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Abstract— Cetaceans are phenomenal swimmers, but the
marine environment makes it difficult to directly observe and
quantify their dynamic swimming behavior. Biologging tags are
often used to measure animal movement in the wild. But these
embedded systems only measure movement kinematics where
they are attached, and cannot measure the hydrodynamic forces
the animals use to swim. Here, we present a framework that
leverages a low-order model of dolphin swimming dynamics
and kinematic data (orientation, depth, speed) collected from a
biologging tag to: A) estimate the sagittal-plane body kinematics
of swimming bottlenose dolphins (ZTursiops truncatus); and B)
estimate swimming kinetics and propulsive efficiency during
steady-state swimming. Body kinematics for the segmented
dolphin model were estimated from tag data using a temporal
convolutional network that was trained using a synthetic data
set. The estimated segment angles had errors of less than 2°
from the true body joint angles. The measured and estimated
kinematic data were used as inputs for the dolphin model
to estimate the internal and external forces generated during
swimming. The estimated kinematics and kinetics compare with
published results, and the estimated propulsive efficiency were
typically greater than 70% across the range of swimming
speeds investigated. These results enable per stoke estimates
of propulsive efficiency, and provide the foundation for an
approach that can be used in the future to estimate the
swimming biomechanics of dolphins in the wild.

I. INTRODUCTION

Cetaceans, an order containing porpoises, dolphins, and
whales, are highly efficient swimmers, with estimated swim-
ming efficiencies exceeding 70% [1]-[4]. Estimates of hy-
drodynamic forces are key to investigating swimming biome-
chanics, thrust production, and efficiency. Simple hydrome-
chanical models have been used to estimate both the drag
acting on the animal [5], [6], and propulsive forces gen-
erated by the fluke moving through the water [2], [7],
[8]. These simple, computationally efficient models usually
involve limiting assumptions of inviscid flows or very small
amplitudes of oscillation. Additionally, these approaches
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estimate propulsive force indirectly by modeling the drag
force created by the animals body as it moves through
the water, abstracting away the movement of the dolphin
body during swimming. On the other end of the spectrum,
computational fluid dynamics (CFD) simulations of dolphin
swimming have also been performed [1], [9], [10] to estimate
the kinetics and efficiency of dolphin swimming, but require
extensive computational time due to the model complexity.
Further, even these CFD simulations typically disregard the
flexibility of the dolphin fluke.

Both the simple and complex modeling approaches require
information about animal kinematics. The simple models
use measurements of speed, acceleration, orientation and
depth to estimate propulsive forces [11]. CFD simulations
require fluke kinematics (amplitude, frequency, angle of
attack), body morphology, and the full animal pose during the
stroke cycle. The underwater environment makes capturing
such kinematics challenging, typically requiring the use of
an underwater camera and clear water for good visibility
[12], [13]. However, a camera based approach can only
record a few consecutive stroke cycles while the dolphin
is in the frame. In place of measured kinematics, CFD
simulations often assume the body motion, as in [1], or scale
and apply the body kinematics of different cetacean species
whose kinematics were better studied, as in [9], where the
swimming kinematics of an orca were combined with a
dolphin swimming model.

Biologging tags use a combination of sensors, such as
inertial measurement units (IMUs), pressure sensors, and
speed sensors, to continuously measure swimming kinemat-
ics (depth, acceleration, speed, angular velocity, and head-
ing) [14], [15]. These sensors are also used to estimate body
pose (pitch, roll). Most studies of wild cetacean populations
use only a single tag on the animal to parameterize whole
body kinematics [15]-[17]. In humans, data from multiple
kinematic sensors have been combined with filtering ap-
proaches to estimate whole body kinematics during walking
[18], [19]. But these approaches are challenging to replicate
with cetaceans, as increased drag loading from tags can
influence dolphin swimming kinematics [15], meaning that
multiple-tag setups may not necessarily capture biological
swimming gait depending on the tag size and their associated
drag. The work in [20] used data from a single IMU on
the lower back to infer the body joint angles of both legs
during human walking, but this type of approach has not been
applied to data from cetaceans. Directly estimating the full
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body kinematics from the hydromechanical model in [21]
is not feasible: the model assumes dolphin-like swimming
body motion based on an "average" dolphin, with swimming
gait enforced by controllers. However, real-world swimming
exhibits varying torso and body kinematics that are not the
"average", and thus using the assumed body motion does
not reflect each individual’s swimming gait. Furthermore,
this assumed "average" dolphin profile is based on a limited
amount of kinematic data, due to the challenges in collecting
such data. The work in [22] has shown that there exist
correlations in the phasing and amplitude of oscillation
of different points on the cetacean body, which makes a
data science approach especially amenable to extracting that
information from a single-point proxy.

