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The antisymmetrized geminal power (AGP), a wave function equivalent to number-projected Hartree-Fock-
Bogoliubov (HFB), and number-projected Bardeen—Cooper—Schrieffer (BCS) when working in the paired
(natural orbitals) basis, has proven to be an excellent reference for strong pairing interactions. Several correlation
methods have also been applied on top of AGP. In this work, we show how AGP can also be applied to spin
systems by simply basing its formulation on a spin SU(2) algebra. We here implement spin AGP and spin
AGP-based correlation techniques and benchmark them on the XXZ and J; — J, Heisenberg models, both in one
and two dimensions. Our results indicate that spin AGP is a promising starting point for modeling spin systems.
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I. INTRODUCTION

Model spin Hamiltonians provide valuable insight into
magnetic materials, high-temperature superconductors, and
biochemical processes such as nitrogen fixation [1-3]. They
are also important for the study of quantum sensors, cold
atoms in optical lattices, and fault-tolerant quantum comput-
ers [4—6]. These model Hamiltonians capture diverse physical
phenomena without the details of a fully ab initio description.
Nevertheless, with a few exceptions [7], lattice models of spin
systems beyond one dimension are not exactly solvable, and
we have to resort to approximate numerical methods.

Here we focus on the ground states of spin lattice mod-
els, whose computation is already challenging due to various
quantum phases that arise from different interaction strengths
[1,8—12]. Particularly, analogous to Hartree-Fock in electronic
structure theory, spin-wave functions based on a single spin
configuration are inadequate in the strongly correlated regime
[13,14]. However, our recent work suggests that methods in
electronic-structure theory can be useful for studying spins if
they are mapped to fermions without constraints [15].

The antisymmetrized geminal power (AGP) wave func-
tion [16,17] has been shown to be a good starting point for
certain strongly correlated problems. When correlated with
configuration interaction (CI) or coupled cluster (CC) theory
[18,19], AGP yields quite accurate results for the reduced
Bardeen—Cooper—Schrieffer (BCS) Hamiltonian, which mod-
els the kinds of strong correlations seen in conventional
superconductors [20,21].

Though AGP was originally developed for paired
fermionic systems, the pairing algebra generators satisfy the
same SU(2) algebra as spin operators. Inspired by Anderson’s
resonating valence bond theory, which was applied to study
both the Heisenberg model and Hubbard model [22,23], we
propose to treat spin systems via AGP. Our results suggest
that spin AGP (sAGP) and correlated methods based on it
are computationally affordable techniques that can accurately
describe the ground states of strongly correlated spin systems.
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II. THEORY
A. Antisymmetrized geminal power

The central concept of AGP [16,17] is the geminal, a two-
electron wave function created by a geminal creation operator

1
FT:E > che 1)

1<p,g<2M

where 7 is antisymmetric, c; is the fermion creation operator
for spinorbital p, and indices p, ¢ run over all 2M spinorbitals.
An AGP state with 2N electrons is created by occupying the
same geminal N times,

1
IAGP) = — THY-), 2)

where |—) is the physical vacuum.
In practice, it is more convenient to work in the natural
orbital basis of the geminal, where 1 is quasidiagonal [24],

n:é( ’ '7”), 3)
p=1 N 0

displaying a pairing scheme of the spin-orbitals [19]. On this
basis, we can write

M
rf=% "n,P, )
p=1
in which we have defined
to_ T
Pp =c,cp (®)]

and have reindexed the fermion creation operators by p and
its paired companion p, where p enumerates all M pairs.
The AGP then assumes the form of an elementary symmetric

polynomial:

I<pi<..pn<M

|AGP) = Npo - -Mpy PL . P 1=). (6)
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Because AGP is equivalent to number-projected Hartree-
Fock-Bogoliubov (HFB) [25] or number-projected BCS in the
natural orbital basis, it can be optimized with mean-field cost
of O(M?) [26-28], and its variationally optimized result is
guaranteed to be at least as good as Hartree-Fock, which is
just a special case of AGP in which only N of the n values are
nonzero.

In this paper, we will not worry about the norm of the AGP
wave function, which can be normalized by multiplying all
the n values by the same constant.

B. AGP for spin systems

The pair creation operator P; and its adjoint P,, together
with the number operator

N, = c; cp —|—C; Cps (7)

close the the SU(2) commutation algebra:
[Py, PJ1 = 8,5 (1 = Np), (8a)
[Np. PJ1=268,,P]. (8b)

Following Anderson [29], we can relate the AGP commu-
tation algebra to the spin—% SU2) :

(S5, 571 = 28, S5, (9a)
[S;’ S;] =3pg S;' (9b)

Comparing with Egs. (8), we see that by the bijective
mapping

Sy < P, (10a)

S, < P, (10b)
N, —1

N > (10c)

we can simply transcribe any expressions for standard AGP
matrix elements in the zero seniority [30] fermion space,
where all electrons are paired, to those for spin AGP (sAGP
for short), and can readily generalize any of the techniques
we have introduced for the correlation of AGP to sAGP
[18,19,27,31,32]. In the standard pairing AGP case, we have

P,|-) =0, an

where |—) denotes the physical vacuum. The corresponding
spin vacuum state ||}) is the product state of |-spins on all
sites, and satisfies

S,14)=0. (12)
The sAGP wave function is thus
1 -
SAGP) = - ()14, (13a)
(13b)

r :Z”PS;’
p

where we have a total of N 1-spins and (M — N) |-spins, so
M
(sAGP|S*|sAGP) = N — ER (14)

At half filling (N = M/2), the SAGP wave function is magnet-
ically neutral.

Incidentally, the inverse mapping of Eqgs. (10) has been
used to implement quantum computing algorithms for the
standard pairing AGP state [33-35].

Let |p1p2 - - - pn) be a spin product state (SPS) where the
spins are up on sites py, pa, - - - py and down on the others.
Equations (13) imply that SAGP is a linear combination of all
SPSs in the Hilbert space of the problem, with coefficients

(P1p2 -+ - PNISAGP) = np 1y, -+ - Ny (15)

This means that SAGP is a particularly simple matrix product
state, whose matrix elements are straightforward and inexpen-
sive to compute [26-28].

