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Abstract— This work presents a first-principles, low-order
model of the sagittal-plane swimming dynamics of a bottlenose
dolphin. The model captures key features of cetacean swim-
ming, namely lift-based propulsion, unsteady hydrodynamics,
fluke flexibility, and body posture. The model is used to estimate
steady-state swimming kinematics and kinetics at a range of
speeds, which are then compared to published estimates from
swimming animals.

I. INTRODUCTION

Efficient movement through water is important for bio-
logical and engineered systems alike. Cetaceans, an order
which includes orcas, dolphins, and whales, use lift-based
propulsion generated by oscillating a flexible lunate tail
(fluke) through water. These animals are efficient swimmers
across their range of thrust production, with propulsive
efficiencies estimated to reach 0.90 and exceed 0.80 across
their entire range of speeds [1]. As a reference, single-screw
vessels may exhibit propulsive efficiencies as high as 0.85,
but only in a narrow band about the design point.

Unfortunately, the mechanisms behind the efficient move-
ment of underwater biological systems are not well under-
stood. Cetaceans are difficult to study because they spend
a significant portion of their time underwater and out of
view. Further, hydromechanical forces, like propulsive thrust
or drag acting on the moving body, are particularly difficult
to measure directly in the marine environment.

Bio-logging tags that collect kinematic data (e.g., speed,
acceleration, orientation, depth) are used to gather infor-
mation about these animals and, in managed marine envi-
ronments, cameras have been used to complement single-
point tag measurements. Tag-based kinematic measurements
of animal movement result in data from thousands of strokes
and, yet, estimating mechanical work and power from these
kinematic measurements is a challenging problem. For bot-
tlenose dolphins, previous work has combined measured
speed and kinematics of the fluke (amplitude, frequency,
pitch angle) with hydrodynamic models to estimate external
forces acting on the animals [2].

Another common approach has been to estimate energetic
costs of transport using proxies such as overall dynamic body
acceleration calculated from tag data [3]. This approach has

LEnric Xargay was a visiting scholar at the Department of Mechanical
Engineering, University of Michigan, Ann Arbor, MI 48109 USA; e-mail:
xargaycat@gmail.com

2G. Antoniak and K. A. Shorter are with the Department of Mechanical
Engineering, University of Michigan, Ann Arbor, MI 48109 USA; e-mail:
{gjantoni, kshorter}@umich.edu

3K.Barton is with the Departments of Mechanical Engineering and
Robotics, University of Michigan, Ann Arbor, MI 48109 USA; e-mail:
bartonkl@umich.edu

979-8-3503-3544-6/23/$31.00 ©2023 IEEE

been developed and tested with terrestrial animals and free-
diving sea lions where direct measurements of metabolic cost
via respirometry have been possible [4]. However, experi-
mental validation of the relationship between acceleration,
mechanical work, and energetic cost remains limited for
free-swimming cetaceans [5], [6]. Without calibration (which
is seldom possible on large marine animals), comparisons
between individuals are unlikely to be accurate and extrap-
olation across different behaviors within an individual may
not hold.

To overcome some of these limitations, our research efforts
focus on the development of a model-based framework to
investigate the cost of swimming locomotion. The framework
is informed by work in the human-walking literature where
metabolic costs during locomotion, derived from respirome-
try, are related to mechanical costs estimated using inverse
dynamics [7]. Here, we present a first-principles, low-order
model of the sagittal-plane swimming dynamics of a bot-
tlenose dolphin, which will be central to the proposed frame-
work by allowing us to generate estimates of locomotive
costs directly from tag-based kinematic measurements. The
model captures identified key features of cetacean swimming,
namely lift-based propulsion, unsteady hydrodynamics, fluke
flexibility, and body posture [2]; and seamlessly incorporates
findings from previous research on odontocete cetaceans, in-
cluding body morphometry, fluke morphology and elasticity,
and swimming gait and stability [8]-[12].

