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ATMOSPHERIC SCIENCE

Climate-invariant machine learning
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Projecting climate change is a generalization problem: We extrapolate the recent past using physical models
across past, present, and future climates. Current climate models require representations of processes that occur
at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent
machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate
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poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we
propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algo-
rithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configu-
rations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge
into data-driven models of Earth system processes can improve their consistency, data efficiency, and generaliz-

ability across climate regimes.

INTRODUCTION

Background

Following its success in computer vision and natural language pro-
cessing, machine learning (ML) is rapidly percolating through climate
science [e.g., reviews by (1-5)]. We use the term ML here to broadly
describe algorithms that learn a task from data without being explic-
itly programmed for that task. Applications of ML in atmospheric sci-
ence include the emulation of radiative transfer algorithms [e.g.,
(6-9)], momentum fluxes [e.g., (10-13)] and microphysical schemes
[e.g., (14-16)], the bias correction of climate predictions [e.g., (17,
18)], the detection and classification of clouds and storms [e.g., (19-
22)], and the development of subgrid-scale “closures” (i.e., representa-
tion based on coarse-scale processes only) from high-resolution
simulation data [e.g., (23-25)], which is the main application dis-
cussed here.

ML algorithms typically optimize an objective on a training
dataset and make implicit assumptions when extrapolating. Here, ex-
trapolation refers to predictions outside of the training data range,
henceforth referred to as out-of-distribution predictions. As an ex-
ample, multiple linear regressions (MLR) assume that the linear rela-
tionship that best describes the training set is valid outside of that
training set. Alternatively, when confronted with out-of-distribution
inputs, random forests (RFs) (26) find the closest inputs in their train-
ing sets and assign the corresponding outputs regardless of the out-of-
distribution input values. Neural networks (NNs), which are powerful
nonlinear regression and classification tools, rely on nonlinear activa-
tion functions and fitted weights to extrapolate. Except in specific sit-
uations (e.g., samples in the close neighborhood of the training set or
described by the same nonlinear mapping as the training set), there is
no reason why NNs should generalize well far outside of their training
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sets. We show later that different NN training approaches on the same
data can lead to drastically different out-of-distribution predictions,
highlighting the uncertainty associated with such predictions.

In climate applications, this extrapolation issue means that ML al-
gorithms typically fail when exposed to dynamic, thermodynamic, or
radiative conditions that differ substantially from the range of condi-
tions that they were trained on. Examples include O’Gorman and
Dwryer (27), who showed that an RF-based moist convection scheme
generalizes poorly in the tropics of a climate 6.5 K warmer than the
training climate, and Hernanz et al. (28), who showed that NNs and
support vector machines downscaling surface air temperature made
substantial extrapolation errors when exposed to temperatures 2-3 K
warmer than in the training set. Rasp et al. (29) showed that an NN-
based thermodynamic subgrid-scale closure generalizes well to cli-
mates 1 to 2 K warmer than the training one but makes large errors as
soon as the test climate is 4 K warmer than the training one.
Beucler et al. (30) confirmed that these generalization errors remain
even when the NN subgrid closure is modified to enforce conserva-
tion laws to within machine precision. This has led several studies to
recommend training ML models in multiple climates if possible (31,
32). Both Guillaumin and Zanna (33) who trained an NN parameter-
ization for subgrid oceanic momentum transport and Molina et al.
(34) who trained convolutional NNs (35) to classify thunderstorms in
high-resolution model outputs found that their ML models general-
ized well to a warmer climate. While this may be because both models
relied heavily on velocity inputs and their gradients, whose distribu-
tions changed only slightly when the climate warmed, Molina et al.
noted that using two types of ML layers, namely, batch normalization
(BN) (36) followed by dropout (DP) (37), was key to this successful
generalization.

DP and BN are two examples of a larger set of methods that help
NN generalize and avoid overfitting, broadly referred to as “regular-
izations” (38). Most empirical regularization methods (e.g., L1 regu-
larization) rely on the parsimony principle, i.e., that simpler models,
accurately describing the training set with fewer fitted parameters, are
preferable to more complex models and generalize better to unseen
conditions. More systematic approaches to regularization have been
developed to use ML models in out-of-distribution situations that still
require the same inputs/outputs, referred to as domain adaptation
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[e.g., (39-41)], a particular case of transfer learning [e.g., (42)]. While
not all domain adaptation approaches (sample-based, statistics-based,
ensemble-based, domain-invariant feature learning, domain map-
ping, etc.) need supervision (43), they usually require at least a few
samples in the generalization domain.

Without dismissing existing domain adaptation methods, we here
focus on physically informed methods that do not require samples in
the generalization domain for three reasons: (i) one of the climate sci-
ence community’s long-term goals is to train ML models that rely on
historical observations only as we cannot, by definition, observe the
future climate; (ii) as shown later, even if we have access to simulation
data across climates, ML models that intrinsically generalize to cli-
mates that they have not been trained on tend to be more data-efficient
and robust to other changes (e.g., configuration changes); and (iii)
physically informed methods can be readily combined with existing
domain adaptation and regularization methods. Motivated by these
challenges, we ask: How can we enhance ML algorithms with physical
knowledge to make accurate predictions in climate conditions that, in
standard variables, lie far outside of the training set?

Problem definition

Our scientific contribution is to transform a mapping constructed us-
ing the original data’s features, henceforth referred to as “raw-data”
mapping, into a mapping that remains nearly constant across cli-
mates, here referred to as “climate-invariant.” Inspired by invariants in
physics and self-similarity in fluid mechanics (44), we make the ML-
emulated mapping climate-invariant by transforming the input and
output vectors so that their distributions shift minimally across differ-
ent climates (see Fig. 1). We demonstrate this framework’s utility by
adapting ML closures of subgrid atmospheric thermodynamics (i.e.,
coarse-scale thermodynamic tendencies resulting from subgrid con-
vection, radiation, gravity waves, and turbulence) so that they gener-
alize better across climates.

The motivation for this application is twofold. First, purely physi-
cally based subgrid closures remain one of the largest sources of un-
certainties in Earth system models (45-47). While ML-based closures
have emerged as a promising alternative to traditional semiempirical
models (48), they lack robustness (49, 50) and, as discussed earlier,
usually fail to generalize across climates (27, 29, 30). Second, atmo-
spheric thermodynamic processes are directly affected by global tem-
perature changes, e.g., in response to anthropogenically forced climate
change (51). Therefore, predicting subgrid thermodynamics in a
warm climate with an ML model trained in a cold climate leads to
very apparent failure modes (30) that we can transparently tackle.

In mathematical terms, our goal is to build a climate-invariant
mapping between the input vector x representing the large-scale
(=100 km) climate state and the output vector y grouping large-scale
thermodynamic tendencies due to explicitly resolved convection and
parameterized radiative transfer and turbulent mixing at the ~1-km
scale [see section SB1 for details]. We keep the overall structure of
the mapping x — y fixed throughout the manuscript and aim to pre-
dict y as accurately as possible in training and generalization climates
(out-of-distribution prediction). Note that this mapping makes some
implicit assumptions based on successful past work (29, 52), includ-
ing locality in horizontal space and time (outputs only depend on
inputs in the same atmospheric column at the same time step) and
determinism (only one possible output vector for a given input vec-
tor). We include cloud radiative effects in all heating terms (total
heating T', longwave heating Iw, and shortwave heating sw) but, for
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simplicity, do not predict changes in cloud liquid water and ice and
exclude cloud water and greenhouse gases other than water vapor qv
from the input vector x.

After introducing the climate simulations and training/validation/
test split (see Data), we define the climate-invariant mapping and fea-
ture transformations (see Theory) and demonstrate and explain their
ability to generalize (see Results) before concluding. We refer the
reader to the Supplementary Materials for data availability (section
SA), additional derivations and descriptions of the mapping and
physical transformations (section SB), the implementation of our ML
framework (section SC), and additional results (section SD).

DATA

To test the robustness of our framework across model formulations
and configurations, we use three distinct storm-resolving climate
models and experimental setups: aquaplanet simulations using the
Super-Parameterized Community Atmosphere Model version 3.0
(SPCAM3), Earth-like simulations (i.e., with continents) using the
Super-Parameterized Community Earth System Model version 2
(SPCESM2), and quasi-global aquaplanet hypohydrostatic simula-
tions using the System for Atmospheric Modeling version 6.3
(SAM). SPCAM3 and SPCESM2 assume a strict scale separation
between the resolved coarse scales and subgrid processes, making
them ideal testbeds to machine learn local subgrid closures (29,
53). In contrast, SAM does not assume scale separation as a global
storm-resolving model. This improves realism but requires coarse-
graining SAM’s output for ML parameterization purposes (54, 55).
For each climate model, we run three simulations with three differ-
ent prescribed surface temperature distributions: (i) (40 K) a refer-
ence simulation with a temperature range analogous to the present
climate, (ii) (—4 K) a cold simulation with surface temperatures 4 K
cooler than the (+0 K) simulation, and (iii) (+4 K) a warm simula-
tion with surface temperatures 4 K warmer than the (+0 K) simula-
tion, with the exception of SAM for which only the (—4 K) and (+0 K)
simulations are available. By prescribing surface temperature, we
focus on MLs ability to consistently predict the atmospheric re-
sponse to climate change across configurations. Projecting climate
change involves a broader range of processes and is beyond this
worK’s scope. We summarize the simulations and indicate their spa-
tiotemporal resolutions in table S1. Figure 2 gives a visualization of
surface temperatures in each model, and fig. S1 provides snapshots
of mid-tropospheric subgrid heating, which is one of our ML mod-
els’ outputs.

Super-parameterized aquaplanet simulations

We use data from 2-year SPCAM3 (56) climate simulations in an
aquaplanet configuration (57), with zonally symmetric surface tem-
peratures fixed to a realistic meridionally asymmetric profile (58). The
insolation is fixed to boreal summer conditions with a full diurnal
cycle. A two-dimensional storm-resolving model is embedded in
each grid cell of SPCAM3, namely, eight SAM atmospheric columns
using a spatiotemporal resolution of 4 km X 30 levels X 25 s and the
default one-moment microphysical scheme (59). SPCAM3 combines
a spectral primitive equation solver with a semi-Lagrangian dynami-
cal core for advection (57). The (+0 K) SPCAM3 simulation was first
presented in (53) and subsequently used to train ML subgrid closures
in (29, 50, 60). Inspired by the generalization experiment of (27), the
(+4 K) simulation was introduced in (29), and we ran the (—4 K)
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Fig. 1. By transforming inputs x and outputs y to match their probability density functions across climates, the algorithms can learn a transformed mapping ¢
that holds across climates. To illustrate this, we show the marginal distributions of inputs and outputs in two different climates using blue and red lines, before (top) and

after (bottom) the physical transformation.

simulation for the work presented here to increase the surface tem-
perature generalization gap from 4 to 8 K.

Super-parameterized Earth-like simulations

We run three 2-year SPCESM2 (61) climate simulations in an Earth-
like configuration with realistic surface boundary conditions, includ-
ing aland surface model, seasonality, aerosol conditions representative
of the year 2000, and a zonally asymmetric annual climatology of sea
surface temperatures derived from the “HadOIB1” dataset (62). We
use CESM v2.1.3 to couple CAM v4.0 with the Community Land
Model version 4.0 and similarly embed 32 SAM columns in each
atmospheric grid cell to explicitly represent deep convection. Our (+0 K)
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simulation is similar to that in (52), which showed the potential of ML
for subgrid closures in Earth-like conditions.

