of interest and [ is the side of the square
bleach ROL. We let 6 = (D, f1, 52, p, Cp) and note that D, 31, B2 are kinetic
parameters describing the dynamics of PTBP3 proteins (equations (1)), while
p and Cy are parameters that describe the initial postbleach profile in each
protein population (equations (13) and (14)). We note that p is the initial
fraction of proteins in the diffusing state and is thus unitless. Cy has units of
concentration (see equation (3)) and acts as a normalization constant for the
initial fluorophore concentration. Parameters p and Cj cannot be validated
with data and do not yield significant insights into the protein dynamics; we
are therefore most interested in the estimation and identifiability of kinetic
parameters {D, /31, B2}

As in [14], we numerically integrate equations (1) using an efficient expo-
nential time-differencing fourth-order Runge-Kutta scheme [23, 24] for time
integration coupled with Fourier spectral methods for space discretization to
solve for FRAP(t,0). The settings for the numerical solution of the PDE
system are the same as outlined in [14, Supplementary Material S5], with
the exception that here we use a larger 100 ym x 100 pm spatial domain.
Code for implementing this numerical scheme is available in the Github
repository [25] associated with [14]. We then use the MATLAB optimization
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routine 1sqnonlin to determine the parameter set that minimizes the L2-norm
difference between the true and model FRAP curves on the time interval I:

0 = arg min [FRAP e () — FRAP(:, 0721 x) - (16)

We previously found that the initial guesses for parameters describing
FRAP dynamics can be key in ensuring convergence in deterministic parame-
ter estimation for this type of data [14]. In addition, since the data are obtained
through in vivo cell measurements, there is little prior knowledge on the magni-
tudes of the kinetic parameters of interest. We therefore use a similar approach
as employed in prior work [14, 15] and we carry out parameter sweeps that sam-
ple through a range of values of D, 51, B2, p. Each such parameter combination
includes a value of D € {1073,5x1073,1072,5x1072,107,5x 107}, 1, 1.5, 2},
a value of f; = 10™ with n; € {—6,-5,...,1,2}, a value of 82 = 10" with
ng € {—6,-5,...,1,2}, and a value of p € {0,0.25,0.5,0.75,1}. For each param-
eter combination in this sweep, we generate FRAP curves using the PDE model
(1) for the given parameters and evaluate the L?>-norm difference between the
generated FRAP curves and the true data. The sweeps thus require many
forward evaluations of PDE model (1) with the efficient numerical scheme
outlined above. We summarize this step in the flowchart Figure TA.

We then choose the parameter sets that yield the smallest differences
between data and generated curves to serve as initial guesses for the rough mag-
nitudes of the parameters. These initial guesses are then refined using the opti-
mization routine Isqnonlin to estimate specific values of 8 = (D, 51, B2, p, Co).
We keep the normalization parameter Cj fixed throughout the parameter
sweeps since the initial guess for this parameter is informed by fitting the initial
point on the FRAP curve to the form of the initial fluorophore concentration
in (13). This also allows to reduce the computational cost of these forward
runs of the model. In the full optimization of parameters of the model, we use
initial guesses for parameters informed from the parameter sweeps, and we
allow Cy to be estimated as well. This optimization of the model parameters
is summarized in the flowchart Figure 7B.

We apply this framework to FRAP recovery data from experiments in stage
IT oocytes that test the dynamics and interactions of PTBP3 with specific
RNA Recognition Motifs (RRMs) in L-bodies [18]. In particular, we apply
deterministic parameter estimation to experiments with wild-type PTBP3
(WT, Set 1), single RRM mutant PTBP3 (mut3 in [18], Set 2), and double
RRM mutant PTBP3 (mut34 in [18], Set 3). The estimated kinetic param-
eters for the dynamics of PTBP3 are given in Table 1 for several FRAP
datasets from [18]. The resulting squared norm of the residual from each
fit is given in the last column of Table 1. This quantity corresponds to
IFRAPue(-) — FRAP(., Q)H%Q(LR)’ or the resnorm output from the Matlab
optimization routine 1lsqnonlin.
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10 Parameter identifiability in PDE models for FRAP

Table 1 Results of deterministic parameter estimation for several wild-type (WT) and
mutant PTBP3 FRAP datasets from [18].

Cell PTBP3 D B1 B2 p Co squared norm
Type [um2/s] [1/s] [1/s] (unitless)  (conc.)  of residual
1 WT 0.26 7.6x107% 9.6 x107? 0.75 2.1 0.045
2 WT 0.22 35x1073  2.2x1072 0.66 1.15 0.016
3 WT 0.84 1.0x 1073 3.1 x107° 0.92 0.64 0.006
1 mut3 0.54 94x107% 1.1x10° 0.83 2.7 0.022
2 mut3 0.56 9.9 x 10! 7.2 x 1071 0.23 0.5 0.045
3 mut3 1.6 55x 1073  4.6x10~*  0.31 0.79 0.044
1 mut34 1.93 31x107% 58x10-10 .73 2.5 0.041
2 mut34 1.41 25x107% 4.7x10°8 0.82 3.2 0.029
3 mut34 6.2 9.6x1072 1.0x 1071 0.24 0.85 0.052

Even though the residuals for these fits are low, it remains challenging to
determine the level of confidence we can place in the results of the determin-
istic parameter estimation. Given the space-averaged FRAP data, it is very
likely that some parameters of the spatio-temporal PDE model are not iden-
tifiable. As we have previously observed in [14], while some parameters may
show consistency within each wild-type or mutant setting, there is still wide
variability, especially in the ranges of the reaction rates 8; and (5. In the fol-
lowing, we thus focus on synthetic data generated using PDE model (1) in
order to investigate parameter identifiability of the kinetic parameters given
FRAP data.

