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ABSTRACT: Exploring new techniques to improve the prediction of tropical cyclone (TC) for-

mation is essential for operational practice. Using convolutional neural networks, this study shows

that deep learning can provide a promising capability for predicting TC formation from a given set

of large-scale environments at certain forecast lead times. Specifically, two common deep-learning

architectures including the residual net (ResNet) and UNet are used to examine TC formation

in the Pacific Ocean. With a set of large-scale environments extracted from the NCEP/NCAR

reanalysis during 2008-2021 as input and the TC labels obtained from the best track data, we show

that both ResNet and UNet reach their maximum forecast skill at the 12-18 hour forecast lead

time. Moreover, both architectures perform best when using a large domain covering most of the

Pacific Ocean for input data, as compared to a smaller subdomain in the western Pacific. Given

its ability to provide additional information about TC formation location, UNet performs generally

worse than ResNet across the accuracy metrics. The deep learning approach in this study presents

an alternative way to predict TC formation beyond the traditional vortex-tracking methods in the

current numerical weather prediction.
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SIGNIFICANCE STATEMENT: This study presents a new approach for predicting tropical20

cyclone (TC) formation based on deep learning (DL). Using two common DL architectures in21

visualization research and a set of large-scale environments in the Pacific Ocean extracted from22

the reanalysis data, we show that DL has an optimal capability of predicting TC formation at23

the 12-18 hour lead time. Examining the DL performance for different domain sizes shows that24

the use of a large domain size for input data can help capture some far-field information needed25

for predicting TCG. The DL approach in this study demonstrates an alternative way to predict or26

detect TC formation beyond the traditional vortex-tracking methods used in the current numerical27

weather prediction.28
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1. Introduction29

The life cycle of a tropical cyclone (TC) is typically divided into six stages including genesis,30

tropical disturbance, tropical depression, tropical storm, hurricane, and dissipation. Among these31

six, the genesis stage (typically 2-5 days) during which a weak atmospheric disturbance grows32

into a mesoscale tropical depression with a close isobar and the maximum surface wind > 17𝑚𝑠−1
33

is perhaps the most difficult to forecast because of its unorganized structure and ill-defined TC34

characteristics (Karyampudi and Pierce 2002; Houze 1982; Kieu and Zhang 2009; Hennon et al.35

2011, 2013; Vu et al. 2021; Tien et al. 2020). For this genesis period, synergetic interactions among36

various dynamical and thermodynamic processes at different scales may eventually result in the37

generation of a self-sustained, warm-core vortex before subsequent intensification can proceed.38

This early TC formation process is intricate and highly nonlinear that no single mechanism could39

operate in all ocean basins, rendering tropical cyclogenesis (TCG) forecast challenging in practice.40

To date, this multi-faceted nature of TCG is the main obstacle that prevents one from understanding41

and predicting TCG in real time.42

Recent advancements in machine learning (ML) have sparked more interest in using ML for43

meteorological problems. Broadly speaking, ML is a technique that allows one to find patterns44

(features) and make predictions without knowing all details of physical and/or dynamical principles45

underlying the data (Murphy 2012; Hastie et al. 2009). By training an ML model over a large number46

of data, specific features corresponding to a given set of classifiers/labels can be detected with47

different accuracy and interpretability, depending on which supervised or unsupervised methods48

are used. With recent advances in hardware architecture and algorithms, various ML models have49

been developed and optimized to efficiently process large datasets. This rapid development of ML50

techniques opens up many potential applications of ML to a wide range of research and practical51

problems as discussed in, e.g., Murphy (2012); Hastie et al. (2009); Fenner (2019).52

While ML techniques have been increasingly applied to different areas in atmospheric science,53

the applications of ML specifically to TC research are relatively new and preliminary. Most of54

the recent studies on the use of ML techniques for TC research focused on the analyses of satellite55

images to improve the track and intensity forecasts of an existing TC or classify TC evolution56

based on different pre-existing cloud patterns. For example, using the observations of surface57

precipitation rate, the total water content, and the tropopause temperature from the TRMM satellite58
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products, Su et al. (2020) compared the performance of several different ML schemes such as59

logistic regression, random forecast, and decision tree. Their results showed that these variables60

are approximately correlated with the subsequent 24-hour TC intensity change, and thus can be61

used as predictors for TC intensity forecast. Likewise, Miller et al. (2017) used deep learning62

with GOES IR satellite datasets to train a convolutional neural network, which can search for63

cloud patterns and categorize TC intensity based on different cloud shapes of tropical disturbances.64

This line of ML approach has been further advanced to help improve TC forecasts by integrating65

the tracking information and/or other reanalysis data, with some promising performance for TC66

nowcasting and forecasts (Gao et al. 2018; Kim et al. 2019; Giffard-Roisin et al. 2020).67

Along with TC classification and track/intensity forecast, a recent study by Zhang et al. (2019)68

proposed an approach that employs a set of TCG predictors to train several different ML classifiers.69

Their experiments with a range of ML classifiers showed that the Adaboost approach appears70

to be the most effective in capturing TC formation from mesoscale convective systems (MCS),71

as compared to the traditional approach based on the genesis potential index (GPI). The better72

performance of Adaboost is seen in all basins and forecast lead times from 6 to 48 hrs, suggesting73

the potential applicability of boosting iterative ensemble training in capturing TCG associated with74

some pre-existing MCSs. Another approach of ML for TCG prediction is to use satellite images of75

precursor clouds (often recorded as Invests in operational forecasts) and classify which ones will76

develop into a TC at a later time (Zhang et al. 2015; Park et al. 2016; Matsuoka et al. 2018; Kim77

et al. 2019). In this approach, TC precursor signals, which are often manifested in terms of cloud78

or radiance, must be given in advance such that the analyses centered on these cloud clusters can79

be carried out. Using different classifiers such as decision trees, random forest, or support vector80

machine approaches, these TC images can be then classified into developing or non-developing81

systems. In all of these above studies, it is essential to obtain and train an ML algorithm on a set82

of images with some existing TC-related cloud signals.83

While the ML classification approach could be customized for predicting TCG as mentioned84

above, predicting TCG based on scalar predictors such as the area-averaged 850 hPa vorticity, low-85

level humidity, wind shear, or potential genesis index is generally insufficient. Various observational86

and climatological studies on TCG showed that the area-averaged favorable conditions for TCG do87

not guarantee that a TC would form (McBride and Zehr 1981; Gray 1998; DeMaria et al. 2001;88
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Emanuel and Nolan 2004a; Camargo et al. 2014; Peng et al. 2012; Halperin et al. 2013; Tang et al.89

