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AbstractÐ Purely data-driven deep neural networks (DNNs)
applied to physical engineering systems can infer relations that
violate physics laws, thus leading to unexpected consequences.
To address this challenge, we propose a physics-knowledge-
enhanced DNN framework called Phy-Taylor, accelerating
learning-compliant representations with physics knowledge. The
Phy-Taylor framework makes two key contributions; it intro-
duces a new architectural physics-compatible neural network
(PhN) and features a novel compliance mechanism, which we
call physics-guided neural network (NN) editing. The PhN aims
to directly capture nonlinear physical quantities, such as kinetic
energy, electrical power, and aerodynamic drag force. To do so,
the PhN augments NN layers with two key components: 1) mono-
mials of the Taylor series for capturing physical quantities and
2) a suppressor for mitigating the influence of noise. The NN
editing mechanism further modifies network links and activation
functions consistently with physics knowledge. As an extension,
we also propose a self-correcting Phy-Taylor framework for
safety-critical control of autonomous systems, which introduces
two additional capabilities: 1) safety relationship learning and
2) automatic output correction when safety violations occur.
Through experiments, we show that Phy-Taylor features consid-
erably fewer parameters and a remarkably accelerated training
process while offering enhanced model robustness and accuracy.

Index TermsÐ Knowledge compliance, neural network (NN)
editing, physics-compatible NN (PhN).

NOMENCLATURE

R
n Set of n-dimensional real vectors.

R≥0 Set of nonnegative real numbers.

N Set of natural numbers.

[x]i i th entry of vector x.
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[x]i : j Sub-vector formed by the i th to j th entries

of vector x.

[W]i, j Element at row i and column j of matrix W.

[W]i,: i th row of matrix W.

[x ; y] Stacked (tall column) vector of vectors x and y.

0n n-dimensional vector of all zeros.

1n n-dimensional vector of all ones.

Om×n m × n-dimensional zero matrix.

In n × n-dimensional identity matrix.

∥·∥ Euclidean norm of a vector or absolute value

of a number.

⊙ Hadamard product.
• Multiplication operator.

len(x) Length of vector x.

act Activation function.

sus Suppressor function.

I. INTRODUCTION

THE article proposes a novel physics-knowledge-enhanced
deep neural network (DNN) framework called Phy-Taylor

that addresses a critical flaw in purely data-driven neural
networks (NNs) when used to model aspects of physical
engineering systems. Namely, it addresses the potential lack
of agreement between learned latent NN representations and
prior physics knowledge: a flaw that sometimes leads to

catastrophic consequences [1]. As visualized in Fig. 1, the Phy-
Taylor framework introduces two contributions: the physics-
compatible NNs (PhNs) and the physics-guided NN editing
mechanism, aiming at ensuring compliance with prior physics
knowledge.

The work contributes to emerging research on physics-
enhanced NNs. Current approaches include physics-informed
NNs [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], physics-guided NNs [18], [19], physics-

encoded NNs [20], physics-guided neural-network architec-

tures [21], [22], [23], [24], [25], [26], and physics-inspired

neural operators [27], [28] (see [12], [29] for an excellent
review). The physics-informed and physics-encoded NNs use
partial differential equations (PDEs) for formulating loss
functions and/or architectural components, which have deep

roots in solving PDEs via NNs [30]. The physics-inspired
neural operators [27], [28] have an additional aim of map-
ping nonlinear functions into alternative domains, where it is
easier to train their parameters from observational data and
reason about convergence. These seminal frameworks improve
the consistency degree with prior analytical knowledge,
yet guaranteeing strict compliance still remains challenging.
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Fig. 1. Architectures of Phy-Taylor and PhN, with NN editing including link and activation editing. (a) Phy-Taylor architecture. (b) PhN architecture.

The physics-encoded NNs are proposed to achieve strict
compliance if the prior-known terms in the governing PDEs
can be given and formulated as highway filters [20]. However,
applying those approaches to physical engineering systems is
still challenging, especially when their dynamics are governed
by the conjunctive known knowns (e.g., Newton’s laws of
motion), known unknowns (e.g., Gaussian noise with unknown
mean and variance), and unknown unknowns. One critical
reason is the known unknowns, and unknown unknowns
can result in incomplete PDEs and unavailable prior-known
terms of PDEs. Moreover, the fully connected NNs used
in those approaches can introduce spurious correlations that
deviate from strict compliance with available well-validated
physics knowledge. These observations and remaining chal-
lenging problems motivate the development of Phy-Taylor.
The Phy-Taylor framework leverages the intuition that most
physical relations live in low-dimensional manifolds shaped
by applicable physical laws. It is just that estimating key
physical variables from high-dimensional system observations
is often challenging. By expressing known knowledge as rela-
tions between yet-to-be-computed latent variables, we force
representation learning to converge to a space where these
variables represent desired physical quantities shaped by the
applicable (expressed) physical laws. We arrive at a desired
physics-compliant latent representation by shaping nonlinear
terms and relations in the latent space. More specifically, Phy-
Taylor offers the following two advantages.

1) Nonlinear Physics Representation: Classical NNs can
learn arbitrary nonlinear relations by unfolding them into
layers of linear weighting functions and switch-like acti-
vations. This mechanism is akin to constructing nonlin-
earities by stitching together piecewise linear behaviors.
Instead, by directly exploiting nonlinear terms of the
Taylor series expansion, we offer a set of features that
express physical nonlinearities much more succinctly,
thereby reducing the number of needed parameters and
improving the accuracy of representation. Monomials
of the Taylor series can capture common nonlinearities
present in physics equations, such as kinetic energy,

potential energy, rolling resistance, and aerodynamic
drag force. The approach constructs input features that
represent monomials of the Taylor series and adds a
compressor for mitigating the influence of noise on
augmented inputs.

2) Removing Spurious Correlations: The general topology
of NNs allows for models that capture spurious corre-

lations in training samples (overfitting) [31], [32]. In
contrast, we develop an NN editing mechanism in the
latent space that removes links among certain latent
variables when these links contradict their intended
physical behaviors, thereby forcing latent representation
to converge to variables with the desired semantic inter-
pretation that obeys desired physics relations.

Through experiments with learning dynamics of
autonomous vehicles, we show that Phy-Taylor exhibits
a considerable reduction in learning parameters, a remarkably
accelerated training process, and greatly enhanced model
robustness and accuracy (viewed from the perspective
of long-horizon trajectory prediction). Experiments with
safe velocity regulation in autonomous vehicles further
demonstrate that the self-correcting Phy-Taylor successfully
addresses the dilemma of prediction horizon and computation
time that nonlinear model-predictive control and control
barrier function (CBE) are facing in safety-critical control.

Notation: For convenience, Nomenclature summarizes the
notations used throughout the article.

II. PROBLEM FORMULATION

Consider the problem of computing some output vectors,
y, from a set of observations, x. The relation between x
and y is partially determined by physical models of known
structure (but possibly unknown parameter values) and par-
tially unknown, thus calling for representation learning of the
missing substructures using NN observables. We express the
overall input-output relation by the function

y = A︸︷︷︸
weight matrix

· m(x, r)︸ ︷︷ ︸
node-representation vector

+ f(x)︸︷︷︸
model mismatch

(1)
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where y and x are the output and input vectors of the overall
system model, respectively, and the parameter r ∈ N controls
model size. Based on the model formula, we introduce a
knowledge set

K ≜ {[A] i, j

∣∣ ∂[f(x)]i

∂[m(x, r)] j
≡ 0, i ∈ {1, . . . , len(f(x))}

j ∈ {1, . . . , len(m(x, r))}}. (2)

The condition in (2) indicates that the knowledge set K

includes: 1) known parameter values but completely unknown
model formula; 2) partially known model formula; and
3) known model formula but unknown parameter values.
Considering the knowledge set, the problem addressed in this
article is formally stated below.

Problem 1: Given a time-series of inputs, x, the corre-
sponding outputs, y, and the knowledge set K in (2), it is
desired to develop an end-to-end NN that directly estimates
y (denoted by ŷ), given x, consistently with all elements of
knowledge set K. In other words, the model must satisfy the
property that if each [A]i, j ∈ K, the end-to-end model must
ensure that ((∂ [̂y]i )/(∂[m(x, r)] j )) ≡ [A]i, j for any m(x, r).