We have noted that standard AGP is equivalent to number-
projected BCS, which suggests that there should be an
equivalent projected mean-field understanding of sSAGP. This
is indeed the case: sSAGP is simply the S*-projected spin BCS
state, where spin BCS (sBCS) is defined as

M
[sBCS) =

p=

(1+1,S9)I0), (16)
1

in analogy with the standard BCS given in terms of pairing
operators P; and the physical vacuum. When the spin problem
is mapped to fermions, spin BCS corresponds to generalized
Hartree-Fock (GHF) in which the spin-orbitals break not only
S? but also S¢ symmetry [36-38].

In this paper, in which we specialize to spin Hamiltonians,
the GHF wave function has seniority symmetry dictated by the
spins, and one could think of SAGP as an S*-projected general
SPS.

II1. APPLICATIONS

We benchmark sSAGP on two families of spin-lattice sys-
tems, the XXZ and J; —J, Heisenberg models [1]. The
former captures anisotropic interactions, while the latter in-
cludes interactions beyond nearest neighbors.

We focus predominantly on the nearest-neighbor XXZ
model. We start with the one-dimensional (1D) case as a pro-
totypical example that illustrates the most important features
of sSAGP and is exactly solvable via Bethe Ansatz [39]. We
then discuss various two-dimensional (2D) XXZ lattices as
well as the J; — J, square lattice, which are not integrable, in
general.

We first explore SAGP on its own for these systems. While
sAGP itself is of modest accuracy, in general, we want to
understand its properties to provide context for the correlated
SAGP results, which we then compare with conventional cor-
relation methods to show that SAGP is a better starting point
for strongly correlated spin systems.

A. Spin AGP for the one-dimensional XXZ model
The XXZ Hamiltonian is

Hyxz =J ) (SyS:+ 5,80+ ASSSY) (17a)
(pq)

1
— + Q- - qt+ Z
=J Z[E (Sfs, +s, Sq)+Asps;], (17b)
(pq)
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FIG. 1. Energies in the eight-site 1D XXZ Hamiltonian for different S* sectors and open boundary conditions (left panel) or periodic
boundary conditions (right panel). We compare the exact results (lines) against the mean-field optimized sAGP (points). Different colors
correspond to different S sectors. Spin AGP is very accurate for A < —1 and exact for all S* sectors at A = —1. We note that sAGP is always
exact for S* = 3 and S* = 4, as explained in Sec. III A 1. The curves for $° = 0 and S* = 1 are hard to distinguish for A < 0 in this figure but

they are not identical and S* = 0 has a higher energy.

where p and ¢ index lattice sites and the notation (pq) restricts
the summation over p and ¢ to nearest neighbors. Generally
speaking, we take J = 1 in this paper unless otherwise speci-
fied, so the system is antiferromagnetic when A > 1.

In the 1D case, sites p and g are nearest neighbors
if |[p—gq|=1. With J > 0, it exhibits a Néel antiferro-
magnetic phase for A 2> 1 and a ferromagnetic phase for
A < —1. In the interval region |A] < 1, the system is in
the XY phase, characterized by gapless excitations and
long-range correlations [1]. While the ferromagnetic and
antiferromagnetic phases are fairly simple to describe, the
XY phase is much more complicated, and methods based
on a single spin configuration struggle (see below and also
Refs. [13,14]). Spin AGP, however, is exact at A = —1,
which gives us hope that it will be able to accurately de-
scribe this challenging phase as A progresses from —1
to +1.

1. Energies for different S* sectors

Let us start with an overview of the exact and sAGP
ground-state energies for different S° quantum numbers and
different values of A, as shown in Fig. 1. For A < —1, the
exact ground state occurs when all the spins are aligned,
ie., at $* = £M/2. For A > —1, the exact ground state is
instead §° = 0. At A = —1, the different S* sectors are exactly
degenerate. Spin AGP is exact at A = —1 for all $° sectors
and is highly accurate for A < —1. For A > —1, sAGP is
exact for $° = j:% and §° = :I:(% — 1), but shows larger
error as we approach half filling (S° = 0). As a matter of fact,
SAGP is always exact at the §° = £% and §° = +(¥ — 1)
sectors as it has sufficient variational flexibility. $* = :l:%
corresponds to the state where all the spins are aligned
up or down and sAGP naturally capture it by letting N =
0 or M, respectively. S* = :I:(%l — 1) means the system has
only one 1-spin (or |-spin) and the exact ground state takes

the form

W) = ¢SS 1),

p

(18)

which is just the SAGP state with N = 1.

2. Bimodal extreme sAGP

We now turn to the nature of the SAGP ground state. We
find that n values on adjacent sites have opposite signs for all
values of A. When A is large and negative, the n values on
the left (or right) half of the lattice are large in magnitude, and
on the other half are small. For a site p, larger |n,| correspond
to larger (S5)s thus, the fact that the large |n| values localize
on the left (or right) side of the lattice means that the 1 spins
localize on this side, i.e, we have a two-block ferromagnetic
solution. Due to the breaking of inversion lattice symmetry, 1
spins can either localize on the left half or right, corresponding
to two degenerate states. On the other hand, when A is large
and positive, alternating sites exhibit a pattern of large and
small |n|, corresponding to a Néel arrangement of spins. These
observations are exemplified by the eight-site XXZ chain with
open boundary conditions (OBCs) and §° = 0, whose 7 values
are depicted in Fig. 2.

The more interesting region is of course when —1 < A <
1, particularly at A = —1, where SAGP is exact. In this region,
the SAGP wave function is what we refer to as a bimodal
extreme, for which we can choose n=(1,—-1,1,—1...),
as can be seen from Fig. 2. An sAGP is extreme when all
n values are the same in magnitude, which corresponds to
each site having equal (S§°). We refer to the SAGP as bi-
modal when the n take on two values, in this case, *£1.
This bimodal extreme sAGP is the exact ground-state wave
function for A = —1 and is the lowest energy sAGP state
throughout this XY phase. Note that extreme AGP also has
a place in the reduced BCS Hamiltonian H = Zp €pN, —
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FIG. 2. The sAGP geminal coefficient 1 as a function of A for
the eight-site XXZ Heisenberg model with open boundary conditions
and S* = 0. For —1 < A < 1, the 7 values are independent of A, and
—0.6 < A < 0.6 has been omitted from the plot. We order the sites
from left to right as n; to ns.