In generating synthetic FRAP data, we consider three parameter regimes
roughly inspired from the results of the parameter estimation procedure for
the three wild-type and mutant settings (Sets 1-3). In addition, we consider
an effective diffusion parameter regime (Set 4) as previously studied in [15]
for equations (1). In this regime, the reaction dynamics are much faster than
diffusion, leading to rapid local equilibrium of the reaction process. This leads
to FRAP recovery curves which can be characterized by the single parameter
combination Deg = % termed the effective diffusion coefficient in [15].
We provide these parameter regimes in Table 2. These parameter values are
used to generate noiseless synthetic FRAP data using model (1), which we
further use to assess parameter identifiability using established techniques in
Section 5 and for benchmarking our proposed method in Section 6.

4 Methods for practical and structural
parameter identifiability

Our goal is to investigate the identifiability of kinetic parameters of FRAP
models. We begin by reviewing established methods for practical and struc-
tural parameter identifiability in differential equations models. Throughout
this work, the parameter learning and identifiability methods considered will
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Table 2 Set of parameter regimes chosen to generate synthetic FRAP data using
model 1. The last two columns display the determinant and eigenvalues of the Fisher
information matrix for each parameter set (Section 4.1 and 5.1).

D [pm?2/s] B [1/s] B2 [1/s] »p Co det(F) eig(F)
Set 1 0.1 10-3 10-3 0.5 1.5 1.3x107%  5x1074,0.1,2.9
Set 2 1 103 10—4 0.25 0.75 1.0x 1072 9% 1073,0.5,2.5
Set 3 2 10—° 10-3 0.75 2 3.8 x 1072 3x1072,0.6,2.4
Set4 0.1 5 5 0.5 1.5 7.7x 10717 0,0,3

apply more generally to a model of the form

ox

_—= M 0 1
at f(m? t} ) ) ( 7)

where 0 = (01,0, ...,0,,) is the vector of model parameters of interest and the

model output is given by

y=g(x,t; 0). (18)

For our application, model (17) will consist of the partial differential equations
in (1), and the model output y will consist of the time-series FRAP measure-
ments defined in (15).

In this section, we provide a brief overview of established methods of param-
eter identifiability for models and output as in equations (17) and (18). As
commonly done in studies of identifiability analysis, we distinguish between
structural identifiability, which considers issues with identifying parameters
based on the model structure alone, and practical identifiability, which con-

siders issues that stem from identification based on real and potentially noisy
data [9].

4.1 Structural identifiability

An established technique for assessing the local structural identifiability of
a model consists of constructing the Fisher Information Matrix (FIM). This
matrix, denoted by F', captures the amount of information contained in the
model output y(t) about the set of parameters 0 [9]. Here we assume that
the data measurements are available at times t = (¢1,ta, ..., t,,). Based on the
concept of sensitivity identifiability introduced in [26] and reviewed in [11],
this technique requires calculating the sensitivity matrix:

X = (Gt 6°) 2Lt 0%) ... B (t: 6°))

where 0° is a set of baseline parameters around which the sensitivities are
evaluated. The Fisher Information Matrix is then given by the symmetric
n x n matrix F = XTX. Studies [11, 26] show that identifiability of the
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12 Parameter identifiability in PDE models for FRAP

parameter set 8 requires nonsingularity of matrix F. In practice, the parameter
sensitivities %(t; 0°) are approximated numerically, and the parameter set
6 is considered unidentifiable when det(F') is small [9]. The rank of the matrix
F (or equivalently, the number of non-zero eigenvalues of symmetric matrix
F) gives the number of identifiable parameter combinations [9, 11, 27], but
the method cannot identify the form of the combinations. More recent studies
have combined the FIM method with techniques for practical identifiability or
subset selection for ordinary differential equation models to determine subsets
of parameters that can be estimated from given data [9, 27].

While FIM reflects local structural identifiability, one framework to assess
generic structural identifiability is based on differential algebraic methods. This
framework was initially developed for ordinary differential equations models
but was recently extended in [10] to age-structured PDE models for disease
spread. This approach requires converting the model system to input-output
equations consisting of a set of monic polynomial equations expressed in terms
of the known model output y and its derivatives, as well as in terms of rational
coefficients depending on the model parameters 6 [10]. This work builds on a
substitution-based approach as in [28, 29] to eliminate unobserved variables
and to obtain a system whose identifiability features are equivalent to those
of the original system. Specifically, identifiability is evaluated based on the
coefficients of the monomial terms in the reduced system [10].

4.2 Practical identifiability using Bayesian inference

A commonly used method for assessing practical identifiability is Bayesian
inference using Markov Chain Monte Carlo (MCMC) sampling [30, 31]. As
described above, suppose we are interested in observed data y and model
parameter 8. Then, according to Bayes’ theorem,

p(8ly) < p(y|0)p(0), (19)

where p(0) denotes the prior distribution of 6, p(y|@) denotes the likelihood
function, and p(0|y) denotes the posterior distribution of 8. The likelihood
function represents the extra information that y contributes to our understand-
ing of 6. In the Bayesian inference approach, we seek to estimate the posterior
distribution, which specifies the distribution @ given our knowledge of y and
p(0). Here, we can consider 6 to be identifiable if we can estimate a relatively
concentrated posterior.