The above definition allows the system described by (1) to
have an end-to-end model that intertwines well-known sub-
structure properties with high-order unmodeled correlations
of unknown nonlinear structure. In this, our problem differs
from past seminal frameworks of physics-enhanced NNs [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [21], [22], [23], [24], [25], [26], [28], [33],

[34], [35], [36], [37], [38], [39], that use the compact PDEs
for formulating the PDEs-regulated loss function and/or DNN
architectures to count the degree mean of consistency with
PDEs. We next use a relatively simple example to explain
why the compact governing equations are not available and
how to obtain the partially available knowledge.

Example 1 [40]: We let the output of Phy-Taylor approxi-
mate the safety metric V (x(k),u(k) ) of ground truth

V (x(k),u(k) ) =

k+τ−1∑

t=k

γ t−k ·

[
x(t)
u(t)

]⊤
· P ·

[
x(t)
u(t)

]
(3)

where the x(k) and u(k) denote the system state and control
command at time k, respectively, the P is a positive-definite
matrix, the γ ∈ [0, 1] is the discount factor, controlling the
relative importance of immediate and future safety metrics.
Without loss of generality, we can express state-dependent
control policy and real system model as

u(k) = π(x(k))

x(k + 1) = ĝ(x(k),u(k)) = ĝ(x(k), π(x(k)))
1
= g(x(k))

from which we have

x(k + m) = g ◦ g ◦ · · · ◦ g ◦︸ ︷︷ ︸
m times operations

x(k) = gm ◦ x(k)

u(k + m) = π ◦ g ◦ · · · ◦ g ◦︸ ︷︷ ︸
m + 1 times operations

u(k) = π ◦ gm ◦ u(k)

considering which, the safety metric (3) can be rewritten as

V (x(k),u(k) ) =

[
x(k)
u(k)

]⊤
· P ·

[
x(k)
u(k)

]
+

k+τ−1∑

t=k+1

γ t−k

·

[
gt−k ◦ x(k)

π ◦ gt−k ◦ x(k)

]⊤
· P ·

[
gt−k ◦ x(k)

π ◦ gt−k ◦ x(k)

]

observing which we can discover as follows.

1) Due to unknown mappings g(·) and π(·), we do not have
a compact or precise governing equation of the safety
metric at hand.

2) According to Taylor series in (4), one available
knowledge about the safety metric formula is the
ground-truth V (x(k),u(k) ) does not include any
odd-order monomials of x(k) and u(k), such as [u(k)]31
and [u(k)]1[x(k)]

2
1. Meanwhile, the positive-definite P

means the V (x(k),u(k) ) ≥ 0. Therefore, the NN editing
shall remove the connections with odd-order monomials
and maintain some critical connections with even-order
monomials to guarantee the nonnegative approximation
(i.e., Phy-Taylor’s terminal output).

The proposed solution to Problem 1 is the Phy-Taylor
framework, presented in Section III.

III. PHY-TAYLOR FRAMEWORK

The proposed Phy-Taylor for addressing Problem 1 is
depicted in Fig. 1, which is built on the conjunctive deep PhN
and physics-guided NN editing. In other words, implementing
NN editing according to Taylor’s theorem for embedding
available physical knowledge into deep PhN (DPhN) yields
the Phy-Taylor. We note from Fig. 1 the PhN is a NN layer
with a critical component: a physics-inspired augmentation
(called Phy-Augmentation) for generating monomials of Tay-
lor series in (1) for capturing nonlinear physical quantities. The
physics-guided NN editingÐincluding link editing and acti-
vation editingÐfurther modifies network links and activation
functions consistently with physics knowledge. Specifically,
link editing removes and maintains nodal links according
to the consistency with physics knowledge. Meanwhile, the
activation editing performs the physics-knowledge-preserving
computing in the output channel of each PhN. Collaboratively
through link and activation editing, the input±output of Phy-
Taylor strictly complies with the available physics knowledge,
which is a desired solution to Problem 1. Next, we detail
them.

A. Physics-Compatible NN

In order to capture nonlinear features of physical functions,
we introduce a new type of network layer that is augmented
with terms derived from Taylor series expansion. The Taylor’s
Theorem offers a series expansion of arbitrary nonlinear
functions, as shown below.

Taylor’s Theorem (Chapter 2.4 [41]): Let g : R
n → R

be a r -times continuously differentiable function at the
point o ∈ R

n . Then there exists hα : R
n → R, where

|α| = r , such that

g(x) =
∑

|α|≤r

∂αg(o)

α!
(x− o)α +

∑

|α|=r

hα(x)(x− o)α

and lim
x→o

hα(x) = 0 (4)

where α = [α1; α2; . . . ; αn], |α| =∑n
i=1 αi , α! =

∏n
i=1 αi !, xα =

∏n
i=1 x

αi

i , and
∂αg = ((∂ |α|g)/(∂x

α1

1 · . . . · ∂xαn
n )).
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Fig. 2. Phy-Augmentation architecture.

Taylor’s theorem has several desirable properties as follows.

1) Nonlinear Physics Term Representation: The
high-order monomials (i.e., the ones included
in (x− o)α with |α| ≥ 2) of the Taylor series
(i.e.,

∑
|α|≤r ((D

αg(o))/α!)(x− o)α) capture core
nonlinearities of physical quantities such as kinetic

energy (≜(1/2)mv2), potential energy (≜(1/2)kx2),

electrical power (≜ V · I ) and aerodynamic drag force

(≜(1/2)ρv2CD A), that drive the state dynamics.
2) Controllable Model Accuracy: Given hα(x) is finite

and ∥x− o∥ < 1, the error
∑
|α|=r hα(x)(x− o)α

for approximating the ground truth g(x) will drop
significantly as the order r = |α| increases and
lim|α|=r→∞ hα(x)(x− o)α = 0. This allows for control-
lable model accuracy via controlling the order r .

3) Knowledge Embedding: The Taylor series can directly
project the known model substructure parameters of the
ground-truth model (1) into NN parameters, including
the weight matrix (((Dαg(o))/α!) with |α| > 0) and
bias (((Dαg(o))/α!) with |α| = 0), thus paving the way
to embed the available physics knowledge in the form
of an appropriately weighted NN layer.

We note that Taylor’s theorem relies on the assumption that
the ground truth g(x) is a r -times continuously differentiable
function at the point o. If the assumption does not hold,
the Taylor series will approximate the proximity of ground
truth that is r -times continuously differentiable. For continuous
functions, this is often a sufficient approximation.

Next, we describe how PhNs embed the Taylor series expan-
sion into NN layers. The resulting architecture is shown in
Fig. 1. Compared with a classical NN layer, we introduce the
Phy-Augmentation, whose architecture is shown in Fig. 2. The
Phy-Augmentation has two components: 1) physical-features
augmentation that generates monomials of a Taylor series
expansion and 2) a suppressor for mitigating the influence of
noise on such augmented inputs. Next, we detail them.

1) Monomials of Taylor Series: The function of physical-
features augmentation in Fig. 2 is to generate the vector
of physical features (i.e., node representations) in the form
of Taylor series’ monomials, which is formally described
by Algorithm 1. The Lines 6±13 of Algorithm 1 guarantee
that the generated node-representation vector embraces all the
nonmissing and nonredundant monomials of the Taylor series.
Line 16 shows that Algorithm 1 finally stacks vector with
one. This operation means a PhN node will be assigned to
be one, and the bias (corresponding to ((Dαg(o))/α!) with
|α| = 0 in Taylor series) will be thus treated as link weights
in PhN layers. The Phy-Augmentation empowers PhN to
capture core nonlinearities of physical quantities (e.g., kinetic
energy, potential energy, electrical power, and aerodynamic

Algorithm 1 Phy-Augmentation Procedure

Input: augmentation order r , input x, point o,

suppressor mapping χ(·).

1 Suppress input:

[x]i ←

{
[x]i , sus = ina

χ([x]i ), otherwise
, i ∈ {1, . . . , len(x)};

2 Generate index vector of input entries:

i← [1; 2; . . . ; len(x)];

3 Generate augmentations: m(x, r)← x;

4 for _ = 2 to r do

5 for i = 1 to len(x) do

6 Compute temporaries: ta ← [x]i · [x][[i]i : len(x)];

7 if i == 1 then

8 Generate temporaries: t̃b ← t̃a ;

9 else

10 Generate temporaries: t̃b ←
[̃
tb; t̃a

]
;

11 end

12 Update index entry: [i]i ← len(x);

13 Update augmentations:

m(x, r)← [m(x, r); tb];
14 end

15 end

16 Output vector of augmented monomials:

m(x, r)← [1; m(x, r)].

drag force) that drive the state dynamics and approximate
physics knowledge in the form of the Taylor series.