2020). In fact, there are many different pathways for TCG that area-averaged predictors cannot90

fully capture. For example, TCG predictors would not allow for taking into account environmental91

asymmetries or other local signals that can help spin up TC circulations in different basins. In this92

regard, the better performance of ML classifiers relative to the traditional genesis index benchmark93

forecast as presented in, e.g., Zhang et al. (2019) may not be very useful for examining different94

TCG mechanisms or large-scale environmental asymmetries.95

Given that ML classifiers based on spatially-averaged TCG predictors do not directly take into96

account the spatial distribution of the environment where TCs form, how to employ ML methods97

to study different TCG pathways in real atmospheric conditions when there exist no clear or98

pre-existing TC signals in advance is still a challenging question. In this study, we present an99

ML framework for TCG prediction, based on the convolutional neural network (CNN) method for100

gridded meteorological datasets. Our main objective here is to explore how CNNs can take into101

account not only different environmental factors relevant to TCG but also the spatial distributions102

of these factors at different forecast lead times via convolution. By further examining different103

domain sizes of input data, we can also quantify how remote and local environments influence104

TCG prediction and its accuracy beyond the traditional classification approaches. We wish to105

emphasize that our focus in this study is on predicting the early TC formation stage before any106

TC signal appears. As such, traditional classifications or common vortex tracking methods that107

directly detect a TC vortex from gridded dataset cannot be directly applied during the TCG period108

as discussed in, e.g., Tien et al. (2020).109

The rest of this work is organized as follows. In the next section, details of our CNN algorithms110

and feature selection processes are presented. An approach to monitor and evaluate the performance111

of CNN for TCG prediction will also be discussed. Section 3 presents the detailed results for two112

CNN methods examined in this study, and Section 4 provides sensitivity analyses for our methods.113

A summary and concluding remarks are then given in the final section.114
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2. Methodology115

a. Deep learning approach116

Among many different methods for image processing, deep learning (DL) has become increas-117

ingly popular due to its ability to search for possible signals of any feature from a large input118

dataset. A major building block of CNN-based deep learning is convolutional layers, which act119

as a filter to inputs with different activation functions. A sequence of the application of CNN120

kernels (or filters) in deep learning results in the so-called feature maps that can capture the shape,121

strength, and possibly the location of key features from input images. Note that any detected122

feature is highly tailored to the input labels (targets) that one feeds to the algorithm for supervised123

learning. As such, proper labeling is required so that supervised deep learning can be effective for124

feature extraction tasks. Because of this capability, DL has a wide range of applications in image125

recognition, classifications, object segmentation, or face recognition. With the goal of searching126

for environmental features that are favorable for TCG within a given domain, CNN-based deep127

learning techniques are thus naturally suitable for the TCG problem.128

In applying CNN to predicting TCG in operational practice, a challenging issue is that there is129

no apparent signal of a TC vortex within the domain at a given forecast time. Recall that the key130

advantage of CNN is to detect a labeled feature in input data by optimizing a set of kernel weights.131

With a well-designed architecture of convolution layers 1, one can extract a feature anywhere132

within the domain (often known as translation equivariance, Goodfellow et al. (2017)). This exact133

advantage of CNN, however, also makes it hard to apply directly to the TCG prediction problem,134

as we have to predict in advance 1) whether a TC will develop before it even exists, and 2) where135

the TC will form inside the image at some given forecast lead time. Until a tropical disturbance136

(also known as Invest in the operation) is identified, no information on TC location or strength is137

reported. Without a clear signal of TCs from input data, the application of CNN to TCG prediction138

is therefore subtle in practice because it now requires a different approach and interpretation beyond139

the traditional classification problems.140

Given such unique characteristics of TCG prediction, we will approach this problem by first141

hypothesizing in this study that the necessary ingredients for TCG can be detected from the142

1A good ML model is a subjective concept that depends on each application. In the traditional sense of machine learning, a good model for
classification should have an accuracy above 80%, using a test and/or validation dataset.
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ambient environment by DL convolution at some given forecast lead times. This hypothesis is143

supported by previous modeling and observational studies on TCG, which suggested several key144

environmental conditions for TCG such as warm sea surface temperature, low vertical shear, moist145

lower troposphere (see, e.g., Gray 1998; Emanuel and Nolan 2004b; Kieu and Zhang 2008; Nolan146

et al. 2007; Camargo et al. 2014; Tang et al. 2020; Kieu et al. 2023). By training a DL model on147

a set of input data and its corresponding TCG labels at different forecast lead times, it is expected148

that CNN can capture hidden environments needed for TCG and allow for skillful TCG prediction.149

We note again that convolution is essentially an operator that acts as a spatial filter of all irrelevant150

environmental features within the input domain. Although we do not know exactly what features151

will be retained for TCG prediction, convolution kernels naturally take into account the spatial152

distribution of the ambient environment that classification models based on predictors could not.153

With this hypothesis, we consider next a set of meteorological variables critical for TCG as159

different channels of an input image and examine how these multi-channel images can capture160

TCG at different forecast lead times. In this study, two popular DL architectures will be examined.161

The first is an algorithm known as residual neural network (ResNet), which was proposed by162

He et al. (2015) to help address the vanishing gradient issue with deep neural network models.163

Specifically, a skip connection between two consecutive convolution blocks was introduced to164

alleviate the problem of vanishing gradient. These skip connections form a highway to allow165

gradient information to flow from the output layer to the very first layer without losing information166

about the gradient function, thus enabling deeper neural network training with higher accuracy (He167

et al. 2015).168

Among many different variants of ResNet, we found that the 18-layer ResNet (see Fig. 1 achieves169

the best results for our dataset. In this design, each convolution block will progressively reduce the170

spatial dimensions while increasing the depth of output feature maps. This configuration allows171

the deep neural network to have a larger receptive field in later blocks and consequently more172

meaningful feature maps in later stages. In addition, skip connections are introduced after every173

two convolution layers to facilitate the highway for the gradient to flow to the very first layer,174

effectively reducing the gradient-vanishing problem.175

Because the predictions made by ResNet are limited only to whether or not a TC would form at178

a certain lead time without any information about where the location of TC formation would be, a179
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Fig. 1. The architecture of the ResNet-18 model that is designed for predicting TC formation in this study,

whose input (i.e., the "Observations" block) may include gridded climate data, numerical model forecast output,

or satellite imagery. Note that the curved arrows denote the skipped step in our ResNet design, and the last block

(fully-connected, or FC-1) is the yes/no forecast of a TCG event, the dashed curved arrows denote the skipped

step with 1x1 convolution layers to match the spatial dimensions of the next convolution block.