We estimate the posterior distributions of parameters in the model using
MCMC simulation. Specifically, we use the Delayed Rejection and Adaptive
Metropolis (DRAM) MCMC algorithm, a variation of the Metropolis—Hastings
MCMC algorithm [32]. A standard Metropolis—-Hastings algorithm starts with
a Markov Chain at initial position 8; and accepts candidate move 6;,1 with
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probability o, where
a = min [1, ]M] . (20)
p(6:]y)
Proposals in Metropolis—Hastings are sampled from a multivariate normal
distribution [31].

The DRAM algorithm has two advantages over the standard Metropolis—
Hastings: DRAM incorporates (1) delayed rejection and (2) adaptive Metropo-
lis samplers [32]. After the standard Metropolis—Hastings rejects a candidate
move, delayed rejection proposes subsequent moves in lieu of remaining at
the same position. With an adaptive Metropolis approach, the proposal dis-
tribution of Metropolis—Hastings is based on past samples in the Markov
chain. Combined, adaptive Metropolis enhances DRAM’s ability to explore the
range of good proposal distributions, while delayed rejection improves DRAM’s
flexibility in its local exploration of the parameter space [32].

Practical identifiability in a Bayesian setting can be determined graphi-
cally or through diagnostic statistics. In general, characteristics like poorly
converging Markov Chains, label-switching, and multimodal or overly broad
distributions indicate poor identifiability [30, 31, 33].

4.3 Practical identifiability using profile likelihood
analysis

Computing the full MCMC posterior distributions for parameters of interest
as described in Section 4.2 is known to be computationally expensive, espe-
cially for partial differential equations models [31]. An alternative approach
to assessing practical parameter identifiability is to carry out a profile likeli-
hood analysis [34]. This method requires setting up the normalized likelihood
function

R JCi )
£ v) supy p(d; y)

where p(6; y) is the likelihood function as in Section 4.2. This normalized
likelihood assumes fixed data y and is a function of the parameters 8. We then
let @ = (¢, A), where © is a scalar parameter of interest whose identifiability
we are interested in assessing, and A\ is a vector of nuisance parameters. The
profile likelihood for the interest parameter v is then given by:

Lp(¢; y) = max Ly, A; y). (21)

In practice, this means that for each value of parameter 1 chosen from a grid in
an appropriate interval around the nominal value, parameters A are optimized
out. This yields optimal nuisance parameter values A\*(¢) for each grid value
of 1; see [31].
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L£,6;y)

0 0 0
structural non-identifiability practical non-identifiability structural/practical identifiability
Fig. 2 Interpretation of profile likelihoods in terms of structural and practical identifiability
[35]. A flat likelihood (left) corresponds to structural non-identifiability, a profile that does
not decrease to 0 on one or both sides of the maximum (center) indicates practically non-
identifiability, and a profile with a fast decrease to 0 on both sides of the maximum (right)
shows both structural and practical identifiability.

If the measurement noise is assumed to be normally distributed as ¢ ~
N(0,0?), then:

o w0 = () o0 (gl E), 22

2mo?

where ygim consists of the model solutions at n time points [31, 35]. The pro-
filing calculation in equation (21) is then equivalent to solving a nonlinear
least-squares optimization problem for each grid value of the parameter of
interest .

The shape of the profile likelihoods can provide rich information about
whether parameters can be inferred from measurement data [35, 36], as can
be seen in the cartoon in Figure 2 (inspired from [35]). A completely flat
profile as shown in the left panel of Figure 2 corresponds to a structurally
non-identifiable parameter of interest, since the likelihood function does not
change with parameter 6. If the profile achieves a maximum but stays above
a plateau value on one or both sides as parameter 6 is varied, this indicates a
practically non-identifiable parameter. Finally, a fast decrease of the profile to
0 on both sides of the maximum shows both structural and practical param-
eter identifiability [35, 36]. Since flat regions of the likelihood profile indicate
that the parameter is practically or structurally unidentifiable [9, 35, 36], it is
sometimes useful to examine the relationship between the interest parameter
and each fitted nuisance parameter, in the flat regions of the likelihood [9, 28].
These are called subset profiles and can help uncover the form of potential
identifiable combinations of parameters for the given model [9, 28].
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5 Applications of practical and structural
parameter identifiability to PDE models for
synthetic FRAP data

We now turn to applying the parameter identifiability methods outlined in
Section 4 for the PDE model (1) describing the dynamics of PTBP3 pro-
tein during fluorescence recovery after photobleaching. We consider noiseless
synthetic FRAP datasets generated using the parameter regimes outlined in
Table 2 and determined based on the procedure in Section 3.3. In the notation
of Section 4, the relevant model output is y(t; 8) = FRAP(¢; 0) as defined in
equation (15).

