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ABSTRACT: Exploring new techniques to improve the prediction of tropical cyclone (TC) for-
mation is essential for operational practice. Using convolutional neural networks, this study shows
that deep learning can provide a promising capability for predicting TC formation from a given set
of large-scale environments at certain forecast lead times. Specifically, two common deep-learning
architectures including the residual net (ResNet) and UNet are used to examine TC formation
in the Pacific Ocean. With a set of large-scale environments extracted from the NCEP/NCAR
reanalysis during 2008-2021 as input and the TC labels obtained from the best track data, we show
that both ResNet and UNet reach their maximum forecast skill at the 12-18 hour forecast lead
time. Moreover, both architectures perform best when using a large domain covering most of the
Pacific Ocean for input data, as compared to a smaller subdomain in the western Pacific. Given
its ability to provide additional information about TC formation location, UNet performs generally
worse than ResNet across the accuracy metrics. The deep learning approach in this study presents
an alternative way to predict TC formation beyond the traditional vortex-tracking methods in the

current numerical weather prediction.
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SIGNIFICANCE STATEMENT: This study presents a new approach for predicting tropical
cyclone (TC) formation based on deep learning (DL). Using two common DL architectures in
visualization research and a set of large-scale environments in the Pacific Ocean extracted from
the reanalysis data, we show that DL has an optimal capability of predicting TC formation at
the 12-18 hour lead time. Examining the DL performance for different domain sizes shows that
the use of a large domain size for input data can help capture some far-field information needed
for predicting TCG. The DL approach in this study demonstrates an alternative way to predict or
detect TC formation beyond the traditional vortex-tracking methods used in the current numerical

weather prediction.
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1. Introduction

The life cycle of a tropical cyclone (TC) is typically divided into six stages including genesis,
tropical disturbance, tropical depression, tropical storm, hurricane, and dissipation. Among these
six, the genesis stage (typically 2-5 days) during which a weak atmospheric disturbance grows
into a mesoscale tropical depression with a close isobar and the maximum surface wind > 17m.s~!
is perhaps the most difficult to forecast because of its unorganized structure and ill-defined TC
characteristics (Karyampudi and Pierce 2002; Houze 1982; Kieu and Zhang 2009; Hennon et al.
2011, 2013; Vuetal. 2021; Tien et al. 2020). For this genesis period, synergetic interactions among
various dynamical and thermodynamic processes at different scales may eventually result in the
generation of a self-sustained, warm-core vortex before subsequent intensification can proceed.
This early TC formation process is intricate and highly nonlinear that no single mechanism could
operate in all ocean basins, rendering tropical cyclogenesis (TCG) forecast challenging in practice.
To date, this multi-faceted nature of TCG is the main obstacle that prevents one from understanding
and predicting TCG in real time.

Recent advancements in machine learning (ML) have sparked more interest in using ML for
meteorological problems. Broadly speaking, ML is a technique that allows one to find patterns
(features) and make predictions without knowing all details of physical and/or dynamical principles
underlying the data (Murphy 2012; Hastie et al. 2009). By training an ML model over a large number
of data, specific features corresponding to a given set of classifiers/labels can be detected with
different accuracy and interpretability, depending on which supervised or unsupervised methods
are used. With recent advances in hardware architecture and algorithms, various ML models have
been developed and optimized to efficiently process large datasets. This rapid development of ML
techniques opens up many potential applications of ML to a wide range of research and practical
problems as discussed in, e.g., Murphy (2012); Hastie et al. (2009); Fenner (2019).

While ML techniques have been increasingly applied to different areas in atmospheric science,
the applications of ML specifically to TC research are relatively new and preliminary. Most of
the recent studies on the use of ML techniques for TC research focused on the analyses of satellite
images to improve the track and intensity forecasts of an existing TC or classify TC evolution
based on different pre-existing cloud patterns. For example, using the observations of surface

precipitation rate, the total water content, and the tropopause temperature from the TRMM satellite
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products, Su et al. (2020) compared the performance of several different ML schemes such as
logistic regression, random forecast, and decision tree. Their results showed that these variables
are approximately correlated with the subsequent 24-hour TC intensity change, and thus can be
used as predictors for TC intensity forecast. Likewise, Miller et al. (2017) used deep learning
with GOES IR satellite datasets to train a convolutional neural network, which can search for
cloud patterns and categorize TC intensity based on different cloud shapes of tropical disturbances.
This line of ML approach has been further advanced to help improve TC forecasts by integrating
the tracking information and/or other reanalysis data, with some promising performance for TC
nowcasting and forecasts (Gao et al. 2018; Kim et al. 2019; Giffard-Roisin et al. 2020).

Along with TC classification and track/intensity forecast, a recent study by Zhang et al. (2019)
proposed an approach that employs a set of TCG predictors to train several different ML classifiers.
Their experiments with a range of ML classifiers showed that the Adaboost approach appears
to be the most effective in capturing TC formation from mesoscale convective systems (MCS),
as compared to the traditional approach based on the genesis potential index (GPI). The better
performance of Adaboost is seen in all basins and forecast lead times from 6 to 48 hrs, suggesting
the potential applicability of boosting iterative ensemble training in capturing TCG associated with
some pre-existing MCSs. Another approach of ML for TCG prediction is to use satellite images of
precursor clouds (often recorded as Invests in operational forecasts) and classify which ones will
develop into a TC at a later time (Zhang et al. 2015; Park et al. 2016; Matsuoka et al. 2018; Kim
et al. 2019). In this approach, TC precursor signals, which are often manifested in terms of cloud
or radiance, must be given in advance such that the analyses centered on these cloud clusters can
be carried out. Using different classifiers such as decision trees, random forest, or support vector
machine approaches, these TC images can be then classified into developing or non-developing
systems. In all of these above studies, it is essential to obtain and train an ML algorithm on a set
of images with some existing TC-related cloud signals.

