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Exploring spin antisymmetrized geminal power Ansätze for strongly correlated spin systems1
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The antisymmetrized geminal power (AGP), a wave function equivalent to number-projected Hartree-Fock-
Bogoliubov (HFB), and number-projected Bardeen–Cooper–Schrieffer (BCS) when working in the paired
(natural orbitals) basis, has proven to be an excellent reference for strong pairing interactions. Several correlation
methods have also been applied on top of AGP. In this work, we show how AGP can also be applied to spin
systems by simply basing its formulation on a spin SU(2) algebra. We here implement spin AGP and spin
AGP-based correlation techniques and benchmark them on the XXZ and J1 − J2 Heisenberg models, both in one
and two dimensions. Our results indicate that spin AGP is a promising starting point for modeling spin systems.
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I. INTRODUCTION16

Model spin Hamiltonians provide valuable insight into17

magnetic materials, high-temperature superconductors, and18

biochemical processes such as nitrogen fixation [1–3]. They19

are also important for the study of quantum sensors, cold20

atoms in optical lattices, and fault-tolerant quantum comput-21

ers [4–6]. These model Hamiltonians capture diverse physical22

phenomena without the details of a fully ab initio description.23

Nevertheless, with a few exceptions [7], lattice models of spin24

systems beyond one dimension are not exactly solvable, and25

we have to resort to approximate numerical methods.26

Here we focus on the ground states of spin lattice mod-27

els, whose computation is already challenging due to various28

quantum phases that arise from different interaction strengths29

[1,8–12]. Particularly, analogous to Hartree-Fock in electronic30

structure theory, spin-wave functions based on a single spin31

configuration are inadequate in the strongly correlated regime32

[13,14]. However, our recent work suggests that methods in33

electronic-structure theory can be useful for studying spins if34

they are mapped to fermions without constraints [15].35

The antisymmetrized geminal power (AGP) wave func-36

tion [16,17] has been shown to be a good starting point for37

certain strongly correlated problems. When correlated with38

configuration interaction (CI) or coupled cluster (CC) theory39

[18,19], AGP yields quite accurate results for the reduced40

Bardeen–Cooper–Schrieffer (BCS) Hamiltonian, which mod-41

els the kinds of strong correlations seen in conventional42

superconductors [20,21].43

Though AGP was originally developed for paired44

fermionic systems, the pairing algebra generators satisfy the45

same SU(2) algebra as spin operators. Inspired by Anderson’s46

resonating valence bond theory, which was applied to study47

both the Heisenberg model and Hubbard model [22,23], we48

propose to treat spin systems via AGP. Our results suggest49

that spin AGP (sAGP) and correlated methods based on it50

are computationally affordable techniques that can accurately51

describe the ground states of strongly correlated spin systems.52

II. THEORY 53

A. Antisymmetrized geminal power 54

The central concept of AGP [16,17] is the geminal, a two- 55

electron wave function created by a geminal creation operator 56

�† = 1

2

∑
1�p,q�2M

ηpq c
†
p c

†
q, (1)

where η is antisymmetric, c†
p is the fermion creation operator 57

for spinorbital p, and indices p, q run over all 2M spinorbitals. 58

An AGP state with 2N electrons is created by occupying the 59

same geminal N times, 60

|AGP〉 = 1

N!
(�†)N |−〉, (2)

where |−〉 is the physical vacuum. 61

In practice, it is more convenient to work in the natural 62

orbital basis of the geminal, where η is quasidiagonal [24], 63

η =
M⊕
p=1

(
0 ηp

−ηp 0

)
, (3)

displaying a pairing scheme of the spin-orbitals [19]. On this 64

basis, we can write 65

�† =
M∑
p=1

ηp P
†
p , (4)

in which we have defined 66

P†
p = c†

p c
†
p̄ (5)

and have reindexed the fermion creation operators by p and 67

its paired companion p̄, where p enumerates all M pairs. 68

The AGP then assumes the form of an elementary symmetric 69

polynomial: 70

|AGP〉 =
∑

1�p1<...pN�M

ηp1 . . . ηpN P
†
p1

. . .P†
pN |−〉. (6)
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Because AGP is equivalent to number-projected Hartree-71

Fock-Bogoliubov (HFB) [25] or number-projected BCS in the72

natural orbital basis, it can be optimized with mean-field cost73

of O(M3) [26–28], and its variationally optimized result is74

guaranteed to be at least as good as Hartree-Fock, which is75

just a special case of AGP in which only N of the η values are76

nonzero.77

In this paper, we will not worry about the norm of the AGP78

wave function, which can be normalized by multiplying all79

the η values by the same constant.80

B. AGP for spin systems81

The pair creation operator P†
p and its adjoint Pp, together82

with the number operator83

Np = c†
p cp + c†

p̄ cp̄, (7)

close the the SU(2) commutation algebra:84

[Pp,P
†
q ] = δpq (1 − Np), (8a)

[Np,P
†
q ] = 2 δpq P

†
p . (8b)

Following Anderson [29], we can relate the AGP commu-85

tation algebra to the spin- 1
2 SU(2) :86

[S+
p , S−

q ] = 2 δpq S
z
p, (9a)[

Szp, S
+
q

] = δpq S
+
p . (9b)

Comparing with Eqs. (8), we see that by the bijective87

mapping88

S+
p ↔ P†

p , (10a)

S−
p ↔ Pp, (10b)

Szp ↔ Np − 1

2
, (10c)

we can simply transcribe any expressions for standard AGP89

matrix elements in the zero seniority [30] fermion space,90

where all electrons are paired, to those for spin AGP (sAGP91

for short), and can readily generalize any of the techniques92

we have introduced for the correlation of AGP to sAGP93

[18,19,27,31,32]. In the standard pairing AGP case, we have94

Pp|−〉 = 0, (11)

where |−〉 denotes the physical vacuum. The corresponding95

spin vacuum state |⇓〉 is the product state of ↓-spins on all96

sites, and satisfies97

S−
p |⇓〉 = 0. (12)

The sAGP wave function is thus98

|sAGP〉 = 1

N!
(�†)N |⇓〉, (13a)

�† =
∑
p

ηp S
+
p , (13b)

where we have a total of N ↑-spins and (M − N ) ↓-spins, so99

〈sAGP|Sz|sAGP〉 = N − M

2
. (14)

At half filling (N = M/2), the sAGP wave function is magnet-100

ically neutral.101

Incidentally, the inverse mapping of Eqs. (10) has been 102

used to implement quantum computing algorithms for the 103

standard pairing AGP state [33–35]. 104

Let |p1p2 · · · pN 〉 be a spin product state (SPS) where the 105

spins are up on sites p1, p2, · · · pN and down on the others. 106

Equations (13) imply that sAGP is a linear combination of all 107

SPSs in the Hilbert space of the problem, with coefficients 108

〈p1p2 · · · pN |sAGP〉 = ηp1ηp2 · · · ηpN . (15)