Quasi-global aquaplanet hypohydrostatic simulations

While super-parameterization is well adapted to statistically learning
subgrid closures due to its explicit scale separation, this scale separa-
tion comes at the cost of distorted mesoscale systems and momentum
fluxes (63). Furthermore, most ML subgrid closures are based on
coarse-graining high-resolution simulations [e.g., (64, 65)]. This mo-
tivates us to also test the climate-invarjant framework in hypohydro-
static SAM simulations in which the dynamics are not affected by a
prescribed scale separation. Computational expense is reduced through
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Fig. 2. Surface temperatures in the three used atmospheric models. Prescribed
surface temperature (in kelvin) for (left) the aquaplanet SPCAM3 model and (right)
the hypohydrostatic SAM model. (Center) Annual-mean, near-surface air tempera-
tures in the Earth-like SPCESM2 model.

hypohydrostatic scaling, which multiplies the vertical acceleration in
the equations of motion by a factor of 16 to increase the horizontal
scale of convection without overly affecting the larger-scale flow (66,
67). While these simulations use idealized settings, such as aquaplanet
configurations, an anelastic dynamical core, a quasi-global equatorial
beta plane domain, and perpetual equinox without a diurnal cycle,
O’Gorman et al. (68) showed that they produce tropical rainfall inten-
sity and cluster-area distributions that are close to satellite observa-
tions. The prescribed surface temperature distribution in the control
simulation of (68) is designed to be close to zonal-mean observations
(69), and its maximum value is roughly 2 K colder than that of the
distribution used for the (+0 K) SPCAM3 simulation. To better match
the SPCAM3 maxima of distributions of upper-level temperatures
and humidities, we choose to treat this SAM control simulation as the
(—4 K) SAM simulation and the warm simulation of (68) as the (+0 K)
SAM simulation. We refer the reader interested in the details of the
simulations and the coarse-graining (here by a factor of 8) to (54).
Differences in climate model formulation and ML parameterization
design lead to key differences in the mappings learned for SAM as
compared to SPCAM3/SPCESM2, which we summarize below: (i)
The input vector does not contain specific humidity, surface pres-
sure, sensible heat fluxes, or latent heat fluxes (LHFs) but instead
contains the total non-precipitating water concentration and uses
distance to the equator as a proxy for solar insolation. (ii) The output
vector includes the subgrid total non-precipitating water tendency
instead of the subgrid specific humidity tendency and the subgrid
liquid/ice static energy tendency instead of the subgrid temperature
tendency. (iii) The output vector does not contain subgrid longwave
and shortwave heating. (iv) SAM uses a height-based vertical coor-
dinate rather than a pressure-based one. (v) the generalization ex-
periment is from (—4 K) to (+0 K) [unavailable (+4 K) simulation].

Normalization and training, validation, and test split

Both generalization experiments expose ML models to out-of-
distribution inputs that they have not been trained on. Following
best ML practices (70), we use the training set to optimize the ML
model’s trainable parameters, save the trainable parameters that led
to the best performance on the validation set to avoid overfitting the
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training set, and evaluate the final model on samples from a separate
test set. We split each of the eight simulations into training/validation/
test sets by using noncontiguous 3-month periods (reported in
table S1) to avoid high temporal correlations between training/
validation/test set samples (71). Following (29), the normalization
procedure involves subtracting the mean value of each input vari-
able at each vertical level and dividing by the maximum range of
that variable across the entire atmospheric column.

To understand which solutions are most promising for helping ML
algorithms generalize to unseen conditions, we design two generaliza-
tion experiments: (i) training and validating ML models on cold sim-
ulations (—4 K) and testing them on warm simulations (+4 K for
SPCAM3/SPCESM2 and +0 K for SAM); and (ii) training and vali-
dating ML models on aquaplanet simulations (SPCAM3) and testing
them on Earth-like simulations with continents (SPCESM2).

THEORY

We formally define a climate-invariant mapping as a mapping that is
unchanged across climates. In practice, it is difficult to find mappings
that are exactly invariant, and we will use the terminology climate-
invariant for any mapping that remains approximately constant across
climates. To achieve climate invariance, we introduce physically based
feature transformations, defined as physically informed functions that
map the inputs/outputs to different inputs/outputs whose distribu-
tions vary little across climates. We deem the physical transformation
to be climate-invariant if it is successful at limiting distributions varia-
tions of the inputs/outputs across climates. Note that climate-invariant
transformations are distinct from nondimensionalization in dimen-
sional analysis, as nondimensionalization does not necessarily alter
distribution shape while climate-invariant transformations may yield
variables that have physical units.

Throughout the following section, we compare two transforma-
tion options for each input, whose univariate Probability Density
Functions (PDFs) are depicted for all three atmospheric models in
Fig. 3: no transformation (top) and our most successful transforma-
tion (bottom). All transformations are derived in section SB2. Our
comparison relies on the Hellinger and Jensen-Shannon PDF distance
metrics defined and calculated in Materials and Methods and section
SD1. To prevent information leaks from generalization test sets into
the physically informed ML framework, we take two precautions: (i)
the physical transformations are fixed, meaning that their structure
and parameters are non-trainable; and (ii) transformations are ranked
on the basis of their generalization from (—4 K) to (+0 K) in SPCAM3.
Our (+4 K) results across models and configurations independently
confirm this ranking.

Specific humidity

Without any transformation, the PDF of specific humidity q (Fig. 3A,
top) extends through a considerably larger range as the climate
warms. This is because, barring supersaturation, q has a theoretical
upper bound in a given climate, namely, the saturation specific hu-
midity, which increases quasi-exponentially with temperature through
the Clausius-Clapeyron relation [e.g., (72, 73)]. The relative humidity
(RH) transformation gy (Fig. 3A, bottom) normalizes specific hu-
midity by its saturation value. As a result, most of the RH PDF lies
within [0,1], except for a few atmospheric columns exhibiting
supersaturation in SPCAM, and that PDF changes little as the climate
warms (74). In addition to capturing grid-scale saturation, gy helps
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Fig. 3. Physical transformations can align distributions across climates. We show the univariate distributions of selected raw inputs x: (A) 600-hPa specific humidity;
(B) 850-hPa temperature; and (C) latent heat flux (LHF) in the cold (blue), reference (gray), and warm (red) simulations of each model (SPCAM3, SPCESM2, and SAM). For
each variable, we also show the PDFs of the transformed inputs X as discussed in the Theory section. From top to bottom, the variables are g (grams per kilogram), relative
humidity (RH), T (kelvin), Bplume (Meters per square second), LHF (watts per square meter), and LHF 54 (kilograms per square meter per second). For a given variable and

transformation, we use the same vertical logarithmic scale across models.

predict the subgrid effects of dry-air entrainment, known to regulate
tropical convection (75, 76, 77) (see section SB2b for details of RH
calculations).

Temperature

The PDF of temperature T (Fig. 3B, top) shifts quasi-linearly as the
climate warms. To address this shift without compromising the ap-
proximate invariance of tropopause temperatures with warming (78,
79, 80), we derive a temperature transformation directly relevant for
moist convection: the buoyancy of a non-entraining, moist static
energy-conserving plume Tbuoyanq, (Fig. 3B, bottom, see section SB2¢
for this buoyancy’s derivation). This transformation is inspired by re-
cently introduced lower-tropospheric buoyancy measures (81, 82), but
with an extension to the full troposphere (83). While Tbuoyancy does
not explicitly include entrainment effects, the mapping of Tbuoyancy p)
and g (p) to heating and moisture sink will implicitly include these.
This transformation captures leading order effects needed to yield
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approximate climate invariance (Fig. 3B). Tbuoqu, increases physical
interpretability by linking the vertical temperature structure and
near-surface humidity changes to a metric that correlates well with
deep convective activity (84). T buoyancy alS0 captures the role of near-
surface humidity relative to the temperature structure aloft in contrib-
uting to moist convective instability in the tropics.

Latent heat flux

The last input whose distribution changes visibly with warming
is the LHF (Fig. 3C, top; the remaining inputs, sensible heat
flux and surface pressure, change less with warming and are
discussed in section SB2d). Similar to specific humidity, the in-
crease of LHFs with warming is directly linked to the Clausius-
Clapeyron relationship [e.g., (85)]. To address this shift, we
leverage the bulk aerodynamic formula to represent surface
fluxes and to provide a physics-motivated transformation of
LHF using the near-surface saturation deficit (Fig. 3C, bottom).

50f13

$20¢ ‘LT Areniqo ] uo §10°00us1os' mma//:sdiy woij popeojumo(y



SCIENCE ADVANCES | RESEARCH ARTICLE

This transforms LHF, a thermodynamic variable, into LﬁFAq,
approximately proportional to the magnitude of near-surface
horizontal winds and density [e.g., (85)], whose distributions
vary less with warming. Note that this scaling is less effective
over land (e.g., in SPCESM2) where evapotranspiration changes
do not follow a Clausius-Clapeyron scaling.

We now show that all three input transformations [Ggy(p),
Tbuoyanq,(p), and LHF aq) lead to statistically significant improve-
ments in the ML models’ ability to generalize.

RESULTS

The results are organized as follows. After demonstrating the bene-
fits of progressively transforming the ML models inputs (Fig. 4), we
show how climate-invariant models learn subgrid closures across
climates and configurations during training (Fig. 5 and fig. S7). We
then discuss the global skill of different models after training (Fig. 6
and figs. S8 and S9). Last, we investigate the structure of climate-
invariant mappings to understand why they generalize better across
climates (Fig. 7), even when data from multiple climates are avail-
able (Fig. 8).

A MSE in cold tropics (10> W2 m~)

01 —— RD (-4 K)
200
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B Generalization test: MSE in warm tropics (103 W2 m—

S E

Benefits of incremental input transformations

In this section, we demonstrate that incrementally transforming the
inputs of NNs progressively improves their generalization abilities
from the cold (—4 K) aquaplanet (SPCAM3) simulation to the warm
(+4 K) aquaplanet simulation. The largest surface temperature jump
tested in this study is between the cold aquaplanet simulation and the
tropics of the warm aquaplanet simulation (“warm tropics” for short),
defined as the regions with out-of-distribution surface temperatures,
whose latitudes are between —15°S and 23°N (approximately the red
regions in top-left subplots in Fig. 2). To expose the failure modes of
the “brute force” model and the benefits of progressively transforming
the inputs, we first trained several NNs on the cold aquaplanet until
they reached high accuracy (Fig. 4A) before testing their out-of-
distribution generalizability in the warm tropics (Fig. 4B).