While the ML classification approach could be customized for predicting TCG as mentioned
above, predicting TCG based on scalar predictors such as the area-averaged 850 hPa vorticity, low-
level humidity, wind shear, or potential genesis index is generally insufficient. Various observational
and climatological studies on TCG showed that the area-averaged favorable conditions for TCG do

not guarantee that a TC would form (McBride and Zehr 1981; Gray 1998; DeMaria et al. 2001;
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Emanuel and Nolan 2004a; Camargo et al. 2014; Peng et al. 2012; Halperin et al. 2013; Tang et al.
2020). In fact, there are many different pathways for TCG that area-averaged predictors cannot
fully capture. For example, TCG predictors would not allow for taking into account environmental
asymmetries or other local signals that can help spin up TC circulations in different basins. In this
regard, the better performance of ML classifiers relative to the traditional genesis index benchmark
forecast as presented in, e.g., Zhang et al. (2019) may not be very useful for examining different
TCG mechanisms or large-scale environmental asymmetries.

Given that ML classifiers based on spatially-averaged TCG predictors do not directly take into
account the spatial distribution of the environment where TCs form, how to employ ML methods
to study different TCG pathways in real atmospheric conditions when there exist no clear or
pre-existing TC signals in advance is still a challenging question. In this study, we present an
ML framework for TCG prediction, based on the convolutional neural network (CNN) method for
gridded meteorological datasets. Our main objective here is to explore how CNNs can take into
account not only different environmental factors relevant to TCG but also the spatial distributions
of these factors at different forecast lead times via convolution. By further examining different
domain sizes of input data, we can also quantify how remote and local environments influence
TCG prediction and its accuracy beyond the traditional classification approaches. We wish to
emphasize that our focus in this study is on predicting the early TC formation stage before any
TC signal appears. As such, traditional classifications or common vortex tracking methods that
directly detect a TC vortex from gridded dataset cannot be directly applied during the TCG period
as discussed in, e.g., Tien et al. (2020).

The rest of this work is organized as follows. In the next section, details of our CNN algorithms
and feature selection processes are presented. An approach to monitor and evaluate the performance
of CNN for TCG prediction will also be discussed. Section 3 presents the detailed results for two
CNN methods examined in this study, and Section 4 provides sensitivity analyses for our methods.

A summary and concluding remarks are then given in the final section.
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2. Methodology

a. Deep learning approach

Among many different methods for image processing, deep learning (DL) has become increas-
ingly popular due to its ability to search for possible signals of any feature from a large input
dataset. A major building block of CNN-based deep learning is convolutional layers, which act
as a filter to inputs with different activation functions. A sequence of the application of CNN
kernels (or filters) in deep learning results in the so-called feature maps that can capture the shape,
strength, and possibly the location of key features from input images. Note that any detected
feature is highly tailored to the input labels (targets) that one feeds to the algorithm for supervised
learning. As such, proper labeling is required so that supervised deep learning can be effective for
feature extraction tasks. Because of this capability, DL has a wide range of applications in image
recognition, classifications, object segmentation, or face recognition. With the goal of searching
for environmental features that are favorable for TCG within a given domain, CNN-based deep
learning techniques are thus naturally suitable for the TCG problem.

In applying CNN to predicting TCG in operational practice, a challenging issue is that there is
no apparent signal of a TC vortex within the domain at a given forecast time. Recall that the key
advantage of CNN is to detect a labeled feature in input data by optimizing a set of kernel weights.
With a well-designed architecture of convolution layers !, one can extract a feature anywhere
within the domain (often known as translation equivariance, Goodfellow et al. (2017)). This exact
advantage of CNN, however, also makes it hard to apply directly to the TCG prediction problem,
as we have to predict in advance 1) whether a TC will develop before it even exists, and 2) where
the TC will form inside the image at some given forecast lead time. Until a tropical disturbance
(also known as Invest in the operation) is identified, no information on TC location or strength is
reported. Without a clear signal of TCs from input data, the application of CNN to TCG prediction
is therefore subtle in practice because it now requires a different approach and interpretation beyond
the traditional classification problems.

Given such unique characteristics of TCG prediction, we will approach this problem by first

hypothesizing in this study that the necessary ingredients for TCG can be detected from the

1A good ML model is a subjective concept that depends on each application. In the traditional sense of machine learning, a good model for
classification should have an accuracy above 80%, using a test and/or validation dataset.
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ambient environment by DL convolution at some given forecast lead times. This hypothesis is
supported by previous modeling and observational studies on TCG, which suggested several key
environmental conditions for TCG such as warm sea surface temperature, low vertical shear, moist
lower troposphere (see, e.g., Gray 1998; Emanuel and Nolan 2004b; Kieu and Zhang 2008; Nolan
et al. 2007; Camargo et al. 2014; Tang et al. 2020; Kieu et al. 2023). By training a DL model on
a set of input data and its corresponding TCG labels at different forecast lead times, it is expected
that CNN can capture hidden environments needed for TCG and allow for skillful TCG prediction.
We note again that convolution is essentially an operator that acts as a spatial filter of all irrelevant
environmental features within the input domain. Although we do not know exactly what features
will be retained for TCG prediction, convolution kernels naturally take into account the spatial
distribution of the ambient environment that classification models based on predictors could not.

With this hypothesis, we consider next a set of meteorological variables critical for TCG as
different channels of an input image and examine how these multi-channel images can capture
TCG at different forecast lead times. In this study, two popular DL architectures will be examined.
The first is an algorithm known as residual neural network (ResNet), which was proposed by
He et al. (2015) to help address the vanishing gradient issue with deep neural network models.
Specifically, a skip connection between two consecutive convolution blocks was introduced to
alleviate the problem of vanishing gradient. These skip connections form a highway to allow
gradient information to flow from the output layer to the very first layer without losing information
about the gradient function, thus enabling deeper neural network training with higher accuracy (He
et al. 2015).

Among many different variants of ResNet, we found that the 18-layer ResNet (see Fig. 1 achieves
the best results for our dataset. In this design, each convolution block will progressively reduce the
spatial dimensions while increasing the depth of output feature maps. This configuration allows
the deep neural network to have a larger receptive field in later blocks and consequently more
meaningful feature maps in later stages. In addition, skip connections are introduced after every
two convolution layers to facilitate the highway for the gradient to flow to the very first layer,
effectively reducing the gradient-vanishing problem.

