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Abstract— This work presents a first-principles, low-order
model of the sagittal-plane swimming dynamics of a bottlenose
dolphin. The model captures key features of cetacean swim-
ming, namely lift-based propulsion, unsteady hydrodynamics,
fluke flexibility, and body posture. The model is used to estimate
steady-state swimming kinematics and kinetics at a range of
speeds, which are then compared to published estimates from
swimming animals.

I. INTRODUCTION

Efficient movement through water is important for bio-

logical and engineered systems alike. Cetaceans, an order

which includes orcas, dolphins, and whales, use lift-based

propulsion generated by oscillating a flexible lunate tail

(fluke) through water. These animals are efficient swimmers

across their range of thrust production, with propulsive

efficiencies estimated to reach 0.90 and exceed 0.80 across

their entire range of speeds [1]. As a reference, single-screw

vessels may exhibit propulsive efficiencies as high as 0.85,

but only in a narrow band about the design point.

Unfortunately, the mechanisms behind the efficient move-

ment of underwater biological systems are not well under-

stood. Cetaceans are difficult to study because they spend

a significant portion of their time underwater and out of

view. Further, hydromechanical forces, like propulsive thrust

or drag acting on the moving body, are particularly difficult

to measure directly in the marine environment.

Bio-logging tags that collect kinematic data (e.g., speed,

acceleration, orientation, depth) are used to gather infor-

mation about these animals and, in managed marine envi-

ronments, cameras have been used to complement single-

point tag measurements. Tag-based kinematic measurements

of animal movement result in data from thousands of strokes

and, yet, estimating mechanical work and power from these

kinematic measurements is a challenging problem. For bot-

tlenose dolphins, previous work has combined measured

speed and kinematics of the fluke (amplitude, frequency,

pitch angle) with hydrodynamic models to estimate external

forces acting on the animals [2].

Another common approach has been to estimate energetic

costs of transport using proxies such as overall dynamic body

acceleration calculated from tag data [3]. This approach has
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been developed and tested with terrestrial animals and free-

diving sea lions where direct measurements of metabolic cost

via respirometry have been possible [4]. However, experi-

mental validation of the relationship between acceleration,

mechanical work, and energetic cost remains limited for

free-swimming cetaceans [5], [6]. Without calibration (which

is seldom possible on large marine animals), comparisons

between individuals are unlikely to be accurate and extrap-

olation across different behaviors within an individual may

not hold.

To overcome some of these limitations, our research efforts

focus on the development of a model-based framework to

investigate the cost of swimming locomotion. The framework

is informed by work in the human-walking literature where

metabolic costs during locomotion, derived from respirome-

try, are related to mechanical costs estimated using inverse

dynamics [7]. Here, we present a first-principles, low-order

model of the sagittal-plane swimming dynamics of a bot-

tlenose dolphin, which will be central to the proposed frame-

work by allowing us to generate estimates of locomotive

costs directly from tag-based kinematic measurements. The

model captures identified key features of cetacean swimming,

namely lift-based propulsion, unsteady hydrodynamics, fluke

flexibility, and body posture [2]; and seamlessly incorporates

findings from previous research on odontocete cetaceans, in-

cluding body morphometry, fluke morphology and elasticity,

and swimming gait and stability [8]–[12].

II. HYDROMECHANICAL MODEL

A. Model overview

The animal is modeled as an articulated multibody dy-

namic system subject to hydrostatic, hydrodynamic, and

gravitational forces. The body of the animal is represented

as an open chain of four rigid bodies, namely head, torso,

and anterior and posterior caudal peduncle, which are linked

successively by three active joints; see Figure 1. The model

assumes that the animal can enforce a desired dorsoventral

bending profile, specified in terms of the relative angular

semi-passive
joint

active
joint

flexible

fluke

rigid
body

Fig. 1: Representation of the articulated multibody system.
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(a) Head (b) Torso

(c) Anterior caudal peduncle (d) Posterior caudal peduncle

Fig. 2: Outlines of a t. truncatus, aligned by identified segments.
(BL: 1.8 m; swimming speed: 2.1 BL/sec; frame rate: 60 fps.)

kinematics between adjacent elements of this body chain.