Data science approaches have been used to infer the map-
ping from IMU measurements to body joint angles in human
walking with data from single or multiple IMU systems
using densely connected networks [20], [23], generalized re-
gression networks [24], or long short-term memory (LSTM)
networks [23]. These approaches correct for sensor bias
and drift before inputting the accelerations, angular rates,
and orientation into a neural network. Using the temporal
nature of the data collected during cyclic movement has
also been shown to improve predictions [23]. However, most
methods tend to treat each data point individually, neglecting
important temporal information [20]. These approaches can
allow for individual-specific estimates of body posture during
gait, rather than predictions of average motion. To address
these gaps in cetacean swimming, we propose a frame-
work for estimating the kinetics and propulsive efficiency
of swimming bottlenose dolphins using a single kinematic
tag with a low-order model of dolphin swimming dynamics.
This framework is then used to characterize the propulsive
efficiency of dolphins during steady-state swimming.

II. METHODS
A. Modeled dolphin swimming kinematics and kinetics

This work leverages a physics-based, low-order model
of the swimming dynamics of a bottlenose dolphin, which
captures critical features such as body posture, fluke flexibil-
ity, and delayed fluke stalls [21]. The modeling framework
is based on a mixed Newtonian-Lagrangian formulation.
The head, torso, caudal peduncle, and pectoral fins are
modeled as interconnected rigid bodies, whereas the fluke
is modeled as a flexible plate, whose transverse deformation
evolves in response to the fluke’s hydrodynamic, elastic,
and inertial forces. Because hydrodynamic loading over the
fluke is in turn affected by its deformation state, the model
incorporates existing results from unsteady lifting-line theory
to predict lift, drag, and pitching-moment distributions over
the deforming fluke. The configuration of the body segments
during swimming are defined by three joint angles: the head-
torso angle (A ), the torso-peduncle 1 angle (6p1), and the
peduncle 1-peduncle 2 angle (fp2). The joint between the
peduncle and the fluke is assumed to be a semi-passive joint
with nonlinear stiffness. Feedback control was used with
the model to track a desired speed input by modulating the
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frequency and amplitude of the joint angles. Kinematic data
(joint angles, angular rates, and center of mass swimming
speed) from these simulations were used to create a synthetic
data set to train the neural network presented in this work,
Figure 1.

The hydromechanical model was used to simulate swim-
ming kinematics at speeds ranging from 0.6 to 2.3 body
lengths per second (BL/s) in increments of 0.1 BL/s for
30-second steady-state swimming bouts. This speed range
covers the typical range of sustainable swimming speeds for
bottlenose dolphins. From these 30-second segment incre-
ments, shorter 3 second segments were randomly sampled
from the longer period and used for generating the training
samples. For each short segment, Gaussian noise was added
to the horizontal speed and torso attitude during training
to further augment the data. An example of the inputs and
outputs of the model used for data generation is presented
in Figure 1.

B. Neural network architecture

The temporal nature of the sequence of body kinematics
during steady-state swimming was leveraged to improve
the accuracy of whole-body kinematics estimates. Temporal
convolution networks (TCNs) are well-suited for mapping
sequences to sequences. These networks are built by layers of
increasingly dilated convolutions [25]. Like LSTMs, TCNs
can handle sequences of arbitrary length. However, TCNs
converge to solutions faster than LSTMs, and these solutions
tend to be more accurate than those of LSTMs [25]. As such,
the TCN architecture was selected to learn the mapping from
the torso kinematics and speed to the whole-body kinematics.

Half of the speeds from the synthetic data set were used for
training, a quarter for validation to check model performance
during training, and the last quarter for testing the trained
network on data it has not seen before. The model was
trained for 2500 epochs, with adaptive moment estimation
(ADAM) as the optimizer. The network weights at the end
of each epoch that best performed on the validation set were
saved. The network hyperparameters in this study were a
kernel size of 3, channel sizes of 64, 32, 16, 8, 3 for the
layers, and a dilation factor of 2.