Because the predictions made by ResNet are limited only to whether or not a TC would form at

a certain lead time without any information about where the location of TC formation would be, a
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Fic. 1. The architecture of the ResNet-18 model that is designed for predicting TC formation in this study,
whose input (i.e., the "Observations" block) may include gridded climate data, numerical model forecast output,
or satellite imagery. Note that the curved arrows denote the skipped step in our ResNet design, and the last block
(fully-connected, or FC-1) is the yes/no forecast of a TCG event, the dashed curved arrows denote the skipped

step with 1x1 convolution layers to match the spatial dimensions of the next convolution block.

second DL architecture, known as UNet model (Ronneberger et al. 2015), is used to provide further
the probability distribution of TCG at every point in the domain. UNet was originally designed for
biomedical image processing, in which the model has to learn to recognize which pixels belong to
a cell. A typical UNet architecture consists of an encoder and a decoder branch as shown in Fig. 2.
The encoder branch progressively compresses and transforms original images into compact vector
representations, while the decoder decodes and transforms the compact information into useful

predictions.
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For our TCG application, both the encoder and decoder branches of the UNet model consist of
5 convolution blocks. In the encoder branch, each block has two 3x3 convolution layers followed
by a 2x2 max-pooling layer to reduce the spatial dimensions of feature maps by half, which will
then be fed to the next block. The final convolution block in the encoder has one 3x3 convolution
layer to produce a compact tensor of shape 2x10x1024. Similar to ResNet, the higher layers in the
encoder branch have larger receptive fields, thus capable of encoding large-scale environmental
conditions. The output of the encoder branch is then fed to the decoder branch. Note that each
block in the decoder branch has two 3x3 convolution layers followed by a 2x2 upsampling layer
to gradually increase the spatial dimensions to match the final target density probability map.
In addition to receiving input from the previous block, each block also receives additional input
from the corresponding convolution block in the encoder block represented as gray arrows in
Fig. 2. This additional input provides fine-scale information for the decoder, while acting as a
shortcut for gradient flows and preventing the gradient vanishing problem. Therefore, our UNet
architecture facilitates information flow from both local and large-scale environmental factors to
produce predictions for each grid point in the final density map.

The choice of the loss function and optimizer is also important to the performance of deep
learning models, especially when processing a large amount of data during the training process.
For ResNet, we use the sigmoid focal loss (Lin et al. 2017), which is known to enable deep models
to learn effectively in an imbalanced dataset context. For the UNet model, we use a common loss

function for the image segmentation problem known as dice loss (Eq. (1)).

>N pigi

—_— (1)
SN(pi+egi)

Dice Loss=1—

where p; and g; are the predicted probability and the true probability, respectively. For both models,

an adaptive gradient descent algorithm (Kingma and Ba 2014) is used to train the models.

b. Data

To train our DL models, the NCEP final analysis (FNL) dataset at a horizontal resolution of 0.5
degrees during 2008-2021 was used. Our area of focus in this study is the North Pacific Ocean

during the main TC season from May to November, as this is the most active ocean for TC activities.
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While this NEP/FNL data is global, we examine in this study only two data domains. The first
data domain is from [5°N-35°N] x [100°E-100°W] that covers most of the North Pacific tropical
region. The second smaller domain ([5°N-20° N] x [100°E-140°E]) covers a sub-area within the
northwestern Pacific basin. These two different data domain sizes are needed so we can evaluate
how the different data domain sizes could change the performance of our DL models for TCG
prediction.

For both domains, the same 13 meteorological variables most relevant to TCG processes were
extracted from the FNL data and then treated as different channels of input data for our DL. models
(see Table 1 for the list of these variables). While these variables were chosen based on their
potential impacts on TCG as shown in the previous studies (see, e.g., Hill and Lackmann 2011;
Nolan et al. 2007; Ferrara et al. 2017; Camargo et al. 2014; Kieu and Zhang 2018; Vu et al. 2021),
how effective they are within the DL framework or their relative importance in detecting TCG in
the Pacific Ocean at different forecast lead times is not fully understood. Note that one can in
principle include any other variables such as latent heating, convective precipitation, cloud types,
or total water content to improve the performance of DL models. However, our main goal in this
study is to present an efficient DL model that can be easily used with the current global GFS input
data or climate projection output such that the model is as broad and general for different input
data types as possible. Thus, we limit our input channels to the 13 variables listed above to speed
up our training, with an underlying assumption that other relevant variables are cross-dependent
and will be captured via convolution neural networks.

Among those 13 variables, we note that absolute vorticity is a diagnostic variable derived from
horizontal winds, and so it should be inherently accounted for by the wind information during the
training process. Due to its important role in the TCG process, the direct inclusion of this variable
could however help improve the performance of our DL models as compared to a simple use of
horizontal winds only (a process known as feature engineering in ML). Unlike the traditional vortex
tracking algorithm that detects potential TCG locations by searching for a local high vorticity center,
DL models process the global distribution of vorticity to identify TCG locations. As such, it avoids
the issues of irrelevant local centers that traditional vortex tracking algorithms often encounter.

To create TCG labels, the International Best Track Archive for Climate Stewardship (IBTrACS)
(Knapp et al. 2010) was used to label all TCG events and locations. In this work, a TCG event is

12
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Variable Pressure Levels

Absolute Vorticity 900mb, 700mb

Relative Humidity 750mb
Temperature 900mb, 500mb

Geopotential Height 500mb

Vertical Wind 500mb
U-wind 800mb, 200mb
V-wind 800mb, 200mb

CAPE surface -

Surface Temperature -

TaBLE 1. Variables extracted from the NCEP/FNL data that are fed into deep learning models in this study.

defined as the very first time a storm was recorded in the best track data. With this definition, we can
scan through all TC track records and take the first recorded location of each storm in each domain
to create a target output for a TCG event. In addition, all the dates and times for which several TCs
co-existed in the IBTrACS were filtered out to avoid miss labeling the pre-existing TCs as a TCG
event, using the procedure described in Nguyen (2023). Finally, all relevant information related
to a TCG event including its longitudes, latitudes, date, and time was stored in a csv database to
facilitate our data sharing and input to the DL interface. This pre-process workflow is provided in
our open-source version control Github listed in the Acknowledgement section.