In the cold tropics, the vertical profiles of the mean-squared error
(MSE) are nearly indistinguishable for all types of NNs and roughly
follow the vertical structure of subgrid variance, as discussed in (53,
60). When evaluated in the warm tropics, the MSE of the brute force
NN (blue line) increases by a factor of ~#10 and peaks above 100 W m™,
underlining how raw-data NNs fail to generalize across climates. As
discussed in Theory, we progressively transformed the inputs starting
with specific humidity, which is transformed to RH (orange line). This
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Fig. 4. All neural networks (NNs), trained in the cold climate, exhibit low error in the cold climate’s test set, but much larger error in the warm climate’s test set.
(A) Low error in the cold climate’s test set. (B) Larger error in the warm climate’s test set. This generalization error decreases as inputs are incrementally transformed: first
no transformation (blue), then the vertical profile of specific humidity (orange), then the vertical profile of temperature (green), and lastly LHFs (red). For reference, the
purple line depicts an NN trained in the warm climate. We depict the tendencies’ mean-squared error (MSE) versus pressure, horizontally averaged over the tropics of
SPCAM3 aquaplanet simulations, for the four model outputs: total moistening (9), total heating (), longwave heating (Iw), and shortwave heating (sw). Given that the
raw-data NN's generalization error (blue line) greatly exceeds that of the transformed NNs, we zoom in on each panel to facilitate visualization.
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Training set Validation set Training set Training set
Trained Model Same temperature | Same temperature | Different temp. | Same temperature
on Same conf. Same config. Same config. Different config.
MLR RD 287 (288),1.0 288 (289),1.0 759 (785),1.0 242 (265),1.0
Cold MLR CI 294 (294),1.0 295 (295),1.0 671 (671),0.9 245 (265),1.0
aquaplanet NN RD 172 (172),0.6 172 (173),0.6 2167 (2242),2.9 | 1098 (1117),4.5
(-4K) |NNRD+DN|| 222(222),0.8 205 (206),0.7 3225(3509),4.3 258 (318),1.1
SPCAM3 NN CI 168 (169),0.6 169 (169),0.6 422 (425),0.6 297 (316),1.2
NN CI+DN | 214(214),0.7 198 (198),0.7 483 (487),0.6 224 (227),0.9
MLR RD 642 (644),1.0 643 (645),1.0 328 (330),1.0 507 (543),1.0
Warm MLR CI 650 (651),1.0 650 (651),1.0 315(315),1.0 529 (598),1.0
aquaplanet NN RD 363 (364),0.6 362 (364),0.6 386 (472),1.2 1354 (1612),2.7
(+4K) |NNRD+DN|| 473(473),0.7 434 (436),0.7 248 (248),0.8 728 (1275),1.4
SPCAM3 NN CI 354 (355),0.6 355 (356),0.6 199 (202),0.6 1241 (1293),2.4
NN CI + DN 451 (451),0.7 412 (414),0.6 210(212),0.6 567 (659),1.1
MLR RD 197 (197),1.0 197 (197),1.0 508 (562),1.0 299 (299),1.0
Cold MLR CI 203 (203),1.0 202 (202),1.0 459 (459),0.9 307 (307),1.0
Earth-like NN RD 114 (114),0.6 116 (116),0.6 709 (803),1.4 247 (251),0.8
(-4K) |NNRD+DN| 165(165),0.8 152 (152),0.8 512 (575),1.0 247 (247),0.8
SPCAMS NN CI 112 (112),0.6 114 (114),0.6 292 (294),0.6 312(323),1.0
NNCI+DN | 158(158),0.8 144 (144),0.7 346 (347).,0.7 229 (233),0.8

Fig. 5. Model error across temperatures and configurations. MSE (in W?
m"‘) of six models trained in three simulations (first column) and evaluated
over the training or validation set of the same and two other simulations (last
four columns). The models (second column) are raw-data (RD) or climate-
invariant (Cl), and MLRs or neural nets (NN), and sometimes include DP layers
preceded by a BN layer (DN). The models are trained for 20 epochs. We first
provide the MSE corresponding to the epoch of minimal validation loss, then
the MSE averaged over the five epochs with lowest validation losses (in paren-
theses), and lastly the MSE divided by the baseline MSE, where we use the
raw-data MLR as baseline. Note that “different temperature” refers to (+4 K) for
(—4 K) training sets and vice versa. In each application case, we highlight the
best model’s error using bold font.

SPCAM3

A Raw-data mapping

SPCESM2

first transformation decreases the MSE so much (by a factor of 5 to
10) that we need to zoom in on each panel to distinguish the general-
ization abilities of additional NNs. Adding the transformations of
temperature to plume buoyancy (green line) improves the generaliza-
tion MSE for all variables. Adding the LHF to LHF,, transformation
(red line) further decreases generalization MSE, except for shortwave
heating where the MSE improves in the cold but not the warm cli-
mate. Impressively, transforming all three inputs decreases the MSE
so much that the resulting climate-invariant NN’s MSE (red line) is
within ~25% of the MSE of a raw-data NN that was directly trained in
the warm climate (purple line).

Hereafter, we use climate-invariant to refer to models for which all
three inputs (g, T, and LHF), but no outputs were transformed, solely based
on physical principles. After demonstrating their success in the aquaplanet
case, we are now ready to investigate how these climate-invariant models
learn in the other climates and simulations introduced in Data.

Learning across climates and configurations
In this section, we show that climate-invariant models learn mappings
that are valid across climates and configurations and that their efficacy
improves when used in conjunction with ML regularization tech-
niques like BN and DP layers.

Figure 5 shows the MSE of ML models trained in three different
datasets and evaluated over their training and validation sets and
over test sets of different temperature and configuration. As discussed

1.00

2

0.75

0.50

0.25

termination R

Fig. 6. Climate-invariant NNs address the raw-data NNs’ generalization problems in the warm tropics. This is demonstrated by the 500-hPa subgrid heating’s coef-
ficient of determination R? calculated over the test set for the raw-data (A) and climate-invariant (B) NNs. We train NNs using the cold (-4 K) training set of each model
(SPCAM3, SPCESM2, and SAM). We note that these NNs do not use DP nor BN, and we refer the readers to fig. S8 for latitude-pressure cross sections.
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previously, climate-invariant NNs (NN CI) generalize better to warm-
er climates than raw-data NNs (NN RD). We go one step further
by examining learning curves, defined as the MSE of an ML model at
the end of each epoch during training (one epoch corresponds to the
ML model being fed the entire training set once). Impressively, the
learning curve of the climate-invariant NN trained in the cold aqua-
planet but tested in the warm aquaplanet (starred blue line in fig. S7A)
is mostly decreasing, supporting this manuscript’s key result: Climate-
invariant NNs continuously learn about subgrid thermodynamics in

SHAP feature importance matrix (W m~2)

A  Raw-data mapping
0 hPa

10° hPa

10° hPa

-10 -5 0 5 10

Fig. 7. Explainable artificial intelligence suggests that climate-invariant map-
pings are more spatially local. We depict .# for the (A) raw-data and (B) climate-
invariant NNs trained in the SPCAM3 (+4 K) warm aquaplanet simulation. The x
axes indicate the inputs’ vertical levels, from the surface (left, 10 hPa) to the top of
the atmosphere (right, 0 hPa), while the y axes indicate the outputs’ vertical levels,
from the surface (bottom, 10° hPa) to the top of the atmosphere (top, 0 hPa). We
additionally indicate the 200-hPa vertical level with black dashed lines.

the warm aquaplanet as they are trained in the cold aquaplanet. In
contrast, the raw-data NN trained in the cold aquaplanet but tested in
the warm aquaplanet makes extremely large generalization errors,
which worsen as the model is trained in the cold aquaplanet (see sec-
tion SD2 for details).

Climate-invariant NNs also facilitate learning across configura-
tions, i.e., from the aquaplanet to the Earth-like simulations and vice
versa (see NN CI rows in Fig. 5). Climate-invariant transformations
additionally improve the MLR baseline’s generalization ability, albeit
less markedly. This smaller improvement in MLR’s generalization
abilities is linked to its relatively small number of trainable parame-
ters, resulting in (i) raw-data MLRs generalizing better than raw-data
NNs; and (ii) MLRs having lower descriptiveness and fitting their
training sets less well, limiting the maximal accuracy of climate-
invariant MLRs on test sets.

There are a few cases in which transforming inputs does not fully
solve the generalization problem, e.g., when trying to generalize from
the aquaplanet to the Earth-like simulation. In that case, we leverage
the fact that input transformations can easily be combined with stan-
dard techniques to improve generalization, such as DP layers before
each activation function and a single BN layer before the first DP
layer (36). As DP layers randomly drop a fixed proportion of the
trainable parameters during training, NNs with DP fit their training
set less well (see NN CI + DN row of Fig. 5). However, they improve
generalization in difficult cases (e.g., between cold aquaplanet and
Earth-like simulations) and do not overly deteriorate generalization
in cases where the input transformations work particularly well (e.g.,
from cold to warm aquaplanet). Our results suggest that combining
physics-guided generalization methods (e.g., physical transformation
of the inputs/outputs) with regularization methods (e.g., DP) is ad-
vantageous and deserves further investigation. After analyzing the
overall MSE during training, we now turn to the spatial characteristics
of our ML models’ skill after training.

Test mean-squared error of NNs trained in both climates

—— Tested in (-4 K) —— Tested in combined (-4 K)/(+4 K)
794 4 I 1 —— Tested in (+4 K) %  Climate-invariant
* I —— Testedin (+0K) e Rawdata
630 A } l I
=
_ . i I $ 8
7 501 * ¥
g i [
E l
5 398 1 i i
£ bz I =
- 1 :
316 1
I !
251 A § ¥ »
I
199 1 SIS SIS RIS IS IS SIS
32 128 512 2048 8192 32,768
Number of training samples from combined (-4 K)/(+4 K)

Fig. 8. Climate-invariant (Cl) NNs trained on datasets containing both cold (—4 K) and warm (+4 K) samples outperform raw-data (RD) models offline in ~95% of
cases, with less sensitivity to the data partition used for training. Dots on the left represent the median RD error from a 10-fold cross-validation without replacement,
with horizontal ticks indicating the first and ninth deciles. Stars on the right correspond to the median Cl error. Ticks denote the majority of cases, for which Cl models
outperform RD models, even when data from both climates are available; crosses indicate the rare exceptions. We use a logarithmic scale for both axes.
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Global performance after training

In this section, we first compare the spatial characteristics of the brute
force and climate-invariant NNs’ skill across climates of different tem-
peratures to further establish the advantages of our climate-invariant
transformation. These advantages are clearly visible in Fig. 6, where
the raw-data models struggle to generalize to the warm tropics for all
simulations despite fitting the cold training set well (Fig. 6A). We can
trace these generalization errors to warm temperature and moist at-
mospheric conditions the NNs were not exposed to during training,
visible when comparing Fig. 6A with Fig. 2A. In contrast, the climate-
invariant models fit the warm climate almost as well as the cold cli-
mate that they were trained in (Fig. 6B). Note that Fig. 6 focuses on
the horizontal map of a single output, i.e., the total subgrid heating at
500 hPa, but that the horizontal maps of other outputs, such as the
near-surface subgrid heating (see fig. S9), all exhibit the same pattern
of raw-data models failing in the warm tropics and the climate-
invariant models mostly correcting these generalization errors. Last,
the spatial distribution of the skill in the training set (e.g., middle col-
umn of fig. S8) is reassuringly consistent with the skill map of highly
tuned NNs trained in similar conditions [e.g., (52)]. This confirms
that the raw-data models, representative of state-of-the-art ML sub-
grid closures, fail to generalize. This failure is confirmed in the
latitude-pressure map of the subgrid heating at all vertical levels
shown in fig. S8 and discussed in section SD3.

To fully compare ML models across climate and configurations,
we evaluate their overall MSEs in the training, validation, and both
generalization test sets in Fig. 5. In addition to the MSE of minimal
validation loss, we show the MSE averaged over the five epochs of
minimal validation loss in parentheses to confirm that our models
have converged. Consistent with the learning curves in fig. S7, climate-
invariant NNs with DP and BN layers often demonstrate the highest
level of generalizability (two rightmost columns of each row’s NN
CI + DN models).