II. HYDROMECHANICAL MODEL
A. Model overview

The animal is modeled as an articulated multibody dy-
namic system subject to hydrostatic, hydrodynamic, and
gravitational forces. The body of the animal is represented
as an open chain of four rigid bodies, namely head, torso,
and anterior and posterior caudal peduncle, which are linked
successively by three active joints; see Figure 1. The model
assumes that the animal can enforce a desired dorsoventral
bending profile, specified in terms of the relative angular

semi-passive

O

flexible
fluke

Fig. 1: Representation of the articulated multibody system.
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(a) Head (b) Torso

(c) Anterior caudal peduncle

(d) Posterior caudal peduncle

Fig. 2: Outlines of a t. truncatus, aligned by identified segments.
(BL: 1.8 m; swimming speed: 2.1 BL/sec; frame rate: 60 fps.)

kinematics between adjacent elements of this body chain.
The pectoral fins are also modeled as rigid bodies, which
are linked by active spherical joints to the head element and
act as hydrodynamic control surfaces. The fluke, on the other
hand, is modeled as a semi-passive flexible element, which
is connected to the posterior caudal peduncle element and
whose deformation evolves in response to the hydrodynamic,
elastic, and inertial forces acting on it. In turn, because
the hydrodynamic loading over the fluke is affected by
its deformation state, the model incorporates results from
unsteady hydroelasticity to predict lift, drag, and pitching-
moment distributions over the deforming fluke.

The modeling approach places special emphasis on the
adoption of techniques that significantly limit the computa-
tional complexity of the hydromechanical model, especially
as it relates to the overall number of states and the use
of online numerical quadrature. As a result, swimming
dynamics are described by a finite set of nonlinear, highly
coupled ordinary differential equations, with only tens of
states. This results in a model with low computational
complexity, especially when compared to full computational-
fluid-dynamics simulation models (with millions of states)
and models based on unsteady vortex-lattice methods (with
thousands of states).

B. Body

Segmentation of the body is based on analysis of video
footage obtained during swim trials at various speeds; see
Figure 2. The mass, volume, tensor of inertia, wetted surface
area, location of the center of mass (CoM), and location of
the center of buoyancy (CoB) of each body segment are
estimated from orthogonal silhouettes using the approach
described in [13], which is based on the assumption of
superelliptical body cross-sections; see Figure 3. The four
body segments are subject to added-mass and damping
hydrodynamic forces and moments. In the setup adopted,
the hydrodynamic axial force, normal force, and pitching mo-
ment acting on each body segment are determined from local
flow properties using a quasi-steady hydrodynamic model.

The hydromechanical model runs a sinusoidal baseline
dorsoventral bending profile, with constant phase shifts be-
tween successive joint deflections and speed-dependent gait
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Fig. 3: Estimated center-of-mass (CoM) location of the four iden-
tified segments for a f. truncatus of 5.27 fineness ratio, obtained
from orthogonal silhouettes [13].
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Fig. 4: Sinusoidal baseline dorsoventral bending profile (stroke
cycle at 2.1 BL/sec).

frequency and amplitude. This baseline profile has been
identified from video footage obtained during swim trials at
various speeds and is illustrated in Figure 4. The profile is
qualitatively consistent with findings from previous studies,
which identified out-of-phase movements of the rostrum
relative to the peduncle to limit excessive transverse motions
of the animal’s head [8].

This baseline profile is augmented with corrective terms
that, driven by feedback control laws, adjust the gait fre-
quency and amplitude, as well as the relative angular kine-
matics of the caudal peduncle, to control the mean speed
and the mean swim-path angle of the animal. More specifi-
cally, the joint deflections that describe the relative angular
kinematics between adjacent body segments are of the form

(Vs t) = 0(t) + AB(Vas, 1) sin (27C(t) + ), (1)
where ((t) is the 0-to-1 stroke-cycle fraction, defined as
¢(t) = frac (f(f wW(Vas, T)dT) : (2)
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In expressions (1) and (2) above, @ is a bias term, w and
A0 are, respectively, the angular frequency and amplitude
of the gait’s sinusoidal term, and ¢ is a constant phase shift.
Gait frequency and amplitude depend on the target steady-
state mean speed of the animal’s CoM, denoted by V. Also,
the explicit dependency on time, ¢, of the bias term, the gait
frequency, and the gait amplitude indicates the presence of
corrective terms adjusting these entities.

C. Pectoral fins

Hydrodynamic forces on the pectoral fins are modeled
using a nonlinear quasi-steady formulation capturing trailing-
edge flow separation. The current inter-segment kinematic
model assumes the pectoral fins are fixed with respect to
the head element, at an orientation that minimizes resistance
in the forward direction of travel. Therefore, the fins act as
passive dampers that resist transverse recoil motions at the
animal’s head [8].