5.1 Structural identifiability

First, we aim to determine the local structural identifiability of kinetic model
parameters D, 31, B2 given completely accurate FRAP data using the Fisher
information matrix method described in Section 4.1. To construct this matrix,
we first calculate the sensitivities of the output with respect to the model
parameters. For example, we seek:

FRAP /2 /2
0= [ [ (fpten) (pnts O)dray
1y2J-1/2

where fp = g—g and cp = %. By differentiating the PDE model system (1)

with respect to each parameter of interest, we obtain the following sensitivity
equations for the partial derivatives of the protein concentrations:

0

o — DAfo ~ Bafo+ Bren + AT
0

% = —bicp + P2 fp,

0

I _ DA gy~ Bt + s +
Ocg,

af = 52fﬁl - 51%1 —C

0fs,

Jo — DAy, ofss + Prcs, —
des,

22— Bofsa — Brcsa + f (23)

We provide additional details on the derivation of these equations in
Appendix A. We solve the above sensitivity equations simultaneously with
integrating model (1) using the numerical methods outlined in Section 3.3.
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Then the sensitivity matrix is given by:

a A . po a A . po
X = QERAL (t; 6°) Gp (£ 0°) oy (5 6°) (24)
| 2555 (8 0912 | 2550 (5 6°) 112 | 2535 (85 6%)[l2 )

where 6° corresponds to the baseline parameter regimes of interest in Table 2.
Here we have normalized each column by the L? norm of the corresponding
sensitivity vector, to account for the different magnitudes of the parameters.

The Fisher Information Matrix ¥ = X7 X is then a 3 x 3 matrix whose
determinant and eigenvalues are displayed in the last two columns of Table 2 for
the relevant parameter regimes considered. As expected, the matrix is singular
for the effective diffusion parameter regime (Set 4), where we only expect
to be able to identify one parameter combination (effective diffusion): the
expectation that we can identify only a single parameter combination is also
reflected by the observation that two of the three eigenvalues of F' vanish. For
the other parameter regimes corresponding to wild-type and mutant protein
binding settings (Sets 1-3), the determinant of the matrix is small, however it
is difficult to conclude whether all or only subsets of the parameters are locally
structurally identifiable given FRAP recovery data.

To assess general structural identifiability, we also apply the differential
algebra approach recently outlined in [10] for age-dependent PDE models. We
focus on the simplification of the reaction-diffusion PDE model (1) to one
spatial dimension z. Since FRAP recovery data requires averaging out the
sum of the protein concentrations in each state over a given spatial domain
corresponding to the bleaching region (z € [—1/2,1/2]), we start by considering
model output:

z(z,t) = f(x,t) + c(x, t) .

Re-writing system (1) in terms of the total protein concentration z(x,t) and
the concentration of bound protein complexes ¢(z, t) yields:

0z

E - Dzmw - Dcxw )

0

o7 = oz = (B + Ba)e. (25)

The goal is to express this system in terms of model output z and its
derivatives. By differentiating the first equation in (25) with respect to time
and using substitution to eliminate variable ¢, we obtain:

0= —Ztt + thzx + /BIDZ:ECZ‘ - (ﬂl + ﬂQ)Zt . (26)
This input-output equation is written as a polynomial equation in terms of

derivatives of z. As in [10], we rank the terms within the polynomial by assum-
ing that derivatives with respect to time are ranked higher than those with
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respect to space. To ensure a monic polynomial in 2., we therefore divide
equation (26) by D and obtain the following set of polynomial coefficients:
{1, f%, 51, 7%}. This provides a map from parameter space to the poly-
nomial coefficients, which can be used to determine identifiability information
for the model equations [10]. In particular, this set of polynomial coefficients
is interpreted as a function ¢(D, S, 62) of the model parameters so that, in
our case, we have ¢(D, 81, 82) := (1, D,Bl, 61+ﬁ2) If this map is injective,
then the model is structurally identifiable. In our case, ¢(D, 1, B2) is indeed
injective, which suggests that the parameters {D, 51, 82} are structurally iden-
tifiable, provided that the time and spatial derivatives of z in equation (26)
are available. This is consistent with recent results on structural identifiability
of reaction-diffusion models in [13].

In practice, however, the total protein fluorescence concentration through
time and space z(t, ) is often not available from fluorescence recovery exper-
iments or is only accessible as very noisy and diffuse images. In the rare
instances when this is available, derivatives of this concentration would need to
be numerically approximated, incurring additional errors. Typically, the only
available measurement data from FRAP experiments is the spatially-averaged
quantity y(t) = fi/li;z z(x,t)dz (or equation (15) for the 2-dimensional sys-
tem), which provides substantially less information. As mentioned in Section 2,
this is due to the low spatial resolution of the FRAP experiments and to their
focus on providing insights into the timing of dynamic protein processes [20].
For y(t), Equation (26) becomes:

The derivatives of the total concentration of protein at the boundaries of the
bleach point are however not available from the data. Therefore, the current
framework for using the differential algebraic approach cannot provide insight
into structural identifiability of the model parameters in this setting.

5.2 Practical identifiability using Bayesian inference

We then investigate the practical identifiability of parameters D, 31, 82 given
FRAP data using the MCMC DRAM algorithm described in Section 4.2. In
addition, we use this Bayesian inference approach to study the practical iden-
tifiability of parameters p (from equation (14)) and Cy (from equation (13)).
We start with initial parameter guesses D*, 571, 35, p*, C§ determined as out-
lined in Section 3.3. Since MCMC DRAM requires its sampling intervals to be
bounded [32], we set parameter bounds that are one order of magnitude lower
and higher than the initial guesses. The exceptions are p, where the maximum
bound is 1 (since it denotes a fraction), and Cy, where the maximum bound
is set to Cfj + 1.