With these pre-processed input datasets, we followed the standard protocol in DL. models and
split the data into 3 different subsets including training, validation, and testing. Specifically, the
data from 2008-2014 was used for training, while data from 2015-2017 was reserved for validation.
The remaining data were then used for testing. Note that this TCG dataset is highly unbalanced in
the sense that most of the input data (> 80%) contain no TCG events. This is a challenging issue
for designing a DL algorithm for TCG prediction. Our approach to this unbalanced data problem is
to generate a subset of input data with augmentation such that the number of TCG events (positive
labels) is about a quarter of the total input data during the training. By maintaining a 1:4 ratio
for the TCG dataset and repeating the training process for different sampling, we can evaluate the
robustness of our DL model.  Figure 3 summarizes the overall pipeline architecture of our DL
models and the corresponding data flow. For this workflow, we normalize and standardize the
datasets at each level to help the learning process be more efficient because the input variables

have different ranges and units at different pressure levels. Due to limited data on TCG events, the
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common early-stopping strategy was also used to prevent the model from overfitting the training

data.

It is worth mentioning here that the use of the NCEP/FNL data would not prevent our models
from being applied to other datasets. This is because ML generally learns key features from any
input data, so long as the data contains the features matching with assigned labels. Learning from
the NCEP/FNL reanalysis dataset can be therefore treated as preliminary learning, from which
one obtains some preliminary information about the key environmental features for TCG. Our ML
models can be then improved further by adding more data from other global or climate models later
on, which refine the DL models for different applications such as climate projection or real-time
forecast. This process, often known as transfer learning in ML applications, can help save the
training process of future ML models, which may take a very long time to train on large datasets.
Since the NCEP/FNL data reflects a good degree of large-scale observation, training ML models
on this dataset will help short-cut future training with different datasets in case one can re-use our
model weights obtained from the NCEP/FNL data. From this perspective, training ML models

with NCEP/FNL data is a necessary step rather than a limitation of our models, which we will

discuss in more detail in the Result section.
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c. Integrated Gradients

As expected from any DL development, it is important to understand what CNNs learn from
input data and how they apply the knowledge for prediction instead of running a DL model as
a black box. There are several techniques for this purpose based on, e.g., intermediate output
visualization, heatmap, or filter visualization. In this study, we follow an approach that is based on
integrated gradient (IG, see Sundararajan et al. (2017)) to gain some insights into the performance
of our DL models. Recall that ResNet produces yes/no predictions based on features in the input
without letting us know where it obtains its information for prediction. Using the IG analyses, it is
possible to understand further how a DL model makes use of input data for its decision.

Specifically in this study, we use the IG expression defined for a function f(x) as follows

a(x—x"))
0x

1 ’
0
Integrated Gradient(x) = (x —x”") / A, da )
a=0

where f(.) is the ResNet or UNet model, x is the input we want to diagnose, and x’ is a reference
input such that f(x") = 0. For our analyses, the reference input x” is chosen to be all 0, and the
implementation of IG is based on the Tensorflow API (Abadi et al. 2015) 2. With the above IG,
we can then produce spatial maps that show what regions of an image are used by a DL model to

produce a forecast.

d. Validation Metrics

For categorical forecasts like TCG prediction, there are a number of different metrics to evaluate
the performance of DL models. In this study, we use three key metrics including Recall, Prediction,
and F1 score derived from the confusion matrix to evaluate our DL. models. This confusion matrix
(also known as a categorical or contingency table in the traditional weather forecast) displays the
number of correct predictions, hit rejections, false alarms, and misses in categorical forecasts.

Physically, Recall shows how well an ML algorithm can detect positive cases, which is given by

True Positives
Recall (R) = 3
ccall ®) True Positives + False Negatives )

2In Tensorflow, the gradient of an output of a model with respect to the input can be easily calculated using "tf.GradientTape".
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A higher Recall would correspond to a more correct prediction of TCG events as compared to the
number of missed events, (often referred to as the probability of detection (POD) in the categorical
weather verification). Precision, on the other hand, represents how accurate the positive predictions

of the algorithm are and is defined as follows:

o True Positives
Precision (P) =

“4)

True Positives + False Positives

As shown from the above definition, Precision is essentially a complement of the false alarm rate
(FAR) in the sense that P = 1 - FAR, which is more commonly known in the categorical weather
verification as a success ratio. Generally, R and P provide different information about the model
performance that may however trade-off. To combine these scores into a single effective metric,

F1 score is introduced to assess quickly the overall performance of DL models, which is given by

_ 2RP

Fl =
R+ P

®)

A perfect ML model will have R = P =1, and so F1 is equal 1. For an actual ML model, R and
P will not in general be equal to 1. Practically, a good DL model for TCG forecast should have R
and P at least comparable to the POD or the success ratio in the current operational physical-based
models (i.e., P > 0.5 and R > 0.5). These minimum requirements for R and P ensure that the DL
model is at least skillful for practical applications. By examining how R and P vary for a range
of forecast lead times, model hyperparameters, or input data types, one can evaluate the capability
of DL models for TCG prediction and optimize the models relative to physical-based models as

expected.

3. Results

a. ResNet performance

Figure 4a shows first the performance of ResNet in predicting TCG for the large domain covering
most of the North Pacific Ocean, using all 13 input variables. As seen in Fig. 4a, ResNet is doing
reasonably well with R > 0.9 for most forecast lead times, indicating that 90% of the predicted TCG

events are correctly detected by ResNet. Similar to TCG prediction directly from global numerical
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Fic. 4. ResNet’s performance including Precision (red), Recall (blue), and F1 score (black) at different forecast
lead times for a) a large input domain covering a part of the Northern Pacific Ocean (from 5°N to 45°N and

100°E to 260°E; and b) a subdomain in the Northwestern Pacific basin.

models, the precision of ResNet is however relatively low (P < 0.5) at all lead times (i.e., ResNet
tends to produce a high false alarm ratio > 0.5). The overall performance of ResNet, which is
represented by the F1 score, is optimal at 24-36 hr lead times (= 0.63) and gradually decreases
as expected for any real-time forecasting systems. That is, a longer forecast lead time would have
lower accuracy overall due to the limited predictability of the atmosphere.