G - P;f P,, where, as the interaction strength G goes to
infinity, the values of all  approach the same [18], exhibiting
a unimodal extreme AGP that carries off-diagonal long-
range order, i.e., superconductivity without number-symmetry
breaking [21].

We should emphasize again that we do not artificially
choose 1 to have a bimodal extreme pattern. Instead, we
variationally optimize the n values, and observe that across a
wide range of A values, for many different lengths of the XXZ
chain and for many different S* eigenvalues, and for both pe-
riodic boundary conditions (PBCs) andOBCs, the variational
optimization selects these 1 values. We also note that bimodal
extreme SAGP is always a stationary point of the energy, and
the points at which the values of n begin to change from
extreme occur when it is no longer the lowest energy solution.

Finally, we should say a few words about the physical
meaning of the 1 values. First, we note that the sign of 7,1,
determines the sign of (S;7S; + S, SF) [26]. This can also
be seen from Fig. 3. If two sites have oppositely signed n
values, those sites tend to be antiferromagnetically coupled.
The alternating signs of the n values in the bimodal extreme
AGP therefore reflect the Marshall sign rule [40]. The absolute
value of n on a site, as we can see from Egs. (13), determines
the chance that the spin on that site is flipped to spin up. Sites
with very large or very small relative n values are sites which
are not strongly entangled with the other sites. Sites for which
the absolute values of 7 are similar are more strongly entan-
gled. The bimodal extreme AGP is actually the maximally
entangled state, and in this case each site has (S%) = 0.

3. Approaching the thermodynamic limit

Figure 4 shows the energy error per site for the open bound-
ary XXZ chain with different lengths in the S* = 0 sector.
The energy per site in the thermodynamic limit (TDL), e,
is extrapolated by fitting

E(M) 1 1

—=€0+€1—+€2W+---,

i i (19)

FIG. 3. Correlation function (SyS, + Sy S}) /2 for the eight-site
XXZ Heisenberg model with open boundary conditions and $° = 0
for A = —1.30,0.00 and 1.30, corresponding to the three phases
of the XXZ model. We see that (S7S, + S757)/2 have alternating
signs for even and odd p, which is a result of the alternating signs
of n,.

where we truncate the expansion at second order 62#. We
use the same extrapolation scheme for both the SAGP and
the exact energies, and display their differences in the TDL in
Fig. 4. We observe that for all lattice lengths, SAGP reaches its
maximum error around A = 1, and the value of A at which the
error is the largest grows with the system size. The maximum
SAGP error per site in the TDL is around 0.18. We can also
see that sAGP is quite accurate in the ferromagnetic regime
(A < —1) for all system sizes; especially, as the system size
grows, the per-site error reduces.

4. The ferromagnetic X XZ model

So far, we have focused on the antiferromagnetic
XXZ model, where J =1. We now briefly discuss the

Energy error per site for XXZ chains
0.2

0.18

0.16

—_— I12 sites
—— 16 sites
——— 24 sites

—_— I48 sites
—— 64 sites
—— TDL

014 F 32 sites

0.12
0.1
0.08
0.06
0.04
0.02
0

~0.02 . . . . .
-15 -1 -0.5 0 0.5 1 15

Energy Error per Site

FIG. 4. Energy error per site for 1D XXZ chains with different
lengths with open boundary conditions. The thermodynamic limit
result is obtained by fitting the SAGP energy result by the inverse
of the lattice length. We notice that the per-site energy error grows as
system size grows for A > —1. Itis also noticeable for A < —1, the
per-site energy error reduces as system size grows.
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ferromagnetic XXZ model, in which J = —1. Because of
the Hamiltonian’s overall sign change, the bimodal extreme
sAGP, which is the ground state for the antiferromagnetic
XXZ model at A = —1, becomes the highest energy eigen-
state at this point for the ferromagnetic XXZ model. At the
Heisenberg point A = 1, an extreme unimodal SAGP where
all the n values are the same becomes the ground state for the
ferromagnetic XXZ model for all $¢ sectors with an energy of
E = ——M or £ = ——(M — 1) for PBCs and open boundary
COIldlthl’lS respectlvely

B. Spin SU(2) algebras and multimodal extreme sAGPs

The bimodal extreme sAGP for antiferromagnetic XXZ
model and the unimodal extreme sAGP for ferromagnetic
XXZ model for the 1D mentioned above are just two special
cases of multimodal extreme sAGPs, all of which can be
formed from collective spin operators which realize a collec-
tive SU(2) algebra,

= DK = Y =5
P p

2
=7 With n being

These three operators

(20)

where £k is the lattice momentum. In 1D k=

an integer restricted to —% <n< 2
fulfill the SU(2) commutation algebra

(K., K, 1=2K%,
(K%, K& = £K.

(21a)
(21b)

Note that for momentum k& = 0, the K-SU(2) algebra reduces
to the spin SU(2) algebra.

This K-SU(2) algebra has been recently introduced in the
context of quantum many-body scars in spin lattice systems
[41,42]. However, our goal here is to use it to construct a ref-
erence Ansatz to study many-body correlations in spin-lattice
ground states.

The (unnormalized) K-spin extreme sSAGP state is a Kj-
spin-¥ multiplet,

INe) = (KON,

with K? =N — % and K? = %(% +1). Note that each site
has the same (S°) in this wave function. The special cases k =
27” for integer m constitute the m-modal extreme AGP states.
In these cases, we have

(22)

N

Ze 2”5* 1).

p

INe) = (23)

One can see that the n values are the mth roots of unity. For
m =1, 2, 3, the m-modal extreme AGP states are specifically
called unimodal, bimodal, trimodal extreme AGP, respec-
tively. These m-modal extreme AGP states are a special class
of AGP states, which, as we see here, are the Kj;,,-spin
eigenstates.