We note that Line 1 of Algorithm 1 means the noise
suppressor is not applied to all the input elements. The critical
reason is the different mapping induced by the suppressor on
inputs can destroy the compliance with physical knowledge
when the available model-substructure knowledge does not
include the mapping of the suppressor.

2) Noise Suppressor: The suppressor in Fig. 2 is to mitigate
the influence of noise on the augmented high-order monomials.
Before proceeding with the working mechanism, we present
noise and true data metrics.

Definition 1: Consider the noisy data and define the data-
to-noise ratio (DNR)

[x̄]i = [h]i︸︷︷︸
true data

+ [w]i︸︷︷︸
noise

∈ R, DNRi ≜
[h]i

[w]i
. (5)

The auxiliary Theorem 4 presented in Appendix A implies
that the high-order monomials can shrink their DNRs due to
nonlinear mapping. This means the PhN can be vulnerable
to noisy inputs, owning to Phy-Augmentation for generating
high-order monomials. Hence, mitigating the influence of
noise is vital for enhancing the robustness of PhNs, and con-
sequently the Phy-Taylor. As shown in Fig. 2, we incorporate
a suppressor into PhN to process the raw input data, such
that the high-order monomial from Phy-Augmentation can
enlarge their DNRs. Building on Definition 1, the proposed
noise suppressor mapping is

χ([x̄]i )

=





0, [h]i + [w]i < 0

[h]i + [w]i , [h]i + [w]i ≥ 0 & [w]i < 0

([h]i + [w]i ) · κi + ρi , [h]i + [w]i ≥ 0 & [w]i > 0

(6)
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Fig. 3. Flowchart of NN editing in single PhN layer (⊞ denotes an entry included in knowledge set K). The raw weight matrix W⟨t⟩ is first generated
via gradient descent algorithm. Given this layer’s node-representation vector (generated via Algorithm 1) and system matrix A and knowledge set K, then
perform link editing operation, which yields knowledge matrix K⟨t⟩ and uncertainty matrix U⟨t⟩ (a direct operation on W⟨t⟩). The summation of K⟨t⟩ and U⟨t⟩
equates the edited weight matrix denoted by Ŵ⟨t⟩. Finally, the resulting K⟨t⟩ and U⟨t⟩ are fed to activation editing for performing the knowledge-preserving
NN output computation.

where the parameters ρi and κi satisfy

|ρi | ≥ |[h]i + [w]i | · |κi |. (7)

We next present the suppressor properties in the following
theorem, whose proof appears in Appendix B.

Theorem 1: Consider the noisy data [x̄]i and the suppressor
described in (5) and (6), respectively. Under the condition (7),
the suppressor output, denoted by [̂x]i = χ([x̄]i ), has the
properties

DNR magnitude of monomial [̂x]
p

i [̂x]
q

j is strictly increasing

with respect to DNR magnitudes of [̂x]i and [̂x] j .
(8)

The true data and the noise of suppressor output [̂x]i are

[̃h]i =

{
[h]i · κi + ρi , [h]i + [w]i ≥ 0 and [w]i > 0

[h]i , otherwise
(9)

[w̃]i =





−[h]i , [h]i + [w]i < 0

[w]i , [h]i + [w]i ≥ 0 and [w]i < 0

[w]i · κi , [h]i + [w]i ≥ 0 and [w]i > 0

(10)

such that [̂x]i = [̃h]i + [w̃]i , i ∈ {1, 2, . . . , len(̂x)}.
The result (10) implies the parameters κ and ρ control

the DNRs of suppressed data, consequently, the high-order
monomials. Furthermore, the result (8) suggests that through
designing parameters κi , ρi , κ j and ρ j for increasing the DNR
magnitudes of data [̂x]i and [̂x] j , the DNR of high-order
monomial [̂x]

p

i [̂x]
q

j can be enlarged consequently, such that
the influence of noise is mitigated.

B. Physics-Guided NN Editing

Building on the DPhN, this section presents the NN editing
for embedding and preserving the available physics knowledge
through link editing and activation editing. Specifically, link
editing centers around removing and maintaining the links
according to the consistency of physics knowledge. Mean-
while, the activation editing performs the physics-knowledge-
preserving computing in the output channels of each PhN
layer. Thanks to the concurrent link and activation editing,
the input-output of Phy-Taylor can strictly comply with the
available physics knowledge. The procedure of physics-guided
NN editing is described in Algorithm 2.

Fig. 3 summarizes the flowchart of NN editing in a PhN as
follows.

1) Given the node-representation vector from Algorithm 1,
the raw weight matrix obtained via gradient descent
algorithm is edited via link editing to embed assigned
physics knowledge, resulting in an edited matrix denoted
by Ŵ⟨t⟩. The edited matrix Ŵ⟨t⟩ can be separated into
knowledge matrix K⟨t⟩ and uncertainty matrix U⟨t⟩,

i.e., Ŵ⟨t⟩ = K⟨t⟩ +U⟨t⟩. Specifically, the K⟨t⟩, generated
in Lines 5 and 10, includes all the elements of the
knowledge set K of system matrix of the ground-truth
model. While the M⟨t⟩, generated in Lines 6 and 11,
is used to generate uncertainty matrix U⟨t⟩ (see Line 15)
include all the connection weights excluded by the
knowledge set K, through freezing the entries of weight
matrix W⟨t⟩ included in the knowledge set K to zeros.

2) The K⟨t⟩, M⟨t⟩ and activation-masking vector a⟨t⟩ (gen-
erated in Lines 7 and 12) are used by activation editing
for physics-knowledge-preserving computing of output
in each PhN layer. The function of a⟨t⟩ is to avoid
extra (activation) mapping that prior physical knowledge
does not include.

If the entries of knowledge matrix K⟨t⟩ in the same row
are all included in the knowledge set, the associated activa-
tion should be inactivated. Otherwise, the Phy-Taylor cannot
strictly preserve the available physics knowledge due to the
extra nonlinear mappings induced by the activation functions.
This thus motivates the physics-knowledge-preserving com-
puting, i.e., the Line 16 of Algorithm 2.

Lines 2±6 of Algorithm 2 means that A = K⟨1⟩+M⟨1⟩⊙A,
leveraging which and the setting r⟨1⟩ = r , the ground-truth
model (1) is rewritten as

y = (K⟨1⟩ +M⟨1⟩ ⊙ A) ·m(x, r)+ f(x)

= K⟨1⟩ ·m(x, r⟨1⟩)+ (M⟨1⟩ ⊙ A) ·m(x, r⟨1⟩)+ f(x). (11)

We obtain from the Line 16 of Algorithm 2 that the output of
the first PhN layer is

y⟨1⟩ = K⟨1⟩ ·m(x, r⟨1⟩)+ a⟨1⟩ ⊙ act
(
U⟨1⟩ ·m

(
x, r⟨1⟩

))
. (12)

Recalling the K⟨1⟩ includes all the entries of system matrix
A included in the knowledge set K while the U⟨1⟩ includes
remainders, we conclude from (11) and (12) that the available
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Algorithm 2 Physics-Guided NN Editing

Input: Knowledge set K (2), terminal output dimension len(y), number p of PhNs, activation functions act(·), y⟨0⟩ = x

and r⟨1⟩ = r .