At a longer lead time (> 48 hr), we noticed that ResNet starts to behave quite differently, with
the loss and validation curves oscillating widely with epochs during the training (not shown).
Our attempt to use fewer ResNet layers or input channels could help improve the convergence of

the model, which captures a decay of the F1 score with lead time as expected. However, this
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performance is no longer comparable as the ResNet input and design have changed, making it hard
to compare the results. We speculate that such behavior of ResNet is caused by the vanishing
gradient of the model when the TCG signal is not recognizable at a long lead time, but do not have
any further evidence to support this speculation. As such, we will limit our analyses of the DL
model performance to lead times < 48 hours hereinafter.

The fact that ResNet could capture a high recall rate with F1 > 0.63 from 0-48 hrs is noteworthy
because it suggests that DL could potentially provide some forecast skill at short lead times, at
least for the set of training data used in this study. The implication of this ResNet’s performance
is non-trivial, because we recall that any prediction from our DL algorithm herein is based purely
on a given state without any dynamical or physical principles as in dynamical models. The fact
that ResNet could capture such decaying forecast accuracy with forecast lead time suggests that
ResNet is able to detect some environmental signals needed for TC development, even without
any governing dynamical equations. Of course, the low Precision score also implies that DL tends
to have a high false alarm rate due to the generally favorable conditions for TCG most of the
time during the main TC season. However, this same issue with a high false-alarm rate is also
common among dynamical models, and highlights the key difficulty in predicting TCG that both
physical-based and DL-based models currently have to cope with.

While the high recall score from ResNet may appear comparable to the POD score from real-time
verification of TCG forecast in the current operational global forecast models (e.g., Henderson and
Maloney 2013; Cossuth et al. 2013; Halperin et al. 2013; Li et al. 2016; Yamaguchi and Koide
2017; Halperin et al. 2020), any direct comparison between ResNet and global model forecast
should be highly cautioned. This is because the global TCG verifications are inhomogeneous and
contain different types of forecast errors. In addition, these global model verifications are generally
derived for a range of forecast hours such as 6-120 hrs in Halperin et al. (2013, 2016) instead of
each lead time as in our study. Therefore, the ResNet’s Recall score and POD from global models
are not directly comparable. Despite these differences, that both physical-based and DL models
possess similar Recall/POD and high false alarm rate regardless of the ocean basin indicates some
inherent limited predictability for the TCG processes, even at a short range lead times.

To further analyze how the performance of ResNet changes with the input data domain size, Fig.

4b shows similar scores using an environment within the subdomain in the Pacific Ocean from
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[5-20°N]x[100-140°E]. It is of interest to see from Fig. 4b that using the local environment in this
subdomain results in a degraded performance of ResNet in predicting TCG across the metrics and
forecast lead times. This degradation of ResNet for the small domain is important from the physical
standpoint, because it indicates that local environments inside a smaller domain are insufficient to
capture its own TCG. That is, a significant portion of the information required for TCG prediction
in one area must be drawn from far-field regions rather than just in the vicinity of a TCG location.
This result appears to be consistent with those obtained from previous physical-based modeling
studies of TCG, which demonstrated the difficulty in simulating TCG if the model domain is too
small (see, e.g., Chen et al. 2012; Goswami and Mohapatra 2014).

Given such sensitivity of ResNet to the input domain size as shown in Fig. 4, it is important to
examine why ResNet displays such intriguing performance by using the IG analyses. Specifically,
we want to look for where the environmental information used by ResNet to predict TCG comes
from and how this information depends on the domain size. For this, the IG analyses given by
Eq. (2) for several different true positive examples (i.e., ResNet predicts a “Yes” TCG event,
and observation also recorded a TCG event) are shown in Fig. 5, using the large domain input.
While ResNet’s prediction is correct in these examples, the information used to predict these TCG
events comes actually from different sources, thus exposing an issue with the application and
interpretation of ResNet for TCG. Specifically for the case of Typhoon Wukong (2018) (Fig. 5a),
the most significant information required for its TCG prediction comes from the two blue boxes
near the South China Sea and the China East Sea instead of the Central Pacific where Wukong
formation occured. A similar issue also occurs for two other TCG cases of Typhoons Mirinae and
Nida (2021) (Fig. 5b) for which the most influential information for predicting these two TCG
events comes not only from their local environment (i.e., the shaded areas within the orange boxes),
but also from a nearby storm close to the Vietnam coastal region (i.e., the shaded area in the blue
box). In this regard, these IG analyses help explain why using a smaller domain size degrades the
performance of ResNet, mostly because some hidden remote information from the far field is no
longer available for its decision.

While the IG analyses could provide some guidance on where ResNet extracts its information for
TCG forecast, we note that IG alone is still insufficient to answer a deeper question of what environ-

mental asymmetries play the key role in TCG prediction. Recall that ResNet consists of multiple
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layers of convolution applied to its multi-channel input data during the training process. These
convolutional layers are further modified via maxpooling layers at every step, which inherently take
into account the impacts of all environmental asymmetries to extract the best TCG-related features.
For a typical image classification problem with a well-defined object such as a cat or a dog, one
could use standard techniques such as heat map, or gradient visualization to see where features are
learned. For our TCG forecast problem in which a TC signal is not even apparent at the time of the
forecast, finding exactly what environmental asymmetries and their corresponding location within
the input domain or channel is more challenging and beyond what IG could answer. All we could
learn from the IG analyses is that the information needed for predicting a TCG event comes from
certain places within the domain, but not what environmental features are most decisive. In this
regard, the question of how spatial asymmetries in the large-scale environment contribute to TCG
still cannot be answered in this study.