We can now ask under what conditions the m-modal
extreme AGP states |Ny) are eigenstates of the XXZ Hamilto-
nian. As demonstrated in Ref. [37], it depends on the geometry
of the lattice. For the 1D XXZ Hamiltonian with PBCs, the

condition is

A = cos(h) 2 24)
=cos(k) =cos | — |,
M
as shown in Appendix B. In these cases, we have
M
Hxxz|Ni) = ZNNk)' (25)

Moreover, the unimodal extreme sAGP is the highest energy
state at the Heisenberg point A = 1, and the bimodal extreme
sAGP is the ground state for A = —1. The result can also be
extended to OBC. In the interval —1 < A = cos(zj’tf]—") <1,
the multimodal extreme sAGP are eigenstates of the Hamil-
tonian, known as scarred states, and they describe nonthermal
behavior [43,44].

Reduced density matrices of extreme sAGP states are triv-
ial to compute because all elements are identical (ratios of
combinatorial numbers), making it possible to correlate sSAGP
with low computational cost.

Multimodal extreme sAGPs turn out to be the lowest en-
ergy sAGP states not only for the XY phase (—1 < A < 1) of
the 1D XXZ model but also for the 2D XXZ and 2D J; — J,
models, which will be discussed in Secs. IIID and IIIE. As
with the 1D XXZ model, a multimodal extreme sAGP is the
exact ground state in the 2D XXZ Hamiltonian at a specific
lattice-dependent value of A.

It should be emphasized that not every sAGP is of extreme
multimodal form; for example, the SAGP ground state in the
1D XXZ model for |A| 2 1 is usually not extreme sAGP.
We observe, however, that for the spin lattice models that
we have studied in this paper, the lowest energy SAGP state
frequently has multimodal extreme character as obtained from
variational optimization.

C. Correlating spin AGP in the one-dimensional XXZ model
1. Incorporating Jastrow-type correlators

After studying the properties of SAGP solutions, we can
now look at improving them by adding correlations. Corre-
lating AGP with the equivalent of the AGP killing operator
presented in previous work [18],

Ky =n, P/ Py+n, P} P,

+ 5 NpNg (N, Ny — N, — Ny), (26)
is not helpful here. This is because whenever nf, = 773’ as in
the case of a bimodal extreme SAGP state, K, is Hermitian
and K/, also kills SAGP.

Fortunately, we can use Hilbert space Jastrow correlators
instead, which generate the same manifold as do the killing
operators in the 1712) #* ng case [19] because both ultimately
correspond to a geminal replacement theory [31].

By Jastrow-type correlators, we mean operators of the form

1
=3 > NN, (27a)
p=<q
Y ey (255 —1) (285 - 1). (27b)
p<q
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FIG. 5. Energy errors for the 14-site 1D XXZ model with open
boundary conditions in the §* = 0 sector, on linear scale (top panel)
and logarithmic scale (bottom panel). The J,-CI and J,-CC methods
are based on SAGP. Spin product state results are also included in the
top panel for comparison.

Since the lower-order Jastrow operator J; = ) «, N, al-
ready lurks inside J, [32], we can define the J, operator for
SAGP as

J —l oy S2 82 (28)
2= 4 Pa=p*=q
p<q
and will use this definition hereafter.
10-site 1D XXZ model
0.15 T T T T
sAGP
Bimodal sAGP J,-CC
—— Mean-field sAGi’ J,-CC
0.1 F J

h]
=
g 005} .
g
is
B 0 ]
3
=
5]

-0.05 | J

-0.1 L L L )

-1 -0.5 0 0.5 1 1.5

A

FIG. 6. Errors in the sAGP and J,-CC energies based on the
mean-field optimized sAGP and the bimodal extreme sAGP in the
ten-site XXZ Heisenberg chain with open boundary conditions in the
§% = 0 sector.

FIG. 7. Energy errors for the 12-site 1D antiferromagnetic XXZ
model with open boundary conditions in the §¢ = 0 sector, on linear
scale (top panel) and logarithmic scale (bottom panel). The J,-CI and
J,-CC methods are based on sAGP, while CIDQ, CCD, CCDQ, and
CCDQG6 are based on spin product state.

The simplest way to correlate SAGP using these operators
is by what we refer to as J,-CI, which writes

|J,-CI) = J,|sAGP), (29)

where we generally use the mean-field optimized sAGP as
a reference. We then evaluate the energy via an expectation
value and minimize it with respect to the amplitudes .

Somewhat more sophisticated is J,-CC, where we use an
exponential Ansatz instead:

1,-CC) = ¢”|sAGP). (30)

Although intractable in its variational form, a similarity-
transformed approach is quite feasible [32,45]. The energy
and residual equations are

Ej,-cc = (SAGP|H|sAGP), (3la)
0 = (SAGP|S? S5 (H — Ej,—cc)|SAGP),  (31b)

where
H=e¢"He". (32)

Although the commutator expansion of H does not truncate, it
can be analytically resummed to yield an expression in terms
of exponentials of one-body operators J;, which act on one
SAGP state to produce another [32]. Both J,-CI and J,-CC
have computational costs proportional to O(M*) for these
lattice models.

Figure 5 shows errors of J,-CI and J,-CC for the 14-site
antiferromagnetic XXZ model with OBCs. We see that J,-CI
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FIG. 8. Assorted 2D lattices. From left to right, these are the square lattice, the honeycomb lattice, the kagome lattice, and the triangular
lattice. The purple dashed shape, wherever present, indicates the smallest rectangular cell for the honeycomb lattice and the unit cell for the
kagome lattice and triangular lattice. The red, blue, and green open circles indicate the different n values for the SAGP ground state in the XXZ
Hamiltonian, which is bimodal extreme for the square and honeycomb lattices, but trimodal extreme for the kagome and triangular lattices.

eliminates about half the error of SAGP, while the improve-
ment given by J,-CC is significantly larger, with an error one
order of magnitude smaller than the error of SAGP itself. This
is particularly true when J,-CC is based on the bimodal ex-
treme sAGP everywhere, and not just where this is the lowest
energy sAGP (Fig. 6). A particularly interesting feature is that
J,-CC is exact at A = 0. This is true in 1D but not in higher
dimensions. In Appendix A, we prove this exactness for both
OBCs and PBCs.