We carry out MCMC DRAM on synthetic FRAP data generated using
the parameter sets in Table 2 for 10,000 sampling iterations. We determine
convergence of the resulting Markov Chains using the Geweke diagnostic test
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Fig. 3 MCMC DRAM-estimated A) univariate and B) bivariate marginal distributions for
noiseless FRAP data generated using Parameter Set 2 in Table 2. Scale bars in Panel B
correspond to the number of sampled points in the MCMC simulation for each parameter
pair.

[37]. A higher Geweke test score indicates a higher probability of convergence
in the corresponding Markov Chain. Table 3 shows that, while the Geweke test
suggests strong convergence in the Markov Chains at 10,000 iterations for D,
p, Cy and moderate convergence for 1, there does not appear to be strong
evidence of convergence for (s, despite the large number of iterations.

To determine practical identifiability based on MCMC DRAM, we study
the univariate and bivariate marginal parameter distributions estimated by the
inference algorithm. Across the Table 2 parameter regimes, we find that some
of the MCMC DRAM-estimated marginal distributions for D, #1, 52, p, and
Cy appear broad or multimodal, suggesting a lack of practical identifiability.
Figure 3 shows the estimated parameter distributions for Parameter Set 2,
where the distribution of rate (85 is especially broad.

In addition, assessing practical identifiability using this Metropo-
lis-Hastings MCMC algorithm carries a high computational cost. Study [31]
also observed this for applications to PDE models of cell scratch assays. We
find that the method is even less computationally feasible for the FRAP model,
where the concentrations of interest are tracked in two spatial dimensions. In
particular, parameter distributions estimated using MCMC DRAM as shown
in Figure 3 take 18-22 hours each to simulate on a standard computer cluster.

Table 3 Geweke Diagnostic Scores for parameter convergence using MCMC DRAM
carried out for the parameter sets in Table 2.

Parameters D 51 B2 p Co
Set 1 0.878 0.639 0.492 0.838 0.997
Set 2 0.996 0.414 0.129 0.741 0.931

Set 3 0.975 0.602 0.573 0.961 0.936
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Fig. 4 Profile likelihoods for each interest parameter on the = axis given noiseless FRAP
data synthetically generated using model (1) and Parameter Set 2 in Table 2.

5.3 Practical identifiability using profile likelihood
analysis

We next compute profile likelihoods for the kinetic parameters of interest
(D, 1, 82) in the FRAP model. By visualizing the residuals from fitting the
experimental FRAP data using model (1) as described in Section 3.3, we con-
clude that the observation noise can be assumed to be normally distributed for
the purpose of our application. We therefore choose the fixed standard devia-
tion of the measurement noise in equation (22) as ¢ = 0.1 xmean(FRAP g, (1))
based on the true synthetically-generated FRAP curve corresponding to each
wild-type or mutant parameter regime. The profile likelihood calculation then
reduces to carrying out nonlinear least-squares optimization to optimize out
the nuisance parameters, which we carry out using the 1sqnonlin function in
Matlab.

For example, recall from Section 4.3 that, when interested in the identifia-
bility of the diffusion coefficient D, we fix values of D from an appropriate grid.
We use a uniform grid for parameter D on an interval given by [D*/10,10D*],
where D* is the starting parameter guess determined through the initial deter-
ministic procedure outlined in Section 3.3. For each value of D in this grid, we
maximize the profile likelihood (equation (21)), which yields values 57 (D) and
B35 (D) for the optimized nuisance parameters. The likelihood of each parameter
of interest is visualized in Figure 4 for FRAP data generated using Parameter
Set 2. While D appears to be identifiable given our model and for this gener-
ated dataset, 81 and (2 are both practically non-identifiable, even with perfect
synthetic FRAP data. Similar results, where the rates 51 and f5 are both prac-
tically unidentifiable, are observed in the other parameter regimes. Therefore,
profile likelihood analysis suggests that the model switching rates are practi-
cally unidentifiable given the information typically captured in FRAP data.
This is consistent with the relatively small determinants of the Fisher Infor-
mation Matrices for assessing structural identifiability of parameters that we
listed in Table 2 for all parameter sets (see Section 5.1). We summarize this
step in flowchart Figure 7C.
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Fig. 5 Subset profiles for each interest rate parameter on the x axis and the corresponding
optimized nuisance rate parameter on the y axis given noiseless FRAP data synthetically
generated using model (1) and Parameter Set 2 in Table 2. The true reaction rate parameters
are indicated with red circles.

Profile likelihood analysis also provides all the information needed to gen-
erate subset profiles, which in this case help visualize the relationship between
each rate as an interest parameter and the other rate as the optimized nui-
sance parameter, following the approach in [28]. Figure 5 shows the inferred
linear relationship between the rate parameters. Since we explore the applica-
tion of the methods to synthetically-generated FRAP recovery curves, the true
values of the parameters are indicated using a red circle in Figure 5. We find
that the true parameters indeed lie on the curves outlining the relationship
between the reaction rates.