C. Biologging tag data

Biologging tags were used to collected movement data
from bottlenose dolphins during prescribed straight-line
swimming tasks. A tag was placed on the animals’ torso
between the dorsal fin and the blow hole using 4 suction
cups. Measurements of acceleration, angular velocity, head-
ing, depth, and speed were collected during the swimming
trials. Data collection was conducted in a shallow water
lagoon environment at Dolphin Quest Oahu. During the trials
the animals swam across the lagoon and back (= 80 m) over
a range of self selected speeds. Tag data were processed
as in [11], [14], [15] to correct for bias and drift in the
IMU measurements, as well as correcting the depth based
on the speed and the orientation of the animal. Six animals
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Fig. 1. Example of how the synthetic data was generated. Speed v, depth
d, and heading v were specified for the hydromechanical model. Feedback
was used to control the movement of the body joints (g, Op1, and 0p2)
to track the input speed, depth, and heading. Note that the system can well-
track these parameters, and thus they vary little with time. Once the system
reached steady-state, the three body joint angles were extracted, as well as
the attitude of the torso. The speed and attitude of the torso were used as
inputs to the neural network, and the three body joint angles as outputs for
the model

participated in the trials, with 195 identified bouts of steady-
state swimming that were used for the analysis presented
here. Animals ranged in length from 2.19 m to 2.54 m from
rostrum to the fluke’s insertion onto the caudal peduncle,
and varied in mass from 143 kg to 245 kg (see Table II).
Flukes were imaged and traced for their leading and trailing
edges, and their span measured. For the purposes of the
sagittal-plane model used [21], the left half of the fluke was
mirrored to the right half to ensure bilateral symmetry. The
self-selected swimming speed of the dolphins during the lap
trials ranged from 2.24 m/s to 5.41 m/s.

TABLE I
PARAMETERS OF DOLPHINS STUDIED

Dolphin Mass [kg] Length [m] Fluke Span [cm]
1 185.7 2.48 58.7
2 142.6 2.35 59.8
3 208.8 2.51 76.4
4 156.2 2.36 56.4
5 244.7 2.71 73.9
6 185.7 2.39 69.7
pto 187.3+£36.7 2.32+0.12 65.8 £ 8.6

D. Estimating swimming kinetics for tag data

Figure 2 presents the framework used to estimate swim-
ming kinetics from tag measurements. In this approach, the
IMU data from the tag data was first filtered and used to
estimate the instantaneous speed and torso attitude. These
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Fig. 2. The proposed framework for estimating kinetics and efficiency
of cetacean swimming. First, a biologging tag anterior to the dorsal fin
makes measurements of the speed, linear accelerations a, gyro rates w,
and orientation m. These are filtered to yield the torso attitude and the
instantaneous speed. These filtered data are fed into a neural network to
estimate body kinematics. Finally, the filtered data and the output of the
neural network are used as inputs to the hydromechanical model to yield
estimates of thrust power, as well as the internal joint powers, from which
efficiency can be calculated.

% Stroke Cycle

parameters were then used as inputs for the trained neural
network.

Outputs from the network (the head-torso (6f) angle, the
torso-peduncle 1 (fp1) angle, and the peduncle 1-peduncle
2 (6p2) angle) were smoothed forwards and backwards with
a 3rd-order Butterworth filter with a cutoff frequency of
5 Hz, similar to the work of [26]. The predictions of body
kinematics, along with the speed and torso attitude, were
next used to prescribe the instantaneous pose of the dolphin
for the simulations using the hydromechanical model. At the
start of the simulation, the angle and angular rate of the
passive Fluke-Peduncle 2 joint were assumed to be zero.
To account for these arbitrary initial conditions, the first
stroke cycle in a bout of steady state swimming was looped
30 times to create an approximately 30 second window for
the model to reach a steady state before the kinetics of the
swimming bout were simulated. An example of the estimated
force generated by the fluke during a cycle is shown in
the lower right of the Figure 2. During each stroke cycle,
there are regions where the force generated by the fluke
produces thrust (horizontal component is in the direction
of travel, force vectors in black in the figure), and where
the hydrodynamic force produces drag (red force vectors in
the figure). These regions of drag occur at the transitions
between upstrokes and down strokes. An inverse dynamics
approach was then used with the estimated kinematics and
kinetics to estimate the internal torques at the model joints.
Propulsive efficiency for each steady-state fluking bout, 7,
was calculated as the ratio of the mean thrust power (the
average thrust force, T multiplied by the mean horizontal
speed, U) to the mean power generated by peduncle segments
to move the fluke (P) over the fluking bout:

n="= ()

677

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 01,2024 at 18:10:17 UTC from IEEE Xplore. Restrictions apply.