While they fit their training sets less well, raw-data MLRs gener-
alize better than raw-data NNs because they have fewer trainable
parameters (see MLR RD and NN RD models). In Fig. 5, we also
show that, while DP and BN layers generally increase the generaliza-
tion performance of raw-data NNs (NN RD + DN models), we can
systematically improve these standard ML regularization methods
by combining them with input transformations (NN CI + DN
models).

Understanding climate invariance

To interpret our NN results, we use a game theory-based explainable
ML approach, called SHapley Additive exPlanations (SHAP) (86, 87),
to dissect climate-invariant mappings and provide insight into why
they generalize better across climates and configurations. Note that
MLRs are interpretable by construction, and we can draw preliminary
conclusions by visualizing MLR weights without the need for explain-
able ML libraries (see section SD4). Similarly, we can directly visualize
the NN’ linear responses (80, 88-90) by calculating their Jacobians
(gradients) via automatic differentiation (49). However, the difference
between RD and CI MLRs is small and the Jacobians (88) cannot al-
ways be reliably used to explain nonlinear NN predictions as they are
first-order derivatives calculated over a sample (91).

Therefore, as climate-invariant NNs have shown superior general-
izability from cold to warm climates (see NN CI errors in Fig. 5), we
use SHAP’s KernelExplainer to elucidate the NNs’ generalizability. We
choose this attribution method for its versatility, as it can be used for
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any multi-input/output ML model. SHAP estimates the impact of a
particular input value x; on each output y; of our model. It is designed
with a local accuracy property, ensuring that the sum of the effects of
individual inputs equals the difference between y; and its average val-
ue in the training set

def
ZiSHAP(’Cp}’j) =y

where we have introduced the deviation y;, defined as the difference

1

. .. s def
between y; and its training set average y, = y; — (¥;)%. We use these
“Shapley values” to build a nonlinear feature matrix M capturing the
influence of an input x; on an output y;
def | ’

M ;= (sign(x;) X SHAP(x;, y;) ) ()
where we use the sign of the input deviation x] to make .Z;; positive
if x! and yj( have the same sign, e.g., if a positive input deviation leads
to a positive output deviation. In the particular case of the MLR de-
fined in eq. S25, the nonlinear feature matrix becomes the regres-
sion weight matrix multiplied by the absolute value of the input
deviations: J/ ;; = (A,»jlel)g;, confirming that the feature matrix ¢ is
a nonlinear extension of the Jacobian (A in the MLR case).

In Fig. 7, each panel depicts the SHAP feature matrix M for a given
model: raw-data (A) and climate-invariant (B). Each models inputs
(e.g., specific humidity g and temperature T) are organized on the x
axis from the surface to the top of the atmosphere. Each model’s out-
puts [subgrid moistening g and subgrid heating T see fig. S14 and
fig. S15 for subgrid longwave heating (lw) and subgrid shortwave
heating (sw)] are organized on the y axis, from the surface to the top
of the atmosphere. Following a horizontal line shows how different
inputs contribute to a given output, while following a vertical line
shows how a given input influences different outputs.

Figure 7 contains a wealth of information about subgrid closures
trained in aquaplanet simulations; we focus here on visualizing how
the climate-invariant NNs (B) operate in ways that generalize better
than their raw-data mapping counterpart (A). Consider the row for
subgrid heating T. In the raw-data case (A), M has large coefficients in
most of the troposphere (in the entire square below the dashed lines
depicting the approximate tropopause level). This means that specific
humidity and temperature deviations at all levels affect subgrid heat-
ing at a given level, i.e., there are large nonlocal relations in the verti-
cal. Some nonlocal relations are physically plausible for convection
because buoyant plumes tend to rise from the surface, and near-
surface T'and g influence T through the entire troposphere. However,
in this model, moisture at higher altitudes appears to influence g at
lower altitudes, raising suspicions that some of the raw-data NN’s
nonlocalities are not causal but rather due to high autocorrelations
within the input’s vertical profile, as Brenowitz et al. (49) showed
could happen. Temperature variations are observed to have strong
vertical correlations (92) in part because of deep convective effects.
Because temperature affects the saturation threshold for moisture, the
RD NN will have to correctly capture the effects of both temperature
and moisture wherever either has influence. In contrast, in the Bpjume-
RH climate-invariant case (B), leading nonlocal effects between the
boundary layer and the free troposphere have already been taken into
account in the buoyancy formulation, and the temperature-dependent
saturation threshold is built into RH. Thus, M for T tends to be con-
centrated near the red diagonal, meaning that positive deviations of
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plume buoyancy and RH increase subgrid heating near the same ver-
tical level. The use of domain knowledge has effectively reduced the
effects that must be estimated by the NN for the climate-invariant
models. This tends to yield differences between the models trained in
the cold and the warm climates that are much smaller than for the
raw-data models (see last column of fig. S15).

Advantages of climate invariance with multi-climate data

It is natural to wonder whether the benefits of climate invariance
carry over to training scenarios that entail data from multiple simu-
lations spanning diverse temperatures. In contrast, until now, we
have only trained ML models on single-climate simulations. To find
out, we examine the benefits of our climate-invariant transformation
approach under the ideal scenario where we have access to data from
multiple climates. We conduct experiments where we train NNs on
both the cold (—4 K) and warm (+4 K) aquaplanet simulations. We
progressively increase the amount of training data to assess data ef-
ficiency. Throughout the experiment, we use eight batches and sys-
tematically increase the batch size by powers of 2, starting with a
batch size of 4. Note that we obtain similar results when increasing
the number of batches while keeping the batch size fixed (not shown).
To obtain well-defined uncertainty estimates, we use a 10-fold cross-
validation procedure via random sampling without replacement.
Our findings, depicted in Fig. 8, demonstrate that CI NNs (i) consis-
tently outperform RD NN, particularly in data-rich scenarios; and
(ii) exhibit lower sensitivity to the training data partition, resulting in
more reliable offline performance with reduced variability in test
errors. This confirms that our climate-invariant mapping enhances
data efficiency, performance, and fit reproducibility across different
climates, even when training data from multiple climates are available.

DISCUSSION

In the context of climate change, we hypothesized that ML models
emulating climate-invariant mappings (Fig. 1), for which the inputs/
outputs distributions change little across climates (Fig. 3), generalize
much better than ML models emulating raw-data mappings, for
which the inputs/outputs distributions change substantially across cli-
mates. Tested on a suite of storm-resolving atmospheric simulations
with different surface temperatures in three atmospheric models with
distinct configurations (Fig. 2), physically transformed NNs general-
ize better as their inputs are progressively transformed (Fig. 4).
Climate-invariant NNs whose inputs have all been transformed learn
mappings that are robust to temperature and configuration changes
(Fig. 5) and hence exhibit superior generalization skill almost every-
where on the globe (Fig. 6), including when data from multiple cli-
mates are available (Fig. 8). Last, attribution maps reveal that in
addition to providing control on the features distributions, climate-
invariant NNs learn more spatially local mappings that facilitate gen-
eralization across climates and configurations (Fig. 7).

From a computational perspective, incorporating physical knowl-
edge, here of climate change, into an ML framework to improve its
generalization skill is a successful example of using domain knowl-
edge to extract more informative predictors, informally referred to as
“feature engineering” [e.g., (93)]. This also aids interpretability of the
mapping. From a climate science perspective, requiring that a nonlin-
ear statistical model of the atmosphere generalize across climate is
a stringent test that helped us discover new mappings. This climate-
invariant mapping is more robust to climate and configuration changes
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and is more advantageous than directly using model and observation-
al outputs (e.g., specific humidity and temperature), even when data
are available in various climate regimes. In the particular case of sub-
grid thermodynamics, our generalization results suggest the possibil-
ity of NN-powered closures that could work in Earth-like settings,
even in vastly different climate conditions. Last, the attribution maps
suggest the possibility of new analytic representations of convection
from data, facilitated by the more local climate-invariant representa-
tion of subgrid thermodynamics. Our strategy paves the way for the
successful use of ML models for climate change studies.

MATERIALS AND METHODS

This section outlines how to find feature transformations yielding cli-
mate invariance. Figure 9 illustrates our proposed workflow for find-
ing robust input/output transformations that transform the initial
raw-data mapping into a climate-invariant mapping when combined.
Note that this workflow assumes that we cannot or do not want to
retrain ML algorithms in the target climate, which excludes automati-
cally finding a transformation by training a model. This limitation
could arise because the data in the target climate are insufficient or
less reliable or because we seek to uncover new physical relations that
hold across an even wider range of climates.

The first step is to propose a physical transformation to imple-
ment. We can do this through knowledge of robust physical or statis-
tical relations that link and/or preserve distributions (e.g., state
equations, self-similarities, conservation laws, and accurate empiri-
cal relations) as modeled in section SB2. These relations help derive
invariants [e.g., (94)] under a change in thermodynamic conditions.
Before taking the time to implement this transformation in the ML
workflow, we can verify that the PDFs of the transformed inputs/
outputs (approximately) match in the training and target climates.
Ideally, the joint PDFs of the transformed inputs/outputs would
match. In practice, because it is easier to transform one variable at a
time and the data are often insufficient in the target climate, we can
fall back on the necessary (but not sufficient) condition that the uni-
variate PDFs of the transformed inputs/outputs must match in the
training and target climates. Mathematically, this match can be quan-
tified using PDF distance metrics.

An additional challenge is that the original and transformed vari-
ables may have different units and range, meaning that any nonlinear
distance metric will complicate the PDF comparison. To address this,
we normalize the PDFs and their support variables X so that the
PDFs’ domains strictly lie within [0,1]. For a given variable, we use the
same normalization factors across climates

def X — mingX
Xnorm = v v (3)
maxyX — mingX
def
PDFnorm ; 1 el
J anorm X PDF(Xnorm) (4)
0

where PDF, o, is the transformed PDF and X, orm is its transformed
support; and max. and ming, respectively, refer to the maximum and
minimum operators over the variables’ domains and across climates,
i.e., over the (—4 K), (+0 K), and (+4 K) simulations.
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* Find transformation using
physical knowledge

Train MLR on ref. climate: Test on target climate:

&

S

* Verify univariate PDFs "+ Raw-data mapping M Does transformation
match in both reference and| |+ Transformed mapping | | improve performance?3
target climates 1 No

Train nonlinear ML
algorithm on ref. climate:

* Raw-data mapping

« Transformed mapping 4

No Test on target climate:
Does transformation signif. f«=—
improve performance? g

Keep the
transformation Yes

Fig. 9. Proposed five-step workflow to find climate-invariant transformations.
The transformations help ML models generalize from a reference (ref.) climate to a
target one, using (top) a baseline MLR as an initial guide.

Once the PDFs of each variable are normalized, we may pick any
informative PDF distance metric to quantify how PDFs match
across climates. Here, we pick the commonly used Hellinger dis-
tance between two PDFs p and ¢, formally defined (95) as

1
()= J o - VIO (5)

0 2

This distance is symmetric (i.e., the arguments’ order does not af-
fect the outcome) and easy to interpret: J{p, q) is bounded by 0
(when p = q) and 100% (when p is zero whenever q is positive and
vice versa). In section SD1, we show that our results using the Hellinger
distance (see table S1) are consistent with those using the Jensen-
Shannon distance (see table S3) (96), a PDF distance metric giving
large weights to the PDFs’ tails that tend to be particularly problem-
atic for generalization purposes.