1 for t = 1 to p do

2 if t == 1 then

3 Deactivate noise suppressor;

4 Generate node-representation vector m(y⟨t−1⟩, r⟨t⟩) via Algorithm 1;

5 Generate knowledge matrix K⟨t⟩: [K⟨t⟩]i, j ←

{
[A⟨t⟩]i, j , if [A⟨t⟩]i, j ∈ K

0, otherwise
;

6 Generate weight-masking matrix M⟨t⟩: [M⟨t⟩]i, j ←

{
0, if [A⟨t⟩]i, j ∈ K

1, otherwise
;

7 Generate activation-masking vector a⟨t⟩: [a⟨t⟩]i ←

{
0, if [A⟨t⟩]i, j ∈ K, ∀ j ∈ {1, . . . , len(m(y⟨t−1⟩, r⟨t⟩))}

1, otherwise
;

8 else

9 Generate node-representation vector m(y⟨t−1⟩, r⟨t⟩) via Algorithm 1;

10 Generate knowledge matrix K⟨t⟩:

K⟨t⟩←

[
0len(y) Ilen(y) Olen(y)×(len(m(y⟨t−1⟩,r⟨t⟩))−len(y))−1)

O(len(y⟨t⟩)−len(y))×len(m(y⟨t−1⟩,r⟨t⟩))

]
;

11 Generate weight-masking matrix

M⟨t⟩: [M⟨t⟩]i, j ←

{
0,

∂[m(y⟨t⟩,r⟨t⟩)] j
∂[m(x,r⟨1⟩)]v

̸= 0 and [M⟨1⟩]i,v = 0, v ∈ {1, 2, . . . , len(m(x, r⟨1⟩))}

1, otherwise
;

12 Generate activation-masking vector a⟨t⟩←
[
a⟨1⟩; 1len(y⟨t⟩)−len(y)

]
;

13 end

14 Generate raw weight matrix: W⟨t⟩ via gradient descent algorithm;

15 Generate uncertainty matrix U⟨t⟩←M⟨t⟩ ⊙W⟨t⟩;

16 Compute output: y⟨t⟩← K⟨t⟩ ·m(y⟨t−1⟩, r⟨t⟩)+ a⟨t⟩ ⊙ act
(
U⟨t⟩ ·m

(
y⟨t−1⟩, r⟨t⟩

))
;

17 end

Output: terminal output: ŷ← y⟨p⟩.

physics knowledge about the ground-truth model (1) has been
embedded to the first PhN layer. The embedded knowledge
shall be passed down to the remaining cascade PhNs and pre-
served therein, such that the end-to-end Phy-Taylor model can
strictly comply with the physics knowledge. This knowledge
passing is achieved by the block matrix K⟨p⟩ generated in
Line 10, due to which, the output of t th layer satisfies

[y⟨t⟩]1:len(y) = [a⟨t⟩ ⊙ act
(
U⟨t⟩ ·m(y⟨t−1⟩, r⟨t⟩)

)
]1:len(y)︸ ︷︷ ︸

knowledge preserving

+ K⟨1⟩ ·m(x, r⟨1⟩)︸ ︷︷ ︸
knowledge passing

∀t ∈ {2, 3, . . . , p} (13)

where the uncertain matrix computation, i.e., U⟨t⟩ = M⟨t⟩ ⊙
W⟨t⟩ means the masking matrix M⟨t⟩ generated in Line 11 can
remove the spurious correlations in the cascade PhNs.

C. Solution to Problem 1: Phy-Taylor

As described in Fig. 1, implementing the physics-guided
NN editing in the DPhN yields the Phy-Taylor. The Phy-
Taylor embeds the available physics knowledge into each PhN
layer. Hence, its input-output strictly complies with the physics
knowledge, which is formally stated in the following theorem,
whose proof appears in Appendix C.

Theorem 2: Consider the Phy-Taylor described by Fig. 1
and the knowledge set K defined in (2). The input±output
(i.e., x/̂y) of Phy-Taylor strictly complies with the available
knowledge pertaining to the physics model (1) of ground
truth, i.e., if the [A]i, j ∈ K, then ((∂ [̂y]i )/(∂[m(x, r)] j )) ≡
((∂[y]i )/(∂[m(x, r)] j )) ≡ [A]i, j always holds for any m(x, r).

IV. PHY-TAYLOR PROPERTIES

Moving forward, this section focuses on the property anal-
ysis of Phy-Taylor.

A. Parameter Quantity Reduction

Fig. 2 shows that the Phy-Augmentation, i.e., the
Algorithm 1, expands the input without involving weight-
matrix multiplication. This trait can be leveraged to signif-
icantly reduce the number of learning parameters, including
weights and biases. For the demonstration, we consider the two
network models in Fig. 4(a) and (b), where Fig. 4(a) describes
a fully connected two-layer network, while Fig. 4(b) describes
a single PhN. Observing them, we obtain that given the
same dimensions of input and terminal output, the number
of learning parameters of Fig. 4(a) is (m + 1)n + (n + 1)p
(including (m+ p)n weights and n+ p bias), while the number
of learning parameters of Fig. 4(b) is (n + 1)p (including
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Fig. 4. (a) Two fully connected NN layers. (b) Single PhN layer.

n × p weights and p bias). The number difference of learning
parameters is thus

(m + 1)n + (n + 1)p − (n + 1)p = (m + 1)n. (14)

We note the number of reduced parameters (14) is the lower
bound of PhN in the Phy-Taylor framework since it is obtained
without considering physics-guided NN editing for removing
and freezing links and bias according to the available physics
knowledge.

B. Single PhN Versus Cascade PhN

We next investigate if the space complexity (i.e., the number
of augmented monomials) of Phy-Augmentation of a single
PhN with a large augmentation order can be reduced via
cascade PhN with relatively small orders. To simplify the
presentation, a single PhN and cascade PhN are, respectively,
represented in the following equations:

ŷ = PhN(x ∈ R
n
∣∣r) ∈ R

m (15)

x ∈ R
n 7−→ y⟨1⟩ = PhN(x|r⟨1⟩) ∈ R

n⟨1⟩

7−→ · · · 7−→ y⟨d−1⟩ = PhN(y⟨d−2⟩

∣∣r⟨d−1⟩) ∈ R
n⟨d−1⟩

7−→ ŷ = PhN(y⟨d−1⟩

∣∣r⟨d⟩) ∈ R
m (16)

where the cascade architecture consists of d PhNs. To guar-
antee the cascade PhN (16) and the single PhN (15) have the
same monomials, their augmentation orders shall satisfy

d∏

v=1

r⟨v⟩ = r ∀r⟨v⟩, r ∈ N. (17)

The space complexity difference of Phy-Augmentation is
formally presented in the following theorem, whose proof is
presented in Appendix D.

Theorem 3: Under the condition (17), the space complexity
difference between single PhN (15) and cascade PhN (16), due
to Phy-Augmentation, is

len(m(x, r))−

d∑

p=1

len(m(x, r⟨p⟩))

=

r∑

s=r⟨1⟩+1

(n + s − 1)!

(n − 1)!s!
−

d−1∑

v=1

r⟨v+1⟩∑

s=1

(
n⟨v⟩ + s − 1

)
!(

n⟨v⟩ − 1
)
!s!

+ 1− d. (18)

The Theorem 3 implies that the output dimensions and
the augmentation orders of intermediate PhNs are critical
in significantly reducing space complexity via cascade PhN.
However, an intuitive question arises: Does the cascade PhN
reduce the complexity at the cost of model accuracy? The
intuitive answer is if the reduced weights are associated with
the links that contradict physics knowledge, the cascade PhN
can further increase model accuracy. Otherwise, it can reduce
the space complexity at the cost of model accuracy.

V. EXTENSION: SELF-CORRECTING PHY-TAYLOR

Safe control and planning is a fundamental solution for
enhancing safety assurance of the physical engineering sys-
tems often operating in environments where time and safety
are critical, such as airplanes, medical drones, and autonomous
vehicles. To comply with safety constraints in the face of
potential conflicts from control objectives, the CBF framework
has been proposed to compute real-time safety-critical control

commands [42], [43]. The CBFs, however, use only current
state information without prediction, whose control policy is
thus greedy and challenging for proactive safe control. It is
well known that model predictive control (MPC) yields a less
greedy safe control policy since it takes future state informa-

tion into account [44], [45]. Motivated by the observations,
MPC with the incorporation of CBF, i.e., MPC±CBF, was

proposed [46]. Due to the nonlinear dynamics, the MPC±CBF
faces a dilemma of prediction horizon and computation time of
safe control commands, which induces considerable feedback
delays and thus leads to failures in the time- and safety-critical
operating environments. To address the dilemma, we propose
the self-correcting Phy-Taylor, whose architecture is shown
in Fig. 5. Its one mission is learning the safety relationship
between real-time decisions and safety metrics with consider-
ation of future information

s(x(k),u(k), τ ) =

k+τ−1∑

t=k

f̃(x(t),u(t)) (19)

where f̃(x(t),u(t)) is the predefined vector of safety metrics
at time t , and τ denotes the horizon of future information of
safety metrics.