Regardless of its disadvantage in quantifying environmental features, IG could still highlight
that simply looking at the scalar metrics such as F1 scores or Precision when predicting TCG
is inadequate for diagnosing the performance of a DL model. Specifically, the information most
useful for a TCG forecast might come from unknown features or locations, even though the forecast
is categorically correct. In this regard, IG helps uncover ResNet as well as understand how data
is used to make a prediction beyond the black-box perception of DL models. Since ResNet does
not generally answer the question of where a TC would form within the input domain, we examine

next the UNet model that can provide us more TCG information.

b. UNet performance

Unlike the ResNet model that provides only yes/no prediction, UNet can provide additional
information about where a TCG event would occur, along with corresponding TCG probability.
To gain a general sense of how UNet performs, Fig. 6 shows the overall performance of UNet
at different forecast lead times for two domain sizes. Similar to ResNet, one notices immediately
that the performance of UNet on the large domain outperforms that of the small domain at all
forecast lead times. Specifically, UNet displays a peak forecast skill at 12-28 hr with F1 0.21 for
the large input domain, which is almost double the F1 score obtained from the small input domain.

Regardless of the domain sizes, the performance of UNet is reduced by almost 50% after 48 hr for
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Fic. 5. Horizontal distribution of integrated gradient (shaded) obtained from Resnet’s TCG predictions for
a) Typhoon Wukong valid at 1800 UTC July 20, 2018 and b) Typhoon Mirinae and Typhon Nida valid at 1200
UTC August 4, 2021. Superimposed are SST (red contours, unit K) and the corresponding wind barfs at 850
hPa. The orange boxes show the observed TCG locations while the blue boxes highlight the remote locations

that are decisive to ResNet’s TCG prediction.

all metrics, thus confirming the deteriorated forecast skill for longer forecast lead times similar to
that observed in dynamical models.

To see how UNet could deliver the prediction of both the probability and the location of TCG,
Fig. 7 shows an example of a true positive case for which UNet could correctly predict the expected
formation of Typhoon Chanthu (2021), along with the probability distribution of Chanthu’s genesis
event. One can see that UNet could indeed capture not only the probability of Typhoon Chanthu
formation but also the corresponding location of its cyclogenesis event as expected. In this regard,
UNet could provide more information for TCG prediction beyond a simple yes or no prediction as
for ResNet.

It is of interest to note however that UNet has significantly worse performance than ResNet across

metrics for both the large and small domains. While ResNet could reach an F1 score of 0.63 for
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Fic. 6. Similar to Fig. 4 but for the UNet model with two different domain sizes: a) a large domain over the

north Pacific Ocean, and b) a small domain within the northwest Pacific basin.

18-36 hr lead times, the maximum F1 score that UNet can achieve is just 0.21 as shown in Fig.
6b. Similarly, F1 is much lower if the small domain is fed to UNet, with the maximum F1 score
of only 0.13 during 12-24 hr lead time. Such a much weaker performance of UNet as compared
to ResNet is the trade-off that one would have if more information on TCG prediction is extracted
from the input data, which 1is caused by UNet’s complicated architecture and outputs.

This trade-off can be best seen in an example of Storm O1E (2018) shown in Fig. 8. For this case,
UNet could predict correctly a true positive prediction in terms of yes/no TCG event as expected,
yet the location of the O01E’s genesis is very different from that of the real TCG event. Apparently,
if one simply uses the yes/no categorical validation, the performance of UNet would be perfect.

However, if the point-like probability evaluation is applied at each grid point, then UNet fails to
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Fic. 7. An example of a true positive TCG prediction case obtained from UNet for Typhoon Chanthu (2021)
valid at 0600 UTC Sep 6 that shows a) the observed location of the TCG event (shaded), b) the UNet’s prediction
of the TCG probability distribution (shaded), and c) the corresponding large-scale environment including relative
humidity (shaded, unit %), surface temperature (contours, K), and the surface wind barbs at 850mb. The green

box in (c) denotes the observed genesis location of Chanthu

capture this TCG event, thus resulting in a lower performance overall as compared to ResNet when
using the F1 score metric as seen in Fig. 6.

Along with the degradation of the UNet performance when we attempt to extract more information
on TCG location, note that UNet has the same sensitivity to different input domain sizes as ResNet.
Our IG analysis for UNet captures a similar effect of far-field information that is fed into UNet
when predicting TCG with the large domain (not shown). That is, a larger domain could allow
for more remote information and help improve TCG prediction as compared to a smaller domain.
This behavior iterates that far-field environmental information is of significant importance for
TCG prediction with DL models, albeit the physical reasons for such a remote contribution of the

environment are still elusive. Note again that our IG analyses for UNet also do not answer the
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Fic. 8. Similar to Fig. 7 but for a false positive TCG prediction case for Storm O1E (2018) valid at 1200 UTC
May 10.

question of what far-field features are most critical for the performance of the ResNet or UNet
model, other than the fact that a smaller domain could not contain some far-field information
important for TCG prediction. As a result, a larger domain size is essential for better TCG

prediction as shown in Figs. 4 and 6.

c. Sensitivity experiments

Because the results for ResNet and UNet shown in the previous section are obtained from one
specific model design and hyperparameters, it is of interest to examine next how sensitive these
models are to different hyperparameter values. With current ML tools, these sensitivity analyses
are generally not necessary in practical implementation as they can be bypassed by using automatic

search space. From the research standpoint, understanding how DL models change with different
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hyperparameters is however important so one can learn which parameters are the key to the current
problem.

In this section, we will present sensitivity analyses for two common hyperparameters in ML
models including kernel size and the number of convolutional filters. Other sensitivities such as
dropout, strike, or initialization weights are less significant for our problems and so will not be
discussed herein. In addition, because ResNet outperforms UNet in terms of TCG detection F1
score, we also limit our sensitivity analyses in this section to the ResNet architecture only. Similar
analyses for UNet can be readily carried out, using the same approach and so will not be presented
further.

Recall from Fig. 1 that ResNet’s architecture is comprised of multiple convolution blocks with a
default kernel size 3 x 3. To see how ResNet depends on the choice of kernel size, we replace the
default 3 x 3 convolution kernel with 5 x5 and 7 X 7. The resulting model is then trained only with
the large domain covering the Pacific Ocean, as the small domain does not perform well as shown
in the previous section. Figure 9 shows the results from these kernel size experiments. One notices
that in general the 5X5 kernel performs better than either 3 x 3 or 7X7 kernel. For this 5x5 kernel,
the model achieves a better precision score, thus increasing the overall F1 score for the available
test data. It appears that larger kernels lead to a larger receptive field, thus allowing DL models to
get more information from the surrounding area to predict TC formation. However, if the receptive
field becomes too large, then the signal-to-noise ratio will decrease and reduce the performance of
the model. As a result, the 5x5 kernel performs best in our ResNet model as seen in Fig. 9.