16-Site Square XXZ with PBC

0 T T T
-2}
-4}
-6 |
@ -8 po00000OOG _C)*O_Q_C_)_C_)-OOOOOOOOOOO-(
) ‘“\
& -10 =
~12 ]
_ _— S,=8 S, =04
14 _— Sz =6 szact
~16 _— S,=4 o sAGP
18 . %2 .
-25 -2 -15 -1 -05 0 0.5 1 15
A

18-Site Kagome XXZ with PBC

i _— S,=9 S,=1]
14 —  §-7 —  §=0
~16 } —_— S,=5 Exact
18 L L . SZ :|3 © L SAGP
-15 -1 -0.5 0 0.5 1 15

2. Comparison with conventional correlation methods

To demonstrate the advantage of sAGP-based correlated
methods over conventional correlation methods based on SPS,
we compare their energies for the 12-site antiferromagnetic
XXZ model. Figure 7 shows the energy errors of sAGP-
based J,-CI and J,-CC along with SPS-based configuration
interaction doubles and quadruples (CIDQ) and CC doubles
to hextuples (CCD, CCDQ, CCDQ6). The two sAGP-based
correlated methods have the same computational complexity
as SPS-based CIDQ and CCDQ, scaling as O(M*), while

16-Site Honeycomb XXZ with PBC
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\
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18-Site Triangular XXZ with PBC
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FIG. 9. Multimodal extreme SAGP and exact energies of the XXZ Hamiltonian for different lattices and S* sectors. The lines correspond to

the exact energies and the circles to the multimodal extreme sAGP results. Different colors correspond to different S* sectors. Top left: Square
lattice. Top right: Honeycomb lattice. Bottom left: Kagome lattice. Bottom right: Triangular lattice. All exact and sAGP results have the same
energy for all $° sectors at A = —1 (square or honeycomb lattice) or at A = —1/2 (kagome or triangular lattice). We note sAGP is always
exact for §* = :I:% and $° = :I:(% — 1) (not shown in the figure) for these 2D lattices, for the same reason as in the 1D case discussed in
Sec. IITA 1.
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16-Site Square XXZ with PBC 16-Site Honeycomb XXZ with PBC
-7 -5

Mu‘ltimodalI sAGP A
Optimized sAGP ——— |
Exact

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

18-Site Kagome XXZ with PBC
4 :
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-5 Exact
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18-Site Triangular XXZ with PBC

Multimodal sAIGP e
Optimized sSAGP —— |
Exact
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FIG. 10. Exact energies and those of the multimodal extreme sAGP and mean-field optimized sAGP for the XXZ Hamiltonian with $* = 0.
Top left: 16-site square lattice. Top right: 16-site honeycomb lattice. Bottom left: 18-site kagome lattice. Bottom right: 18-site triangular

lattice.

CCD and CCDQ6 scale as O(M?) and O(M®), respectively.
We note in passing that odd CC excitations (singles, triples,
etc.) do not contribute because of S* symmetry.

The results of SAGP-based methods are generally superior
to those of SPS-based methods with equivalent computational
scaling for A < 1, which corresponds to the ferromagnetic
and XY phases. It is important to note that SAGP is exact at
A = —1, whereas conventional CC calculations break down
in this vicinity. As noted above, J,-CC is also exact at A =0
and is the most accurate low-scaling correlated method over-
all. One may, of course, use an S*-broken SPS reference to
obtain better CC energies [14], but at the cost of breaking
physical symmetries of the Hamiltonian, which SAGP and
correlated SAGP conserve.

D. The two-dimensional XXZ model

We next test our methods on several XXZ 2D lattices
including the square lattice, honeycomb lattice, triangular
lattice, and kagome lattice (Fig. 8). In Appendix C, we show
analytically that for both PBCs and OBCs with certain bound-
ary shapes, the bimodal extreme SAGP is the ground state
of the square and honeycomb lattices at A = —1, while the
trimodal (m = 3) extreme sAGP is the ground state of the
triangular and kagome lattices at A = —0.5. This trimodal
extreme sAGP has three distinct  values which we denote by
N1, 02, and 3. As explained in Sec. III B, these three distinct

n values are the three cube roots of 1:

.2 .
13T 1
T, m=e

m=1m=e i (33)
The arrangements of the 1 values in different lattices are
illustrated in Fig. 8. These analytical results are corroborated
by numerical calculations as shown in Fig. 9. The ground
states of the 2D XXZ models at these special A values have
been reported in Ref. [36-38], though they are expressed in a
form different from sAGP.

While we do not wish to dwell on these various lattices in
detail, we have a few things to point out.

First, as we can see in Fig. 10, sAGP is extreme over a
range of A for all of the lattices. As with the 1D case, the
SAGP ground state becomes nonextreme around A = 1 for all
of the 2D lattices considered here. It also becomes nonextreme
for some negative A, but the crossover point is lattice depen-
dent. We notice that the crossover points for different lattices
are correlated with the A values at which the extreme sAGP
is exact, as discussed above.