D. Fluke Flexibility

The fluke is modeled as a flexible element, linked to the
posterior caudal peduncle. To capture the effects of fluke
flexibility on swimming performance, the model charac-
terizes the fluke as a passive, flexible, thin plate that is
linked to the caudal peduncle by a semi-passive joint at
the “ball” caudal vertebra; see Figure 5. In this setup, the
ball joint describes primary angular deformations of the
fluke at its insertion onto the caudal peduncle, while thin-
plate deflections account for secondary hydroelastic effects
of chordwise and spanwise bending of the fluke blades.
This characterization is consistent with existing physiological
studies of bottlenose dolphins and minke whales, which
conclude that most of the dorsoventral bending of flukes
takes place at the intervertebral disk space immediately
caudal to this vertebra [9], [14], [15].

Ball vertebra: The ball vertebra is modeled as a semi-
passive joint with a hardening torsion spring with asymmetric
dorsoventral stiffness. The model assumes that the animal
can actively adjust only the stiffness of this joint (not its
deflection) and, hence, the motion of the joint is driven
by hydrodynamic, elastic, and inertial forces. The semi-
passive nature of fluke deformation is supported by existing
morphological studies [12], [17].

Fig. 5: Characterization of fluke flexibility. (Background image
from [16, Fig. 6.7].)
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Restricting deflections to the sagittal plane and letting
O denote the deflection of the joint from its neutral po-
sition, the rotational dorsoventral stiffness of the ball joint is
modeled as

Rop (wv oF) = uﬁ(w) ng (QF) 5

where ngF(G ) represents a nominal stiffness curve, and the
factor u,(w) is used to actively modulate the stiffness of the
ball joint in response to changes in the gait frequency. The
nominal stiffness curve kg (fr) is taken as the rotational
stiffness of an asymmetric, hardening torsion spring, given by

0 H¥n+I€Xdr|9F|, if 91:‘20,
kg, (0F) = D D .
Hlin+ﬁqdr|9F|7 if 0 <0,

with k[, kg, > 0 and &f7 kP > 0 characterizing, respec-
tively, ventral and dorsal bending of the ball joint. To
meet experimental observations, the model assumes a larger
stiffness for ventral bending than for dorsal bending.

Fluke blades: The fluke flexibility model also accounts
for elastic bending of the fluke blades. Following standard
aero- and hydroelastic formulations, the deformation of the
fluke blades is represented by a linear superposition of
assumed modes [18]:

E(pg.t) = Sonm @r(pg) mi(t) 3)

where £(py,t) denotes the transverse displacement at time ¢
of the point of the fluke planform with spatial coordi-
nates py; Py is the kth assumed mode; 7y, is the generalized
coordinate representing the amplitude of the kth assumed
mode, and N, is the total number of assumed modes retained
in the modal expansion. With this setup, the deformation
state of the fluke blades is described through a finite set of
deformation variables 7, k = 1,..., Ny, characterizing the
contribution of the various modes.

When using the assumed-modes method, the modal ex-
pansion must be carefully designed in order to avoid un-
necessarily increasing both the order of the dynamics model
and its numerical stiffness. In the current setup, the fluke-
blade modes are approximated by free-vibration mode shapes
of a partially pinned, orthotropic, rectangular plate. This
approximation provides us with an analytical expression for
the mode shapes, which is convenient for the computation
of the modal terms in the fluke hydrodynamic model as well
as in the derivation of the equations of motion.

Because the current model is limited to swimming dy-
namics in the sagittal plane, we can assume Symmetry
with respect to the root chord and derive the free-vibration
mode shapes for the boundary-value problem illustrated in
Figure 6. The governing differential equation for small am-
plitude free traverse vibration of an orthotropic, rectangular
thin plate may be written as [19]

e 2 9% 4 (9% de)
D, & + 2H¢" 5 + Do <E Y 5) —0,
where ¢ = bayuke/(2¢) is the plate aspect ratio, with ¢ being
the mean chord of the fluke blades; H is the effective
torsional rigidity; D, and D, are, respectively, the flexural
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Fig. 6: Boundary conditions for a partially pinned, rectangular plate.
(Background image courtesy of Dolphin Quest Oahu.)
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Fig. 7: Computed mode shapes for the first four modes of the
partially pinned, orthotropic, rectangular plate.

rigidities associated with x- and y-directions; A\? is the free-
vibration eigenvalue; and £y and ¢y are the normalized
rectangular coordinates of the plate.