Inside the self-correcting Phy-Taylor, the learned safety
relationship for approximating (19) will first be subject to the
off-line verification of available physics knowledge, based on
which the necessary revisions can be needed. According to
the off-line verified and revised (if needed) safety relationship,
the correcting of real-time decision u(k) will be triggered if
any safety metric [s(x(k),u(k), τ )]i , i ∈ {1, 2, . . . , h}, exceeds
(or leaves) the preset safety bounds (or safety envelopes).
However, the current learned formula corresponding to (19)
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Fig. 5. Self-correcting Phy-Taylor architecture: u(k) denotes the vector of
real-time decisions, s(u(k)) denotes the vector of real-time safety metrics, c is
the vector of safety bounds.

is not ready (if not impossible) for delivering the procedure,
owing to the complicated dependence of [s(x(k),u(k), τ )]i on
both system state x(k) and control command u(k). To address
this problem, as shown in Fig. 5, we decouple the real-time
commands from the real-time system states.

1) Given the real-time system state x(k) as the origin
input, the first Phy-Taylor outputs the real-time control
command u(k), which is motivated by the fact that
the state-feedback control is used most commonly in

physical engineering systems [47].
2) Given the real-time control command u(k) (i.e., the

output of the first Phy-Taylor) as the input of the second
Phy-Taylor, the terminal output is the real-time safety
metric s(u(k)), which is motivated by the fact that
the control command u(k) manipulates system state. In
other words, the safety metric s(u(k)) directly depends
on u(k) while indirectly depends on x(k).

3) The two Phy-Taylors are trained simultaneously accord-
ing to the training loss function

L = α∥s(u(k))− s(x(k),u(k), τ )∥ + β
∥∥ŭ(k)− u(k)

∥∥

where the s(x(k),u(k), τ ) given in (19) is ground truth
of safety-metric vector, the ŭ(k) is ground truth of
control command, the α and β are hyperparameters. The
two cascade Phy-Taylors thus depend on each other.

4) To render the learned safety relationship s(u(k))
tractable, activations and compressors of second Phy-
Taylor are inactive.

Given the verified and revised (if needed) relationship, the
self-correcting procedure will be triggered (if exceeding safety
bound c) for correcting control command according to

u(k)← arg min
ũ(k)∈Rm

{ ∥̃u(k)− u(k) ∥|s(̃u(k)) < c}. (20)

We note the self-correcting mechanism and the safety revision
of the relationship between s(u(k)) and u(k) for deliver-
ing (20) vary with safety problems and physical systems.
An example in this article is the safe control of autonomous
vehicles: Algorithm 3 in Section VI.

VI. EXPERIMENTS

The experiment of this article performs the demon-
stration of two functions: 1) the learning of the vehi-
cle’s conjunctive lateral and longitudinal dynamics via
Phy-Taylor and 2) the safe velocity regulation via self-
correcting Phy-Taylor. The vehicle operates in the AutoRally

platform [48]. The demonstration video is available at
https://www.youtube.com/watch?v = dABt_nIBsdQ. Due to

the page limit, the experiments demonstrating the effectiveness
of noise suppressors in mitigating the influence of noise, and
the experiments of embedding different degrees of physical

knowledge are presented in our ArXiv reference [49].

A. Vehicle Dynamics Learning

We first identify the available physics knowledge for the
physics-guided NN editing. According to Newton’s second law

for motion along longitudinal and lateral axes [50], we have
the following governing equations:

m̄p̈ = Fp f + Fpr − Faero − Rp f − Rpr

m̄(ÿ+ ψ̇vp) = Fy f + Fyr

where p is the longitudinal position, y is the lateral position,

ψ is the vehicle yaw angle, m̄ is the vehicle mass, vp ≜ ṗ is
the longitudinal velocity, Fp f and Fpr denote the longitudinal
tire force at the front and rear tires, respectively, Rp f and
Rpr denote the rolling resistance at the front and rear tires,
respectively, Faero represents the longitudinal aerodynamic
drag force, Fy f and Fyr are the lateral tire forces of the front
and rear wheels, respectively. Defining the lateral velocity

vy ≜ ẏ and yaw velocity vψ ≜ ψ̇ , the following state space
model is derived from the above force balance equation [50]:

d

dt




p
y
ψ
vp

vy

vψ



=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗







p
y
ψ
vp

vy

vψ




︸ ︷︷ ︸
≜x

+




0
0
0
∗
0
0



θ +




0
0
0
0
∗
∗



δ

where ª*º can represent a state-dependent or time-dependent
function or a mix of them or just a scalar, but is unknown to us,
and θ and δ denote throttle and steering, respectively. Given
the practical physics knowledge that the throttle computation
depends on the longitudinal velocity and position only, while
the dependencies of steering are unknown, the state space
model above updates with

ẋ =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
∗ 0 0 ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




x.

The sampling technique, with a sampling period denoted by T ,
converts the continuous-time state±space model above to the
following discrete-time one:

x(k + 1) =




1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
∗ 0 0 ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




x(k). (21)

We first consider two Phy-Taylor models, named ªPhy-
Taylorlarge orderº and ªPhy-Taylorsmall order,º which can embed
the available knowledge [i.e., the known parameters included
in system matrix of model (21)]. Their architectures are shown
in Fig. 6(a) and (b). The Phy-Taylorlarge order has one PhN
with a large augmentation order while the Phy-Taylorsmall order
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TABLE I

MODEL CONFIGURATIONS

Fig. 6. (a) Phy-Taylorlarge order has a PhN with large order r = 4.
(b) Phy-Taylorsmall order has cascading PhNs with relatively small orders
satisfying r⟨1⟩ · r⟨2⟩ = 2 · 2 = 4 = r .

has two cascade PhN layers with two relatively small aug-
mentation orders. Meanwhile, the three orders satisfy the
condition (17) for having the same monomials of the Taylor
series. We also consider the corresponding models without
NN editing (i.e., without physics knowledge embedding),
which degrades the Phy-Taylor to the DPhN. The two DPhN
models are named ªDPhNlarge orderº and ªDPhNsmall order.º The
final model we considered is the seminal Deep Koopman
[28], following the same model configurations therein. The
configurations of five models are summarized in Table I.

The trajectories of training loss are presented in
Fig. 7(a)±(c). The (training loss, validation loss) of trained
DPhNlarge order, DPhNsmall order, Phy-Taylorlarge order and Phy-
Taylorsmall order are (0.00389, 0.00375), (0.000344, 0.000351),
(0.000222, 0.000238) and (0.000915, 0.000916), respectively.
To perform the testing, we consider the long-horizon predic-
tion of system trajectories, given the same initial conditions.
The prediction error is measured by the mean squared error:

e = (1/κ)
∑k+κ

t=k+1 (1/6)∥x(t)− x(t)∥ with x(k) = x(k),
where x(t) is the prediction of ground truth x(t) at time t .
The prediction errors over the horizon κ = 300 and initial
time k = 950 are summarized in Table I. The ground-truth
trajectories and predicted ones from Deep Koopman and the
Phy-Taylor models are presented in Fig. 7(d)±(g) 7(i)±(vi).
Observing from Table I and Fig. 7, we can conclude:

1) Fig. 7(a) and (b) and (d)±(g): the physics-guided
NN editing can significantly accelerate model training,
reduce validation and training loss as well as improve
model accuracy (viewed from long-horizon prediction of
trajectory).

2) Fig. 7(c) and (d)±(g): with physics-guided NN editing,
the cascade PhN with small augmentation orders can
further significantly reduce training loss, and increase

model accuracy. This can be due to the further removed
spurious correlations or NN links contradicting with
physics law, via the cascade architecture.

3) Fig. 7(d)±(g) and Table I: compared with the fully-
connected DPhN models, i.e., DPhNlarge order and
DPhNsmall order, the seminal Deep Koopman strikingly
increases model accuracy, viewed from the perspec-
tive of long-horizon prediction of trajectory. Com-
pared to Deep Koopman, the Phy-Taylor models (both
Phy-Taylorlarge order and Phy-Taylorsmall order) notably
reduce the model learning parameters (weights and
bias) and further remarkably increase model accuracy
simultaneously.