The pectoral fins are also modeled as rigid bodies, which

are linked by active spherical joints to the head element and

act as hydrodynamic control surfaces. The fluke, on the other

hand, is modeled as a semi-passive flexible element, which

is connected to the posterior caudal peduncle element and

whose deformation evolves in response to the hydrodynamic,

elastic, and inertial forces acting on it. In turn, because

the hydrodynamic loading over the fluke is affected by

its deformation state, the model incorporates results from

unsteady hydroelasticity to predict lift, drag, and pitching-

moment distributions over the deforming fluke.

The modeling approach places special emphasis on the

adoption of techniques that significantly limit the computa-

tional complexity of the hydromechanical model, especially

as it relates to the overall number of states and the use

of online numerical quadrature. As a result, swimming

dynamics are described by a finite set of nonlinear, highly

coupled ordinary differential equations, with only tens of

states. This results in a model with low computational

complexity, especially when compared to full computational-

fluid-dynamics simulation models (with millions of states)

and models based on unsteady vortex-lattice methods (with

thousands of states).

B. Body

Segmentation of the body is based on analysis of video

footage obtained during swim trials at various speeds; see

Figure 2. The mass, volume, tensor of inertia, wetted surface

area, location of the center of mass (CoM), and location of

the center of buoyancy (CoB) of each body segment are

estimated from orthogonal silhouettes using the approach

described in [13], which is based on the assumption of

superelliptical body cross-sections; see Figure 3. The four

body segments are subject to added-mass and damping

hydrodynamic forces and moments. In the setup adopted,

the hydrodynamic axial force, normal force, and pitching mo-

ment acting on each body segment are determined from local

flow properties using a quasi-steady hydrodynamic model.

The hydromechanical model runs a sinusoidal baseline

dorsoventral bending profile, with constant phase shifts be-

tween successive joint deflections and speed-dependent gait
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Fig. 3: Estimated center-of-mass (CoM) location of the four iden-
tified segments for a t. truncatus of 5.27 fineness ratio, obtained
from orthogonal silhouettes [13].
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Fig. 4: Sinusoidal baseline dorsoventral bending profile (stroke
cycle at 2.1 BL/sec).

frequency and amplitude. This baseline profile has been

identified from video footage obtained during swim trials at

various speeds and is illustrated in Figure 4. The profile is

qualitatively consistent with findings from previous studies,

which identified out-of-phase movements of the rostrum

relative to the peduncle to limit excessive transverse motions

of the animal’s head [8].

This baseline profile is augmented with corrective terms

that, driven by feedback control laws, adjust the gait fre-

quency and amplitude, as well as the relative angular kine-

matics of the caudal peduncle, to control the mean speed

and the mean swim-path angle of the animal. More specifi-

cally, the joint deflections that describe the relative angular

kinematics between adjacent body segments are of the form

θ(Vss, t) = θ̄(t) + ∆θ(Vss, t) sin (2πζ(t) + ϕ) , (1)

where ζ(t) is the 0-to-1 stroke-cycle fraction, defined as

ζ(t) = frac
(

∫ t

0
ω(Vss, τ)dτ

)

. (2)
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In expressions (1) and (2) above, θ̄ is a bias term, ω and

∆θ are, respectively, the angular frequency and amplitude

of the gait’s sinusoidal term, and ϕ is a constant phase shift.

Gait frequency and amplitude depend on the target steady-

state mean speed of the animal’s CoM, denoted by Vss. Also,

the explicit dependency on time, t, of the bias term, the gait

frequency, and the gait amplitude indicates the presence of

corrective terms adjusting these entities.

C. Pectoral fins

Hydrodynamic forces on the pectoral fins are modeled

using a nonlinear quasi-steady formulation capturing trailing-

edge flow separation. The current inter-segment kinematic

model assumes the pectoral fins are fixed with respect to

the head element, at an orientation that minimizes resistance

in the forward direction of travel. Therefore, the fins act as

passive dampers that resist transverse recoil motions at the

animal’s head [8].

D. Fluke Flexibility

The fluke is modeled as a flexible element, linked to the

posterior caudal peduncle. To capture the effects of fluke

flexibility on swimming performance, the model charac-

terizes the fluke as a passive, flexible, thin plate that is

linked to the caudal peduncle by a semi-passive joint at

the “ball” caudal vertebra; see Figure 5. In this setup, the

ball joint describes primary angular deformations of the

fluke at its insertion onto the caudal peduncle, while thin-

plate deflections account for secondary hydroelastic effects

of chordwise and spanwise bending of the fluke blades.