III. RESULTS
A. Neural network

The trained network performed well with the test data from
the synthetic data set. Results for the three body joint angles
are summarized in Table I. On average, the 6y joint angle
had the lowest error, followed by the #p1 angle, with the 6 po
angle having the highest error. Overall the errors in the angles
were low, with an average root-mean-squared error (RMSE)
of less than 1° for each of the joint angles in the 3 second
swimming bouts. There is high correlation between the joint
angles predicted by the network and the true joint angles
from the simulated data, with the correlation exceeding 0.99
for all three joint angles. On average, about 97% of the angles
predicted for the three body joint angles were within 2° of
the true angle.

TABLE II
QUANTITATIVE PERFORMANCE OF NETWORK ON THE 3 SECOND
SEGMENTS OF SIMULATED STEADY STATE SWIMMING.

Body Joint ‘ O 0p1 Opo

RMSE (°) 0.32 +£0.37 0.60 + 0.66 0.72+0.76
Within 1°(%) 97.8 £5.6 90.9£13.2 86.8 £ 17.1
Within 2°(%) 99.9£0.2 98.7+ 3.4 97.7+ 4.8

Correlation 0.998 + 0.002  0.997 +0.003  0.997 £ 0.003

B. Estimating swimming kinematics and kinetics

The fluke cycle frequency and the normalized speed (mean
speed normalized by dolphin body length) are within the
range presented in the literature [12] (see Figure 3A). The
work in [12] shows a larger increase in frequency than what
we observed in the swimming dolphins. Data in [12] were
generated by manually analyzing video frames. Peak-to-peak
amplitude of the trailing edge of the fluke was also calculated
for the swimming bouts (Figure 3B). The predicted fluking
amplitude is on average greater than that found in [12]. How-
ever, when looking at the Strouhal number, a nondimensional
parameter that relates fluking frequency f, amplitude L, and
mean speed U (fL/U), the model’s predictions are within
the range seen in [22]. As speed increased, the thrust power at
the fluke was predicted to increase. Estimated thrust power
was comparable with previous literature (Figure 3D). The
internal joint powers are plotted in Figure 4A while the
efficiencies —the ratio between thrust power and internal
joint power— are plotted in Figure 4B.

IV. DISCUSSION

This work presents novel estimates of propulsive efficiency
derived from data collected with a biologging tag. These
results offer new insight into dolphin biomechanics and are
an important first step towards the investigation of swimming
kinetics in wild dolphins. Measured speed (impeller) and
orientation (IMU) during steady state swimming were used
with a neural network to estimate body kinematics. A model
was used to generate the body kinematics to train the network
because we lacked measured whole body kinematics that
spanned the range of observed swimming speeds during
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Fig. 3. Comparison of model output and predictions with current literature.
A Dolphin fluking frequency versus normalized speed (velocity normalized
by body length). Shading indicates the region of dolphin fluking frequencies
in literature, with the dashed regression line taken from [12] as the best
fit line to their data. Solid red line represents line of best fit for our
data points (black circles). B Fluking amplitude normalized by the body
length versus the normalized speed. The neural network predictions coupled
with hydromechanical model result in trailing edge fluking amplitude being
slightly greater than the range previously published in [12] (shaded region).
C The Strouhal number versus normalized speed. The line of best fit is
horizontal, and almost every single dolphin swimming bout is within the
ideal 0.2-0.4 range published in [27], while almost every point resides in
the range seen in [12] (shaded region). D The thrust power versus speed for
our model (black circles) in comparison to other models and experimental
predictions: digital particle image velocimetry (DPIV) experiments [13] as
diamonds, other hydrodynamic models as triangles, and other estimates
published in [28] as squares. The solid red line represents the best fit of a
cubic term.