Analytical expressions for the mode shapes for this
boundary-value problem have been obtained using the su-
perposition method; see [20] and references therein. Figure 7
presents the first four mode shapes derived using this method.

E. Fluke Hydrodynamics

To predict the unsteady hydrodynamic characteristics of
the hydrofoil with due account of three-dimensional effects,
we apply standard methods from lifting-line theory; see, for
example, [21, §5.3.2] for a classical solution to the steady-
state problem, and [22] for a modern numerical adaptation.

The procedure adopted in the present work can be summa-
rized as follows. First, we assume a general unsteady circula-
tion distribution along the hydrofoil’s span and approximate
it with a finite Fourier series expansion with time-varying
Fourier coefficients:

L9, t) = 26V, SN0 A, (t) sinnd, (4)

where ¥ is the spanwise Glauert angle, and V| is defined
as V| = Vg cos Ae, with Vp and A, being, respectively, the
speed of the ball vertebra and an effective sweep angle [23].

Then, we derive a spanwise loading equation and evaluate
it at as many different spanwise stations as terms are included
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in the Fourier series expansion. To this end, similar to [24],
we assume that the sectional circulatory lift coefficient, clcf s
at any spanwise station satisfies the loading equation

i —
G

(&)

where c represents the local section chord. Next, we choose
Nr distinct spanwise collocation stations, and let y,, be
the spanwise coordinate of one of these stations. We now
approximate the sectional circulatory lift coefficient at the
spanwise collocation station y,, of the fluke as

2
VJ_CI‘+ V2 Bt ?

cf
Cl m

2
144/ fun,m
= Clo,m <f> (@B,m — i=o,m) , (6)

where ¢, ., is the local sectional lift-curve slope, funm
is the local unsteady trailing-edge separation point', and
oy—o,m 1s the local angle of zero lift, which is a function
of the deformation state of the fluke blades.

Remark 1: Letn = [n1,...,nn,]" be the vector of defor-
mation variables characterizing the deformation state of the
fluke blades. Then, following standard derivations in thin-
airfoil theory [26], it can be shown that the sectional angle
of zero lift may be expressed as
1 AT

a2,

m

where Aq,,m and Aq,,m are vectors with components

Ql=0,m = ATl mT +

Aarmy = 7 Jo P5(0,ym)(1 — cos)do,
AC)Q”’n'(k) = _% foﬂ' (I)k(eu ym)(l — COS 9) de .
In these expressions, @z() — %(,) is the derivative of

the kth assumed mode with respect to the coordinate x,
and the variable ¢ is related to the coordinate z; via the
transformation 2y = —£(1 — cosf). The key insight here is
that vectors Ao, ,m and Aq,,m can be pre-computed offline
as soon as the assumed modes have been defined, and need
not be re-computed as the simulation of the hydrodynamic
model unfolds. As a result, the sectional angle of zero lift
can be determined at an extremely low computational cost,
without the need for online numerical quadrature. A

The local effective angle of attack, ag n,, is given by
— im) + Tom, (7)

where «; ., is the local induced angle of attack, and x4 .,
is the local deficiency capturing the influence of trailing-
edge wake shedding. Borrowing from the work in [23], the
induced angle of attack is approximated as

apm = (1—Ap — Ag2) (3/4m

w

b/2 Br/ayd
47V

ffb/Q Ym —Y (8)

where the downwash factor w is assumed to be independent
of the spanwise coordinate and is given by [23, Eq. (89)].
The local deficiency is modeled as

Z] 12 —1 RgjmnTejn +

Z] 12 A¢>J(

'The local unsteady trailing-edge separation point, fun,m, may be
determined from an open-loop procedure similar to the one proposed in [25].