154

155

156

157

158

second DL architecture, known as UNet model (Ronneberger et al. 2015), is used to provide further180

the probability distribution of TCG at every point in the domain. UNet was originally designed for181

biomedical image processing, in which the model has to learn to recognize which pixels belong to182

a cell. A typical UNet architecture consists of an encoder and a decoder branch as shown in Fig. 2.183

The encoder branch progressively compresses and transforms original images into compact vector184

representations, while the decoder decodes and transforms the compact information into useful185

predictions.186
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For our TCG application, both the encoder and decoder branches of the UNet model consist of187

5 convolution blocks. In the encoder branch, each block has two 3x3 convolution layers followed188

by a 2x2 max-pooling layer to reduce the spatial dimensions of feature maps by half, which will189

then be fed to the next block. The final convolution block in the encoder has one 3x3 convolution190

layer to produce a compact tensor of shape 2x10x1024. Similar to ResNet, the higher layers in the191

encoder branch have larger receptive fields, thus capable of encoding large-scale environmental192

conditions. The output of the encoder branch is then fed to the decoder branch. Note that each193

block in the decoder branch has two 3x3 convolution layers followed by a 2x2 upsampling layer194

to gradually increase the spatial dimensions to match the final target density probability map.195

In addition to receiving input from the previous block, each block also receives additional input196

from the corresponding convolution block in the encoder block represented as gray arrows in197

Fig. 2. This additional input provides fine-scale information for the decoder, while acting as a198

shortcut for gradient flows and preventing the gradient vanishing problem. Therefore, our UNet199

architecture facilitates information flow from both local and large-scale environmental factors to200

produce predictions for each grid point in the final density map.201

The choice of the loss function and optimizer is also important to the performance of deep202

learning models, especially when processing a large amount of data during the training process.203

For ResNet, we use the sigmoid focal loss (Lin et al. 2017), which is known to enable deep models204

to learn effectively in an imbalanced dataset context. For the UNet model, we use a common loss205

function for the image segmentation problem known as dice loss (Eq. (1)).206

Dice Loss = 1−
∑𝑁

𝑖 𝑝𝑖𝑔𝑖∑𝑁
𝑖 (𝑝𝑖 +𝑔𝑖)

, (1)

where 𝑝𝑖 and 𝑔𝑖 are the predicted probability and the true probability, respectively. For both models,207

an adaptive gradient descent algorithm (Kingma and Ba 2014) is used to train the models.208

b. Data209

To train our DL models, the NCEP final analysis (FNL) dataset at a horizontal resolution of 0.5210

degrees during 2008-2021 was used. Our area of focus in this study is the North Pacific Ocean211

during the main TC season from May to November, as this is the most active ocean for TC activities.212
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While this NEP/FNL data is global, we examine in this study only two data domains. The first213

data domain is from [5◦N-35◦N] × [100◦E-100◦W] that covers most of the North Pacific tropical214

region. The second smaller domain ([5◦N-20◦ N] × [100◦E-140◦E]) covers a sub-area within the215

northwestern Pacific basin. These two different data domain sizes are needed so we can evaluate216

how the different data domain sizes could change the performance of our DL models for TCG217

prediction.218

For both domains, the same 13 meteorological variables most relevant to TCG processes were219

extracted from the FNL data and then treated as different channels of input data for our DL models220

(see Table 1 for the list of these variables). While these variables were chosen based on their221

potential impacts on TCG as shown in the previous studies (see, e.g., Hill and Lackmann 2011;222

Nolan et al. 2007; Ferrara et al. 2017; Camargo et al. 2014; Kieu and Zhang 2018; Vu et al. 2021),223

how effective they are within the DL framework or their relative importance in detecting TCG in224

the Pacific Ocean at different forecast lead times is not fully understood. Note that one can in225

principle include any other variables such as latent heating, convective precipitation, cloud types,226

or total water content to improve the performance of DL models. However, our main goal in this227

study is to present an efficient DL model that can be easily used with the current global GFS input228

data or climate projection output such that the model is as broad and general for different input229

data types as possible. Thus, we limit our input channels to the 13 variables listed above to speed230

up our training, with an underlying assumption that other relevant variables are cross-dependent231

and will be captured via convolution neural networks.232

Among those 13 variables, we note that absolute vorticity is a diagnostic variable derived from233

horizontal winds, and so it should be inherently accounted for by the wind information during the234

training process. Due to its important role in the TCG process, the direct inclusion of this variable235

could however help improve the performance of our DL models as compared to a simple use of236

horizontal winds only (a process known as feature engineering in ML). Unlike the traditional vortex237

tracking algorithm that detects potential TCG locations by searching for a local high vorticity center,238

DL models process the global distribution of vorticity to identify TCG locations. As such, it avoids239

the issues of irrelevant local centers that traditional vortex tracking algorithms often encounter.240

To create TCG labels, the International Best Track Archive for Climate Stewardship (IBTrACS)241

(Knapp et al. 2010) was used to label all TCG events and locations. In this work, a TCG event is242
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Variable Pressure Levels

Absolute Vorticity 900mb, 700mb

Relative Humidity 750mb

Temperature 900mb, 500mb

Geopotential Height 500mb

Vertical Wind 500mb

U-wind 800mb, 200mb

V-wind 800mb, 200mb

CAPE surface -

Surface Temperature -

Table 1. Variables extracted from the NCEP/FNL data that are fed into deep learning models in this study.

defined as the very first time a storm was recorded in the best track data. With this definition, we can243

scan through all TC track records and take the first recorded location of each storm in each domain244

to create a target output for a TCG event. In addition, all the dates and times for which several TCs245

co-existed in the IBTrACS were filtered out to avoid miss labeling the pre-existing TCs as a TCG246

event, using the procedure described in Nguyen (2023). Finally, all relevant information related247

to a TCG event including its longitudes, latitudes, date, and time was stored in a csv database to248

facilitate our data sharing and input to the DL interface. This pre-process workflow is provided in249

our open-source version control Github listed in the Acknowledgement section.250

With these pre-processed input datasets, we followed the standard protocol in DL models and253

split the data into 3 different subsets including training, validation, and testing. Specifically, the254

data from 2008-2014 was used for training, while data from 2015-2017 was reserved for validation.255

The remaining data were then used for testing. Note that this TCG dataset is highly unbalanced in256

the sense that most of the input data (> 80%) contain no TCG events. This is a challenging issue257

for designing a DL algorithm for TCG prediction. Our approach to this unbalanced data problem is258

to generate a subset of input data with augmentation such that the number of TCG events (positive259

labels) is about a quarter of the total input data during the training. By maintaining a 1:4 ratio260

for the TCG dataset and repeating the training process for different sampling, we can evaluate the261

robustness of our DL model. Figure 3 summarizes the overall pipeline architecture of our DL262

models and the corresponding data flow. For this workflow, we normalize and standardize the263

datasets at each level to help the learning process be more efficient because the input variables264

have different ranges and units at different pressure levels. Due to limited data on TCG events, the265
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Fig. 3. A complete design of the deep learning framework for TCG prediction used in this study, which shows

the workflow starting from meteorological data inputs to the final output.