experimental data collection. Output from the neural network
(segment angles) and filtered IMU data and speed measure-
ments were used an inputs for a physics-based model of
dolphin swimming to yield predictions of the hydrodynamic
forces generated by the fluke and the internal torques at the
modeled joints. Estimates of fluking frequency and amplitude
of the fluke during a cycle were compared to measured
kinematics from the literature. Though our estimated fluking
amplitude is larger than that found in literature, the resulting
Strouhal numbers fall within the ideal range of 0.2 to 0.4.
This range of Strouhal numbers is a feature present across
different types of biological locomotion, from the swimming
of dolphins [12], to the swimming of sharks and bony fish,
as well as the flight of birds, bats, and insects during steady-
state motion [27].

As can be seen in Figure 3, results from the framework
compare well to other hydrodynamic models and digital
particle image velocimetry (DPIV) estimates of thrust power.
Direct comparisons were made more difficult because results
in the literature were not normalized for animal size, but
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differences between the presented results and the literature
could be due to model parameter selection. The model in
this work uses animal-specific parameters, namely the mass
and length, and assumes a fineness ratio (ratio of length
and width) for the body of the animal to account for some
difference in body shapes. However, the dorsal and pectoral
fins shape were assumed and scaled between animals with
regards to size. Only the fluke parameters were based on
images taken of individual dolphin flukes. Thus, the accuracy
of the model’s input parameters could be further improved
by using more animal specific parameters.

With the proposed framework, we were able to make
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predictions of the propulsive efficiency of swimming. There
have been comparatively few studies that look at the phased
motion of dolphin swimming; the work in [3] is one such
example. More studies have been done on fish [29], because
the small size of fish enables the study of swimming dynam-
ics in controlled experimental environments. With regards to
propulsive efficiency, the current framework enables individ-
ual predictions for each of the dolphins that participated in
the work. The efficiencies tend to exceed 70%, and all exceed
56% efficiency reported by [9]. Though that study involved
a CFD simulation of a swimming porpoise scaled up to the
size of an orca due to the availability of good kinematic data
of orca swimming (and the lack of available porpoise body
kinematics during swimming). These results demonstrate the
promise this approach has for estimating these difficult-to-
measure quantities.

This method leverages the phased nature of dolphin swim-
ming and data from bio-logging tags, enabling estimates
of motion and forces during free swimming. This greatly
expanded context for kinetic estimates mitigates the difficulty
of observing animal behavior underwater, a medium with
poor visibility, difficulty observing with sensors, and very
large areas that would have to covered for studying wild
populations. In the future, combining this approach with
measurements of animal physiology would provide further
insight into dolphin biomechanics. For example, measure-
ments of blood oxygenation during swimming could be
used to improve cost estimates in future work [30]. Adding
electromyography (EMG) to the tag measurements would en-
able the investigation of muscle activation during swimming.
These indirect measurements would inform model predic-
tions, considering that directly measuring the outputs of the
model —forces produced by the fluke during swimming, or
the powers generated internally by the dolphin to drive the
fluke— cannot be directly measured otherwise.

These results are promising, but this approach requires
further validation with real-world dolphin swimming. Com-
paring the mechanical cost of swimming estimated using this
approach with estimates of metabolic cost using respirometry
would be an important next step [11], [15]. These studies
typically assume about a 25% efficiency for generating
muscle power from metabolic processes [11]. We have shown
that the neural network approach results in dolphin-like kine-
matics predictions using real-world data, which when input
into the hydromechanical model yield realistic estimates of
the kinetics and efficiency, but quantifying the error in pre-
dicted body kinematics should be investigated. The trained
network gives excellent predictions on the synthetic data set,
with errors ranging from about 1-2% of the peak-to-peak
amplitude of oscillation, and with high correlation between
the predicted joint angles and the true joint angles. However,
acquiring more experimentally collected kinematic data will
allow us to better quantify the estimated errors that can
result from this method and properly validate its predictive
power on individual-specific swimming gait profiles. This
discrepancy in body motion could be one cause of the
swimming bouts that had predicted efficiencies exceeding
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100%. Another source of this discrepancy could be internal
to the model itself: some of the fluke hydrodynamics are es-
timated or assumed based on hydrofoil literature, and might

not

necessarily reflect the true, but uncertain, properties of

dolphin flukes.
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