6 Investigating parameter relationships in
FRAP models

The investigation of established methods of parameter identifiability in
Section 5 shows that the current strategies do not provide insight into struc-
tural identifiability of the model parameters and that some of the reaction rates
may be practically unidentifiable. In this Section, we formulate and imple-
ment a methodology for investigating practical parameter identifiability in
PDE models of FRAP experiments that extends the approach proposed in [9,
Section 3| from ODE models to both PDE models and experimental data. The
framework we present here builds on the calculation of profile likelihoods for
these model parameters (see Sections 4.3 and 5.3), which is not computation-
ally expensive, and allows us to determine which parameters are practically
identifiable as well as to identify parameter combinations that can be inferred
given FRAP experimental data.

To motivate our algorithm, we recall that the reaction rates in our model
are consistently unidentifiable based on the Bayesian inference and profile
likelihood methods described in Section 5, while the diffusion constant D is
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Least Squares Error

x10° 0.5 1 15
8, x10°°

Fig. 6 Contour plots of the least-squares error between FRAP data generated using D =
1um?2 /s and rates 81 and B2 from the grid shown and ground-truth synthetic data generated
using Parameter Set 2 in Table 2. The likelihood is minimized along the entire red curve.

identifiable. Our goal is therefore to explore the likelihood landscape by vary-
ing the reaction rates f; and [y in a parameter grid for a fixed value of D.
To do so, we set our ground-truth parameters to the values from Parameter
Set 2 and compute a ground-truth FRAP curve by integrating model (1) for
these parameter values. Next, we compute the least-squares error between the
ground-truth FRAP curve and the FRAP curves from model (1) where we vary
the reaction rates 5, and (7 on a square grid with 50 equally spaced values
between 10~%/s and 2 x 1072 /s and between 107°/s and 2 x 10~ /s, respec-
tively, and a fixed value of D = 1um?/s. Figure 6 shows the contour plot of
this error as a function of (81, 82): as is visible there, the likelihood is mini-
mized along an entire curve (highlighted in red in Figure 6), and we therefore
cannot distinguish points along this curve. This curve also coincides with the
relationship between the optimized and interest parameter rates in the profile
likelihood analysis in Figure 5. While contour plots as in Figure 6 are different
for each diffusion coefficient D, we observe similar behavior for the diffusion
coefficients characterizing the other parameter regimes in Table 2.

We now turn these observations into an algorithm and refer to Figure 7 for a
flowchart. Our goal is to (1) calculate a base point Q* on the minimizing curve
as a regular minimum of an appropriate likelihood function and (2) use the
base point Q* to compute the entire minimizing curve and therefore the iden-
tifiable combination of the reaction parameters. To achieve (1), we (i) select a
curve I in the (81, B2)-plane transverse to the red curve, (ii) parametrize this
curve in the form (B}, 3%)(s) by a parameter s so that (3%, 3Y)(s) traces out
T as s varies, and (iii) minimize the likelihood function £(D, B} (s), 85 (s); v)
over (D, s), where y is the ground-truth FRAP curve. This optimization prob-
lem has a non-degenerate minimum (D*, s*), since the parameters (D, s) are
identifiable. In particular, we obtain Q* = (D*, 51 (s*), 85 (s*)). To accomplish
(2), we fix D = D* and use linear interpolation and a forward Euler scheme to
compute the contour curve of the error function that passes through @*, which
then provides the curve on which the reaction parameters (51, 82) must lie.

Next, we discuss in more detail how we implement the proposed parameter-
estimation algorithm. Since the diffusion constant D is identifiable, we set it
to the value found in the profile likelihood analysis. We then select a grid
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1. Maximize Lo (D, ) := L(D, ¥ (s), BL (s))
2. Compute resulting level curve to determine
identifiable parameter combination

Fig. 7 This diagram summarizes our algorithm in a flowchart.

in the (log, f1,logy B2)-plane in order to inform our choice of the curve T'.
For each point on the grid (and the same fixed value of D), we generate
synthetic FRAP recovery datasets from model (1) and calculate the resulting
errors (that is, the L2-differences between ground-truth and generated FRAP
curves) on the parameter grid. We then use linear interpolation to compute
the tangent vectors to the contour curves of the error function at the grid
points. An example of the resulting vector field is shown in Figure 8 (blue
arrows), where we fixed the diffusion coefficient D = 1um?/s and selected
seven values equally spaced on a log scale from 107° to 10~2 for the reaction
rates $1 and fB2. We can now choose a curve I' that crosses the contour curves
of the error function transversely: we can either choose the transverse curve I
in explicit analytical form or else again use linear interpolation and a forward
Euler scheme applied to the gradients of the vector field to compute such a
transverse curve I' numerically. For illustration, we use the explicit analytical
parametrization

logigf1=s+vVs2+1-5 (28)
logigf2=—s+Vs2+1-5,
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Fig. 8 Grid of inferred slopes based on profile likelihood analysis for the relationship
between parameters 31 and 2 for FRAP datasets generated using D = 1um?2/s (blue) or

D = 0.8um?/s (green dashed) and the indicated reaction rates. The curve I' that crosses
the contour curves of the error function for D = 1um? /s transversely is shown in yellow.

which yields the yellow curve I shown in Figure 8. The assumption we make
is that the chosen curve I' intersects each level curve transversely in a unique
point for all nearby values of D. Figure 8 indicates that the vector field gen-
erated with D = 0.8um?/s (green dashed arrows) is very similar to the one
generated with D = 1um? /s (blue arrows), and that the curve I' chosen above
(yellow) is still appropriate for this different diffusion coefficient. We summarize
this step in flowchart Figure 7D.