Once the univariate PDFs of the physically transformed variables
match across climates, the second step is to train two inexpensive or
“baseline” models on the reference climate to quickly check whether
the transformation improves an ML model’s generalization ability: (i)
a raw-data model without the transformation and (ii) a climate-
invariant model with the transformation. If the transformation does
not improve the baseline model’s generalization abilities [i.e., (ii) per-
forms worse than (i) in the target climate], then the transformation
may not be appropriate. Note that we trained MLR baselines to create
climate-invariant NNs, but the ML model used to define the baseline
should be tailored to the desired final ML model.

If the transformation improves the inexpensive baseline model’s
performances, then the last step is to train the raw-data and climate-
invariant versions of the desired ML model (usually nonlinear) on
the reference climate. If the physical transformation improves the
desired ML model’s generalization abilities (i.e., the climate-invariant
model beats the raw-data model in the target climate using the same
performance metric calculated over a validation set), then we may
keep the transformation. This workflow may be repeated for the ML
model’s additional input/output variables until the emulated map-
ping is as climate-invariant as possible.

Before applying this workflow to subgrid thermodynamics clo-
sures, we underline one of its key challenges: Because some transfor-
mations are much more impactful than others, it is often not possible
to develop each physical transformation independently. In our case,
the specific humidity inputs vary the most across climates, meaning
that transforming specific humidity affects the model’s generalization
abilities the most. As a result, initial experiments that independently
tested the effect of transforming temperature suggested a negative
impact of temperature transformation on generalization ability (not
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shown). This initial result was later invalidated by experiments that
jointly transformed specific humidity and temperature. Following
this, we adopt a progressive input transformation approach, where the
most important inputs are transformed first: specific humidity, then
temperature, and lastly surface energy fluxes.
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The Supplementary Materials (SM) is organized as follows: First, we discuss code and data
availability (SM A), including links to multiple repositories to reproduce the different ML-based
closures and climate simulations discussed in the manuscript. Then, we present the characteris-
tics of the emulated mapping (SM B1), derive the input transformations used in the manuscript
(SM B2), the output transformations tested in this SM (SM B3), and discuss possible vertical
coordinate transformations (SM B4). We provide a guide to find new climate-invariant trans-
formations in SM B5. SM C details the practical implementation of our climate-invariant ML
workflow. F inally, w e present s upplementary results in SM D, including the H ellinger and
Jensen-Shannon distances between input distributions (SM D1), the learning curves of climate-
invariant models across climates and geographies (SM D2), the generalization skill of climate-
invariant NNs near the surface (SM D3), and three methods to visualize the “raw-data” and
climate-invariant mappings and compare them in the cold (-4K) and warm (+4K) climates (SM
D4).

A. Code and Data Availability

The code used to process data, train models, and produce this manuscript’s figure can be found
in the following Github repository: https://github.com/tbeucler/CBRAIN-CAM,
which is archived using Zenodo https://zenodo.org/record/8140413 [97]. This


https://github.com/tbeucler/CBRAIN-CAM
https://zenodo.org/record/8140413

repository includes a minimal reproducible example on how to train a climate-invariant neu-

ral network and verify its improved generalization ability: https://colab.research.
google.com/github/tbeucler/CBRAIN-CAM/blob/master/Climate_Invariant_
Guide.ipynb and a notebook to generate all figures in this manuscript requiring model data
https://github.com/tbeucler/CBRAIN-CAM/blob/master/notebooks/tbeucler_
devlog/090_Climate_Invariant_Paper_Figures_v2.1ipynb. Both scripts rely

on the manuscript’s accompanying data, archived in the following Zenodo repository: https:
//doi.org/10.5281/zenodo.8140536 [98].

The above Github repository is forked from (and builds upon) Stephan Rasp’s CBRAIN
repository https://github.com/raspstephan/CBRAIN-CAM, also archived using Zen-
odohttps://zenodo.org/record/14023844#.YajSg9BKiUk [99]. This repository
contains a quickstart guide https://github.com/raspstephan/CBRAIN-CAM/blob/
master/quickstart.ipynb to preprocess raw climate model output, train a neural net-
work and benchmark it.

As described in Section 2, we use data from eight climate simulations using three climate
models (SPCAM3, SPCESM2, and SAM) to form our training, validation, and test sets. We
report the exact characteristics of the splits in Tab S2 and information to re-generate the full
simulation output below.

SPCAM3 The codebase for running the “SPCAM3” simulation is the same employed by
[29], which is archived at https://gitlab.com/mspritch/spcam3.0-neural—-net/
—-/tree/sp-diagnostic for the (+0K) simulation. The sea surface temperature is uni-
formly cooled by 4K to produce the (-4K) simulation and uniformly warmed by 4K to pro-
duce the (+4K) simulation. Raw output of the (+0K) simulation can be found at https:
//zenodo.org/record/1402384#.YaUCsdDMI-w [99]. The full simulations output,
which is several TB, is archived on the GreenPlanet cluster at UC Irvine and available upon
request.

SPCESM2 The codebase for running the “SPCESM?2” simulations is the same employed
by [100], which is archived athttps://github.com/mspritch/UltraCAM-spcam?__
0_cesml_1_ 1} this code was in turn forked from a development version of the CESM1.1.1 lo-
cated on the NCAR central subversion repository under tag spcam_cam5_2_00_forCESM1__
1_1Rel_V09, which dates to February 25, 2013. The full simulations output, which is several
TB, is also archived on the GreenPlanet cluster at UC Irvine and available upon request. We ad-
ditionally archived the input data and run scripts necesary to re-run all three simulations as part
of the manuscript’s accompanying data using Zenodo https://zenodo.org/record/
5775541#.YbeMHNDMKU1 [98]].

SAM The codebase for running the “SAM” simulations is the same employed by [54]. The
initial sounding, meridional surface temperature profile, and source code to re-run the sim-
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ulation can be found at https://zenodo.org/record/4118346#.YaT_WtBKg—w
[101]]. To produce the (+0K) simulation, the initial sounding and surface temperature profiles
are both uniformly warmed by 4K. The output from the SAM simulations, which is several TB,
is archived at MIT and is available upon request.

B. Feature Transformations

B1. Mapping

In this subsection, we present the characteristics of the emulated mapping, highlighting the
differences between the superparameterized models (SPCAM3, SPCESM2) and the storm-
resolving model (SAM). In both cases, the input vector  encodes the large-scale (=100km)
climate state:

T
| a(®) T(p) p. S SHF LHF | (SPCAMS3 SPCESM2)

[ Q4np (p) T (p) dEquator ]T (SAM)

where g (p) is the vertical profile of specific humidity in units of kg/kg (written as a function of
the background pressure coordinate p in units of Pa), T' (p) is the temperature’s vertical profile
in units of K, p; is surface pressure in units Pa, Sy is solar insolation in units of W/m?, SHF
is surface sensible heat flux in units W/ m?2, LHF is surface latent heat flux in units of W / m?,
gnp (P) is the vertical profile of non-precipitating water concentration in units of kg/kg, and
dEquator 1 the distance to the Equator, which is used as a proxy for solar insolation in the map-
ping learned for SAM. The output vector y groups subgrid-scale thermodynamic tendencies:

(1

[ L. (p) T (p) clw(p) c,sw (p) ]T (SPCAM3, SPCESM?2)

| Lo () E () | (SAM)

(2)

where L, in units of J kg™ is the latent heat of vaporization of water in standard conditions,
g (p) is the subgrid moistening vertical profile, ¢ ,in units of J kg~ 'K ~'is the specific heat
of dry air at constant pressure in standard atmospheric conditions, T’ (p) is the total subgrid
heating vertical profile (including s ubgrid r adiation), lw ( p) is the s ubgrid 1 ongwave radia-
tive heating vertical profile, sw (p) is the subgrid shortwave radiative heating vertical profile,
dnp (p) is the non-precipitating water condensation vertical profile, and H (p) is the subgrid
time-tendency of the liquid/ice static energy vertical profile. Following [60], all components
of the output vector y are mass-weighted and vertically integrated within each vertical layer
to yield energy flux units (W /m?). Assuming vertical profiles have N, vertical levels, x is of
length (2N, 4 4) for SPCAM3 and SPCESM2, and of length (2N, + 1) for SAM. y is of length
4N, for SPCAM3 and SPCESM2, and of length 2V, for SAM.
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B2. Physically-Based Input Transformations

In Fig S2, we compare three transformation options for each input, whose univariate PDFs are
depicted in Fig S2: No transformation (top), our most successful transformation (bottom), and
our second best transformation (middle). After defining our second best input transformations
(B2a), we delve into the details of our relative humidity (B2b) and plume buoyancy (B2c)
transformations before discussing the other inputs’ distribution shift (B2d).

B2a. Second Best Input Transformations

Along the way to our optimal feature transformations, we explored candidate options that
proved second best. For completeness these are reviewed first in the SM.

Saturation Deficit: We explored saturation deficit but found it did not lead to climate invari-
ance. Similar to g, saturation deficit (Fig S2a, middle) still has a corresponding expansion of the
PDF with warming as a result of the Clausius-Clapeyron relation. It is defined as the amount by
which the water vapor concentration must be increased to achieve saturation without changing
the environmental temperature and pressure:

-~ def
Gacicit (T D) = Geat (T, D) — @, (3)

where gsat (T, p) is the saturation specific humidity.

In contrast, the relative humidity transformation grg (p) “RH (g, T, p) (Fig S2a, bot-
tom) results in a climate-invariant PDF, as evidenced by PDFs that mostly overlap across all
three climates.

Temperature minus Near-Surface Temperature: Assuming that the temperature’s PDF shift
with warming is almost uniform with height, we can derive an approximate invariant by sub-
tracting the temperature at all levels T" (p) from the near-surface temperature 7" (pns):

def

=T (pxs) = T (p), @)
where pyg is the lowest atmospheric pressure level see (Fig S2b, middle). However, this linear
transformation fails in the upper atmosphere, especially near the tropopause where temperatures
are approximately invariant with warming [78, [79, [80] and therefore decoupled from surface
temperature changes. This is why the buoyancy of a moist static energy-conserving plume:

Tfrom NS (p)

def

Cfbuoyancy (p) - Bplume (QNS7 T7 p) 5 (5)

where gxs = ¢(pns) is the near-surface specific humidity, yields approximate climate invariance
(Fig S2b, bottom), unlike the temperature minus near surface temperature transformation.



Scaling Latent Heat Fluxes by Near-Surface Specific Humidity: To address the increase of
LHF with warming, we scale LHF by near-surface specific humidity ¢ (pns) (Fig S2¢, middle):

LAF, & LHE : (6)
Ly max {€g, ¢ (pns)}
where ¢, is a user-chosen parameter that we set to 10~ to avoid division by zero. While better
than directly using LHF, this transformation fails for very dry atmospheres when the latent heat
flux is negative, e.g. in polar oceans where atmospheric water vapor may be condensing on the
surface, or when the near-surface specific humidity is very small, e.g. in subtropical regions.
This is why scaling LHF using the near-surface saturation deficit (Fig S2c, bottom):

~ def LHF
LHFa, Ly max {€g; Gsar [T (pns) » Pns] — q (pns)} 7
yields better generalizability. While both the Jensen-Shannon and Hellinger distances would
suggest that LﬁFAq is a slightly less good transformation than LﬁFq, the LICIFAq transfor-
mation leads to improved generalization performance compared to LICIFq (not shown). This
confirms that only considering the PDF distances is not always sufficient to find the optimal
transformations (discussed in SM B4).