251

252

common early-stopping strategy was also used to prevent the model from overfitting the training266

data.267

It is worth mentioning here that the use of the NCEP/FNL data would not prevent our models268

from being applied to other datasets. This is because ML generally learns key features from any269

input data, so long as the data contains the features matching with assigned labels. Learning from270

the NCEP/FNL reanalysis dataset can be therefore treated as preliminary learning, from which271

one obtains some preliminary information about the key environmental features for TCG. Our ML272

models can be then improved further by adding more data from other global or climate models later273

on, which refine the DL models for different applications such as climate projection or real-time274

forecast. This process, often known as transfer learning in ML applications, can help save the275

training process of future ML models, which may take a very long time to train on large datasets.276

Since the NCEP/FNL data reflects a good degree of large-scale observation, training ML models277

on this dataset will help short-cut future training with different datasets in case one can re-use our278

model weights obtained from the NCEP/FNL data. From this perspective, training ML models279

with NCEP/FNL data is a necessary step rather than a limitation of our models, which we will280

discuss in more detail in the Result section.281
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c. Integrated Gradients282

As expected from any DL development, it is important to understand what CNNs learn from283

input data and how they apply the knowledge for prediction instead of running a DL model as284

a black box. There are several techniques for this purpose based on, e.g., intermediate output285

visualization, heatmap, or filter visualization. In this study, we follow an approach that is based on286

integrated gradient (IG, see Sundararajan et al. (2017)) to gain some insights into the performance287

of our DL models. Recall that ResNet produces yes/no predictions based on features in the input288

without letting us know where it obtains its information for prediction. Using the IG analyses, it is289

possible to understand further how a DL model makes use of input data for its decision.290

Specifically in this study, we use the IG expression defined for a function 𝑓 (𝑥) as follows291

Integrated Gradient(𝑥) = (𝑥− 𝑥′)
∫ 1

𝛼=0

𝜕 𝑓 (𝑥′+𝛼(𝑥− 𝑥′))
𝜕𝑥

𝑑𝛼 (2)

where 𝑓 (.) is the ResNet or UNet model, 𝑥 is the input we want to diagnose, and 𝑥′ is a reference292

input such that 𝑓 (𝑥′) = 0. For our analyses, the reference input 𝑥′ is chosen to be all 0, and the293

implementation of IG is based on the Tensorflow API (Abadi et al. 2015) 2. With the above IG,294

we can then produce spatial maps that show what regions of an image are used by a DL model to295

produce a forecast.296

d. Validation Metrics297

For categorical forecasts like TCG prediction, there are a number of different metrics to evaluate298

the performance of DL models. In this study, we use three key metrics including Recall, Prediction,299

and F1 score derived from the confusion matrix to evaluate our DL models. This confusion matrix300

(also known as a categorical or contingency table in the traditional weather forecast) displays the301

number of correct predictions, hit rejections, false alarms, and misses in categorical forecasts.302

Physically, Recall shows how well an ML algorithm can detect positive cases, which is given by303

Recall (R) =
True Positives

True Positives+False Negatives
(3)

2In Tensorflow, the gradient of an output of a model with respect to the input can be easily calculated using "tf.GradientTape".
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A higher Recall would correspond to a more correct prediction of TCG events as compared to the304

number of missed events, (often referred to as the probability of detection (POD) in the categorical305

weather verification). Precision, on the other hand, represents how accurate the positive predictions306

of the algorithm are and is defined as follows:307

Precision (P) =
True Positives

True Positives+False Positives
(4)

As shown from the above definition, Precision is essentially a complement of the false alarm rate308

(FAR) in the sense that P = 1 - FAR, which is more commonly known in the categorical weather309

verification as a success ratio. Generally, 𝑅 and 𝑃 provide different information about the model310

performance that may however trade-off. To combine these scores into a single effective metric,311

F1 score is introduced to assess quickly the overall performance of DL models, which is given by312

F1 =
2𝑅𝑃
𝑅 +𝑃 (5)

A perfect ML model will have 𝑅 = 𝑃 = 1, and so F1 is equal 1. For an actual ML model, 𝑅 and313

𝑃 will not in general be equal to 1. Practically, a good DL model for TCG forecast should have 𝑅314

and 𝑃 at least comparable to the POD or the success ratio in the current operational physical-based315

models (i.e., 𝑃 > 0.5 and 𝑅 > 0.5). These minimum requirements for 𝑅 and 𝑃 ensure that the DL316

model is at least skillful for practical applications. By examining how 𝑅 and 𝑃 vary for a range317

of forecast lead times, model hyperparameters, or input data types, one can evaluate the capability318

of DL models for TCG prediction and optimize the models relative to physical-based models as319

expected.320

3. Results321

a. ResNet performance322

Figure 4a shows first the performance of ResNet in predicting TCG for the large domain covering326

most of the North Pacific Ocean, using all 13 input variables. As seen in Fig. 4a, ResNet is doing327

reasonably well with 𝑅 > 0.9 for most forecast lead times, indicating that 90% of the predicted TCG328

events are correctly detected by ResNet. Similar to TCG prediction directly from global numerical329

16



Fig. 4. ResNet’s performance including Precision (red), Recall (blue), and F1 score (black) at different forecast

lead times for a) a large input domain covering a part of the Northern Pacific Ocean (from 5◦𝑁 to 45◦𝑁 and

100◦𝐸 to 260◦𝐸 ; and b) a subdomain in the Northwestern Pacific basin.