This means that sAGP is a particularly simple matrix product 109

state, whose matrix elements are straightforward and inexpen- 110

sive to compute [26–28]. 111

We have noted that standard AGP is equivalent to number- 112

projected BCS, which suggests that there should be an 113

equivalent projected mean-field understanding of sAGP. This 114

is indeed the case: sAGP is simply the Sz-projected spin BCS 115

state, where spin BCS (sBCS) is defined as 116

|sBCS〉 =
M∏
p=1

(1 + ηpS
+
p )|⇓〉, (16)

in analogy with the standard BCS given in terms of pairing 117

operators P†
p and the physical vacuum. When the spin problem 118

is mapped to fermions, spin BCS corresponds to generalized 119

Hartree-Fock (GHF) in which the spin-orbitals break not only 120

S2 but also Sz symmetry [36–38]. 121

In this paper, in which we specialize to spin Hamiltonians, 122

the GHF wave function has seniority symmetry dictated by the 123

spins, and one could think of sAGP as an Sz-projected general 124

SPS. 125

III. APPLICATIONS 126

We benchmark sAGP on two families of spin-lattice sys- 127

tems, the XXZ and J1 − J2 Heisenberg models [1]. The 128

former captures anisotropic interactions, while the latter in- 129

cludes interactions beyond nearest neighbors. 130

We focus predominantly on the nearest-neighbor XXZ 131

model. We start with the one-dimensional (1D) case as a pro- 132

totypical example that illustrates the most important features 133

of sAGP and is exactly solvable via Bethe Ansatz [39]. We 134

then discuss various two-dimensional (2D) XXZ lattices as 135

well as the J1 − J2 square lattice, which are not integrable, in 136

general. 137

We first explore sAGP on its own for these systems. While 138

sAGP itself is of modest accuracy, in general, we want to 139

understand its properties to provide context for the correlated 140

sAGP results, which we then compare with conventional cor- 141

relation methods to show that sAGP is a better starting point 142

for strongly correlated spin systems. 143

A. Spin AGP for the one-dimensional XXZ model 144

The XXZ Hamiltonian is 145

HXXZ = J
∑
〈pq〉

(
Sxp S

x
q + Syp S

y
q + � Szp S

z
q

)
(17a)

= J
∑
〈pq〉

[
1

2

(
S+
p S−

q + S−
p S+

q

) + � Szp S
z
q

]
, (17b)
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FIG. 1. Energies in the eight-site 1D XXZ Hamiltonian for different Sz sectors and open boundary conditions (left panel) or periodic
boundary conditions (right panel). We compare the exact results (lines) against the mean-field optimized sAGP (points). Different colors
correspond to different Sz sectors. Spin AGP is very accurate for � < −1 and exact for all Sz sectors at � = −1. We note that sAGP is always
exact for Sz = 3 and Sz = 4, as explained in Sec. III A 1. The curves for Sz = 0 and Sz = 1 are hard to distinguish for � < 0 in this figure but
they are not identical and Sz = 0 has a higher energy.

where p and q index lattice sites and the notation 〈pq〉 restricts146

the summation over p and q to nearest neighbors. Generally147

speaking, we take J = 1 in this paper unless otherwise speci-148

fied, so the system is antiferromagnetic when � > 1.149

In the 1D case, sites p and q are nearest neighbors150

if |p− q| = 1. With J > 0, it exhibits a Néel antiferro-151

magnetic phase for � � 1 and a ferromagnetic phase for152

� � −1. In the interval region |�| � 1, the system is in153

the XY phase, characterized by gapless excitations and154

long-range correlations [1]. While the ferromagnetic and155

antiferromagnetic phases are fairly simple to describe, the156

XY phase is much more complicated, and methods based157

on a single spin configuration struggle (see below and also158

Refs. [13,14]). Spin AGP, however, is exact at � = −1,159

which gives us hope that it will be able to accurately de-160

scribe this challenging phase as � progresses from −1161

to +1.162

1. Energies for different Sz sectors163

Let us start with an overview of the exact and sAGP164

ground-state energies for different Sz quantum numbers and165

different values of �, as shown in Fig. 1. For � < −1, the166

exact ground state occurs when all the spins are aligned,167

i.e., at Sz = ±M/2. For � > −1, the exact ground state is168

instead Sz = 0. At � = −1, the different Sz sectors are exactly169

degenerate. Spin AGP is exact at � = −1 for all Sz sectors170

and is highly accurate for � < −1. For � > −1, sAGP is171

exact for Sz = ±M
2 and Sz = ±(M2 − 1), but shows larger172

error as we approach half filling (Sz = 0). As a matter of fact,173

sAGP is always exact at the Sz = ±M
2 and Sz = ±(M2 − 1)174

sectors as it has sufficient variational flexibility. Sz = ±M
2175

corresponds to the state where all the spins are aligned176

up or down and sAGP naturally capture it by letting N =177

0 or M, respectively. Sz = ±(M2 − 1) means the system has178

only one ↑-spin (or ↓-spin) and the exact ground state takes179

the form 180

|�〉 =
∑
p

cpS
+
p |⇓〉, (18)

which is just the sAGP state with N = 1. 181

2. Bimodal extreme sAGP 182

We now turn to the nature of the sAGP ground state. We 183

find that η values on adjacent sites have opposite signs for all 184

values of �. When � is large and negative, the η values on 185

the left (or right) half of the lattice are large in magnitude, and 186

on the other half are small. For a site p, larger |ηp| correspond 187

to larger 〈Szp〉; thus, the fact that the large |η| values localize 188

on the left (or right) side of the lattice means that the ↑ spins 189

localize on this side, i.e, we have a two-block ferromagnetic 190

solution. Due to the breaking of inversion lattice symmetry, ↑ 191

spins can either localize on the left half or right, corresponding 192

to two degenerate states. On the other hand, when � is large 193

and positive, alternating sites exhibit a pattern of large and 194

small |η|, corresponding to a Néel arrangement of spins. These 195

observations are exemplified by the eight-site XXZ chain with 196

open boundary conditions (OBCs) and Sz = 0, whose η values 197

are depicted in Fig. 2. 198

The more interesting region is of course when −1 � � � 199

1, particularly at � = −1, where sAGP is exact. In this region, 200

the sAGP wave function is what we refer to as a bimodal 201

extreme, for which we can choose η = (1,−1, 1,−1 . . .), 202

as can be seen from Fig. 2. An sAGP is extreme when all 203

η values are the same in magnitude, which corresponds to 204

each site having equal 〈Sz〉. We refer to the sAGP as bi- 205

modal when the η take on two values, in this case, ±1. 206

This bimodal extreme sAGP is the exact ground-state wave 207

function for � = −1 and is the lowest energy sAGP state 208

throughout this XY phase. Note that extreme AGP also has 209

a place in the reduced BCS Hamiltonian H = ∑
p εpNp − 210

005100-3
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FIG. 2. The sAGP geminal coefficient η as a function of � for
the eight-site XXZ Heisenberg model with open boundary conditions
and Sz = 0. For −1 � � � 1, the η values are independent of �, and
−0.6 < � < 0.6 has been omitted from the plot. We order the sites
from left to right as η1 to η8.