B. Self-Correcting Phy-Taylor

This experiment demonstrates the effectiveness of self-
correcting Phy-Taylor in guaranteeing a vehicle’s safe driv-
ing. The architecture of self-correcting Phy-Taylor is pre-
sented in Fig. 8. Its real-time input vector is x(k) =
[w(k); p(k); y(k); ψ(k); vp(k); vy(k); vψ (k)], where w(k)
is the average of four wheels’ velocities. The mediate output
u(k) = [θ(k); γ (k)] denotes the vector of control commands,
where θ(k) ∈ [−0.156, 0.156] is the throttle command and
γ (k) ∈ [−0.6, 0.6] is the steering command. The considered
safety-metric vector in (19) is

s(x(k),u(k), τ ) =

k+τ∑

t=k+1

[(
vp(t)− v

)2
;

(
vp(t)−r · w(k)

)2
]

where v and r denote the reference of longitudinal velocity and
the wheel radius, respectively. The safety metrics indicate the
objective of the safe control command is to simultaneously
steer the vehicle’s longitudinal velocity to reference v and
constrain the slip (i.e., (vx(t)−r · w(k))2) to prevent slipping
and sliding. The hyperparameters of the training loss function
are set to α = β = 1.

We output the learned safety relationships for off-line veri-
fication and necessary revision

[s(u)]1 = 0.00111+

[
θ
γ

]⊤[
−0.04581 0.00100
0.00100 0.00342

][
θ
γ

]

(22a)

[s(u)]2 = 0.14376−

[
θ
γ

]⊤[
6.06750 0.02701
0.02701 0.00601

][
θ
γ

]
.

(22b)

The safety metrics of ground truth are always nonnegative.
We thus need to verify that given the ranges of control
commands (i.e., θ(k) ∈ [−0.156, 0.156], γ (k) ∈ [−0.6, 0.6],
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Fig. 7. Training and testing. (a)±(c) Trajectories of averaged training loss (five random seeds) of different models described in Table I. (d)±(i) Ground truth
and predicted trajectories via trained models.

Fig. 8. Self-correcting Phy-Taylor for safe control of autonomous vehicle.

∀k ∈ N), if both [s(u(k))]1 and [s(u(k))]2 in (22) can always
be nonnegative. If a violation occurs, we will make revisions to
the relationships. We can verify from (22) that the nonnegativ-
ity constraint does not always hold, such as θ(k) = 0.156 and
γ (k) = 0. Therefore, the revision of the safety relationship is
needed before working on the self-correcting procedure. The
regulated safety relationships (revisions are highlighted in red
color) are presented below

[s(u)]1 = 0.00021︸ ︷︷ ︸
[b]1

+

[
θ
γ

]⊤ [
0.00181 0.00100
0.00100 0.00342

]

︸ ︷︷ ︸
≜P1

[
θ
γ

]

(23a)

[s(u)]2 = 0.14376︸ ︷︷ ︸
[b]2

−

[
θ
γ

]⊤ [
5.90769 0.01201
0.01201 0.00601

]

︸ ︷︷ ︸
≜P2

[
θ
γ

]

(23b)

which satisfy [s(u(k))]1 ≥ 0 and [s(u(k))]2 ≥ 0, for any
θ(k) ∈ [−0.156, 0.156] and γ (k) ∈ [−0.6, 0.6].

We now are ready to develop the self-correcting procedure.
Considering the two matrices P1 and P2 defined in (23) are
symmetric, we have

P1 =

[
−0.934 −0.3572
−0.3572 0.934

]

︸ ︷︷ ︸
≜Q1




0.0008︸ ︷︷ ︸
≜λ1

0

0 0.0038︸ ︷︷ ︸
≜λ2




×

[
−0.934 −0.3572
−0.3572 0.934

]

︸ ︷︷ ︸
=Q⊤1

(24)

P2 = Q1 ·Q1 · P2 ·Q1 ·Q1 (25)

based on which we further define

û(k) ≜ Q1

[
θ(k)
γ (k)

]
, S ≜ Q1 · P2 ·Q1 =

[
s11 s12

s12 s22

]
.

(26)

We let [̂c]1 and [̂c]2 denote the two assigned safety met-
rics. According to the derivations appearing in Appendix E,
the control commands included in the safety formulas
[s(u(k))]1 = [̂c]1 and [s(u(k))]2 = [̂c]2 are obtained as

[
±θ̂ (k)
±γ̂ (k)

]
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Fig. 9. (a) Safety metric: tracking error (tracking error (vp(t)− v)2. (b) Safety metric: wheel slip (vp(t)−r · w(k))2). (c) Average wheel velocities.

≜ Q1




±

√√√√ [̂c]1 − [b]1
λ1

−
λ2

λ1

√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1

±

√√√√
√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1




(27)

where as in (28)±(30), shown at the bottom of the page.
Solution (27) has paved the way to delivering the self-

correcting procedure, i.e., Algorithm 3. The algorithm can
be summarized as if the real-time safety metric [s(u(k))]1
or. [s(u(k))]2 is larger than the corresponding safety bound
[c]1 or [c]2, the real-time safety metric will be updated
with the corresponding safety bound (indicated by Line 4
of Algorithm 3). The corrected control commands are then
computed according to (27) (see Lines 8±10). The solutions,
however, are not unique. To address the problem, Line 11 of
Algorithm 3 picks up the control commands that are most
close to the current ones.

Under the control of Phy-Taylor, with and without the self-
correcting procedure, the system performances are presented
in Fig. 9(a)±(c), which shows the self-correcting approach can
significantly enhance safety assurance.

C. Code and Training

For the code, we use the Python API for the TensorFlow

framework [51] and the Adam optimizer [52] for training.
The Python version is 2.7.12. The TensorFlow version is
1.14.0. Our source code is publicly available at GitHub:
https://github.com/ymao578/Phy-Taylor.

We set the batch-size to 200 for Sections VI-A and VI-B.
Their learning rates are set to 0.0005 and 0.00005, respectively.
In all the experiments, each weight matrix is initialized
randomly from a (truncated) normal distribution with zero
mean and standard deviation, discarding and re-drawing any
samples more than two standard deviations from the mean. We
initialize each bias according to the normal distribution with
zero mean and standard deviation. All the models are trained
for 106 steps.

Algorithm 3 Self-Correcting Procedure

Input: Real-time control-command vector

u(k) = [θ(k); γ (k)], safety bounds [c]1 and

[c]2, and learned matrices P1 and P2 and bias

[b]1 and [b]2 defined in (23).

1 Update original safety relationship with off-line

verified and revised one: s(u(k))← (23);

2 if [s(u(k))]1 > [c]1 or [s(u(k))]2 > [c]2 then

3 if [s(u(k))]i ≥ [c]i , i ∈ {1, 2} then

4 Update safety metric: [̂c]i ← [c]i , i ∈ {1, 2};

5 else

6 Maintain safety metric:

[̂c]i ← [s(u(k))]i , i ∈ {1, 2};
7 end

8 Compute orthogonal matrix P1 and eigenvalues

λ1 and λ1 according to (24);

9 Compute matrix: S← Q1 · P2 ·Q1;

10 Compute θ̂ (k) and γ̂ (k) according to (27);

11 Correct real-time control commands:

θ(k) ← arg min
{θ̂ (k),−θ̂ (k) }

{
|θ(k)− θ̂ (k)|, |θ(k)+ θ̂ (k)|

}

γ (k) ← arg min
{γ̂ (k),−γ̂ (k) }

{|γ (k)− γ̂ (k)|, |γ (k)+ γ̂ (k)|}.

12 else

13 Maintain real-time control commands:

θ(k)← θ(k) and γ (k)← γ (k).
14 end

VII. DISCUSSION

In this article, we have proposed a physics-knowledge-
enhanced DNN framework called Phy-Taylor. The Phy-Taylor
framework introduces two contributions: the deep PhNs and
a physics-guided NN editing mechanism to ensure strict

ϖ1 ≜

(
λ2

λ1

)2

s2
11 + s2

22 +

(
4s2

12 − 2s11s22

)
λ2

λ1

(28)

ϖ2 ≜ −
2([̂c]1 − [b]1)λ2s2

11

λ 2
1

− 2([b]2 − [̂c]2)s22 +
2([̂c]1 − [b]1)s11s22 − 4([̂c]1 − [b]1)s

2
12 + 2λ2([b]2 − [̂c]2)s11

λ1

(29)

ϖ3 ≜ −
2([̂c]1 − [b]1)([b]2 − [̂c]2)s11

λ1

+ ([b]2 − [̂c]2)
2 +

(
[̂c]1 − [b]1

λ1

)2

s2
11. (30)
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compliance with prior physics knowledge. As an extension,
we have also proposed a self-correcting Phy-Taylor framework
that introduces a core capability of automatic output correction
when a safety violation occurs.