Qi m =

)

Tom =

- ’id’]}mn) (a3/4,n - ai,n) 5
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where x4, j = 1,2, are deficiency states for the spanwise
collocation station ¥, K¢j,mn are cross-coupling gains, and
Omn is the Kronecker delta. The deficiency states x4jn
evolve according to the dynamics

(bj+CVJ_

2V, n
2V2
+ bdnAdn (a3/4 n

Cn

Epjn = — ) Tgjn

ai,n) )

Cn
where Ag1, Ag2, bg1, and bga are positive constants that
|

b/2
of o | (1= Ap1 = Ag2) | asjam — 25— / "

where ¢/ = ¢, ((1+ \/fu_n)/2)2

Using (4), equation (9) yields one differential equation
that relates the unknown Nr Fourier coefficients, A,,, and
their derivatives, A,. By combining the equations written at
the Np distinct spanwise collocation stations, we obtain a
system of Nr independent differential equations, which can
be expressed in compact form as

E:tA:A:BA—l-%q,

where x4 = [A1,..., An..]T is the vector of Fourier coeffi-
cients, EY and A are square matrices of order N with entries

E, ) =sinnt,y, ,

_ 2V,
m

VLf
l

1

2

cm V1

+ V7

m (1

and ¢; is a vector whose mth component is given by

= lea,m ((1 - A(i’l - A¢2) Qa3/4,m + Tp,m

The unsteady sectional lift coefficient may now be ex-
pressed as the sum of the sectional circulatory lift component
and a sectional apparent-mass lift component:

a = ( )
(¥ oo =) + (@12 - 0))

where a(y¢,n) and aq(yy,,7) are terms that depend on
the deformation state of the fluke blades.

Finally, the lift coefficient may be obtained via spanwise
integration of this sectional lift coefficient, yielding

Ay = ) sin n,,
sin nY.m,
sin ¥y,

A¢1 — A¢2) WN——ag

)

Ci(m)

2
VLC

2 or

1—""\/2 ot

c
2V,

Cp ~ W/RAl 2VL T (“;—J‘mA‘i‘-'BA)
+ 58 (¥ (a2 — K1m) (10)
(o (st ) ).

where AR is the aspect ratio of the fluke, and k;,, K;,, and

Ky, are constant vectors with components

Kio(n) = 448 foﬂ % sinny sin 9 dv,
M=  sind Jo ®%(1 — cos26)dhdv,
fo & sinﬁfo (1 — cos26)do dy .

Rt o) =

Klay = —2¢

or/dy
Ym—Y dy

correspond to the coefficients of a second-order exponential-
series approximation of the Wagner indicial function [27]°.
With this model, the states x4;,, j = 1,2, track the two-
dimensional influence of the nth spanwise station’s trailing-
edge wake shedding on itself, and the gains xg;,m» are used
to capture three-dimensional effects.

From (5)—(8), it follows that the unsteady circulation
distribution I" must satisfy the following integro-differential
equation at the spanwise collocation station y,:

— 2
T Viem

©)

3
m

+ Tpm — Al=0,m Fmb + Vlf (%_g)

- al:O,m) .
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In expression (10), the approximate sign is used because the
apparent-mass component of lift has been derived with the
assumption that the geometric angle of attack at mid-chord
and its time-derivative are constant along the fluke’s span.
We note that the first term in (10) corresponds to the steady-
state lift coefficient from classical lifting-line theory; see [21,
Eq. (5.53)]. Expressions analogous to (10) can be derived for
the fluke’s drag and pitching-moment coefficients.

F. Equations of Motion

To describe the motion of the animal swimming through
water, the model uses two sets of variables. A set of transport
variables describes the position, velocity, and attitude of a
(pseudo-)body axis reference frame attached to the torso of
the animal. The deformation variables 6 and 7, introduced
earlier, describe the deformation state of the flexible fluke.

Similar to the work in [30], the derivation of the equations
of motion follows a mixed Newtonian-Lagrangian approach.
On one hand, the equations of motion for transport variables
result from the generalized Newton-Euler equations:

d2
m (ao + d’;g"’) =Ff
dho + mrog X ap = mo,

where O and G refer, respectively, to the origin of the
(pseudo-)body axis reference frame and to the CoM of the
animal. On the other hand, the equations of motion for the
deformation variables are derived from the commonly used
Lagrange equations [31, §2.8]:

4 o7 _ 9T 4 U _

dtoe,  oor T oor — @or

d OT _ oT 4 ou _

qon ~ oo T oue = e R=d Ny

Here, to derive the terms (),,, we assume attached flow
conditions and borrow from the work in [32] to describe
the unsteady pressure distribution acting on the fluke blades.