G
∑

pq P
†
pPq, where, as the interaction strength G goes to211

infinity, the values of all η approach the same [18], exhibiting212

a unimodal extreme AGP that carries off-diagonal long-213

range order, i.e., superconductivity without number-symmetry214

breaking [21].215

We should emphasize again that we do not artificially216

choose η to have a bimodal extreme pattern. Instead, we217

variationally optimize the η values, and observe that across a218

wide range of � values, for many different lengths of the XXZ219

chain and for many different Sz eigenvalues, and for both pe-220

riodic boundary conditions (PBCs) andOBCs, the variational221

optimization selects these η values. We also note that bimodal222

extreme sAGP is always a stationary point of the energy, and223

the points at which the values of η begin to change from224

extreme occur when it is no longer the lowest energy solution.225

Finally, we should say a few words about the physical226

meaning of the η values. First, we note that the sign of ηpηq227

determines the sign of 〈S+
p S

−
q + S−

p S
+
q 〉 [26]. This can also228

be seen from Fig. 3. If two sites have oppositely signed η229

values, those sites tend to be antiferromagnetically coupled.230

The alternating signs of the η values in the bimodal extreme231

AGP therefore reflect the Marshall sign rule [40]. The absolute232

value of η on a site, as we can see from Eqs. (13), determines233

the chance that the spin on that site is flipped to spin up. Sites234

with very large or very small relative η values are sites which235

are not strongly entangled with the other sites. Sites for which236

the absolute values of η are similar are more strongly entan-237

gled. The bimodal extreme AGP is actually the maximally238

entangled state, and in this case each site has 〈Sz〉 = 0.239

3. Approaching the thermodynamic limit240

Figure 4 shows the energy error per site for the open bound-241

ary XXZ chain with different lengths in the Sz = 0 sector.242

The energy per site in the thermodynamic limit (TDL), e0,243

is extrapolated by fitting244

E (M )

M
= e0 + e1

1

M
+ e2

1

M2
+ · · · , (19)

FIG. 3. Correlation function 〈S+
1 S

−
p + S−

1 S
+
p 〉/2 for the eight-site

XXZ Heisenberg model with open boundary conditions and Sz = 0
for � = −1.30, 0.00 and 1.30, corresponding to the three phases
of the XXZ model. We see that 〈S+

1 S
−
p + S−

1 S
+
p 〉/2 have alternating

signs for even and odd p, which is a result of the alternating signs
of ηp.

where we truncate the expansion at second order e2
1
M2 . We 245

use the same extrapolation scheme for both the sAGP and 246

the exact energies, and display their differences in the TDL in 247

Fig. 4. We observe that for all lattice lengths, sAGP reaches its 248

maximum error around � = 1, and the value of � at which the 249

error is the largest grows with the system size. The maximum 250

sAGP error per site in the TDL is around 0.18. We can also 251

see that sAGP is quite accurate in the ferromagnetic regime 252

(� < −1) for all system sizes; especially, as the system size 253

grows, the per-site error reduces. 254

4. The ferromagnetic XXZ model 255

So far, we have focused on the antiferromagnetic 256

XXZ model, where J = 1. We now briefly discuss the 257

FIG. 4. Energy error per site for 1D XXZ chains with different
lengths with open boundary conditions. The thermodynamic limit
result is obtained by fitting the sAGP energy result by the inverse
of the lattice length. We notice that the per-site energy error grows as
system size grows for � > −1. It is also noticeable for � < −1, the
per-site energy error reduces as system size grows.

005100-4
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ferromagnetic XXZ model, in which J = −1. Because of258

the Hamiltonian’s overall sign change, the bimodal extreme259

sAGP, which is the ground state for the antiferromagnetic260

XXZ model at � = −1, becomes the highest energy eigen-261

state at this point for the ferromagnetic XXZ model. At the262

Heisenberg point � = 1, an extreme unimodal sAGP where263

all the η values are the same becomes the ground state for the264

ferromagnetic XXZ model for all Sz sectors with an energy of265

E = − 1
4M or E = − 1

4 (M − 1) for PBCs and open boundary266

conditions, respectively.267

B. Spin SU(2) algebras and multimodal extreme sAGPs268

The bimodal extreme sAGP for antiferromagnetic XXZ269

model and the unimodal extreme sAGP for ferromagnetic270

XXZ model for the 1D mentioned above are just two special271

cases of multimodal extreme sAGPs, all of which can be272

formed from collective spin operators which realize a collec-273

tive SU(2) algebra,274

K±
k =

∑
p

e±ikpS+
p , Kz =

∑
p

Szp = Sz, (20)

where k is the lattice momentum. In 1D, k = 2πn
M with n being275

an integer restricted to −M
2 < n � M

2 . These three operators276

fulfill the SU(2) commutation algebra277

[K+
k ,K−

k ] = 2Kz, (21a)

[Kz,K±
k ] = ±K±

k . (21b)

Note that for momentum k = 0, the K-SU(2) algebra reduces278

to the spin SU(2) algebra.279

This K-SU(2) algebra has been recently introduced in the280

context of quantum many-body scars in spin lattice systems281

[41,42]. However, our goal here is to use it to construct a ref-282

erence Ansatz to study many-body correlations in spin-lattice283

ground states.284

The (unnormalized) K-spin extreme sAGP state is a Kk-285

spin-M2 multiplet,286

|Nk〉 = (K+
k )N |⇓〉, (22)

with Kz = N − M
2 and K2

k = M
2 (M2 + 1). Note that each site287

has the same 〈Sz〉 in this wave function. The special cases k =288

2π
m for integer m constitute the m-modal extreme AGP states.289

In these cases, we have290

|Nk〉 =
⎛
⎝∑

p

ei
2π p
m S+

p

⎞
⎠

N

|⇓〉. (23)