This characterization is consistent with existing physiological

studies of bottlenose dolphins and minke whales, which

conclude that most of the dorsoventral bending of flukes

takes place at the intervertebral disk space immediately

caudal to this vertebra [9], [14], [15].

Ball vertebra: The ball vertebra is modeled as a semi-

passive joint with a hardening torsion spring with asymmetric

dorsoventral stiffness. The model assumes that the animal

can actively adjust only the stiffness of this joint (not its

deflection) and, hence, the motion of the joint is driven

by hydrodynamic, elastic, and inertial forces. The semi-

passive nature of fluke deformation is supported by existing

morphological studies [12], [17].

θF (t)

passive

flexible blades

semi-passive

“ball” joint
ξ(pf , t)

Fig. 5: Characterization of fluke flexibility. (Background image
from [16, Fig. 6.7].)

Restricting deflections to the sagittal plane and letting

θF denote the deflection of the joint from its neutral po-

sition, the rotational dorsoventral stiffness of the ball joint is

modeled as

κθF (ω, θF ) = uκ(ω)κ
0
θF (θF ) ,

where κ0
θF
(θF ) represents a nominal stiffness curve, and the

factor uκ(ω) is used to actively modulate the stiffness of the

ball joint in response to changes in the gait frequency. The

nominal stiffness curve κ0
θF
(θF ) is taken as the rotational

stiffness of an asymmetric, hardening torsion spring, given by

κ0
θF (θF ) =

{

κV
lin + κV

qdr|θF | , if θF ≥ 0 ,

κD
lin + κD

qdr|θF | , if θF < 0 ,

with κV
lin, κ

V
qdr > 0 and κD

lin, κ
D
qdr > 0 characterizing, respec-

tively, ventral and dorsal bending of the ball joint. To

meet experimental observations, the model assumes a larger

stiffness for ventral bending than for dorsal bending.

Fluke blades: The fluke flexibility model also accounts

for elastic bending of the fluke blades. Following standard

aero- and hydroelastic formulations, the deformation of the

fluke blades is represented by a linear superposition of

assumed modes [18]:

ξ(pf , t) =
∑Nη

k=1 Φk(pf ) ηk(t) , (3)

where ξ(pf , t) denotes the transverse displacement at time t
of the point of the fluke planform with spatial coordi-

nates pf ; Φk is the kth assumed mode; ηk is the generalized

coordinate representing the amplitude of the kth assumed

mode, and Nη is the total number of assumed modes retained

in the modal expansion. With this setup, the deformation

state of the fluke blades is described through a finite set of

deformation variables ηk, k = 1, . . . , Nη, characterizing the

contribution of the various modes.

When using the assumed-modes method, the modal ex-

pansion must be carefully designed in order to avoid un-

necessarily increasing both the order of the dynamics model

and its numerical stiffness. In the current setup, the fluke-

blade modes are approximated by free-vibration mode shapes

of a partially pinned, orthotropic, rectangular plate. This

approximation provides us with an analytical expression for

the mode shapes, which is convenient for the computation

of the modal terms in the fluke hydrodynamic model as well

as in the derivation of the equations of motion.

Because the current model is limited to swimming dy-

namics in the sagittal plane, we can assume symmetry

with respect to the root chord and derive the free-vibration

mode shapes for the boundary-value problem illustrated in

Figure 6. The governing differential equation for small am-

plitude free traverse vibration of an orthotropic, rectangular

thin plate may be written as [19]

Dy
∂4ξ
∂ŷ4

f

+ 2Hφ2 ∂4ξ
∂x̂2

f
∂ŷ2

f

+Dxφ
4
(

∂4ξ
∂x̂4

f

− λ4ξ
)

= 0 ,

where φ = bfluke/(2c̄) is the plate aspect ratio, with c̄ being

the mean chord of the fluke blades; H is the effective

torsional rigidity; Dx and Dy are, respectively, the flexural
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xf

yfF

ξy = Vy = 0

Vy = My = 0

Vx = Mx = 0

Vx = Mx = 0

c̄

b/2

ξ = Mx = 0

Fig. 6: Boundary conditions for a partially pinned, rectangular plate.
(Background image courtesy of Dolphin Quest Oahu.)