323

324

325

models, the precision of ResNet is however relatively low (𝑃 ≤ 0.5) at all lead times (i.e., ResNet330

tends to produce a high false alarm ratio > 0.5). The overall performance of ResNet, which is331

represented by the F1 score, is optimal at 24-36 hr lead times (≈ 0.63) and gradually decreases332

as expected for any real-time forecasting systems. That is, a longer forecast lead time would have333

lower accuracy overall due to the limited predictability of the atmosphere.334

At a longer lead time (> 48 hr), we noticed that ResNet starts to behave quite differently, with335

the loss and validation curves oscillating widely with epochs during the training (not shown).336

Our attempt to use fewer ResNet layers or input channels could help improve the convergence of337

the model, which captures a decay of the F1 score with lead time as expected. However, this338
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performance is no longer comparable as the ResNet input and design have changed, making it hard339

to compare the results. We speculate that such behavior of ResNet is caused by the vanishing340

gradient of the model when the TCG signal is not recognizable at a long lead time, but do not have341

any further evidence to support this speculation. As such, we will limit our analyses of the DL342

model performance to lead times ≤ 48 hours hereinafter.343

The fact that ResNet could capture a high recall rate with F1 > 0.63 from 0-48 hrs is noteworthy344

because it suggests that DL could potentially provide some forecast skill at short lead times, at345

least for the set of training data used in this study. The implication of this ResNet’s performance346

is non-trivial, because we recall that any prediction from our DL algorithm herein is based purely347

on a given state without any dynamical or physical principles as in dynamical models. The fact348

that ResNet could capture such decaying forecast accuracy with forecast lead time suggests that349

ResNet is able to detect some environmental signals needed for TC development, even without350

any governing dynamical equations. Of course, the low Precision score also implies that DL tends351

to have a high false alarm rate due to the generally favorable conditions for TCG most of the352

time during the main TC season. However, this same issue with a high false-alarm rate is also353

common among dynamical models, and highlights the key difficulty in predicting TCG that both354

physical-based and DL-based models currently have to cope with.355

While the high recall score from ResNet may appear comparable to the POD score from real-time356

verification of TCG forecast in the current operational global forecast models (e.g., Henderson and357

Maloney 2013; Cossuth et al. 2013; Halperin et al. 2013; Li et al. 2016; Yamaguchi and Koide358

2017; Halperin et al. 2020), any direct comparison between ResNet and global model forecast359

should be highly cautioned. This is because the global TCG verifications are inhomogeneous and360

contain different types of forecast errors. In addition, these global model verifications are generally361

derived for a range of forecast hours such as 6-120 hrs in Halperin et al. (2013, 2016) instead of362

each lead time as in our study. Therefore, the ResNet’s Recall score and POD from global models363

are not directly comparable. Despite these differences, that both physical-based and DL models364

possess similar Recall/POD and high false alarm rate regardless of the ocean basin indicates some365

inherent limited predictability for the TCG processes, even at a short range lead times.366

To further analyze how the performance of ResNet changes with the input data domain size, Fig.367

4b shows similar scores using an environment within the subdomain in the Pacific Ocean from368

18



[5-20◦N]×[100-140◦E]. It is of interest to see from Fig. 4b that using the local environment in this369

subdomain results in a degraded performance of ResNet in predicting TCG across the metrics and370

forecast lead times. This degradation of ResNet for the small domain is important from the physical371

standpoint, because it indicates that local environments inside a smaller domain are insufficient to372

capture its own TCG. That is, a significant portion of the information required for TCG prediction373

in one area must be drawn from far-field regions rather than just in the vicinity of a TCG location.374

This result appears to be consistent with those obtained from previous physical-based modeling375

studies of TCG, which demonstrated the difficulty in simulating TCG if the model domain is too376

small (see, e.g., Chen et al. 2012; Goswami and Mohapatra 2014).377

Given such sensitivity of ResNet to the input domain size as shown in Fig. 4, it is important to378

examine why ResNet displays such intriguing performance by using the IG analyses. Specifically,379

we want to look for where the environmental information used by ResNet to predict TCG comes380

from and how this information depends on the domain size. For this, the IG analyses given by381

Eq. (2) for several different true positive examples (i.e., ResNet predicts a “Yes” TCG event,382

and observation also recorded a TCG event) are shown in Fig. 5, using the large domain input.383

While ResNet’s prediction is correct in these examples, the information used to predict these TCG384

events comes actually from different sources, thus exposing an issue with the application and385

interpretation of ResNet for TCG. Specifically for the case of Typhoon Wukong (2018) (Fig. 5a),386

the most significant information required for its TCG prediction comes from the two blue boxes387

near the South China Sea and the China East Sea instead of the Central Pacific where Wukong388

formation occured. A similar issue also occurs for two other TCG cases of Typhoons Mirinae and389

Nida (2021) (Fig. 5b) for which the most influential information for predicting these two TCG390

events comes not only from their local environment (i.e., the shaded areas within the orange boxes),391

but also from a nearby storm close to the Vietnam coastal region (i.e., the shaded area in the blue392

box). In this regard, these IG analyses help explain why using a smaller domain size degrades the393

performance of ResNet, mostly because some hidden remote information from the far field is no394

longer available for its decision.395

While the IG analyses could provide some guidance on where ResNet extracts its information for396

TCG forecast, we note that IG alone is still insufficient to answer a deeper question of what environ-397

mental asymmetries play the key role in TCG prediction. Recall that ResNet consists of multiple398
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layers of convolution applied to its multi-channel input data during the training process. These399

convolutional layers are further modified via maxpooling layers at every step, which inherently take400

into account the impacts of all environmental asymmetries to extract the best TCG-related features.401

For a typical image classification problem with a well-defined object such as a cat or a dog, one402

could use standard techniques such as heat map, or gradient visualization to see where features are403

learned. For our TCG forecast problem in which a TC signal is not even apparent at the time of the404

forecast, finding exactly what environmental asymmetries and their corresponding location within405

the input domain or channel is more challenging and beyond what IG could answer. All we could406

learn from the IG analyses is that the information needed for predicting a TCG event comes from407

certain places within the domain, but not what environmental features are most decisive. In this408

regard, the question of how spatial asymmetries in the large-scale environment contribute to TCG409

still cannot be answered in this study.410

Regardless of its disadvantage in quantifying environmental features, IG could still highlight416

that simply looking at the scalar metrics such as F1 scores or Precision when predicting TCG417

is inadequate for diagnosing the performance of a DL model. Specifically, the information most418

useful for a TCG forecast might come from unknown features or locations, even though the forecast419

is categorically correct. In this regard, IG helps uncover ResNet as well as understand how data420

is used to make a prediction beyond the black-box perception of DL models. Since ResNet does421

not generally answer the question of where a TC would form within the input domain, we examine422

next the UNet model that can provide us more TCG information.423

b. UNet performance424

Unlike the ResNet model that provides only yes/no prediction, UNet can provide additional425

information about where a TCG event would occur, along with corresponding TCG probability.426