One can see that the η values are the mth roots of unity. For291

m = 1, 2, 3, the m-modal extreme AGP states are specifically292

called unimodal, bimodal, trimodal extreme AGP, respec-293

tively. These m-modal extreme AGP states are a special class294

of AGP states, which, as we see here, are the K2π/m-spin295

eigenstates.296

We can now ask under what conditions the m-modal297

extreme AGP states |Nk〉 are eigenstates of the XXZ Hamilto-298

nian. As demonstrated in Ref. [37], it depends on the geometry299

of the lattice. For the 1D XXZ Hamiltonian with PBCs, the300

condition is 301

� = cos(k) = cos

(
2πn

M

)
, (24)

as shown in Appendix B. In these cases, we have 302

HXXZ|Nk〉 = M

4
�|Nk〉. (25)

Moreover, the unimodal extreme sAGP is the highest energy 303

state at the Heisenberg point � = 1, and the bimodal extreme 304

sAGP is the ground state for � = −1. The result can also be 305

extended to OBC. In the interval −1 < � = cos( 2πn
M ) < 1, 306

the multimodal extreme sAGP are eigenstates of the Hamil- 307

tonian, known as scarred states, and they describe nonthermal 308

behavior [43,44]. 309

Reduced density matrices of extreme sAGP states are triv- 310

ial to compute because all elements are identical (ratios of 311

combinatorial numbers), making it possible to correlate sAGP 312

with low computational cost. 313

Multimodal extreme sAGPs turn out to be the lowest en- 314

ergy sAGP states not only for the XY phase (−1 � � � 1) of 315

the 1D XXZ model but also for the 2D XXZ and 2D J1 − J2 316

models, which will be discussed in Secs. III D and III E. As 317

with the 1D XXZ model, a multimodal extreme sAGP is the 318

exact ground state in the 2D XXZ Hamiltonian at a specific 319

lattice-dependent value of �. 320

It should be emphasized that not every sAGP is of extreme 321

multimodal form; for example, the sAGP ground state in the 322

1D XXZ model for |�| � 1 is usually not extreme sAGP. 323

We observe, however, that for the spin lattice models that 324

we have studied in this paper, the lowest energy sAGP state 325

frequently has multimodal extreme character as obtained from 326

variational optimization. 327

C. Correlating spin AGP in the one-dimensional XXZ model 328

1. Incorporating Jastrow-type correlators 329

After studying the properties of sAGP solutions, we can 330

now look at improving them by adding correlations. Corre- 331

lating AGP with the equivalent of the AGP killing operator 332

presented in previous work [18], 333

Kpq = η2
p P

†
p Pq + η2

q P
†
q Pp

+ 1
2 ηp ηq (Np Nq − Np − Nq ), (26)

is not helpful here. This is because whenever η2
p = η2

q, as in 334

the case of a bimodal extreme sAGP state, Kpq is Hermitian 335

and K†
pq also kills sAGP. 336

Fortunately, we can use Hilbert space Jastrow correlators 337

instead, which generate the same manifold as do the killing 338

operators in the η2
p �= η2

q case [19] because both ultimately 339

correspond to a geminal replacement theory [31]. 340

By Jastrow-type correlators, we mean operators of the form 341

J2 = 1

4

∑
p<q

αpq Np Nq (27a)

	→
∑
p<q

αpq
(
2 Szp − 1

) (
2 Szq − 1

)
. (27b)

005100-5
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FIG. 5. Energy errors for the 14-site 1D XXZ model with open
boundary conditions in the Sz = 0 sector, on linear scale (top panel)
and logarithmic scale (bottom panel). The J2-CI and J2-CC methods
are based on sAGP. Spin product state results are also included in the
top panel for comparison.

Since the lower-order Jastrow operator J1 = ∑
αp Np al-342

ready lurks inside J2 [32], we can define the J2 operator for343

sAGP as344

J2 = 1

4

∑
p<q

αpq S
z
p S

z
q, (28)

and will use this definition hereafter.345

FIG. 6. Errors in the sAGP and J2-CC energies based on the
mean-field optimized sAGP and the bimodal extreme sAGP in the
ten-site XXZ Heisenberg chain with open boundary conditions in the
Sz = 0 sector.

FIG. 7. Energy errors for the 12-site 1D antiferromagnetic XXZ
model with open boundary conditions in the Sz = 0 sector, on linear
scale (top panel) and logarithmic scale (bottom panel). The J2-CI and
J2-CC methods are based on sAGP, while CIDQ, CCD, CCDQ, and
CCDQ6 are based on spin product state.

The simplest way to correlate sAGP using these operators 346

is by what we refer to as J2-CI, which writes 347

|J2-CI〉 = J2|sAGP〉, (29)

where we generally use the mean-field optimized sAGP as 348

a reference. We then evaluate the energy via an expectation 349

value and minimize it with respect to the amplitudes αpq. 350

Somewhat more sophisticated is J2-CC, where we use an 351

exponential Ansatz instead: 352

|J2-CC〉 = eJ2 |sAGP〉. (30)

Although intractable in its variational form, a similarity- 353

transformed approach is quite feasible [32,45]. The energy 354

and residual equations are 355

EJ2-CC = 〈sAGP|H̄ |sAGP〉, (31a)

0 = 〈sAGP|Szp Szq
(
H̄ − EJ2−CC

)|sAGP〉, (31b)

where 356

H̄ = e−J2 H eJ2 . (32)

Although the commutator expansion of H̄ does not truncate, it 357

can be analytically resummed to yield an expression in terms 358

of exponentials of one-body operators J1, which act on one 359

sAGP state to produce another [32]. Both J2-CI and J2-CC 360

have computational costs proportional to O(M4) for these 361

lattice models. 362

Figure 5 shows errors of J2-CI and J2-CC for the 14-site 363

antiferromagnetic XXZ model with OBCs. We see that J2-CI 364
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FIG. 8. Assorted 2D lattices. From left to right, these are the square lattice, the honeycomb lattice, the kagome lattice, and the triangular
lattice. The purple dashed shape, wherever present, indicates the smallest rectangular cell for the honeycomb lattice and the unit cell for the
kagome lattice and triangular lattice. The red, blue, and green open circles indicate the different η values for the sAGP ground state in the XXZ
Hamiltonian, which is bimodal extreme for the square and honeycomb lattices, but trimodal extreme for the kagome and triangular lattices.