B2b. Relative Humidity

Relative humidity (RH) provides our optimal transformation for the specific humidity inputs.
RH is defined as the ratio of the partial pressure of water vapor e(p, q) to its saturation value
esat (T), and can be expressed analytically:

i € 9) ot By pa

= ~ 8
€sat (T) Rd €sat (II‘)7 ( )

where R, =~ 461J kg~! K~ is the specific gas constant for water vapor, Ry =~ 287J kg=! K1 is
the specific gas constant for dry air, p (in units Pa) is the total atmospheric pressure, q (in units
kg/kg) is specific humidity, and egat (T7) (in units Pa) is the saturation pressure of water vapor,
whose analytic expression in our case is given below. Consistent with Eq [§] the saturation
specific humidity gsat corresponding to RH = 1, is

Rdesat (T)

Rup 9)

Qsat (Ta p) =
SAM’s single-moment microphysics scheme [102], which is also used in the SPCAM3 and
SPCESM?2 simulations, partitions water between the liquid and ice phases using a weight w
that is a linear function of the absolute temperature:

det T — Too

R (10)
TO - TOO



Under the assumptions of this microphysics scheme, the saturation pressure of water vapor
can then be found by integrating the Clausius-Clapeyron equation with respect to temperature,
expressed analytically as:

eiiq (T') T>1T,
€sat (T') = { €ice (T') T < Ty ) (11)
weliq (T) + (1 — w) eice (T') T € [T, 1o
where T, = 273.16K and Ty, = 253.16K. In Eq as temperature increases, the saturation
pressure of water vapor goes from the saturation vapor pressure with respect to liquid ej;q, to the

saturation vapor pressure with respect to ice e;ce. These are given by the following polynomial
approximations:

8
eiiq (T) = 100Pa x » _ ajq,; [max (—193.15K, T — Tp)]", (12)

1=0

where ayiq 1s a vector of length 9 containing nonzero polynomial coefficients. The polynomial
approximation for e;ce, with the same temperature switches as Eq[I1] is:

eliq (1)
€ice (T) = 100Pa x {Cice,l + C (T) [CiCeA' + Cice,5c (T)]} ) (13)
100Pa x 325 ices (T — Tp)’

where C (T') is a ramp function of temperature given by:

C(T) Y max (Cicon, T — Tp) | (14)

and (@jce, Cice) are vectors of length 9 and 5 containing nonzero elements, respectively. Be-
tween temperatures of 7y and 7y, the saturation pressure of water vapor is a weighted mean of
€liq and e;ce. The reader interested in the numerical details of this transformation is referred to
our implementation of relative humidity at https://colab.research.google.com/
github/tbeucler/CBRAIN-CAM/blob/master/Climate_Invariant_Guide.ipynb.

B2c. Plume Buoyancy

Plume Buoyancy (Bpjume) 1S our most successful transformation for the temperature inputs.
Buoyancy is defined as the upward acceleration exerted upon parcels by virtue of the density
difference between the parcel and the surrounding air of the atmospheric column (e.g., [103]).
Because our ML model’s inputs represent the large-scale thermodynamic state, the ML model
does not have information about the storm-scale buoyancy field, and we must rely on idealized
approximations to estimate the buoyancy that a plume would have for given specific humidity
and temperature profiles. To be consistent with the model’s conserved quantities [102], we
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derive a simple buoyancy metric based on a moist static energy (h) conserving plume below
following similar derivations in [82]] and [104]. We refer the reader interested in the numerical
details of this transformation to https://colab.research.google.com/github/
tbeucler/CBRAIN-CAM/blob/master/Climate_Invariant_Guide.ipynb.

For purposes of this transformation, we omit virtual temperature effects and condensate
loading (effects of the environmental water vapor on heating/moisture sink are being estimated
separately). Thus the parcel buoyancy is simply proportional to the relative difference between
its temperature 7},,, and the environmental temperature 7°:

Toar — T

T 9
where ¢ is the gravity constant. Further assuming that the plume is non-entraining, obeys hy-
drostatic balance, and lifts parcels from the near-surface, the lifted parcel’s moist static energy
is conserved and equal to its near-surface value (at pressure png:

(15)

B plume ~ g

hpar ~h (pNS)

(16)
def
= Lyq(pxs) + T (pns),
where we have used the environmental moist static energy’s definition:
def
h = L,g+c,T+ gz, (17)

where z is geopotential height, and we neglected z (pns) as the near-surface is close to the
surface by definition. To express the parcel’s buoyancy as a function of the environmental
thermodynamic state, we finally assume that the parcel is saturated (not necessarily true close
to the surface), and that the thermodynamic differences between the parcel and the environment
are small, which allows us to linearize the Clausius-Clapeyron equation about the environmental
temperature:

Claus.—Clap. oT
T ar T ~ sat,par = Ysa
p (89*)T,p (Gsat,p Qsat )
R,T*?
= % (qsat,par - qsat> (18)
R,T?
= e [hpar = Psat — ¢ (Tpar — T)].

Using Eq [I8]to write T, — T as a function of the environmental thermodynamic state and
substituting the resulting expression into Eq [I5] yields an estimation of plume buoyancy from

(g, T, p):

[hpar - hsat (q3 Ta p)]

Kk (T,p) x ¢, T (19)

g
Bplume(qa T7 p) =
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where the parcel’s moist static energy is expressed as a function of near-surface (¢, 7T") in Eq
the environmental saturated moist static energy in pressure coordinates is defined as:

def
hsat (@, T, P) = Lyqsat (T, p) +c, T + gz (q, T, p), (20)

and we have introduced the dimensionless factor:
L?;Qsat (T7 p)
vapT2 '

Note that in pressure coordinates, we calculate the geopotential height by vertically inte-
grating the hydrostatic equation after using the ideal gas law:

PNS T /
@ T.r) - [ dp/—gg’f {Ru+ [Ro— R ()} 22)
p

K (T,p) =1+ 1)

B2d. Sensible Heat Fluxes and Surface Pressure

In this appendix, we discuss the univariate PDFs of the two inputs we did not transform in the
main manuscript (see Section 3) in Fig S3 for both super-parameterized models and all three
surface temperatures (-4K, +0K, and +4K). The PDF of sensible heat fluxes changes very little
with warming. There is a slight expansion of the left tail of the surface pressure PDF with
warming as the most extreme low-pressure systems become more intense, but we hypothesize
that these changes are small enough not to require a dedicated input transformation.

B3. Output Transformation
B3a. Theory

In contrast to input transformation, transforming our ML models’ outputs, namely subgrid ther-
modynamics, only marginally improves the models’ ability to generalize. In the absence of
physical theory on how the full vertical profile of subgrid thermodynamics changes with warm-
ing, we place ourselves in an idealized scenario:

Assuming we know how the outputs’ marginal PDF changes with warming, can we help our
ML models generalize via output transformation?

We note that assuming knowledge of how the marginal (univariate) PDFs (or equivalently
the CDF) of convective heating and moistening change with warming is more realistic than
assuming full knowledge of how their joint PDFs change with warming. This knowledge could
come from e.g. convection theory (e.g., [73l]) or shorter simulations than those required to train
a subgrid closure. Under this assumption, a natural transformation is the outputs’ cumulative
distribution function (CDF):

§ = CDF (y). (23)



In essence, we are assuming that the mapping is more likely to be invariant in quantile than
in physical space, which is a common practice when debiasing the outputs of climate models
referred to as quantile mapping (e.g., review by [[105])). In practice, we test two distinct methods
for transforming the outputs using their CDFs and report the results for SPCAM3 aquaplanet
simulations in SM B2b.

Quantile mapping after training: The first method is to transform the ML model’s input
during training, and then transform the ML model’s output after training. This is akin to stan-
dard, post-hoc, quantile mapping. In the particular case of trying to generalize from a (-4K) cold
simulation to a (+4K) warm simulation, the entire transformation to yield outputs in physical
units can be mathematically written as:

y = CDF 3 [CDF sk (y)] . (24)

where for simplicity but without loss of generality, we have considered a singular input y whose
CDF is CDF_ 4k in the (-4K) cold simulation and CDF, 4k in the (+4K) warm simulation.

Quantile mapping before training: The second method is to transform the ML model’s out-
put before training. In that case, we directly train the ML model to predict § = CDF (y)
as accurately as possible. We then map the output back to physical units using CDF " after
training.

B3b. Results

The two methods to transform outputs presented above are depicted in Fig S4 and the gen-
eralization results presented in Fig S5. Transforming outputs after training slightly improves
generalization skill (from an overall R? of 0.58 to 0.62 for the generalization (+4K) set). In
contrast, transforming outputs before training leads to equally bad results both on the training
and generalization sets, which is a negative result underlining the challenges of designing the
appropriate loss function in probability space. A possible solution would be to convert back the
outputs to physical space before feeding them to the loss function during training, and further
investigation is required to fully assess the potential and limitations of training these ML models
in probability space.

B4. Spatial Coordinate Transformation

Another transformation to consider when input/output variables are functions of spatiotempo-
ral coordinates is coordinate transformation, resulting in a coordinate change. In our specific
example, it is possible to transform the vertical coordinate, i.e. the hybrid pressure coordinate
p. Possible transformations include:



1. the temperature (p = 7)), e.g. for radiative heating, which tends to vary less in temperature
coordinates [[106]],

2. the saturation specific humidity (p = ¢g,¢) Which is consistent with a transformation of the
primitive equations that captures an upward shift of the circulation as the climate warms
[1O7],

3. the geopotential height or the altitude (p = z), which could more consistently capture
gravity wave propagation,

4. or a coordinate with fixed values for characteristic vertical levels in the atmosphere, such
as the top of the planetary boundary layer or the tropopause [[78]].

While we were able to transform the vertical coordinate using interpolation functions (not
shown), the benefits were not visible in our particular c ase. This could be because input trans-
formation already addresses some of the upward shift of convective activity warming, as shown
by the influence of humidity inputs in Fig S14.

C. Implementation

For reproducibility purposes [108], we now detail the practical implementation of a climate-
invariant ML workflow (see Fig 9), from its overall structure (SM C1) to its benchmarking (SM
C4) via the characteristics of the multiple linear regressions (MLR, SM C2) and neural networks
(NN, SM C3) presented in this manuscript.

C1. Overall Workflow

We present three ways to implement physical transformations. The first way is to physically
transform the inputs/outputs before training. While this option is easiest to implement and de-
bug, it usually comes at the cost of disk space: Every time we try a new transformation, we
need to duplicate our training/validation/test datasets for all the climates/geographies we are
interested in, which can quickly be prohibitive when trying multiple transformation combina-
tions.

Therefore, it can be advantageous to transform the input/output variables within the ML
framework, so that the transformations occur during training. In essence, we are trading disk
space for computational time. In that spirit, the second method is to transform the inputs/outputs
via custom layers (e.g., Ch 12 of [70]) in the ML algorithm itself. Since this second method
tends to substantially slow down training as it adds sequential operations on the GPU, we take
advantage of the fact that the transformations occur before and after the emulated mapping, and
propose a third method that can happel in parallel on the CPU: Transforming inputs/outputs
by customizing the pipeline or “data generator”, which is the algorithm responsible for feeding
numbers to the ML model after reading the training data files. For each batch, the custom data



generator then transforms inputs before feeding them to the ML algorithm. In our case, note
that we transform outputs independently via quantile mapping (see SM B2).