To gain a general sense of how UNet performs, Fig. 6 shows the overall performance of UNet427

at different forecast lead times for two domain sizes. Similar to ResNet, one notices immediately428

that the performance of UNet on the large domain outperforms that of the small domain at all429

forecast lead times. Specifically, UNet displays a peak forecast skill at 12-28 hr with F1 0.21 for430

the large input domain, which is almost double the F1 score obtained from the small input domain.431

Regardless of the domain sizes, the performance of UNet is reduced by almost 50% after 48 hr for432
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Fig. 5. Horizontal distribution of integrated gradient (shaded) obtained from Resnet’s TCG predictions for

a) Typhoon Wukong valid at 1800 UTC July 20, 2018 and b) Typhoon Mirinae and Typhon Nida valid at 1200

UTC August 4, 2021. Superimposed are SST (red contours, unit K) and the corresponding wind barfs at 850

hPa. The orange boxes show the observed TCG locations while the blue boxes highlight the remote locations

that are decisive to ResNet’s TCG prediction.
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all metrics, thus confirming the deteriorated forecast skill for longer forecast lead times similar to433

that observed in dynamical models.434

To see how UNet could deliver the prediction of both the probability and the location of TCG,442

Fig. 7 shows an example of a true positive case for which UNet could correctly predict the expected443

formation of Typhoon Chanthu (2021), along with the probability distribution of Chanthu’s genesis444

event. One can see that UNet could indeed capture not only the probability of Typhoon Chanthu445

formation but also the corresponding location of its cyclogenesis event as expected. In this regard,446

UNet could provide more information for TCG prediction beyond a simple yes or no prediction as447

for ResNet.448

It is of interest to note however that UNet has significantly worse performance than ResNet across449

metrics for both the large and small domains. While ResNet could reach an F1 score of 0.63 for450
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Fig. 6. Similar to Fig. 4 but for the UNet model with two different domain sizes: a) a large domain over the

north Pacific Ocean, and b) a small domain within the northwest Pacific basin.

435

436

18-36 hr lead times, the maximum F1 score that UNet can achieve is just 0.21 as shown in Fig.451

6b. Similarly, F1 is much lower if the small domain is fed to UNet, with the maximum F1 score452

of only 0.13 during 12-24 hr lead time. Such a much weaker performance of UNet as compared453

to ResNet is the trade-off that one would have if more information on TCG prediction is extracted454

from the input data, which is caused by UNet’s complicated architecture and outputs.455

This trade-off can be best seen in an example of Storm 01E (2018) shown in Fig. 8. For this case,456

UNet could predict correctly a true positive prediction in terms of yes/no TCG event as expected,457

yet the location of the 01E’s genesis is very different from that of the real TCG event. Apparently,458

if one simply uses the yes/no categorical validation, the performance of UNet would be perfect.459

However, if the point-like probability evaluation is applied at each grid point, then UNet fails to460
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Fig. 7. An example of a true positive TCG prediction case obtained from UNet for Typhoon Chanthu (2021)

valid at 0600 UTC Sep 6 that shows a) the observed location of the TCG event (shaded), b) the UNet’s prediction

of the TCG probability distribution (shaded), and c) the corresponding large-scale environment including relative

humidity (shaded, unit %), surface temperature (contours, K), and the surface wind barbs at 850mb. The green

box in (c) denotes the observed genesis location of Chanthu
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capture this TCG event, thus resulting in a lower performance overall as compared to ResNet when461

using the F1 score metric as seen in Fig. 6.462

Along with the degradation of the UNet performance when we attempt to extract more information465

on TCG location, note that UNet has the same sensitivity to different input domain sizes as ResNet.466

Our IG analysis for UNet captures a similar effect of far-field information that is fed into UNet467

when predicting TCG with the large domain (not shown). That is, a larger domain could allow468

for more remote information and help improve TCG prediction as compared to a smaller domain.469

This behavior iterates that far-field environmental information is of significant importance for470

TCG prediction with DL models, albeit the physical reasons for such a remote contribution of the471

environment are still elusive. Note again that our IG analyses for UNet also do not answer the472
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Fig. 8. Similar to Fig. 7 but for a false positive TCG prediction case for Storm 01E (2018) valid at 1200 UTC

May 10.

463

464

question of what far-field features are most critical for the performance of the ResNet or UNet473

model, other than the fact that a smaller domain could not contain some far-field information474

important for TCG prediction. As a result, a larger domain size is essential for better TCG475

prediction as shown in Figs. 4 and 6.476

c. Sensitivity experiments477

Because the results for ResNet and UNet shown in the previous section are obtained from one478

specific model design and hyperparameters, it is of interest to examine next how sensitive these479

models are to different hyperparameter values. With current ML tools, these sensitivity analyses480

are generally not necessary in practical implementation as they can be bypassed by using automatic481

search space. From the research standpoint, understanding how DL models change with different482
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hyperparameters is however important so one can learn which parameters are the key to the current483

problem.484

In this section, we will present sensitivity analyses for two common hyperparameters in ML485

models including kernel size and the number of convolutional filters. Other sensitivities such as486

dropout, strike, or initialization weights are less significant for our problems and so will not be487

discussed herein. In addition, because ResNet outperforms UNet in terms of TCG detection F1488

score, we also limit our sensitivity analyses in this section to the ResNet architecture only. Similar489

analyses for UNet can be readily carried out, using the same approach and so will not be presented490

further.491

Recall from Fig. 1 that ResNet’s architecture is comprised of multiple convolution blocks with a492

default kernel size 3×3. To see how ResNet depends on the choice of kernel size, we replace the493

default 3×3 convolution kernel with 5×5 and 7×7. The resulting model is then trained only with494

the large domain covering the Pacific Ocean, as the small domain does not perform well as shown495

in the previous section. Figure 9 shows the results from these kernel size experiments. One notices496

that in general the 5×5 kernel performs better than either 3 × 3 or 7×7 kernel. For this 5×5 kernel,497

the model achieves a better precision score, thus increasing the overall F1 score for the available498

test data. It appears that larger kernels lead to a larger receptive field, thus allowing DL models to499

get more information from the surrounding area to predict TC formation. However, if the receptive500

field becomes too large, then the signal-to-noise ratio will decrease and reduce the performance of501

the model. As a result, the 5×5 kernel performs best in our ResNet model as seen in Fig. 9.502