eliminates about half the error of sAGP, while the improve-365

ment given by J2-CC is significantly larger, with an error one366

order of magnitude smaller than the error of sAGP itself. This367

is particularly true when J2-CC is based on the bimodal ex-368

treme sAGP everywhere, and not just where this is the lowest369

energy sAGP (Fig. 6). A particularly interesting feature is that370

J2-CC is exact at � = 0. This is true in 1D but not in higher371

dimensions. In Appendix A, we prove this exactness for both372

OBCs and PBCs.373

2. Comparison with conventional correlation methods 374

To demonstrate the advantage of sAGP-based correlated 375

methods over conventional correlation methods based on SPS, 376

we compare their energies for the 12-site antiferromagnetic 377

XXZ model. Figure 7 shows the energy errors of sAGP- 378

based J2-CI and J2-CC along with SPS-based configuration 379

interaction doubles and quadruples (CIDQ) and CC doubles 380

to hextuples (CCD, CCDQ, CCDQ6). The two sAGP-based 381

correlated methods have the same computational complexity 382

as SPS-based CIDQ and CCDQ, scaling as O(M4), while 383

FIG. 9. Multimodal extreme sAGP and exact energies of the XXZ Hamiltonian for different lattices and Sz sectors. The lines correspond to
the exact energies and the circles to the multimodal extreme sAGP results. Different colors correspond to different Sz sectors. Top left: Square
lattice. Top right: Honeycomb lattice. Bottom left: Kagome lattice. Bottom right: Triangular lattice. All exact and sAGP results have the same
energy for all Sz sectors at � = −1 (square or honeycomb lattice) or at � = −1/2 (kagome or triangular lattice). We note sAGP is always
exact for Sz = ±M

2 and Sz = ±(M2 − 1) (not shown in the figure) for these 2D lattices, for the same reason as in the 1D case discussed in
Sec. III A 1.
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FIG. 10. Exact energies and those of the multimodal extreme sAGP and mean-field optimized sAGP for the XXZ Hamiltonian with Sz = 0.
Top left: 16-site square lattice. Top right: 16-site honeycomb lattice. Bottom left: 18-site kagome lattice. Bottom right: 18-site triangular
lattice.

CCD and CCDQ6 scale as O(M2) and O(M6), respectively.384

We note in passing that odd CC excitations (singles, triples,385

etc.) do not contribute because of Sz symmetry.386

The results of sAGP-based methods are generally superior387

to those of SPS-based methods with equivalent computational388

scaling for � � 1, which corresponds to the ferromagnetic389

and XY phases. It is important to note that sAGP is exact at390

� = −1, whereas conventional CC calculations break down391

in this vicinity. As noted above, J2-CC is also exact at � = 0392

and is the most accurate low-scaling correlated method over-393

all. One may, of course, use an Sz-broken SPS reference to394

obtain better CC energies [14], but at the cost of breaking395

physical symmetries of the Hamiltonian, which sAGP and396

correlated sAGP conserve.397

D. The two-dimensional XXZ model398

We next test our methods on several XXZ 2D lattices399

including the square lattice, honeycomb lattice, triangular400

lattice, and kagome lattice (Fig. 8). In Appendix C, we show401

analytically that for both PBCs and OBCs with certain bound-402

ary shapes, the bimodal extreme sAGP is the ground state403

of the square and honeycomb lattices at � = −1, while the404

trimodal (m = 3) extreme sAGP is the ground state of the405

triangular and kagome lattices at � = −0.5. This trimodal406

extreme sAGP has three distinct η values which we denote by407

η1, η2, and η3. As explained in Sec. III B, these three distinct408

η values are the three cube roots of 1: 409

η1 = 1, η2 = ei
2
3 π , η3 = ei

4
3 π. (33)

The arrangements of the η values in different lattices are 410

illustrated in Fig. 8. These analytical results are corroborated 411

by numerical calculations as shown in Fig. 9. The ground 412

states of the 2D XXZ models at these special � values have 413

been reported in Ref. [36–38], though they are expressed in a 414

form different from sAGP. 415

While we do not wish to dwell on these various lattices in 416

detail, we have a few things to point out. 417

First, as we can see in Fig. 10, sAGP is extreme over a 418

range of � for all of the lattices. As with the 1D case, the 419

sAGP ground state becomes nonextreme around � = 1 for all 420

of the 2D lattices considered here. It also becomes nonextreme 421

for some negative �, but the crossover point is lattice depen- 422

dent. We notice that the crossover points for different lattices 423

are correlated with the � values at which the extreme sAGP 424

is exact, as discussed above. 425

Second, as shown in Fig. 11, J2-CC is no longer exact 426

at � = 0 for 2D lattices, as opposed to the 1D case. This 427

is reminiscent of Jordan–Wigner transformed Hartree-Fock 428

being exact at � = 0 for the 1D spin models but not for 429

their 2D counterparts [15,46]. Although the results of J2-CC 430

or J2-CI are not as good in 2D as they are in 1D, they still 431

capture more than half the correlation energy missing from the 432

mean-field optimized sAGP methods. They also outperform 433
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FIG. 11. Energy errors for the mean-field optimized sAGP and for J2-CI and J2-CC based on the multimodal extreme sAGP, in various
XXZ lattices with Sz = 0. Top left: 16-site square lattice. Top right: 16-site honeycomb lattice. Bottom left: 18-site kagome lattice. Bottom
right: 18-site triangular lattice. Conventional CCDQ results are also shown for the square and honeycomb lattice as a comparison. Note CCDQ
fails to converge for square and honeycomb lattice at � < 0.65 and � < 0.45, respectively. Also note that J2-CC does not converge for the
kagome lattice and has been omitted from the plot.

the conventional SPS-based correlation method (CCDQ here)434

for � < 1. The error of SPS-based CCDQ grows rapidly as435

� goes below 1 until it eventually encounters convergence436

issues. Conventional CCDQ fails to converge for triangular437

and kagome lattices as well. While J2-CC also has difficulty438

converging for the kagome lattice, it behaves reasonably well439

for the triangular lattice.440

TABLE I. Energy of the J1 − J2 model at J2 = 1/2 for different
system sizes. We see the energy is only dependent on the system
size. For small system sizes, the optimized sAGP is bimodal but
nonextreme while, for large system sizes, the bimodal extreme sAGP
becomes lower in energy than the nonextreme sAGP.