2The indicial formulation adopted assumes that the shed wake extends as
a planar surface from the trailing edge downstream to infinity. Clearly, this
assumption does not hold for cetacean swimming, in which the amplitude
of fluke oscillations is of the same order of magnitude as the fluke mean
chord; see [1, Fig. 2]. However, as postulated in [28] and validated in [29],
indicial formulations are able to accurately predict the influence of the shed
wake on unsteady lift, provided the wavelength of the vortex wake is large
compared to the foil chord. According to the data reported in [1, Fig. 1], in
the range from 0.5 to 2.3 BL/sec, the tail-beat wavelength is between five
to ten times larger than the fluke chord for the cetacean species studied.
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G. Swimming Kinetics

This first-principles modeling approach enables us to an-
alytically determine the joint torques and mechanical power
required to enforce the dorsoventral bending profile. The
model can thus be used to estimate overall positive and
negative mechanical work, entities that can be directly related
to metabolic cost [7].

III. RESULTS

The model was used to investigate steady state swimming
over a wide range of speeds (0.5 to 2.3 BL/sec). Preliminary
kinematic and kinetic results from a heuristically tuned
model match published results well. In fact, steady-state
kinematic characteristics obtained from the model are in
good agreement with kinematic observations previously re-
ported in the literature; see Figure 8. Additionally, estimates
of swimming kinetics (e.g., mean drag coefficient) and swim-
ming energetics (e.g., mean thrust power) are comparable,
over a wide range of speeds, to estimates obtained from
previous works on cetacean swimming performance.

Figure 9 presents representative profiles of the instanta-
neous fluke force and the internal joint torques required
to move the body through one steady-state stroke cycle at
1.5 BL/sec. The vector representation of the fluke force
is shown at the quarter-cord position as the fluke moves
through the cycle, and is colored to indicate when the fluke
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Fig. 8: Model results capture the relationship between tail-beat
frequency, amplitude, and swimming speed that has been observed
during swimming trials with bottlenose dolphins.
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Fig. 9: Results from steady-state simulations at 1.5 BL/sec.
(9a) Estimated joint torques at the two peduncle joints; (9b) Re-
sulting fluke force vectors (the aspect ratio of the force lines is 1:1;
black lines indicate a positive contribution to forward thrust).

is generating propulsive (black) and drag (red) forces during
swimming. Joint torques for the two peduncle joints are
shown for the same cycle. Thrust force and joint torques,
along with the angular velocities of the peduncle joints
and the center of mass velocity, were used to calculate the
summed joint and thrust power during swimming. The power
estimates were then used to calculate estimated propulsive
efficiency; see Figure 10. At slower speeds the efficiency
was as high as 0.85, converging to 0.7 efficiency at the higher
speeds. These results are lower than the estimates in [1], but
comparable to the ones in [33].
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Fig. 10: Propulsive efficiency estimated from steady-state simula-
tions of continuous swimming.
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IV. CONCLUSIONS

This work presented a low-order hydromechanical model
of the sagittal-plane swimming dynamics of a bottlenose
dolphin. The model captures the effect on swimming perfor-
mance of identified key features, including the animal’s body
posture, fluke hydroelasticity, and unsteady hydrodynamics
with delayed fluke stalls. Additionally, the model has been
designed to easily accommodate different body morphomet-
rics, fluke morphology and elasticity, and gait profiles. As a
result, the model represents a versatile tool that enables the
investigation of cetacean swimming biomechanics, especially
as it relates to the energetic cost of swimming. In particular,
the model provides an opportunity to explore the limitations
of single-body models, and the accuracy of energetic proxies
derived from kinematic measurements.

More interestingly, the adopted modeling approach allows
for an inverse dynamics analysis using kinematic data col-
lected with a bio-logging tag. Preliminary work can be found
in [34]. In this framework, the model is used to estimate the
hydrodynamic, elastic, and inertial forces acting on an animal
with set morphology during specific swimming trials, and to
compute the work required to enforce the dorsoventral bend-
ing profile inferred from logged kinematic data. Furthermore,
because of the low computational complexity of the model,
the proposed framework enables the analysis of hundreds of
hours of past and future logged swimming data.
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