(a) First mode shape (b) Second mode shape

(c) Third mode shape (d) Fourth mode shape

Fig. 7: Computed mode shapes for the first four modes of the
partially pinned, orthotropic, rectangular plate.

rigidities associated with x- and y-directions; λ2 is the free-

vibration eigenvalue; and x̂f and ŷf are the normalized

rectangular coordinates of the plate.

Analytical expressions for the mode shapes for this

boundary-value problem have been obtained using the su-

perposition method; see [20] and references therein. Figure 7

presents the first four mode shapes derived using this method.

E. Fluke Hydrodynamics

To predict the unsteady hydrodynamic characteristics of

the hydrofoil with due account of three-dimensional effects,

we apply standard methods from lifting-line theory; see, for

example, [21, §5.3.2] for a classical solution to the steady-

state problem, and [22] for a modern numerical adaptation.

The procedure adopted in the present work can be summa-

rized as follows. First, we assume a general unsteady circula-

tion distribution along the hydrofoil’s span and approximate

it with a finite Fourier series expansion with time-varying

Fourier coefficients:

Γ(ϑ, t) = 2bV⊥

∑NΓ

n=1 An(t) sin nϑ , (4)

where ϑ is the spanwise Glauert angle, and V⊥ is defined

as V⊥ = VF cosΛe, with VF and Λe being, respectively, the

speed of the ball vertebra and an effective sweep angle [23].

Then, we derive a spanwise loading equation and evaluate

it at as many different spanwise stations as terms are included

in the Fourier series expansion. To this end, similar to [24],

we assume that the sectional circulatory lift coefficient, ccfl ,

at any spanwise station satisfies the loading equation

ccfl = 2
V⊥cΓ + 2

V 2

⊥

∂Γ
∂t , (5)

where c represents the local section chord. Next, we choose

NΓ distinct spanwise collocation stations, and let ym be

the spanwise coordinate of one of these stations. We now

approximate the sectional circulatory lift coefficient at the

spanwise collocation station ym of the fluke as

ccfl,m = clα,m

(

1+
√

fun,m

2

)2

(αE,m − αl=0,m) , (6)

where clα,m is the local sectional lift-curve slope, fun,m
is the local unsteady trailing-edge separation point1, and

αl=0,m is the local angle of zero lift, which is a function

of the deformation state of the fluke blades.

Remark 1: Let η = [η1, . . . , ηNη
]T be the vector of defor-

mation variables characterizing the deformation state of the

fluke blades. Then, following standard derivations in thin-

airfoil theory [26], it can be shown that the sectional angle

of zero lift may be expressed as

αl=0,m = λT
α1,m

η + 1
V⊥

λT
α2,m

η̇ ,

where λα1,m and λα2,m are vectors with components

λα1,m(k) =
1
π

∫ π

0 Φx
k(θ, ym)(1 − cos θ) dθ ,

λα2,m(k) = − 1
π

∫ π

0
Φk(θ, ym)(1− cos θ) dθ .

In these expressions, Φx
k(·) = dΦk

dxf
(·) is the derivative of

the kth assumed mode with respect to the coordinate xf ,

and the variable θ is related to the coordinate xf via the

transformation xf = − c
2 (1 − cos θ). The key insight here is

that vectors λα1,m and λα2,m can be pre-computed offline

as soon as the assumed modes have been defined, and need

not be re-computed as the simulation of the hydrodynamic

model unfolds. As a result, the sectional angle of zero lift

can be determined at an extremely low computational cost,

without the need for online numerical quadrature. △
The local effective angle of attack, αE,m, is given by

αE,m = (1−Aφ1 −Aφ2)
(

α3/4,m − αi,m

)

+ xφ,m , (7)

where αi,m is the local induced angle of attack, and xφ,m

is the local deficiency capturing the influence of trailing-

edge wake shedding. Borrowing from the work in [23], the

induced angle of attack is approximated as

αi,m = ω
4πV⊥

∫ b/2

−b/2
∂Γ/∂y
ym−y dy , (8)

where the downwash factor ω is assumed to be independent

of the spanwise coordinate and is given by [23, Eq. (89)].