To demonstrate this proposed framework, we consider a FRAP dataset
generated using D’ = 0.8um?/s and the reaction rates 5 = 1073/s and
B9 = 10=*/s from Parameter Set 2 to generate the ground-truth point P shown
in Figure 9B. We use the parametrization of I' described in equation (28).
Figure 9A shows the results of the profile likelihood analysis from Section 5.3
applied to the parameters (D, s): the clear peaks in the profiles for these
parameters demonstrate that the diffusion coefficient and the re-parametrized
parameter s are practically identifiable. The peak in the diffusion coeffi-
cient profile is achieved at D* = 0.785um?/s, close to its true value of
D = 0.8um? /s, while the peak in the s profile is achieved at value s* = 0.704,
which corresponds to the intersection point Q* = (logy, 51,log f2) of the
contour curve (green star in Figure 9B) along which the error function is mini-
mized with the transverse curve I'. Alternatively, we could have also optimized
the likelihood function £(D, B! (s), 8% (s); y) as described above. Focusing on
the identified value of the diffusion coefficient D* (roughly 0.8um?/s), we
generate contour plots as in Figure 6 and slope grids as in Figure 8. Using
linear interpolation and a forward Euler scheme for the tangent vector, we
then numerically compute the contour curve of the error function that passes
through @, which then provides the curve on which the ground-truth param-
eters (logy, B1,10g19 B2) must lie (green curve in Figure 9B). Notably, the
ground-truth point P (red star in Figure 9B) is very close to this curve.
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Fig. 9 (A) Profile likelihoods for each interest parameter on the z axis (diffusion coefficient
D and parameter s on curve I') given noiseless FRAP data generated using D = 0.8um? /s
and rates as given in Parameter Set 2 in Table 2. The red star in the left panel corresponds
to the ground-truth value Dy = 0.8um2 /s, while the maximum of the profile likelihood is
achieved at D* = 0.785um?/s. (B) Grid of inferred slopes as in Figure 8 (blue), overlaid
with transverse curve I' (yellow), original ground-truth parameter set P (red), and trace of
error-minimizing contour curve as well as its intersection point @* with the transverse curve
(green).

7 Application to an experimental FRAP
dataset

We also illustrate the application of the framework proposed in Section 6
to a FRAP experimental dataset corresponding to the dynamics of PTBP3
protein with a single RRM mutant (mut3 in [18]). This mutant has only one
RNA-binding domain that can bind to the non-dynamic L-body RNA. We
first carry out deterministic parameter estimation (as described in Section 3.3)
for this fluorescence recovery dataset and obtain an estimate of the value of
the diffusion coefficient Dy = 0.535um?/s. We then fix this value for D and
vary the rate parameters on a grid in the (log;, 51, log;g 52)-plane to generate
synthetic datasets and inform the choice of the transverse curve I'. Figure 10B
shows that the same choice of curve I' from equations (28) is appropriate here
as well.

As in the synthetic data setting investigated in Section 6 and Figure 9, we
carry out profile likelihood analysis for parameters D) and s for this experimen-
tal dataset. Figure 10A shows that the profiles for these parameters have clear
peaks, indicating that they are practically identifiable. The peak in the diffu-
sion coefficient profile is achieved at D* = 0.545um? /s, close to the value we
originally estimated. The peak in the s profile is achieved at value s* = —0.031.
This value of s* identifies the intersection point Q* = (log;q 51, logg B2) of
the contour curve (green star in Figure 10B) along which the error function
is minimized with the transverse curve I'. We then use linear interpolation
to numerically compute the curve on which we predict that the true param-
eters (log;g B1,log;p B2) must lie on (green curve in Figure 10B). Panel C of
Figure 10 shows the original FRAP fluorescence recovery data (in blue) as well
as the fit using two parameter sets chosen along the green curve in Figure 10B:
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Fig. 10 (A) Profile likelihoods for each interest parameter on the x axis (diffusion coefficient
D and parameter s) for a single RRM mutant experimental FRAP dataset. The red star in
the left panel corresponds to the estimated value Do = 0.535um? /s, while the maximum of
the profile likelihood is achieved at D* = 0.545um?/s. (B) Grid of inferred slopes for fixed
diffusion coefficient Do = 0.535um? /s, overlaid with transverse curve I' (yellow), and trace
of error-minimizing contour curve. The intersection point Q* of the error-minimizing curve
with I' is denoted by a green star, while another point Q on the error-minimizing curve
is shown as a black circle. (C) Fit of the experimental FRAP curve (blue) with simulated
FRAP data generated using rate parameter sets given by Q* (green solid line) and by Q
(black dashed line) indicated in panel (B).

Q* yields the green solid line curve fit in Figure 10C and Q yields the black
dashed line curve fit in Figure 10C. As expected, both parameter sets chosen
along the curve that outlines the predicted relationship between (8, and S
yield very close fits to the data.