Second, as shown in Fig. 11, J,-CC is no longer exact
at A =0 for 2D lattices, as opposed to the 1D case. This
is reminiscent of Jordan—Wigner transformed Hartree-Fock
being exact at A =0 for the 1D spin models but not for
their 2D counterparts [15,46]. Although the results of J,-CC
or J,-CI are not as good in 2D as they are in 1D, they still
capture more than half the correlation energy missing from the
mean-field optimized SAGP methods. They also outperform
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16-Site Square XXZ with PBC
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FIG. 11. Energy errors for the mean-field optimized sAGP and for J,-CI and J,-CC based on the multimodal extreme sAGP, in various
XXZ lattices with $* = 0. Top left: 16-site square lattice. Top right: 16-site honeycomb lattice. Bottom left: 18-site kagome lattice. Bottom
right: 18-site triangular lattice. Conventional CCDQ results are also shown for the square and honeycomb lattice as a comparison. Note CCDQ
fails to converge for square and honeycomb lattice at A < 0.65 and A < 0.45, respectively. Also note that J,-CC does not converge for the

kagome lattice and has been omitted from the plot.

the conventional SPS-based correlation method (CCDQ here)
for A < 1. The error of SPS-based CCDQ grows rapidly as
A goes below 1 until it eventually encounters convergence
issues. Conventional CCDQ fails to converge for triangular
and kagome lattices as well. While J,-CC also has difficulty
converging for the kagome lattice, it behaves reasonably well
for the triangular lattice.

TABLE I. Energy of the J; — J, model at J, = 1/2 for different
system sizes. We see the energy is only dependent on the system
size. For small system sizes, the optimized sAGP is bimodal but
nonextreme while, for large system sizes, the bimodal extreme sAGP
becomes lower in energy than the nonextreme sAGP.

System size Extreme Nonextreme Energy difference
4x4 —5.0667 —5.2672 0.2005
4x8 —9.0323 —9.2417 0.2094
4x16 —17.0245 —17.2296 0.2050
8x38 —17.0245 —17.2296 0.2050
8 x 12 —25.1109 —25.2256 0.1146
12 x 12 —37.4387 —37.2230 —0.2157
16 x 16 —66.4843 —65.2206 —1.2637

We also test our sSAGP-based methods on the 2D square
J, — J, lattice with PBCs,

Hypy = ) S, Sp+1 ) (5, S),
(pa) (pa))

(34)

where ({pq)) denotes sites p and g being next-nearest neigh-
bors. We take J; = 1, and vary J,. In TDL, for J, < 0.45,
the system is in a Néel order where all spins are antiparallel
to their nearest neighbors. And for J, 2 0.61, the system is
in a well-established striped order with spins parallel in the
same column (or row) but antiparallel between columns (or
rows) [12]. For J, ~ 0.5, however, the system is in a highly
frustrated phase. The ground state is under debate and possi-
ble candidates include the plaquette valence-bond state [47],
the stripe valence-bond state [48], and gapless spin-liquid
state [49].

E. The J; — J, model

‘We find that the optimized sAGP state for the J| — J, model
shows a bimodal pattern over all interaction ranges like the
case of XXZ between —1 < A < 1 (Fig. 13). For J, < 1/2,
the n values show a Néel pattern, while for J, > 1/2, n values
exhibit a striped pattern. The two patterns are degenerate
at J, = 1/2. As shown in Table I, for small system sizes,
the optimized sAGP is bimodal but nonextreme (|17;| # |n2|),
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Energy of 4x4 J;—J, model
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FIG. 12. Energy error for the 4 x 4 J; —J, model with PBC.
LC-sAGP is a linear combination of seven bimodal extreme sAGPs.
J»-CC and LC-J,-CI are correlated methods based on sAGP and
LC-sAGP. Néel-CCDQ and stripe-CCDQ are conventional CCDQ
results based on different reference states, which are included for
comparison with sSAGP-based methods.

though the bimodal extreme state (n; = 1,7, = —1) is still a
local minimum. For large system sizes, the bimodal extreme
SAGP becomes lower in energy than the nonextreme sAGP.

Figure 12 shows the energies of the bimodal extreme sAGP
and its correlated methods for the 4 x 4 J; — J, model. The
two branches of the SAGP curve correspond to the two bi-
modal extreme patterns (Néel versus striped).

The J,-CC [Eq. (30)] energy exhibits a discontinuity at
J, = 1/2 because of the two branches of the reference sAGP.
Moreover, for 0.43 < J, < 0.5 (the tail of the left branch in
Fig. 12), the J,-CC residual equations fail to converge.

To remove the discontinuity and produce well-behaved
curves, we consider a reference state that is a linear com-
bination of the relevant sSAGPs (LC-sAGP). This is simply
an SAGP-based nonorthogonal CI [27]. We find that at least
seven bimodal extreme sAGPs are needed if we want to ap-
proximate the exact ground state (with additional J,-CI-type
correlation; vide infra). They include the bimodal extreme
SAGP with the Néel pattern and those with the columnwise
and row-wise striped patterns, as well as four additional in-
termediate bimodal extreme sAGP states shown in Fig. 14.
These intermediate bimodal extreme sAGPs exhibit a pattern
between Néel and striped where each site has only one nearest
neighbor that shares its n value.

FIG. 13. The sAGP n pattern for the 4 x 4 J; — J, model with
PBC. All sites with the same color have the same 1 value. The left
figure corresponds to J, < 0.5, and the right J, > 0.5

FIG. 14. The four intermediate bimodal extreme sAGP states
necessary for LC-sAGP and LC-J,-CI for the 4 x J; —J, model
with PBC.

We see that the LC-AGP is well-behaved near J, = 1/2
but offers little quantitative improvement over a single sAGP
elsewhere. In practice, this means that J,-CC or J,-CI based
on this LC-AGP looks a little different from the corresponding
methods based on the mean-field optimized SAGP, except for
J, = 1/2. Thus, we consider linear combinations of J,-CI
states as well, shown in Fig. 12 as LC-J,-CI. This LC-J,-CI
is roughly parallel to the exact result, and is comparable to
J»-CC, but is correctly smooth everywhere.

For comparison, conventional CCDQ was also imple-
mented for the J;-J, model with the Néel and striped SPS as
the reference state, denoted as Néel-CCDQ and stripe-CCDQ,
respectively, in Fig. 12. In this case, J,-CC and conventional
CCDQ are of roughly similar quality. Both behave poorly
in the frustrated region J, &~ 1/2. One great advantage of
Jastrow-type correlators over conventional particle—hole-type
correlators is that the former, as a similarity transformation,
can be solved over any reference state. Future work will ex-
plore the use of these J, correlators on linear combinations
of AGPs which go beyond the simple extreme bimodal AGPs
used in Fig. 11.