System size Extreme Nonextreme Energy difference

4 × 4 −5.0667 −5.2672 0.2005
4 × 8 −9.0323 −9.2417 0.2094
4 × 16 −17.0245 −17.2296 0.2050
8 × 8 −17.0245 −17.2296 0.2050
8 × 12 −25.1109 −25.2256 0.1146
12 × 12 −37.4387 −37.2230 −0.2157
16 × 16 −66.4843 −65.2206 −1.2637

We also test our sAGP-based methods on the 2D square 441

J1 − J2 lattice with PBCs, 442

HJ1−J2 = J1

∑
〈pq〉

( �Sp · �Sq ) + J2

∑
〈〈pq〉〉

( �Sp · �Sq ), (34)

where 〈〈pq〉〉 denotes sites p and q being next-nearest neigh- 443

bors. We take J1 = 1, and vary J2. In TDL, for J2 � 0.45, 444

the system is in a Néel order where all spins are antiparallel 445

to their nearest neighbors. And for J2 � 0.61, the system is 446

in a well-established striped order with spins parallel in the 447

same column (or row) but antiparallel between columns (or 448

rows) [12]. For J2 ≈ 0.5, however, the system is in a highly 449

frustrated phase. The ground state is under debate and possi- 450

ble candidates include the plaquette valence-bond state [47], 451

the stripe valence-bond state [48], and gapless spin-liquid 452

state [49]. 453

E. The J1 − J2 model 454

We find that the optimized sAGP state for the J1 − J2 model 455

shows a bimodal pattern over all interaction ranges like the 456

case of XXZ between −1 < � < 1 (Fig. 13). For J2 < 1/2, 1457

the η values show a Néel pattern, while for J2 > 1/2, η values 458

exhibit a striped pattern. The two patterns are degenerate 459

at J2 = 1/2. As shown in Table I, for small system sizes, 460

the optimized sAGP is bimodal but nonextreme (|η1| �= |η2|), 461
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FIG. 12. Energy error for the 4 × 4 J1 − J2 model with PBC.
LC-sAGP is a linear combination of seven bimodal extreme sAGPs.
J2-CC and LC-J2-CI are correlated methods based on sAGP and
LC-sAGP. Néel-CCDQ and stripe-CCDQ are conventional CCDQ
results based on different reference states, which are included for
comparison with sAGP-based methods.

though the bimodal extreme state (η1 = 1, η2 = −1) is still a462

local minimum. For large system sizes, the bimodal extreme463

sAGP becomes lower in energy than the nonextreme sAGP.464

Figure 12 shows the energies of the bimodal extreme sAGP465

and its correlated methods for the 4 × 4 J1 − J2 model. The466

two branches of the sAGP curve correspond to the two bi-467

modal extreme patterns (Néel versus striped).468

The J2-CC [Eq. (30)] energy exhibits a discontinuity at469

J2 = 1/2 because of the two branches of the reference sAGP.470

Moreover, for 0.43 < J2 < 0.5 (the tail of the left branch in471

Fig. 12), the J2-CC residual equations fail to converge.472

To remove the discontinuity and produce well-behaved473

curves, we consider a reference state that is a linear com-474

bination of the relevant sAGPs (LC-sAGP). This is simply475

an sAGP-based nonorthogonal CI [27]. We find that at least476

seven bimodal extreme sAGPs are needed if we want to ap-477

proximate the exact ground state (with additional J2-CI-type478

correlation; vide infra). They include the bimodal extreme479

sAGP with the Néel pattern and those with the columnwise480

and row-wise striped patterns, as well as four additional in-481

termediate bimodal extreme sAGP states shown in Fig. 14.482

These intermediate bimodal extreme sAGPs exhibit a pattern483

between Néel and striped where each site has only one nearest484

neighbor that shares its η value.485

FIG. 13. The sAGP η pattern for the 4 × 4 J1 − J2 model with
PBC. All sites with the same color have the same η value. The left
figure corresponds to J2 < 0.5, and the right J2 > 0.5

FIG. 14. The four intermediate bimodal extreme sAGP states
necessary for LC-sAGP and LC-J2-CI for the 4 × J1 − J2 model
with PBC.

We see that the LC-AGP is well-behaved near J2 = 1/2 486

but offers little quantitative improvement over a single sAGP 487

elsewhere. In practice, this means that J2-CC or J2-CI based 488

on this LC-AGP looks a little different from the corresponding 489

methods based on the mean-field optimized sAGP, except for 490

J2 ≈ 1/2. Thus, we consider linear combinations of J2-CI 491

states as well, shown in Fig. 12 as LC-J2-CI. This LC-J2-CI 492

is roughly parallel to the exact result, and is comparable to 493

J2-CC, but is correctly smooth everywhere. 494

For comparison, conventional CCDQ was also imple- 495

mented for the J1-J2 model with the Néel and striped SPS as 496

the reference state, denoted as Néel-CCDQ and stripe-CCDQ, 497

respectively, in Fig. 12. In this case, J2-CC and conventional 498

CCDQ are of roughly similar quality. Both behave poorly 499

in the frustrated region J2 ≈ 1/2. One great advantage of 500

Jastrow-type correlators over conventional particle–hole-type 501

correlators is that the former, as a similarity transformation, 502

can be solved over any reference state. Future work will ex- 503

plore the use of these J2 correlators on linear combinations 504

of AGPs which go beyond the simple extreme bimodal AGPs 505

used in Fig. 11. 506

IV. CONCLUSIONS 507

In this paper, we have studied sAGP and several sAGP- 508

based correlation methods for the 1D and 2D XXZ models, 509

and the 2D J1-J2 model. With our O(M3) implementation of 510

mean-field optimized sAGP, we find that optimized sAGP can 511

capture the phase transitions of the XXZ Heisenberg chain 512

and 2D lattices. Furthermore, we show that the optimized 513

sAGP states turn out to be multimodal extreme for the J1-J2 514

model and the XY phase of the XXZ model, reflecting the 515

translational symmetry of these states. The fact that all η have 516

the same absolute value makes the calculation of correlation 517
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methods based on sAGP even easier. These facts suggest518

that sAGP should be a good reference state for these spin519

systems.520

Though correlation methods based on killing operators521

[18] are not feasible for sAGP, we show that Jastrow operators522

can serve as good correlators for spin systems. Both J2-CI523

and J2-CC yield a significant improvement over mean-field524

optimized sAGP with reasonable computational cost; J2-CC525

behaves especially well in the XY phase −1 < � � 1 for the526

XXZ chain and is exact at � = 0 in 1D.527

We have also shown that for the 2D J1 − J2 model, there528

are multiple important bimodal extreme sAGP states. The LC-529

sAGP approach uses a linear combination of these important530

sAGP states and makes the transition between the Néel pattern531

and striped pattern smooth. The LC-J2-CI energy result on532

J1 − J2 model is almost parallel to the exact one.533

Thus far, we have considered only energies. The behavior534

of our techniques for correlation functions and other proper-535

ties will be reported in future work.536
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APPENDIX A: EXACTNESS OF J2-CC FOR 1D XXZ544