For the rest of this manuscript, we will train our ML models using custom data genera-
tors: For “raw-data” models, the transformations are set to None (no transformation), while for
“climate-invariant” models, the ¢ transformation is set to qry, the 7' transformation is set to
Tbuoyancy, and the LHF transformation is set to LHF Aq- For all models, we additionally subtract
the mean from each input before dividing it by its range to feed the ML algorithm floating-point
numbers between (-1) and 1. Note that for each transformation, numbers are “de-normalized”
before the transformation and “re-normalized” after following the normalization procedure de-
scribed in Sec 2.4. Therefore, all transformations are done in physical units while the ML
algorithm is always fed single-precision floating-point numbers in [—1, 1].

For simplicity and building upon previous ML-powered subgrid closures [29, 164, 54], we
use the mean-squared error (MSE) of the prediction in physical units (here W>*m~*) as our loss
function. Motivated by the framework presented in Fig 9, we first train MLRs (SM C2) before
training NNs (SM C3) and benchmarking our ML models to quantify their accuracy and ability
to generalize (SM C4).

C2. Multiple Linear Regressions

To use the same data generator for both MLRs and NNs, we implement our MLRs in Tensorflow
2.0 [109] and train them using the Adam optimizer, which builds on stochastic gradient descent
[110]. Training a climate-invariant MLR results in a weight matrix A of size 4N, x (2N, + 4)
and a bias vector b of length 4N, such that:

y~ Ax + b, (25)

where stochastic optimization means that there is no unique optimal solution for A and b. We
train MLRs for 20 epochs using the default Keras learning rate of 0.001 and save the weights
and biases corresponding to the minimal loss over the validation set.

C3. Neural Network Design

To isolate the effects of physically transforming the NN’s inputs, we fix the hyperparameters
of all NN trained in this study, and leave the joint investigation of hyperparameter tuning and
physical transformations for future work. Informed by [50] and [52], we fix the architecture to
a multilayer perceptron of 7 layers of 128 neurons separated by Leaky Rectified Linear Unit
activation functions of slope 0.3, resulting in 122,872 trainable parameters for each NN. We
implement the SPCAM NNs using Tensorflow 2.0 [109], train them for 20 e pochs using the
Adam optimizer with the default Keras learning rate of 0.001 and a default batch size of 1024,
and save the parameters corresponding to the minimal validation loss.

Following the supplemental material (Sec 2) of [55], some of the hyperparameters used
for the NNs trained on SAM data are different. The SAM NNs are implemented using PyTorch



1.4.0 [111]], have 5 dense layers of 128 neurons each, and use cyclic learning rate [[112]]: Starting
with an initial learning rate in [2 x 107*,2 x 1073] for the first epoch out of 10, we then reduce
the minimal and maximal learning rates by 10% for the next 6 epochs before further reducing
them by a factor 10 for the last 3 epochs.

For SPCAM and following [34], we augment some of our NNs with BN and DP layers,
more specifically one DP layer before each activation function and a single BN layer before the
first DP layer. Following [37]], we use the default DP rate of 30% and the default parameters
of the Keras BN layer that normalize each feature using its mean and standard deviation in a
given batch [36]. Note that we do not adjust the default parameters of DP and BN to optimize
generalization skill as this would require misusing the generalization test set as a validation test.

C4. Benchmarking

We benchmark our ML models using two different metrics: their MSEs and their coefficient of
determination R?, defined for a singular output y;, as:

<y]%3rr,k>samp

2
<<yTruth,k - <yTruth7k>samp> >

where <->Samp is the averaging operator over the samples of interest. For instance, if we want a
horizontal map of R?, we average samples at a given location over time, while we average over
time and horizontal space if we want a single R? value for y;. Similarly, if we want one value
of MSE per output y;,, we only average the MSE over time and horizontal space rather than over
all outputs, as when calculating the loss function.

While comparing MSE and 12 in the reference and target generalization climates is enough
to assess generalization skill after training, we are also interested in how a given ML model
learns to generalize during training. To address that question, we augment our SPCAM ML
models with a function (technically a “Keras callback™ [113]) that calculates the MSE over
two datasets that correspond to the two generalization experiments at the end of each epoch:
(1) a dataset of different temperature (warm when training on cold, and vice-versa); and (2) a
dataset of different geography (Earth-like when training on Aquaplanet, and vice-versa). At the
end of training, we hence obtain three learning curves for each ML model: the validation loss,
and the loss in the two generalization sets as a function of number of epochs. Note that these
callbacks are computationally expensive as they require evaluating the ML model over ~ 100M
samples at the end of each epoch, which means they should be avoided when purely seeking
performance, e.g. during hyperparameter tuning.

Y , (26)

samp



D. Supplementary Results

D1. Jensen-Shannon Distance between PDF's across Climates

As an alternative to the Hellinger PDF distance, we pick the Jensen-Shannon distance [96]
because it is a symmetric distance (i.e., the arguments’ order does not affect the outcome) that
uses the logarithms of the PDFs, hence giving large weights to the PDFs’ tails that tend to be
particularly problematic for generalization purposes:

o« [KL(p,q) + KL (q,
JS(p,q)d—f\/ (p,q) + KL (g,p) 27

2 Y
where p and ¢ are the normalized PDFs to compare and KL is the Kullback—Leibler diver-
gence, defined for continuous PDFs as:

KL (p,q) & /0 1 dz x p(z)In [%} . (28)

D2. Learning across Climates and Geographies

This section complements Sec 4.2 and confirms that climate-invariant models learn mappings
that are valid across climates and geographies during training. For this purpose, we track the
models’ generalizability throughout the training process as explained below.

Fig S7 shows learning curves; the color of each line indicates the dataset the model was
trained in, while the color of the row indicates the dataset the model was tested in. To gain intu-
ition, we can start by looking at lines that have the same color as their axes: These are the “stan-
dard” learning curve showing that each model’s validation loss in the same climate/geography
monotonically decreases as the model is trained, confirming that we are not overfitting the train-
ing set.

We are now ready to zoom in on a key result of this manuscript: The learning curve of the
“climate-invariant” NN trained in the cold aquaplanet but tested in the warm aquaplanet (starred
blue line in the red box (a)). Impressively, this learning curve is mostly decreasing, confirming
that “climate-invariant” NNs are able to continuously learn about subgrid thermodynamics in
the warm aquaplanet as they are trained in the cold aquaplanet. In contrast, the “raw-data” NN
trained in the cold aquaplanet but tested in the warm aquaplanet (circled blue line in the red box
(a)) makes extremely large generalization errors, which worsen as the model is trained in the
cold aquaplanet.

“Climate-invariant” NNs also facilitate learning across geographies, i.e., from the aqua-
planet to the Earth-like simulations (starred blue line in green box (b) is consistently below
circled blue line) and vice-versa (starred green line in blue box (c) is consistently below circled
green line). “Climate-invariant” transformations additionally improve the MLR baseline’s gen-
eralization ability (see right column, e.g., starred blue line in red box (a) and starred green line in



blue box (c)), albeit less dramatically. This smaller improvement in MLR’s generalization abili-
ties is linked to its relatively small number of free parameters, resulting in (1) “raw-data” MLRs
generalizing better than “raw-data” NNs; and (2) MLRs having lower representation power and
fitting their training sets less well, limiting the maximal accuracy of “climate-invariant” MLRs
on the test set.

There are a few cases in which transforming inputs does not fully solve the generaliza-
tion problem, e.g., when trying to generalize from the aquaplanet to the Earth-like simulation
(starred blue line in green box (b)). NNs with DP fit their training set less well (squared lines
that have the same color as their boxes are above corresponding circled/starred lines). However,
they improve generalization in difficult cases (e.g., squared blue line in green box (b)) and do
not overly deteriorate generalization in cases where the input transformations work particularly
well (e.g., squared green line in blue box (a)). This confirms that combining physics-guided
generalization methods (e.g., physical transformation of the inputs/outputs) with standard ML
generalization methods (e.g., DP) is advantageous.

D3. Geographic Skill

This section complements Sec 4.3 by presenting different cross-sections of NN skill affer train-
ing. Our results confirm that while raw-data NN trained in the cold climate struggle to general-
ize to the warm climate’s Tropics, the climate-invariant mapping alleviates this limitation.

Fig S8a, which shows cross-section of the coefficient of determination R 2 (1 or yellow for
perfect predictions, and -1 or blue for errors larger or equal to two standard deviations) exposes
the raw-data NN’s poor generalization skill in the warm (+4K) Tropics. In contrast, Fig S8b
underlines how climate-invariant NNs improve generalization throughout the atmosphere in
the warm Tropics without deteriorating skill in the mid-latitudes and poles of the warm sim-

ulation. This consideration helped us choose our final input transformation, as the fffmm NS
temperature transformation significantly deteriorated generalization in the mid-latitudes, while

the Tbuoyancy transformation helps generalization in the Tropics without overly compromising
skills at other latitudes. There is a slight skill compromise at high latitudes, as can be seen by
comparing the second rows of Fig S8a and Fig S8b, which is especially apparent in the SAM
case and can be partially traced back to challenges in generalizing subgrid ice sedimentation
(not shown here, see [54] for details).

To show that the improved generalization skill of climate-invariant NNs for subgrid heating
is not unique to the mid-troposphere (see Fig 5), in Fig S9 we also show the generalization skill
of climate-invariant NNs near the surface. Consistent with [52, 23], the highest skill for the
training climate is over land for all NNs as most of the variability comes from the diurnal cycle,
which is easy to predict for NNs. Similarly to Fig 5, the generalization error is apparent for the
raw-data NN (a) and mostly solved by making the NN climate-invariant (b).



D4. Visualizing Climate-Invariant Mappings

Before using SHAP in Section 4.4 to visualize the difference between raw-data and climate-
invariant mappings, we test simple linear methods to analyze ML models. First, we directly plot
the weights A (see Eq of our multi-linear regressions in Fig S10/S11. Second, we plot the
mean Jacobian of our NN calculated via automatic differentiation in Fig S12/S13. Unlike SHAP,
the MLR weights and the Jacobian matrices both suggest that the climate-invariant mapping is
non-local in the vertical. Fig S10/S11 is consistent with the climate-invariant MLR generalizing
only slightly better than the raw-data MLR (see top-right panel of Fig S7). Meanwhile, compar-
ing Fig S12/S13 to the full SHAP feature importance matrix (Fig S14/S15) suggests that while
the linear sensitivity of subgrid heating/moistening with respect to lower-tropospheric plume
buoyancy is high (top panels of Fig S12b), which is expected, subgrid heating/moistening can
be well-predicted using mostly local plume buoyancy information (top panels of Fig S14b).