IV. CONCLUSIONS

In this paper, we have studied sAGP and several sAGP-
based correlation methods for the 1D and 2D XXZ models,
and the 2D J;-J, model. With our O(M?) implementation of
mean-field optimized sAGP, we find that optimized sAGP can
capture the phase transitions of the XXZ Heisenberg chain
and 2D lattices. Furthermore, we show that the optimized
SAGP states turn out to be multimodal extreme for the J;-J,
model and the XY phase of the XXZ model, reflecting the
translational symmetry of these states. The fact that all n have
the same absolute value makes the calculation of correlation
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methods based on sAGP even easier. These facts suggest
that SAGP should be a good reference state for these spin
systems.

Though correlation methods based on killing operators
[18] are not feasible for sAGP, we show that Jastrow operators
can serve as good correlators for spin systems. Both J,-CI
and J,-CC yield a significant improvement over mean-field
optimized sAGP with reasonable computational cost; J,-CC
behaves especially well in the XY phase —1 < A < 1 for the
XXZ chain and is exact at A = 0 in 1D.

We have also shown that for the 2D J; — J> model, there
are multiple important bimodal extreme sAGP states. The LC-
sAGP approach uses a linear combination of these important
sAGP states and makes the transition between the Néel pattern
and striped pattern smooth. The LC-J,-CI energy result on
Ji — J» model is almost parallel to the exact one.

Thus far, we have considered only energies. The behavior
of our techniques for correlation functions and other proper-
ties will be reported in future work.
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APPENDIX A: EXACTNESS OF J,-CC FOR 1D XXZ
ATA =0

A general wave function for an M-site 1D spin-% system
can be written as

W= > Ypi....p0)S) . Sh. (AD
I<pi<..pvs<M
where ¥ (p1, ..., py) is the amplitude for the N 4-spins at
sites pi, ..., PN-

Exact eigenvalues and eigenstates of the 1D XXZ model
with PBCs can be found by the Bethe Ansatz, where the
ground state amplitude can be written as

N
-W(pl,.__pN): ZA(O’)@XP leg(J)pj (A2)
=1

oeSy J

The summation runs over all N! permutations of 1,..., N.
The amplitudes A relate to the scattering matrix S through

A(v) = S(ki, kj)A(o), (A3)
where the permutation v is related to the permutation o by
swapping i with j, and

ei(k,Jrkj) _ 2A€ik! + 1
" eitkitk) o Aeiki 41
For the case A =0, S(k;, kj) = —1, and we can choose
A(c) = (—1)®")_ The parameters ki, . .., k, in Eq. (A2) can
be solved by the Bethe Ansatz equations:
M = TS kj).
J#i

Sk, kj) =

(A4)

(A5)

For even N, the equations reduce to

MM = —1 (A6)
and k; are
ki—m ={xn /M, £3x /M, 57 /M . ..}. (A7)
The amplitude ¥ (py, ..., py) can thus be written as
Y(pr, ..., py) = det(C), (A8)

where the matrix C is defined by C;; = e/ and can be
recognized as a Vandermonde matrix. Therefore,

N
det(C) = l_[ sin (%(p; - Pi)) Hei”p’. (A9)
=1

1<i<j<N

According to Egs. (A8) and (A9), the wave function can be
written as J>-CC on the bimodal extreme SAGP,

W) = €”[sAGP), (A10)
with 17, = €™, and J, coefficients satisfying
In (sin( Zq—p) (A11)
Apy = —(qg—
ra M q—p

foralll < p<g <M.

For OBCs, the derivation is essentially the same, and the
ground-state amplitude can still be written as a determinant,
but now

Tp; T pi
det(C) = l_[ 2<cos( ) — cos(—>>
Lic N M+ 1 M+1
o TP
X H sin <M m 1).

This can be written as J,-CC on sAGP with coefficients

. Tp
= sin ,
T M+1

apg =1In <2<cos<Mnf 1) — cos(Mn—fl)>>. (A13b)

These n values are not extreme. However, since the J,
operator contains Ji, and J; transforms the n values [32], this
means J,-CC on bimodal extreme SAGP is also exact.

(A12)

(A13a)

APPENDIX B: MULTIMODAL EXTREME SAGP AS THE
EIGENSTATE OF 1D XXZ WITH PBC

We want to show the multimodal extreme sAGP Eq. (23)
generated by the K,f operator Eqn. (20) is an eigenstate of the
1D XXZ Hamiltonian with PBC when A = cosk.

First we compute the commutators of Hxxz with K,:r . Using

M
1
+ o - o+ +
Z E(Sp Sp+1 +Sp Sp-‘rl)’ Kk
p=1
M
ik ik ik
=— (e e ”.S'[J,r.S‘fH_l + e pS[J,r+le,),

p=1

(Bla)