The current Phy-Taylor can suffer from the curse of dimen-
sionality, so it can hardly be applied to high-dimensional data,
such as images and text. The tensor decomposition has the
potential to address this problem since it can decompose the
higher-order derivatives in Taylor expansions parameterized by
DNNs into small core tensors and a set of factor matrices.

APPENDIX A

AUXILIARY THEOREMS

Theorem 4: The DNR magnitude of high-order monomial
[x̄]

p

i [x̄]
q

j , p, q ∈ N, is strictly increasing with respect to |DNRi |
and |DNR j |, if

DNRi ,DNR j ∈ (−∞,−1] or DNRi ,DNR j ∈

[
−

1

2
, 0

)

or DNRi ,DNR j ∈ (0,∞). (31)

Proof: In view of Definition 1, the true data can be
equivalently expressed as [h]i = DNRi · [w]i , according to
which we have [x̄]i = (1+ DNRi )[w]i such that

[x̄]
p

i [x̄]
q

j = (1+ DNRi )
p(1+ DNR j )

q [w]
p

i [w]
q

j

and [h]
p

i [h]
q

j = DNR
p

i · DNR
q

j · [w]
p

i [w]
q

j . (32)

We note the true data of high-order monomial [x̄]
p

i [x̄]
q

j is

[h]
p

i [h]
q

j , the corresponding noise can thus be derived from
the formula (32) as

[x̄]
p

i [x̄]
q

j − [h]
p

i [h]
q

j

=
[
(1+ DNRi )

p(1+ DNR j )
q − DNR

p

i · DNR
q

j

]
[w]

p

i [w]
q

j

which, in conjunction with the second formula in (32), leads
to

∣∣∣DNR
p+q

i j

∣∣∣ ≜

∣∣∣∣∣
[h]

p

i [h]
q

j

[x̄]
p

i [x̄]
q

j − [h]
p

i [h]
q

j

∣∣∣∣∣

=

∣∣∣∣∣∣∣

1(
1+ 1

DNRi

)p(
1+ 1

DNR j

)q

− 1

∣∣∣∣∣∣∣
, p, q ∈ N.

(33)

We can straightforwardly verify from formula (33) that if
DNRi , DNR j ∈ (0,∞), we have

∣∣∣DNR
p+q

i j

∣∣∣ = 1(
1+ 1

|DNRi |

)p(
1+ 1

|DNR j |

)q

− 1
(34)

which implies |DNR
p+q

i j | is strictly increasing with respect to
|DNRi | and |DNR j | under this condition.

The condition DNRi , DNR j ∈ (−∞,−1] means that

1

DNR j

∈ [−1, 0),
1

DNR j

∈ [−1, 0)

1+
1

DNRi

∈ [0, 1), 1+
1

DNR j

∈ [0, 1) (35)

by which, the formula (33) equivalently transforms to

∣∣∣DNR
p+q

i j

∣∣∣ = 1

1−
(

1+ 1
DNRi

)p(
1+ 1

DNR j

)q

=
1

1−
(

1− 1
|DNRi |

)p(
1− 1

|DNR j |

)q (36)

which reveals that |DNR
p+q

i j | is strictly increasing with respect
to |DNRi | and |DNR j |.

The condition DNRi , DNR j ∈ [−(1/2), 0) means

1

DNR j

∈ (−∞,−2],
1

DNR j

∈ (−∞,−2]

1+
1

DNRi

∈ (−∞,−1], 1+
1

DNR j

∈ (−∞,−1] (37)

in light of which, the formula (33) equivalently expresses as
follows

1) If p + q is even

∣∣∣DNRm+n
i j

∣∣∣ = 1∣∣∣ 1
|DNRi |

− 1

∣∣∣
p∣∣∣ 1
|DNR j |

− 1

∣∣∣
q

− 1
. (38)

2) If p + q is odd

∣∣∣DNR
p+q

i j

∣∣∣ = 1

1+
∣∣∣ 1
|DNRi |

− 1

∣∣∣
p∣∣∣ 1
|DNR j |

− 1

∣∣∣
q . (39)

We note both the functions (38) and (39) imply |DNRm+n
i j | is

strictly increasing with respect to |DNRi | and |DNR j |, which
completes the proof. □

Theorem 5 [53]: For any pair of positive integers n and k,
the number of n-tuples of nonnegative integers whose sum
is r is equal to the number of multisets of cardinality n −

1 taken from a set of size n + r − 1, i.e.,

(
n + r − 1
n − 1

)
=

(((n + r − 1)!)/((n − 1)!r !)).
Theorem 6: The space complexity of Phy-Augmentation,

i.e., the dimension of terminal output generated by
Algorithm 1, in PhN layer (15), is

len(m(x, r)) =

r∑

s=1

(n + s − 1)!

(n − 1)!s!
+ 1. (40)

Proof: We denote the output from Line 1 of Algorithm 1
by x. We first consider the case r = 1, in which Algorithm 1
skips Lines 4±15 and arrives at m(x, r) = [1; x] in Line 16.
Noticing from Line 1 that x ∈ R

n , we obtain len(m(x, r)) =
n + 1, which verifies the correctness of (40) with r = 1.

We next consider the case r ≥ 2. Given the input dimen-
sion n and order s ∈ {2, . . . , r − 1, r}, the Lines 5±14 of
Algorithm 1 are to generate all the nonmissing and nonredun-
dant monomials included in (

∑n
i=1 [x]i )

s . The problem of the
number of generated monomials via Algorithm 1 is equivalent
to the problem that for any pair of positive integers n and s,
the number of n-tuples of nonnegative integers (whose sum is
s) is equal to the number of multisets of cardinality n−1 taken
from a set of size n+s−1. Additionally, we note that the vector
generated in Line 13 of Algorithm 1, denoted by m̃(x, s),
stacks all the generated monomials. According to the auxiliary
Theorem 5 in Appendix A, we then have len(m̃(x, s)) =
(((n + s − 1)!)/((n − 1)!s!)). Finally, we note that Lines 4,
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and 16 of Algorithm 1 imply that the generated vector m(x, r)
stack the 1 with m̃(x, s) over s ∈ {1, . . . , r−1, r}, respectively.
We thus can obtain (40). □

APPENDIX B

PROOF OF THEOREM 1

We note the [̃h]i given in (10) can be written as

[̃h]i =





[h]i , [h]i + [w]i < 0

[h]i , [h]i + [w]i ≥ 0 and [w]i < 0

[h]i · κi + ρi , [h]i + [w]i ≥ 0 and [w]i > 0

(41)

subtracting [h]i from which yields
∣∣[̃h]i − [h]i

∣∣

=





0, [h]i + [w]i < 0

0, [h]i + [w]i ≥ 0 and [w]i < 0

|[h]i · (κi − 1)+ ρi |, [h]i + [w]i ≥ 0 and [w]i > 0.

(42)

Referring to the output χ([x̄]i ) of suppressor in (6), we can
conclude that the [̃h]i given in (41) is the true data of
suppressor output. Subtracting the [̃h]i from the χ([x̄]i ) results
in the noise [w̃]i of suppressor output, given in (10).

We consider three cases to prove the property (8).
Case One: If [h]i + [w]i < 0, we obtain from the first

item of [̃h]i in (41) and [w̃]i in (10) that DNRi = (([̃h]i )/
([w̃]i )) = −1.

Case Two: If [h]i + [w]i ≥ 0 and [w]i < 0, we have [h]i >
0 and [h]i > −[w]i | > 0. We then obtain from the second item
of [̃h]i in (41) and [w̃]i in (10) that DNRi = (([̃h]i )/([w̃]i )) =
(([h]i )/([w]i )) < −1.