Of course, the best performance of ResNet for the specific kernel size of 5𝑡𝑖𝑚𝑒𝑠5 is alone505

insufficient to generalize for the entire TCG prediction system, as it also depends on many other506

parameters such as the data sample size, the input domain, the number of channels, etc. Any507

change in these parameters could alter this sensitivity easily, and so the default kernel of 3× 3508

is still used in our control design to maintain the performance stability, and computational cost509

after extensive tests and validations. However, this kernel size sensitivity analysis could at least510

show that proper tuning of DL hyperparameters is important before one can tailor a DL model for511

practical applications.512

Regarding the sensitivity of ResNet to the number of filters in each convolutional block, Fig. 10515

shows the results for experiments in which the first convolutional block has more filters instead 64516
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Fig. 9. Similar to Fig. 4 but for ResNet’s performance with two different CNN kernel sizes: a) a 5×5, and b)

7×7.

503

504

as in the original design, with the next block doubling the number of filters of the preceding one.517

As seen from Fig. 10, the model with the starting convolutional block of 128 filters performs the518

best, achieving the highest F1 score of 0.66 at 12-h lead time. This is somewhat expected because519

ResNet has more capacity to store and learn information about the large-scale environment required520

for TCG prediction with more filters. However, when the number of filters increases by more than521

256, the performance of ResNet starts to decrease, suggesting that more weights also make the522

model more prone to overfitting, given the same input data that we have. This potential overfitting523

explains the degradation of ResNet when the number of filters in the first layer is more than 256 as524

shown in Fig. 10. One can improve this by adding more training data, which is a trade-off that we525

have to make here due to our limited data record and computational resources.526
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Fig. 10. Similar to Fig. 4 but for ResRet’s performance with different numbers of filters in the first convolutional

block for a) 128 filters, and b) 256 filters.

513

514

Our similar sensitivity analyses for ResNet and UNet using a smaller subdomain in the WP527

basin confirm that both models tend to perform worse with a smaller domain size for all ranges of528

kernel sizes and the number of filters. This persistent difference between the large and small input529

domains reiterates our previous speculation on the contributing far-field environmental factors to530

the different performances of our DL models. That is, the large-scale environmental factors that531

govern TCG processes can be better captured in the DL models by picking up potential far-field532

features in the large domain, which is absent in the small domain. Note also that a larger domain533

size will generally have more TCG events such that the number of positive cases is larger, thus534

allowing the models a better chance to learn the correct environmental conditions needed for TCG.535

Which environmental factors play the most dominant role in our models are, however, unclear from536
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the above domain size or kernel sensitivity, which require additional analyses that we turn into537

next.538

4. Selection of environment features539

From the scientific perspective, determining which environmental factors among the input chan-540

nels play the most significant role in TCG prediction is important to address. While traditional541

diagnostic and observational analyses have captured a number of favorable conditions for TCG542

including warm SST, low shear, high vorticity area, and moisture environment (see, e.g. Gray 1998;543

McBride and Zehr 1981; Kieu and Zhang 2010, 2009; Halperin et al. 2013; Wang et al. 2019; Vu544

et al. 2021), being able to further quantify additional factors along with their relative impacts is an545

advantage of the DL techniques that we wish to present in this section. Unlike the hyperparameter546

tuning for DL models, feature selection is a different part of DL that can help reveal more physical547

insights than simply running DL models as a black box. As a part of feature engineering, feature548

selection is to some extent very similar to the predictor selection processes in traditional statistical549

research, as it is a way to choose the best possible predictors in a regression model.550

There are various ways to do feature selection for DL models. In this study, we apply the forward-554

selection algorithm that is based on the information gained in filter methods. The algorithm starts555

first with a list of features that we want to select. It then iterates through the list of features and556

selects one feature that achieves the best F1 score (or any validation metric) among all. This feature557

is appended to the list of best-selected features, and the algorithm is then repeated to choose the next558

best feature until it reaches the number of a desired threshold (see 1). This approach is very close559

to the Fisher score method that is widely used in supervised feature selection methods by which the560

resulting outcome returns the ranks of all features based on the Fisher score in descending order.561

Because UNet does not perform well with our current settings, we will apply the feature selection562

only for ResNet in this section. The same procedure can be applied for UNet or any DL model,563

so long as the model performs sufficiently well to allow for adding or removing different features564

effectively.565

Figure 11a-c shows the performance of ResNet with the top 3, 4, and 5 features, which are566

obtained from the list of 13 input channels using our forward-selection algorithm. These top five567

features, ranked from the highest to the lowest, are CAPE, horizontal wind components (𝑢 and 𝑣)568
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Fig. 11. Similar to Fig. 4 but for ResNet’s performance with different dominant features obtained from the

forward-feature selection procedure, with the highest ranked features including a) 3 features; b) 4 features; and

c) 5 features.

551

552

553
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at 850 hPa, horizontal winds at 200 hPa, and sea surface temperature, respectively. One notices569

from Fig. 11a that ResNet could achieve good performance with just the first 3 features including570

CAPE and horizontal winds at 850 hPa. Adding horizontal wind at 200 hPa however results in a571

drop in the overall performance as seen in Fig. 11b, yet including the fifth feature (i.e., SST) could572

lead to an overall increased performance similar to using all 13 features. This intriguing behavior573

confirms that important features for TCG prediction do not add up linearly, but they have to go in574

a group to best characterize TCG processes. In fact, including more features beyond these above575

features turns out to be of no further help in terms of the F1 score (not shown).576

From the physical standpoint, the above dominant features are somewhat expected and consistent577

with previous studies on environmental conditions for TCG, using observational analyses and578

physical-based models. Consider, for example, the 850 hPa-horizontal winds captured in the top579

three features. Essentially, these features represent the low-level vorticity, whose importance is580

consistent with the previous finding about the requirement of a pre-existing tropical disturbance for581

TCG (see, e.g., Gray 1982; Nolan et al. 2007; Kieu and Zhang 2009). Likewise, the CAPE and SST582

features capture the maximum potential intensity limit, which has been also known to be vital and583

included in the genesis potential index (e.g., Emanuel and Nolan 2004b; Nolan et al. 2007; Camargo584

et al. 2014; Vu et al. 2021; Tang et al. 2020; Kieu et al. 2023). The environmental shear factor is585

also captured by our feature-selection analyses, with the 200-hPa zonal wind feature selected in the586

top five features. In this regard, the feature-selection analyses could confirm the previous findings587

on the required conditions for TCG, while at the same time revealing some intriguing behaviors588

when different features must go in a group in the DL models beyond the traditional genesis index.589