005100-11

560

561

562

563

564

565

566

567

568
569
570

571

572

573 2
574

575

576
577

578
579
580

581



BC14677 PRB August 18, 2023 6:22
ZHIYUAN LIU et al. PHYSICAL REVIEW B 00, 005100 (2023)
M
Z SESE K| =) (e et rst, S5+ eSS ), (BIb)
p=1
ss2 we obtain
M M
[Hxxz, K71 = (A — %)Y " e*rSFSE |+ (A — 1)) e*rst sz, (B2)
p=1 p=1
M M
[[Hxxz, K{1, K1 = (A — e®)e Z HPSTST (At — 1) Z hrst St (B3a)
= QAe* — ¥k 1) Z SIS (B3b)
ss3  We also have
M
[Hxxz, K1) = 5| A= ¢) Y ST+ (A — 1) Ze’k”S+ (B4a)
p=1
M M
=——[(a=e) M st + (At — e D At 1) (B4b)
p=1 p=1
| M
= —50A- et — )y etrs ). (B4c)
p=1
[
S84 When A = cosk, we have QA — e* — =) = 0, thus the exact ground state at certain values of A even in multiple
dimensions. Here, we wish to sketch a proof of this claim.
[[Hxxz, K1, K 1=0, (B5a)
[Hxxz, KkJr 114y =0. (B5b) 1. Bimodal extreme sAGP for bipartite lattices
Th leulate Hr IN2): Bimodal extreme SAGP is the ground state for the 1D XXZ
o8 en we can calculate Hxxz|Ni): chain and 2D square and honeycomb lattices at A = —1. In
Hevr INL) = H KW B6a fact, it is the ground state at this A for any lattice so long as
xocz|Nel oz (K1) (B6a) the lattice can be colored with only two colors so each pair of
= N(K)" ' [Hxxz, K7 114) neighboring sites has a different color (i.e., for any bipartite
N(N —1) B lattice).
+ T(K;)N *[[Hxxz, K1 K114 Say p, g are neighboring sites. Let
SN (SHS-+ 5,8
+(Kk ) HXXZ|~U) (B6b) Hpq — r—4q 5 P4 +AS;S; (Cl)
M
- +\V
- ZA(Kk 1) (B6C)  The XXZ Hamiltonian can then be written as
= A—4A|Nk)~ (B6d) Hxxz = ZHﬁtr (C2)
4 (rq)

586 We see that the multimodal extreme SAGP |N;) becomes

ss7 an eigenstate of the Hamiltonian Hxxz in 1D, with PBCs.

APPENDIX C: MULTIMODAL EXTREME SAGP AS THE
GROUND STATE OF COLORABLE XXZ FOR CERTAIN A

588

589

The proof in the previous Appendix relies on properties of
st the K, operator to show that extreme multimodal SAGP is an
eigenstate of the 1D XXZ Hamiltonian with PBCs. In fact,
as we have noted in the text, multimodal extreme sAGP is

590

592

593

We will show that bimodal extreme sAGP is the ground state
not only of the whole Hamiltonian Hxxz, but also for each

bond Hp,.
The sAGP is
IsAGP) = anSJr 1) (C3a)
= > e She S (C3b)

ISpi<-<pvsM
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For a given pair of nearest neighbors p and g, SAGP can be
written as

ISAGP)
= ZCT¢(N)Up77q|NTquN) + Zcu(w)h%%w)

+ Y e CMpl~ by ™)+ Y el (gl p ™).
i . (C4)

Here, ~ represents all possible situations of the sites other
than p and g. c¢44(~), ¢4 (™), ¢4 (~), ¢} (~) are the products
of the 5 values of spin-1 sites in each respective ~.

The two summations for |~ ,1,~) and |[~*,{,~) are the
same, as there are M — 2 other sites, N — 1 of which have 4
spin. For the same reason, ¢4 (~) = ¢1(~), so

SAGP) = " cps (gl ~tp g™+ Y el ()~ pdg™)

+ e ()MpI~ b gl dp ).
. ()

For bimodal extreme sAGP, n, = —n,, so

SAGP) = — > cpp(M)~1phg™) + D ey (M~ plg™)
+ Y e (M~ pbg™) — 1~ Lpte™). (C6)

Now note that

A
Hpg|~1p1q™~) = AS,S, I~ ptg™~) = Z|NTqu“)v (CT)
A
Hpq|~»l/p\1«q~) = AS;SLZ]|N~1«p\l«qN> = Z|N~Lp~l«qw>v (C8)
(C9)
Hpg(I~ 1 pdg™) — I~ p1e™)) (C10a)

(STS> +85.8H)
= (—” L +AS§,S;>(|~TP¢4~>—|~¢qu~>)

2
(C10b)
1 1
= (— 37 ZA>(|~Tp¢qN) = ~pte™))- (C10c)
When A = —1, we obtain
Hp,|sAGP) = —%lsAGP). (C11)

This shows that the bimodal extreme SAGP is an eigenstate of
every bond H,, in the lattice at A = —1.

Now we will show it is the ground state at this A. Recall
the Hamiltonian of the single bond, given in Eq. (C1). For

any states of the entire lattice, only the spin configurations at
site p and g have an influence on the single bond, so we can
safely project the state to the subspace that only contains these
two sites and diagonalize the Hamiltonian of the bond in this
subspace. The eigenvalues are —}—P —%, —3—‘, %. The bimodal
extreme sAGP energy of —% means that it is a ground state
for this single bond. Thus bimodal extreme sAGP is a ground
state for all bonds in the lattice at A = —1. This means it is

also a ground state of the entire Hamiltonian and
Number of bonds
4

Note that this result relies only on the form of the Hamiltonian
and on the lattice being bipartite. In particular, it is true for any
number of dimensions, for any boundary conditions, and for
any (integer) S° sector.

Hxxz|SAGP) = — ISAGP).  (Cl2)

2. Trimodal extreme sAGP for tripartite lattices

The kagome and triangular lattices cannot be colored with
only two colors due to the triangular shape (Fig. 8). These
lattices are three-colorable (i.e., tripartite). We will show that
trimodal extreme sAGP is an eigenstate of the triangular
shapes in the three-colorable lattices.

Say p, g, r are three sites that form a triangle. In trimodal

extreme SAGP, n,,, 4, n, are correspondingly 1, et Let
Hx =H, +H, +H,p. (C13)

The trimodal extreme SAGP, when focusing on these three
sites, is

SAGP) = " ¢y (s~ phg )

+ Y ey () @pngl~ g~

Fpnr T pdg tr) F g~ p T )
+ ZCTll(N)(nHNTp\Lq\L,N) + g~ p gl

+ 77r|'\’»l«pi«qTr'\’>)

+ Y eI~ dplgde). (C14)
Following a similar procedure as we have outlined for the
two-colorable case, it can be shown that

Ha|sAGP) = —3|sAGP). (C15)

Thus the trimodal extreme sAGP is the ground of state of
a triangle that contains the three different n values. In PBCs,
both kagome and triangular lattices are composed purely of
such triangles and trimodal extreme sAGP is the exact ground
state at A = —0.5. For OBCs, trimodal extreme sAGP is the
exact ground state at A = —0.5 only when the lattice breaks
none of these triangles.
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