Of course, the best performance of ResNet for the specific kernel size of 5times5 is alone
insufficient to generalize for the entire TCG prediction system, as it also depends on many other
parameters such as the data sample size, the input domain, the number of channels, etc. Any
change in these parameters could alter this sensitivity easily, and so the default kernel of 3 X 3
is still used in our control design to maintain the performance stability, and computational cost
after extensive tests and validations. However, this kernel size sensitivity analysis could at least
show that proper tuning of DL hyperparameters is important before one can tailor a DL model for
practical applications.

Regarding the sensitivity of ResNet to the number of filters in each convolutional block, Fig. 10

shows the results for experiments in which the first convolutional block has more filters instead 64
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Fic. 9. Similar to Fig. 4 but for ResNet’s performance with two different CNN kernel sizes: a) a 5x5, and b)

TX7.

as in the original design, with the next block doubling the number of filters of the preceding one.
As seen from Fig. 10, the model with the starting convolutional block of 128 filters performs the
best, achieving the highest F1 score of 0.66 at 12-h lead time. This is somewhat expected because
ResNet has more capacity to store and learn information about the large-scale environment required
for TCG prediction with more filters. However, when the number of filters increases by more than
256, the performance of ResNet starts to decrease, suggesting that more weights also make the
model more prone to overfitting, given the same input data that we have. This potential overfitting
explains the degradation of ResNet when the number of filters in the first layer is more than 256 as
shown in Fig. 10. One can improve this by adding more training data, which is a trade-off that we

have to make here due to our limited data record and computational resources.
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Fic. 10. Similar to Fig. 4 but for ResRet’s performance with different numbers of filters in the first convolutional

block for a) 128 filters, and b) 256 filters.

Our similar sensitivity analyses for ResNet and UNet using a smaller subdomain in the WP
basin confirm that both models tend to perform worse with a smaller domain size for all ranges of
kernel sizes and the number of filters. This persistent difference between the large and small input
domains reiterates our previous speculation on the contributing far-field environmental factors to
the different performances of our DL models. That is, the large-scale environmental factors that
govern TCG processes can be better captured in the DL models by picking up potential far-field
features in the large domain, which is absent in the small domain. Note also that a larger domain
size will generally have more TCG events such that the number of positive cases is larger, thus
allowing the models a better chance to learn the correct environmental conditions needed for TCG.

Which environmental factors play the most dominant role in our models are, however, unclear from
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the above domain size or kernel sensitivity, which require additional analyses that we turn into

next.

4. Selection of environment features

From the scientific perspective, determining which environmental factors among the input chan-
nels play the most significant role in TCG prediction is important to address. While traditional
diagnostic and observational analyses have captured a number of favorable conditions for TCG
including warm SST, low shear, high vorticity area, and moisture environment (see, e.g. Gray 1998;
McBride and Zehr 1981; Kieu and Zhang 2010, 2009; Halperin et al. 2013; Wang et al. 2019; Vu
et al. 2021), being able to further quantify additional factors along with their relative impacts is an
advantage of the DL techniques that we wish to present in this section. Unlike the hyperparameter
tuning for DL models, feature selection is a different part of DL that can help reveal more physical
insights than simply running DL. models as a black box. As a part of feature engineering, feature
selection is to some extent very similar to the predictor selection processes in traditional statistical
research, as it is a way to choose the best possible predictors in a regression model.

There are various ways to do feature selection for DL. models. In this study, we apply the forward-
selection algorithm that is based on the information gained in filter methods. The algorithm starts
first with a list of features that we want to select. It then iterates through the list of features and
selects one feature that achieves the best F1 score (or any validation metric) among all. This feature
is appended to the list of best-selected features, and the algorithm is then repeated to choose the next
best feature until it reaches the number of a desired threshold (see 1). This approach is very close
to the Fisher score method that is widely used in supervised feature selection methods by which the
resulting outcome returns the ranks of all features based on the Fisher score in descending order.
Because UNet does not perform well with our current settings, we will apply the feature selection
only for ResNet in this section. The same procedure can be applied for UNet or any DL model,
so long as the model performs sufficiently well to allow for adding or removing different features
effectively.

Figure 11a-c shows the performance of ResNet with the top 3, 4, and 5 features, which are
obtained from the list of 13 input channels using our forward-selection algorithm. These top five

features, ranked from the highest to the lowest, are CAPE, horizontal wind components (x and v)
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at 850 hPa, horizontal winds at 200 hPa, and sea surface temperature, respectively. One notices
from Fig. 11a that ResNet could achieve good performance with just the first 3 features including
CAPE and horizontal winds at 850 hPa. Adding horizontal wind at 200 hPa however results in a
drop in the overall performance as seen in Fig. 11b, yet including the fifth feature (i.e., SST) could
lead to an overall increased performance similar to using all 13 features. This intriguing behavior
confirms that important features for TCG prediction do not add up linearly, but they have to go in
a group to best characterize TCG processes. In fact, including more features beyond these above
features turns out to be of no further help in terms of the F1 score (not shown).

From the physical standpoint, the above dominant features are somewhat expected and consistent
with previous studies on environmental conditions for TCG, using observational analyses and
physical-based models. Consider, for example, the 850 hPa-horizontal winds captured in the top
three features. Essentially, these features represent the low-level vorticity, whose importance is
consistent with the previous finding about the requirement of a pre-existing tropical disturbance for
TCG (see, e.g., Gray 1982; Nolan et al. 2007; Kieu and Zhang 2009). Likewise, the CAPE and SST
features capture the maximum potential intensity limit, which has been also known to be vital and
included in the genesis potential index (e.g., Emanuel and Nolan 2004b; Nolan et al. 2007; Camargo
et al. 2014; Vu et al. 2021; Tang et al. 2020; Kieu et al. 2023). The environmental shear factor is
also captured by our feature-selection analyses, with the 200-hPa zonal wind feature selected in the
top five features. In this regard, the feature-selection analyses could confirm the previous findings
on the required conditions for TCG, while at the same time revealing some intriguing behaviors
when different features must go in a group in the DL models beyond the traditional genesis index.