8 Discussion

In the present work, we propose methods for assessing parameter identifiabil-
ity and for learning identifiable parameter combinations based on fluorescence
microscopy measurements of protein dynamics and assuming that a partial
differential equations model appropriately models these dynamics. Here, we
are specifically motivated by the recent discovery that RNA localizes together
with RNA-binding proteins in L-body RNP granules during the development
of frog oocytes [17]. PTBP3 is a specific multivalent RNA-binding protein, for
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which protein dynamics are regulated by RNA-binding in L-bodies [18]. Exper-
imental measurements of PTBP3 dynamics are quantified using FRAP. This
is a commonly used technique to study protein dynamics in living cells, and is
typically thought to investigate protein diffusion, as well as binding character-
istics and connections between intracellular compartments [20]. We model the
recovery of protein fluorescence in these experiments using reaction-diffusion
partial differential equations, characterized by the diffusion coefficient and the
binding and unbinding rate parameters. The FRAP model we investigate here
is a linear two-state PDE system, with a postbleach initial condition that we
derive based on the square bleach spot used in the experiments in [18].

We first sought out insights from application of established methods of
parameter identifiability to our PDE model of protein dynamics during FRAP.
In particular, we evaluated structural parameter identifiability, which is based
on model structure alone, using the Fisher Information Matrix [11, 26] and
differential algebra approaches [10]. Despite the simple linear reaction-diffusion
structure of the model, we find that structural identifiability is either difficult
or impossible to establish for the time-series data extracted from the PDE
model using these methods.

Practical parameter identifiability considers issues in parameter infer-
ence due to the noisy features of real data. We therefore use experimental
datasets for wild-type and mutant PTBP3 protein dynamics from [18] and
our previously-developed deterministic parameter estimation pipeline in [14]
to roughly inform parameter regimes of interest. Using synthetic FRAP data
generated using these parameter regimes, we investigate methods of practical
identifiability based on Bayesian inference and profile likelihoods for the FRAP
model. We find that practical identifiability using Bayesian inference has a high
computational cost, due to the MCMC sampling of the parameter space that
is required. In addition, both of these methods suggest that certain parameters
are practically unidentifiable, however it remains challenging to determine the
parameter relationships that could be inferred based on the available FRAP
data. Recent work on subdiffusive protein motion in FRAP has also shown
that only some of the model parameters were able to be identified from FRAP
data in certain regimes studied [16].

Since the existing methods point to identifiability issues for the reac-
tion rates in the FRAP PDE model, we propose an alternative strategy
for determining the relationship between the kinetic rate parameters using
synthetically-generated FRAP datasets and contour curves of the error func-
tion between data and simulated recovery curves for a range of binding and
unbinding rate parameter choices. The framework we propose for identifying
parameter combinations builds on the calculation of profile likelihoods in [9]
and involves constructing a transverse curve to the contour curves of the error
function. We thus re-parameterize the PDE model of FRAP using the diffusion
coefficient of the protein and a parameter that describes this transverse curve.
Carrying out profile likelihoods for these parameters identifies the level curve
on which the true parameters must lie. We demonstrate that this approach
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recovers the original protein diffusion coefficient and the relationship between
binding and unbinding rates for synthetic datasets. The method also predicts
the relationship between reaction rates for experimental FRAP data. This pre-
diction of the diffusion coefficient and of the relationship between binding and
unbinding rates gives us insights into PTBP3 protein dynamics in this work.
More broadly, this methodology can be used to understand how other protein
components interact and bind with RNA in L-bodies. This has the potential to
characterize the strength of binding affinities of the many protein components
that assemble in the RNP granules in developing Xenopus laevis oocytes and
other biological systems.

The pipeline we propose has the potential to extend to identifying param-
eter relationships in other PDE models of biological systems. However, the
approach becomes more challenging for larger numbers of parameters that
need to be identified. For the application motivating this work, we have used
the simplifying assumption that the PTBP3 reaction uses a single binding site;
this is appropriate for the mutant studied in Figure 10, which has a single
RNA binding domain capable of binding to L-body RNA [18]. For systems
where multiple independent binding sites are appropriate, parameter identifia-
bility and inference are likely more difficult to investigate due to the increased
dimension of the parameter space. More generally, the specific insights we pro-
vide on parameter combinations that are identifiable in FRAP are dependent
on the assumption that the reaction-diffusion model we use is appropriate. We
have previously studied settings where active transport of proteins needs to be
included and impacts parameter estimation [14]. Recent work has also shown
that experimental FRAP data cannot distinguish between normal diffusive
and subdiffusive motion in large regions of parameter space [16]. Future work
could aim to develop broadly-applicable methods of structural and practical
parameter identifiability for PDE models of fluorescence microscopy data.
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Appendix A Derivation of the sensitivity
equations

We provide details on deriving the sensitivity equations associated with PDE
model system (1). Here, we show the derivation of the PDE equations for
the sensitivities with respect to the diffusion coefficient D, since the other
sensitivities can be derived in a similar way.
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We first consider the PDE for the free protein concentration:

% = DAf — Baof + Bic. (A1)

We denote fp = g—g and cp = 88—5. We differentiate equation (A1) with respect
to the diffusion coefficient D and assume that the protein concentrations are
smooth and thus have continuous partial derivatives. Applying the chain rule
yields:

o (0f\ ofp 0
5(%)-%-4

0 0
5 T aD(DAf)—afD(ﬁzf)‘i'afD(ﬁlc)

0
= (fox + fyy) + D37D (faz + fyy) — BofD + Prcp
=Af+ DAfp —B2fp + Picp - (A2)

Similarly, consider the PDE for the bound protein concentration:

S (A3)

Differentiating this equation with respect to D yields the sensitivity equation:

o (0 0
oD (85) - % = B2fp — Bicp - (A4)
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