Row | Input | SPCAM3 | SPCESM2 | SAM
1 J600hPa 20.3,35.1 [ 17.1,29.5 | 22.1
2 Qaeficit,600npa | 24.9,36.5 | 18.1,31.0 | 30.0
3 RHgoonpa 3.6,8.2 3.2,5.3 4.3
4 Te50npa 53.2,643 | 257,373 | 51.9
5 | Thom Nsg50hPa | 5-1,6.2 33,64 | 105
6 | Bpmessonpa | 94,147 | 3.6,7.6 5.8
7 Tis0npPa 30.2,33.5] 31.6,344 | 65.6
8 | Tirom Ns.150nPa | 38.0,53.7 | 14.5,28.7 | 51.0
9 | Bplumeisonpa | 35.1,42.2 | 10.4,20.9 | 21.1
10 LHF 8.6,145 | 97,125
11 LHF, 47,9.5 | 10.0, 10.7
12 LHF 4, 6.3,9.9 | 909,14.0

Table S1: Hellinger distance (in %) away from the (-4K) simulation for the PDFs of key
inputs (geoonpa; Zs50npas 1150npa; LHE') and their transformations. (+0K) distance in gray and
(+4K) distance in red.

Model

Spatiotemporal Resolution

Training Set

Validation Set

Test Set

SPCAM3

(2.8°x2.8%) 142 % 30lev x 30min

Y12, Mol-4—47M

Yr2, Mo5-8—48M

Yrl, M06-9—48M

SPCESM2

2.5°%1.9°x30lev x 15min

Yrl, Day0-9/Mo—143M

Yr2, Day0-9/Mo—143M | Yr2, Day20-28/Mo —118M

SAM (-4K)
(+0K)

96km x 96kmx48lev x 180min
96kmx96km x 48lev x 180min

day 225-545 — 13.8M

day 545-562 — 0.7M

day 562-587 — 2.6M

day 380-405 — 2.6M

Table S2: Characteristics of the training/validation/test sets used in this manuscript. The
spatiotemporal resolution uses the format longitude x latitude x vertical levels x time. For
SPCAM3, which uses a T42 spectral truncation, we use months 1 to 4 of the second simulation
year to build the training set, resulting in ~ 47M samples. For SPCESM?2, we use the first 9
days of every month of the first simulation year to build the training set, resulting in ~ 143M

samples.



Row |  Input | SPCAM3 | SPCESM2 | SAM
1 d600hPa ()5, 0.8 ()4, 0.7 0.5
2 | Qaeficitooonpa | 0.7,1.0 | 04,08 | 0.8
3 RHeoonpa 0.1,02 | 0.1,0.1 | 0.1
4 Tss0npa 14,19 | 0508 | 1.3
5 | Thom nsgsowpa | 0.1,0.1 | 0.1,0.1 | 02
6 | Boumessonpa | 02,03 | 01,02 | 0.1
7 Ti500pa 06,07 | 07,07 [ 15
8 | Thom ns,s0npa | 09,14 | 03,06 | 14
9 | Boumetsonpa | 10,12 | 02,04 | 05
10 LHF 02,03 | 02,03
11 LHF, 0.1,02 | 02,02
12 LHF 5, 0.1,02 | 02,03

Table S3: Jensen-Shannon distance away from the (-4K) simulation for the PDFs of key
inputs (gsoonpa, 1850nPas T150nPa, LHE) and their transformations. (+0K) distance in gray and

(+4K) distance in red.
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Figure S1: Surface temperatures and subgrid heating rate in the three utilized atmospheric
models. (a) Prescribed surface temperature (in K) for (left) the aquaplanet SPCAM3 model and
(right) the hypohydrostatic SAM model. (center) Annual-mean, near-surface air temperatures in
the Earth-like SPCESM2 model. (b) Snapshots of near-surface subgrid heating rate (in K/day).
For each model, we show the cold (-4K), reference (+0K), and warm (+4K) simulations.
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Figure S2: Univariate PDFs of the (a) 600hPa specific humidity, (b) 850hPa temperature,
and (c) latent heat flux in the cold (blue), reference (gray), and warm (red) simulations
of each model (SPCAM3, SPCESM2, and SAM). For each variable, we also show the PDFs
of the two transformations discussed in SM SB.2. From top to bottom, the variables are ¢
(&/Ke), qaescit (&/ke), RH, T (K), Throm xs (K), B piume (/5%), LHE (W/m?), L HF, (kg m~%s™),
and LHF 5, (kg m2s™'). For a given variable and transformation, we use the same vertical
logarithmic scale across models. Note that unlike for ¢, the best options for 7" and LHF do not
decrease distribution distance more than the second best options, which is discussed in text.
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Figure S3: Univariate PDFs of the sensible heat flux and surface pressure in the cold (blue),
reference (gray), and warm (red) simulations of SPCAM3 and SPCESM2. For a given
variable, we use the same vertical logarithmic scale across models.
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Figure S4: Two types of bias-correction methods used to transform outputs in SM B2.
(1, dark green, “post-processing” method) Quantile mapping is typically done after training the
model to bias-correct the outputs, and (2, light green, “pre-processing” method) we additionally
test directly making predictions in probability space by converting the outputs to their CDF
values before training. Note that this usually changes the loss function.
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Figure S5: Transforming outputs via quantile mapping after training slightly improves the
climate invariant model’s ability to generalize from a cold to a warm climate. Coefficient
of determination R? for 500-hPa subgrid heating of raw-data (a), climate-invariant (b), climate-
invariant with outputs transformed affer training (c), climate-invariant with outputs transformed
before training (d) NNs trained using the cold (-4K) training set of SPCAM3 and calculated over
the warm (+4K) training set of SPCAM3.
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Figure S6: Implementation of the climate-invariant ML framework. The physical trans-
formations can be implemented by (Option 1) transforming the training set, (Option 2) adding
custom layers to the ML model, or (Option 3) customizing the data generator so that it automat-
ically transforms the model inputs/outputs.
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Figure S7: Unlike raw-data models, climate-invariant models continuously learn about
subgrid thermodynamics in the warm aquaplanet as they are trained in the cold aqua-
planet. More generally, they can learn information about configurations that differ from the one
they were trained in. Learning curves of neural nets (left) and multiple linear regressions (right)
tested in the (-4K) cold aquaplanet simulation (a, top row), the (+4K) warm aquaplanet simula-
tion (b, middle row), and the (-4K) cold Earth-like simulation (¢, bottom row). The lines’ colors
indicate the training dataset, while their symbols refer to whether the ML model is raw-data
(circle), climate-invariant (star), or climate-invariant with dropout layers before each activation
function and batch normalization (square). (b) We additionally zoom in on the climate-invariant
neural network’s learning curve in the (+4K) simulation.
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Figure S8: Latitude-Pressure cross-section of subgrid heating’s coefficient of determina-
tion 122. We train (a) raw-data and (b) climate-invariant NNs using the cold (-4K) training set of
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climates. See Fig 5 or Fig S9 for the colorbar.
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Figure S9: Climate-invariant NNs mitigate generalization issues in the “Warm Tropics”
for near-surface subgrid heating. Same as Fig 6 for near-surface subgrid heating.
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Figure S10: Weights of the (a) raw-data and (b) climate-invariant multi-linear regressions
trained in the cold (-4K) aquaplanet simulation (left), the warm (+4) warm aquaplanet
simulation (middle), and their difference (right). The x-axes indicate the vertical levels of
the inputs, from the surface (left, 103hPa) to the top of the atmosphere (right, OhPa), while the
y-axes indicate the vertical levels of the outputs, from the surface (bottom, 10%hPa) to the top
of the atmosphere (top, OhPa). We additionally indicate the 200hPa vertical level with dotted
black lines.
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Figure S11: Same as Fig S10, but for the four scalar inputs used in addition to the temper-
ature and specific humidity i nputs. The scalar inputs are surface pressure (ps, purple line),
solar insolation (.5, yellow line), surface sensible heat flux (SHF, green line), and surface latent
heat flux (LHF, blue line). For the climate-invariant mapping (b), LHF is transformed to LHF 5,
as described in Sec 3, which in conjunction with the temperature and humidity transformations,
changes the multi-linear regression weights for all input variables.



Trained Warm Aqua.

DifferenceCold -Warm

Trained Cold Aqua.

r25

r—25

0hPa
) 200hPa
q9 L !
i "
oo i N
+2 5 L
c T
A -y z i
5 b [
. ] i
~
=
" o .ﬁ.
L
% " !Ir ]
; R
T q T q T q
OhPa
) 200hPa
q
vl i’ -*
! 10%hPa £ Js=
-
=]
[¢°] . T
e T :
2 :-""IJ :-"'Il. @f I
=
@
i)
©
£
O w 15
S W - b & il
/%
Bplume RH Bplume RH Bp[ume RH

100

75

-50

Jacobian Matrix [W m—2]

=50

=75

-100

Figure S12: Jacobian matrices of the (a) raw-data and (b) climate-invariant neural net-
works trained in the cold (-4K) aquaplanet simulation (left), the warm (+4) warm aqua-
planet simulation (middle), and their difference (right). The x-axes indicate the vertical
levels of the inputs, from the surface (left, 103hPa) to the top of the atmosphere (right, OhPa),
while the y-axes indicate the vertical levels of the outputs, from the surface (bottom, 10*hPa) to
the top of the atmosphere (top, OhPa). We additionally indicate the 200hPa vertical level with
dotted black lines.



Trained Cold Aqua. Trained Warm Aqua.  Difference Cold- Warm

q
o .
o T
a
2
T
= l
— <
3
M =], $
- SO
SW | e SHF
[ HF
~100 0 100 ~100 0 100 ~100 0 100
Jacobian [W m~2] Jacobian [W m~2] Jacobian [W m~2]
N’
=
@
=
S
kS T
@
]
©
E
O Iw
a
Sw
= LHF,, ’

Figure S13: Same as Fig S12, but for the four scalar inputs used in addition to the temper-
ature and specific humidity i nputs. The scalar inputs are surface pressure (ps, purple line),
solar insolation (.5, yellow line), surface sensible heat flux (SHF, green line), and surface latent
heat flux (LHF, blue line). For the climate-invariant mapping (b), LHF is transformed to LHF 5,
as described in Sec 3, which in conjunction with the temperature and humidity transformations,
changes the Jacobian matrices for all input variables.
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Figure S14: SHAP feature importance matrix for the (a) raw-data and (b) climate-
invariant neural nets trained in the cold (-4K) aquaplanet simulation (left), the warm
(+4) warm aquaplanet simulation (middle), and their difference (right). To calculate these
matrices, we sample inputs from the (+4K) warm aquaplanet simulation for all ML models to
facilitate inter-model comparison. The x-axes indicate the vertical levels of the inputs, from the
surface (left, 10°hPa) to the top of the atmosphere (right, OhPa), while the y-axes indicate the
vertical levels of the outputs, from the surface (bottom, 10°hPa) to the top of the atmosphere
(top, OhPa). We additionally indicate the 200hPa vertical level with dotted black lines.



H.

(a) Raw Data
T

sSw

~- Q-

(b) Climate-Invariant
T

sw

Trained Cold Aqua.

Trained Warm Aqua.

Difference Cold- Warm

— D, -

So
1} — SHF
e HF
J T T
0.0 2.5 5.0

SHAP M [W m~2]

0.0 2.5 5.0
SHAP M [W m™2]

0.0 2.5 5.0

SHAP M [W m~2]

== LHF,,

1

Figure S15: Same as Fig S14, but for the four scalar inputs used in addition to the temper-
ature and specific humidity i nputs. The scalar inputs are surface pressure (ps, purple line),
solar insolation (.5, yellow line), surface sensible heat flux (SHF, green line), and surface latent
heat flux (LHF, blue line). For the climate-invariant mapping (b), LHF is transformed to LHE 5,
as described in the “Theory” section, which in conjunction with the temperature and humidity
transformations, changes the SHAP feature importance matrix for all input variables.
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