It should be mentioned that the findings on the dominant large-scale factors for TCG obtained
herein are very specific to the ResNet architecture, and they may change with different settings,
hyperparameters, kernel sizes, or input data length. Nonetheless, the approach and the potential
implication of these results are still significant, as they suggest that ML algorithms can be cus-
tomized for TCG prediction when more training data is available. In particular, our approach
presents a way that one can refine and obtain a new understanding of TCG processes beyond the
traditional way of using numerical sensitivity experiments, so long as our computational efficiency

can be improved to process longer global data.
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Algorithm 1 Forward Feature Selection Algorithm

1: procedure FORWARD SELECTION( features,nbFeatures)
2 nbChosenFeatures « 0

3 chosenFeatures < []

4 while nbChosenFeatures < nbFeatures do

5: bestAccuracy < 0.0
6
7
8
9

remainingFeatures < features notin chosenFeatures
for f € remainingFeatures do

featuresToUse < chosenFeatures+ f

model « train model with featuresToUse

10: accuracy <« evaluate model

11: if accuracy > bestAccuracy then

12: bestAccuracy < accuracy

13: bestFeatures < chosenFeatures+ f
14: end if

15: end for

16: chosenFeatures < bestFeatures

17: nbChosenFeatures «<— nbChosenFeatures+ 1
18: end while

19: return chosenFeatures

20: end procedure

5. Conclusion

In this study, the potential applicability of deep learning models for tropical cyclogenesis (TCG)
prediction was examined. Unlike the typical classification problems that focus on answering a
binary question of yes or no from existing features, TCG prediction is unique because there exists
no clear TC circulation or characteristics from input data at the time one wants to predict a TCG
event. Predicting TCG at different forecast lead times would therefore require a different design
such that information on a TCG event can be detected even before the emergence of any TC signal
for practical purposes.

Specifically in this study, two popular DL architectures including ResNet and UNet were used to
examine the capabilities of convolutional neural networks for TCG prediction. These architectures
are to some extent complementary to each other, as ResNet can provide yes/no prediction for a
TCG event while UNet could provide additional information on the location of the TCG event.
With a hypothesis that TCG must require some specific conditions detectable from the large-scale
environment, we extracted from the NCEP/NCAR reanalysis dataset a set of meteorological fields
(features) that are known to be most critical for TCG from previous studies. These fields were

then treated as input channels of an image for our DL models. Using the best track data to label
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TCG events at different forecast lead times, we could train our DL models and obtain a number of
significant results relating to their capability in TCG prediction for practical applications.

First, applying ResNet and UNet to predict TCG for an illustrative period from 2005-2020
showed that both models are capable of predicting TCG with the F1 score ranging from 0.25-0.63.
Of interest, the F1 score in both models shows a maximum value at 18-36 hour lead time, and
gradually decreases at longer lead times. Such decaying performance with forecast lead times in
both DL models is a noteworthy result, given that any prediction from these models is based purely
on a given state without any physical principles or dynamical equations as in numerical weather
prediction models. We wish to emphasize herein the predictability implication of our result, as our
approach does actually predict TCG from a given initial field. This is very different from applying
ML models on a global model forecast, which is basically an ML downscaling (or detection) of the
gridded forecast field and so it possesses little predictability implication. The fact that both ResNet
and UNet could capture decaying predictability with forecast lead time as obtained in this study
suggests that these DL algorithms are able to capture the expected evolution of the atmosphere,
even without any governing equations.

Second, our analyses of the ResNet and UNet performance for two different input data sizes
including 1) a large domain covering most of the North Pacific Ocean and 2) a small subdomain
covering a part of the northwestern Pacific basin showed that the use of a large domain gives overall
better TCG prediction. Specifically, the F1 score for the large domain input is about 40% higher
than that obtained from the smaller domain at all forecast lead times. Using the integrated gradient
analyses, it was found that the large domain could take into account some far-field information,
which helps improve the prediction of TCG overall. In addition, the use of the large domain
also allows for more TCG labels, which reduces the data unbalance issue and results in better
performance. This is another significant finding, because it reveals the sensitivity of machine
learning to the data domain in TCG prediction. While machine learning algorithms do not require
any dynamic constraints a priori, they do need to access information from different places in the
domain to correctly detect favorable conditions for TCG. As such, a proper choice of input data
size is critical for the TCG prediction application.

Additional sensitivity experiments with different hyperparameters showed that the kernel size

appears to be more important than the number of filters or the number of conventional blocks in
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ResNet. In fact, ResNet reaches its peak performance with a kernel size of 5 x5 and 128 filters.
A larger kernel size or more filters would not help improve the performance of ResNet further.
Between ResNet and UNet, we also found that the performance of ResNet is overall much higher
than the UNet in predicting TCG for all ranges of hyperparameters and lead times. Specific to
the data and architectures used in this study, ResNet’s F1 score is on average almost 2 times that
obtained from UNet. This is expected because UNet provides not only the probability distribution
but also the location of TCG events. The more information one wishes to extract from a DL model,
the more likely the model would make errors and so become less accurate.

By further applying the feature selection method for different data input channels, we could
confirm several important environmental factors for TCG prediction in the Pacific Ocean, which
includes CAPE, horizontal wind components («# and v) at 850 hPa and 200 hPa, and sea surface
temperature. These factors are consistent with the well-known TCG requirements obtained from
the previous modeling and observational studies. The advantage of our DL approach is that
additional features could be searched and ranked for different basins and forecast lead times when
a DL model is fully optimized and more data is used. In this work, both of our DL models are of
course still underperform due to the limit in computational resources and input data, which prevents
us from carrying out full feature selection analyses. Further examination and tuning of different
DL architectures, including the possible use of recurrent neural networks to take into account the
temporal component of data, are currently under development for which we will update in our

upcoming studies.
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