AT � = 0545

A general wave function for an M-site 1D spin- 1
2 system546

can be written as547

|ψ〉 =
∑

1�p1<...pN�M

ψ (p1, . . . , pN )S†
p1

. . . S†
pN , (A1)

where ψ (p1, . . . , pN ) is the amplitude for the N ↑-spins at548

sites p1, . . . , pN .549

Exact eigenvalues and eigenstates of the 1D XXZ model550

with PBCs can be found by the Bethe Ansatz, where the551

ground state amplitude can be written as552

ψ (p1, . . . pN ) =
∑
σ∈SN

A(σ )exp

⎛
⎝i

N∑
j=1

kσ ( j)p j

⎞
⎠. (A2)

The summation runs over all N! permutations of 1, . . . ,N .553

The amplitudes A relate to the scattering matrix S through554

A(ν) = S(ki, k j )A(σ ), (A3)

where the permutation ν is related to the permutation σ by555

swapping i with j, and556

S(ki, k j ) = −ei(ki+k j ) − 2�eik j + 1

ei(ki+k j ) − 2�eiki + 1
. (A4)

For the case � = 0, S(ki, k j ) = −1, and we can choose557

A(σ ) = (−1)sgn(σ ). The parameters k1, . . . , kn in Eq. (A2) can558

be solved by the Bethe Ansatz equations:559

eikiM =
∏
j �=i

S(ki, k j ). (A5)

For even N , the equations reduce to 560

eikiM = −1 (A6)

and ki are 561

ki − π = {±π/M,±3π/M,±5π/M . . .}. (A7)

The amplitude ψ (p1, . . . , pN ) can thus be written as 562

ψ (p1, . . . , pN ) = det(C), (A8)

where the matrix C is defined by Ci j = eiki p j and can be 563

recognized as a Vandermonde matrix. Therefore, 564

det(C) =
∏

1�i< j�N

sin

(
π

M
(p j − pi )

) N∏
l=1

eiπ pl . (A9)

According to Eqs. (A8) and (A9), the wave function can be 565

written as J2-CC on the bimodal extreme sAGP, 566

|ψ〉 = eJ2 |sAGP〉, (A10)

with ηp = eiπ p, and J2 coefficients satisfying 567

αpq = ln

(
sin

(
π

M
(q − p)

))
(A11)

for all 1 � p < q � M. 568

For OBCs, the derivation is essentially the same, and the 569

ground-state amplitude can still be written as a determinant, 570

but now 571

det(C) =
∏

1�i< j�N

2

(
cos

(
π p j

M + 1

)
− cos

(
π pi

M + 1

))

×
N∏
l=1

sin

(
π pl

M + 1

)
. (A12)

This can be written as J2-CC on sAGP with coefficients 572

ηp = sin

(
π p

M + 1

)
, (A13a)

αpq = ln

(
2

(
cos

(
πq

M + 1

)
− cos

(
π p

M + 1

)))
. (A13b)

These η values are not extreme. However, since the J2 2573

operator contains J1, and J1 transforms the η values [32], this 574

means J2-CC on bimodal extreme sAGP is also exact. 575

APPENDIX B: MULTIMODAL EXTREME SAGP AS THE 576

EIGENSTATE OF 1D XXZ WITH PBC 577

We want to show the multimodal extreme sAGP Eq. (23) 578

generated by the K+
k operator Eqn. (20) is an eigenstate of the 579

1D XXZ Hamiltonian with PBC when � = cos k. 580

First we compute the commutators of HXXZ with K+
k . Using 581⎡

⎣ M∑
p=1

1

2
(S+

p S−
p+1 + S−

p S+
p+1),K+

k

⎤
⎦

= −
M∑
p=1

(
eikeikpS+

p S
z
p+1 + eikpS+

p+1S
z
p

)
, (B1a)
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⎡
⎣ M∑

p=1

SzpS
z
p+1,K

+
k

⎤
⎦ =

M∑
p=1

(
eikeikpS+

p+1S
z
p + eikpS+

p S
z
p+1

)
, (B1b)

we obtain582

[HXXZ,K+
k ] = (� − eik )

M∑
p=1

eikpS+
p S

z
p+1 + (�eik − 1)

M∑
p=1

eikpS+
p+1S

z
p, (B2)

[[HXXZ,K+
k ],K+

k ] = (� − eik )eik
M∑
p=1

e2ikpS+
p S

+
p+1 + (�eik − 1)

M∑
p=1

e2ikpS+
p+1S

+
p (B3a)

= (2�eik − e2ik − 1)
M∑
p=1

e2ikpS+
p S

+
p+1. (B3b)

We also have583

[HXXZ,K+
k ]|⇓〉 = −1

2

⎛
⎝(� − eik )

M∑
p=1

eikpS+
p + (�eik − 1)

M∑
p=1

eikpS+
p+1

⎞
⎠|⇓〉 (B4a)

= −1

2

⎛
⎝(� − eik )

M∑
p=1

eikpS+
p + (�eik − 1)e−ik

M∑
p=1

eik(p+1)S+
p+1

⎞
⎠|⇓〉 (B4b)

= −1

2
(2� − eik − e−ik )

M∑
p=1

eikpS+
p |⇓〉. (B4c)

When � = cos k, we have (2� − eik − e−ik ) = 0, thus584

[[HXXZ,K+
k ],K+

k ] = 0, (B5a)

[HXXZ,K+
k ]|⇓〉 = 0. (B5b)

Then we can calculate HXXZ|Nk〉:585

HXXZ|Nk〉 = HXXZ (K+
k )N |⇓〉 (B6a)

= N (K+
k )N−1[HXXZ,K+

k ]|⇓〉

+ N (N − 1)

2
(K+

k )N−2[[HXXZ,K+
k ],K+

k ]|⇓〉
+ (K+

k )NHXXZ|⇓〉 (B6b)

= M

4
�(K+

k )N |⇓〉 (B6c)

= M

4
�|Nk〉. (B6d)

We see that the multimodal extreme sAGP |Nk〉 becomes586

an eigenstate of the Hamiltonian HXXZ in 1D, with PBCs.587

APPENDIX C: MULTIMODAL EXTREME SAGP AS THE588

GROUND STATE OF COLORABLE XXZ FOR CERTAIN �589

The proof in the previous Appendix relies on properties of590

the K+
k operator to show that extreme multimodal sAGP is an591

eigenstate of the 1D XXZ Hamiltonian with PBCs. In fact,592

as we have noted in the text, multimodal extreme sAGP is593

the exact ground state at certain values of � even in multiple 594

dimensions. Here, we wish to sketch a proof of this claim. 595

1. Bimodal extreme sAGP for bipartite lattices 596

Bimodal extreme sAGP is the ground state for the 1D XXZ 597

chain and 2D square and honeycomb lattices at � = −1. In 598

fact, it is the ground state at this � for any lattice so long as 599

the lattice can be colored with only two colors so each pair of 600

neighboring sites has a different color (i.e., for any bipartite 601

lattice). 602

Say p, q are neighboring sites. Let 603

Hpq = (S+
p S

−
q + S−

p S
+
q )

2
+ �SzpS

z
q. (C1)

The XXZ Hamiltonian can then be written as 604

HXXZ =
∑
〈pq〉

Hpq. (C2)

We will show that bimodal extreme sAGP is the ground state 605

not only of the whole Hamiltonian HXXZ, but also for each 606

bond Hpq. 607

The sAGP is 608

|sAGP〉 = 1

N!