Case Three: If [h]i+[w]i ≥ 0 and [w]i > 0, we obtain from
the third item of [̃h]i in (41) and [w̃]i in (10) that DNRi =
(([̃h]i )/([w̃]i )) = (([h]i · κi + ρi )/([w]i · κi )). Recalling
[w̃]i > 0, if κi > 0, the (([h]i · κi + ρi )/([w]i · κi )) ≤ −1 is
equivalent to

ρi ≤ −([h]i + [w]i )κi < 0, with κi > 0, [h]i + [w]i ≥ 0.

(43)

If κi < 0, the (([h]i · κi + ρi )/([w]i · κi )) ≤ −1 is equivalent
to

ρi ≥ −([w]i + [h]i )κi ≥ 0, with κi < 0, [h]i + [w]i ≥ 0.

(44)

We finally conclude from (43) and (44) that DNRi =
(([̃h]i )/([w̃]i )) ∈ (−∞,−1] under condition (7). According
to Theorem 4, we arrive at property (8), which completes the
proof.

APPENDIX C

PROOF OF THEOREM 2

We first consider the case t = 1. Line 5 of Algorithm 2
means that the knowledge matrix K⟨1⟩ includes all the elements
of knowledge set K, whose corresponding entries in the
masking matrix M⟨1⟩ are frozen to be zeros. Consequently,
both M⟨1⟩⊙A and U⟨1⟩ =M⟨1⟩⊙W⟨1⟩ exclude all the elements
of knowledge set K. With the consideration of 2, we thus
conclude that M⟨1⟩ ⊙ A · m(x, r⟨1⟩)+ f(x) in the ground-truth
model (11) and a⟨1⟩ ⊙ act(U⟨1⟩ · m(x, r⟨1⟩)) in the output

computation (12) are independent of the term K⟨1⟩ ·m(x, r⟨1⟩).
Moreover, the activation-masking vector indicates that the
activation function corresponding to the output’s i th entry
is inactive if all the entries in the i th row of the masking
matrix are zeros. We arrive at the conclusion that the first PhN
layer strictly complies with the available physical knowledge
about the ground truth (11), i.e., if the [A]i, j ∈ K, the
((∂[y⟨1⟩]i )/(∂[m(x, r)] j )) ≡ ((∂[y]i )/(∂[m(x, r)] j )) ≡ [A]i, j

always holds.
We next consider the remaining PhN layers. Considering

the Line 16 Algorithm 2, we have

[y⟨p⟩]1:len(y)

= [K⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)]1:len(y)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= Ilen(y) · [m(y⟨p−1⟩, r⟨p⟩)]2:(len(y)+1)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y) (45a)

= Ilen(y) · [y⟨p−1⟩]1:len(y)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y) (45b)

= [y⟨p−1⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= [K⟨p−1⟩ ·m(y⟨p−2⟩, r⟨p−1⟩)]1:len(y)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= Ilen(y) · [m(y⟨p−2⟩, r⟨p−1⟩)]2:(len(y)+1)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= Ilen(y) · [y⟨p−2⟩]1:len(y)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= [y⟨p−2⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ · m̆(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= · · · = [y⟨1⟩]1:len(y)+[a⟨p⟩ ⊙ act(U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩))]1:len(y)

= [K⟨1⟩ ·m(x, r⟨1⟩)]1:len(y)

+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= K⟨1⟩ ·m(x, r⟨1⟩)+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

(45c)

where (45a) and (45b) are obtained from their previous steps
via considering the structure of block matrix K⟨t⟩ (generated
in Line 10 of Algorithm 2) and the formula of augmented
monomials: m(x, r) = [1; x; [m(x, r)](len(x)+2):len(m(x,r))]
(generated via Algorithm 1). The remaining iterative steps
follow the same path.

The training loss function is to push the terminal output of
Algorithm 2 (i.e., ŷ = y⟨p⟩) to approximate the real output y,
which in light of (45c) yields

ŷ

= K⟨1⟩ ·m(x, r⟨1⟩)+ [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= K⟨1⟩ ·m(x, r⟨1⟩)+ a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
(46)

where (46) from its previous step is obtained via consider-
ing the fact len(̂y) = len(y) = len(y⟨p⟩). Meanwhile, the
condition of generating a weight-masking matrix in Line 11
of Algorithm 2 removes all the nodal connections with the
elements of knowledge set K included in K⟨1⟩. Therefore,
we can conclude that in the terminal output computation (46),
the term a⟨p⟩ ⊙ act(U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)) does not have an
influence on the computing of knowledge term K⟨1⟩ ·m(x, r⟨1⟩).
Thus, the Algorithm 2 strictly embeds and preserves the avail-
able knowledge about the physics model of ground truth (1),
or equivalently the (11).
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APPENDIX D

PROOF OF THEOREM 3

By Theorem 6 in Appendix A, the number of augmented
monomials of d cascading PhNs (16) is obtained as

d∑

p=1

len(m(x, r⟨p⟩)) =

r⟨1⟩∑

s=1

(n + s − 1)!

(n − 1)s!
+ 1

︸ ︷︷ ︸
the first PhN

+

d−1∑

v=1

r⟨v+1⟩∑

s=1

(
n⟨v⟩ + s − 1

)
!(

n⟨v⟩ − 1
)
!s!
+ d − 1

︸ ︷︷ ︸
the remaining PhNs

.

(47)

The condition (17) implies that r > r⟨1⟩, which in conjunction
with (40), lead to

len(m(x, r)) =

r⟨1⟩∑

s=1

(n + s − 1)!

(n − 1)!s!
+

r∑

s=r⟨1⟩+1

(n + s − 1)!

(n − 1)!s!
+ 1.

(48)

Subtracting (47) from (48) yields (18).

APPENDIX E

DERIVATIONS OF SOLUTION (27)

With the consideration of (23)±(26), the safety formulas:
[s(u(k))]1 = [̂c]1 and [s(u(k))]2 = [̂c]2 can be rewritten as

λ1 [̂u(k)]
2
1 + λ2 [̂u(k)]

2
2 = [̂c]1 − [b]1 (49)

[
θ(k)
γ (k)

]⊤
P2

[
θ(k)
γ (k)

]
= s11 [̂u(k)]

2
1 + 2s12 [̂u(k)]1 [̂u(k)]2

+ s22 [̂u(k)]
2
2 = [b]2 − [̂c]2. (50)

We now define

µ1 ≜
[̂c]1 − [b]1

λ1

, λ ≜
λ2

λ1

, b̄ ≜ [b]2 − [̂c]2 (51)

leveraging which, the (49) is rewritten as

[̂u(k)]21 = µ1 − λ [̂u(k)]22 (52)

and we can obtain from (50) that

4s2
12 [̂u(k)]

2
2 [̂u(k)]

2
1

= b
2
+ s2

11 [̂u(k)]
4
1 + s2

22 [̂u(k)]
4
2 − 2bs11 [̂u(k)]

2
1

− 2bs22 [̂u(k)]
2
2 + 2s11s22 [̂u(k)]

2
1 [̂u(k)]

2
2

substituting (52) into which yields

ϖ1 [̂u]
4
2(k)+ϖ2 [̂u]

2
2(k)+ϖ3(k) = 0 (53)

where

ϖ1 ≜ s2
11λ

2
+ s2

22 − 2s11s22λ + 4s2
12λ (54)

ϖ2 ≜ 2b̄s11λ − 2s2
11µ1λ − 2b̄s22 + 2s11s22µ1 − 4s2

12µ1 (55)

ϖ3 ≜ b̄2 + s2
11µ

2
1 − 2b̄s11µ1. (56)

Considering û2
2(k) ≥ 0, the solution of (53) is

[̂u]22(k) =

√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1

(57)

substituting which into (52) yields

[̂u]21(k) = µ1 − λ

√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1

. (58)

The û(k) is straightforwardly obtained from (57) and (58)

û(k) =


±

√√√√
µ1 − λ

√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1

;

±

√√√√
√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1




which, in conjunction with (26) and Q−1 = Q = Q⊤, leads
to

[
θ(k)
γ (k)

]
= Q1




±

√√√√
µ1 − λ

√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1

±

√√√√
√
ϖ 2

2 − 4ϖ1ϖ3 −ϖ2

2ϖ1



. (59)

Substituting the notations defined in (51) into (59) and
(54)±(56) results in (27) and (28)±(30), respectively.
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