It should be mentioned that the findings on the dominant large-scale factors for TCG obtained590

herein are very specific to the ResNet architecture, and they may change with different settings,591

hyperparameters, kernel sizes, or input data length. Nonetheless, the approach and the potential592

implication of these results are still significant, as they suggest that ML algorithms can be cus-593

tomized for TCG prediction when more training data is available. In particular, our approach594

presents a way that one can refine and obtain a new understanding of TCG processes beyond the595

traditional way of using numerical sensitivity experiments, so long as our computational efficiency596

can be improved to process longer global data.597
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Algorithm 1 Forward Feature Selection Algorithm
1: procedure forward selection( 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑛𝑏𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
2: 𝑛𝑏𝐶ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 0
3: 𝑐ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠← []
4: while 𝑛𝑏𝐶ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 < 𝑛𝑏𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do
5: 𝑏𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦← 0.0
6: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 not in 𝑐ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
7: for 𝑓 ∈ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do
8: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑇𝑜𝑈𝑠𝑒← 𝑐ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠+ 𝑓
9: 𝑚𝑜𝑑𝑒𝑙← train model with 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑇𝑜𝑈𝑠𝑒

10: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦← evaluate model
11: if 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝑏𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 then
12: 𝑏𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦← 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
13: 𝑏𝑒𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑐ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠+ 𝑓
14: end if
15: end for
16: 𝑐ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑏𝑒𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
17: 𝑛𝑏𝐶ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑛𝑏𝐶ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠+1
18: end while
19: return 𝑐ℎ𝑜𝑠𝑒𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
20: end procedure

5. Conclusion598

In this study, the potential applicability of deep learning models for tropical cyclogenesis (TCG)599

prediction was examined. Unlike the typical classification problems that focus on answering a600

binary question of yes or no from existing features, TCG prediction is unique because there exists601

no clear TC circulation or characteristics from input data at the time one wants to predict a TCG602

event. Predicting TCG at different forecast lead times would therefore require a different design603

such that information on a TCG event can be detected even before the emergence of any TC signal604

for practical purposes.605

Specifically in this study, two popular DL architectures including ResNet and UNet were used to606

examine the capabilities of convolutional neural networks for TCG prediction. These architectures607

are to some extent complementary to each other, as ResNet can provide yes/no prediction for a608

TCG event while UNet could provide additional information on the location of the TCG event.609

With a hypothesis that TCG must require some specific conditions detectable from the large-scale610

environment, we extracted from the NCEP/NCAR reanalysis dataset a set of meteorological fields611

(features) that are known to be most critical for TCG from previous studies. These fields were612

then treated as input channels of an image for our DL models. Using the best track data to label613
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TCG events at different forecast lead times, we could train our DL models and obtain a number of614

significant results relating to their capability in TCG prediction for practical applications.615

First, applying ResNet and UNet to predict TCG for an illustrative period from 2005-2020616

showed that both models are capable of predicting TCG with the F1 score ranging from 0.25-0.63.617

Of interest, the F1 score in both models shows a maximum value at 18-36 hour lead time, and618

gradually decreases at longer lead times. Such decaying performance with forecast lead times in619

both DL models is a noteworthy result, given that any prediction from these models is based purely620

on a given state without any physical principles or dynamical equations as in numerical weather621

prediction models. We wish to emphasize herein the predictability implication of our result, as our622

approach does actually predict TCG from a given initial field. This is very different from applying623

ML models on a global model forecast, which is basically an ML downscaling (or detection) of the624

gridded forecast field and so it possesses little predictability implication. The fact that both ResNet625

and UNet could capture decaying predictability with forecast lead time as obtained in this study626

suggests that these DL algorithms are able to capture the expected evolution of the atmosphere,627

even without any governing equations.628

Second, our analyses of the ResNet and UNet performance for two different input data sizes629

including 1) a large domain covering most of the North Pacific Ocean and 2) a small subdomain630

covering a part of the northwestern Pacific basin showed that the use of a large domain gives overall631

better TCG prediction. Specifically, the F1 score for the large domain input is about 40% higher632

than that obtained from the smaller domain at all forecast lead times. Using the integrated gradient633

analyses, it was found that the large domain could take into account some far-field information,634

which helps improve the prediction of TCG overall. In addition, the use of the large domain635

also allows for more TCG labels, which reduces the data unbalance issue and results in better636

performance. This is another significant finding, because it reveals the sensitivity of machine637

learning to the data domain in TCG prediction. While machine learning algorithms do not require638

any dynamic constraints a priori, they do need to access information from different places in the639

domain to correctly detect favorable conditions for TCG. As such, a proper choice of input data640

size is critical for the TCG prediction application.641

Additional sensitivity experiments with different hyperparameters showed that the kernel size642

appears to be more important than the number of filters or the number of conventional blocks in643
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ResNet. In fact, ResNet reaches its peak performance with a kernel size of 5× 5 and 128 filters.644

A larger kernel size or more filters would not help improve the performance of ResNet further.645

Between ResNet and UNet, we also found that the performance of ResNet is overall much higher646

than the UNet in predicting TCG for all ranges of hyperparameters and lead times. Specific to647

the data and architectures used in this study, ResNet’s F1 score is on average almost 2 times that648

obtained from UNet. This is expected because UNet provides not only the probability distribution649

but also the location of TCG events. The more information one wishes to extract from a DL model,650

the more likely the model would make errors and so become less accurate.651

By further applying the feature selection method for different data input channels, we could652

confirm several important environmental factors for TCG prediction in the Pacific Ocean, which653

includes CAPE, horizontal wind components (𝑢 and 𝑣) at 850 hPa and 200 hPa, and sea surface654

temperature. These factors are consistent with the well-known TCG requirements obtained from655

the previous modeling and observational studies. The advantage of our DL approach is that656

additional features could be searched and ranked for different basins and forecast lead times when657

a DL model is fully optimized and more data is used. In this work, both of our DL models are of658

course still underperform due to the limit in computational resources and input data, which prevents659

us from carrying out full feature selection analyses. Further examination and tuning of different660

DL architectures, including the possible use of recurrent neural networks to take into account the661

temporal component of data, are currently under development for which we will update in our662

upcoming studies.663
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