⎛
⎝ M∑

p=1

ηpS
+
p

⎞
⎠|⇓〉 (C3a)

=
∑

1�p1<···<pN�M

ηp1 · · · ηpN S
+
p1 · · · S+

pN |⇓〉. (C3b)
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For a given pair of nearest neighbors p and q, sAGP can be609

written as610

|sAGP〉
=

∑
∼

c↑↑(∼)ηpηq|∼↑p↑q∼〉 +
∑
∼

c↓↓(∼)|∼↓p↓q∼〉

+
∑
∼

c↑↓(∼)ηp|∼↑p↓q∼〉 +
∑
∼

c↓↑(∼)ηq|∼↓p↑q∼〉.
(C4)

Here, ∼ represents all possible situations of the sites other611

than p and q. c↑↑(∼), c↓↑(∼), c↑↓(∼), c↓↓(∼) are the products612

of the η values of spin-↑ sites in each respective ∼.613

The two summations for |∼↓p↑q∼〉 and |∼↑p↓q∼〉 are the614

same, as there are M − 2 other sites, N − 1 of which have ↑615

spin. For the same reason, c↑↓(∼) = c↓↑(∼), so616

|sAGP〉 =
∑
∼

c↑↑(∼)ηpηq|∼↑p↑q∼〉+
∑
∼

c↓↓(∼)|∼↓p↓q∼〉

+
∑
∼

c↑↓(∼)(ηp|∼↑p↓q∼〉 + ηq|∼↓p↑q∼〉).

(C5)

For bimodal extreme sAGP, ηp = −ηq, so617

|sAGP〉 = −
∑
∼

c↑↑(∼)|∼↑p↑q∼〉 +
∑
∼

c↓↓(∼)|∼↓p↓q∼〉

+
∑
∼

c↑↓(∼)ηp(|∼↑p↓q∼〉 − |∼↓p↑q∼〉). (C6)

Now note that618

Hpq|∼↑p↑q∼〉 = �SzpS
z
q|∼↑p↑q∼〉 = �

4
|∼↑p↑q∼〉, (C7)

Hpq|∼↓p↓q∼〉 = �SzpS
z
q|∼↓p↓q∼〉 = �

4
|∼↓p↓q∼〉, (C8)

(C9)

Hpq(|∼↑p↓q∼〉 − |∼↓p↑q∼〉) (C10a)

=
(

(S+
p S

−
q + S−

p S
+
q )

2
+ �SzpS

z
q

)
(|∼↑p↓q∼〉 − |∼↓p↑q∼〉)

(C10b)

=
(

− 1

2
− 1

4
�

)
(|∼↑p↓q∼〉 − |∼↓p↑q∼〉). (C10c)

When � = −1, we obtain3 619

Hpq|sAGP〉 = − 1
4 |sAGP〉. (C11)

This shows that the bimodal extreme sAGP is an eigenstate of620

every bond Hpq in the lattice at � = −1.621

Now we will show it is the ground state at this �. Recall622

the Hamiltonian of the single bond, given in Eq. (C1). For623

any states of the entire lattice, only the spin configurations at 624

site p and q have an influence on the single bond, so we can 625

safely project the state to the subspace that only contains these 626

two sites and diagonalize the Hamiltonian of the bond in this 627

subspace. The eigenvalues are − 1
4 ,− 1

4 ,− 1
4 , 1

4 . The bimodal 628

extreme sAGP energy of − 1
4 means that it is a ground state 629

for this single bond. Thus bimodal extreme sAGP is a ground 630

state for all bonds in the lattice at � = −1. This means it is 631

also a ground state of the entire Hamiltonian and 632

HXXZ|sAGP〉 = −Number of bonds

4
|sAGP〉. (C12)

Note that this result relies only on the form of the Hamiltonian 633

and on the lattice being bipartite. In particular, it is true for any 634

number of dimensions, for any boundary conditions, and for 635

any (integer) Sz sector. 636

2. Trimodal extreme sAGP for tripartite lattices 637

The kagome and triangular lattices cannot be colored with 638

only two colors due to the triangular shape (Fig. 8). These 639

lattices are three-colorable (i.e., tripartite). We will show that 640

trimodal extreme sAGP is an eigenstate of the triangular 641

shapes in the three-colorable lattices. 642

Say p, q, r are three sites that form a triangle. In trimodal 643

extreme sAGP, ηp, ηq, ηr are correspondingly 1, e± 2iπ
3 . Let 644

H� = Hpq + Hqr + Hrp. (C13)

The trimodal extreme sAGP, when focusing on these three 645

sites, is 646

|sAGP〉 =
∑
∼

c↑↑↑(∼)ηpηqηr |∼↑p↑q↑r∼〉

+
∑
∼

c↑↑↓(∼)(ηpηq|∼↑p↑q↓r∼〉

+ ηpηr |∼↑p↓q↑r∼〉 + ηrηq|∼↓p↑q↑r∼〉)

+
∑
∼

c↑↓↓(∼)(ηp|∼↑p↓q↓r∼〉 + ηq|∼↓p↑q↓r∼〉

+ ηr |∼↓p↓q↑r∼〉)

+
∑
∼

c↓↓↓(∼)|∼↓p↓q↓r∼〉. (C14)

Following a similar procedure as we have outlined for the 647

two-colorable case, it can be shown that 648

H�|sAGP〉 = − 3
8 |sAGP〉. (C15)

Thus the trimodal extreme sAGP is the ground of state of 649

a triangle that contains the three different η values. In PBCs, 650

both kagome and triangular lattices are composed purely of 651

such triangles and trimodal extreme sAGP is the exact ground 652

state at � = −0.5. For OBCs, trimodal extreme sAGP is the 653

exact ground state at � = −0.5 only when the lattice breaks 654

none of these triangles. 655
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