The local deficiency is modeled as

xφ,m =
∑2

j=1

∑NΓ

n=1 κφj,mnxφj,n +
∑2

j=1

∑NΓ

n=1 Aφj (δmn − κφj,mn)
(

α3/4,n − αi,n

)

,

1The local unsteady trailing-edge separation point, fun,m, may be
determined from an open-loop procedure similar to the one proposed in [25].
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where xφj,n, j = 1, 2, are deficiency states for the spanwise

collocation station yn, κφj,mn are cross-coupling gains, and

δmn is the Kronecker delta. The deficiency states xφj,n

evolve according to the dynamics

ẋφj,n =− 2V⊥

cn

(

bφj +
cnV̇⊥

2V 2

⊥

)

xφj,n

+ bφjAφj
2V⊥

cn

(

α3/4,n − αi,n

)

,

where Aφ1, Aφ2, bφ1, and bφ2 are positive constants that

correspond to the coefficients of a second-order exponential-

series approximation of the Wagner indicial function [27]2.

With this model, the states xφj,n, j = 1, 2, track the two-

dimensional influence of the nth spanwise station’s trailing-

edge wake shedding on itself, and the gains κφj,mn are used

to capture three-dimensional effects.

From (5)–(8), it follows that the unsteady circulation

distribution Γ must satisfy the following integro-differential

equation at the spanwise collocation station ym:

cflα,m

(

(1−Aφ1 −Aφ2)

(

α3/4,m − ω
4πV⊥

∫ b/2

−b/2

∂Γ/∂y
ym−y dy

)

+ xφ,m − αl=0,m

)

= 2
V⊥cm

Γm + 2
V 2

⊥

(

∂Γ
∂t

)

m
, (9)

where cflα = clα
(

(1 +
√
fun)/2

)2
.

Using (4), equation (9) yields one differential equation

that relates the unknown NΓ Fourier coefficients, An, and

their derivatives, Ȧn. By combining the equations written at

the NΓ distinct spanwise collocation stations, we obtain a

system of NΓ independent differential equations, which can

be expressed in compact form as

EẋA = AxA + V⊥

4b cl ,

where xA = [A1, . . . , ANΓ
]T is the vector of Fourier coeffi-

cients, E and A are square matrices of order NΓ with entries

E(m,n) =sinnϑm ,

A(m,n) = − 2V⊥

cm

(

1
2 + cmV̇⊥

2V 2

⊥

)

sinnϑm

− V⊥

4b cflα,m (1−Aφ1 −Aφ2)ω n sinnϑm

sinϑm
,

and cl is a vector whose mth component is given by

cl(m) = cflα,m

(

(1−Aφ1 −Aφ2)α3/4,m + xφ,m − αl=0,m

)

.

The unsteady sectional lift coefficient may now be ex-

pressed as the sum of the sectional circulatory lift component

and a sectional apparent-mass lift component:

cl =
(

2
V⊥cΓ + 2

V 2

⊥

∂Γ
∂t

)

+ π c
2V⊥

(

V̇⊥

V⊥

(

α1/2 − ᾱ
)

+
(

α̇1/2 − ᾱd

)

)

,

where ᾱ(yf ,η) and ᾱd(yf , η̇, η̈) are terms that depend on

the deformation state of the fluke blades.
Finally, the lift coefficient may be obtained via spanwise

integration of this sectional lift coefficient, yielding

CL ≈ πAA1 +
c̄

2V⊥

κT
l0

(

V̇⊥

V⊥

xA + ẋA

)

+ π c̄
2V⊥

(

V̇⊥

V⊥

(

α1/2 − κT
l1
η
)

+
(

α̇1/2 −
(

κT
l1
η̇ + 1

V⊥

κT
l2
η̈
))

)

,

(10)

where A is the aspect ratio of the fluke, and κl0 , κl1 , and

κl2 are constant vectors with components

κl0 (n) = 4A
∫ π

0
c
c̄ sinnϑ sinϑ dϑ ,

κl1 (k) =
A

2π

∫ π

0
c2

bc̄ sinϑ
∫ π

0 Φx
k(1 − cos 2θ) dθ dϑ ,

κl2 (k) = −A2π
∫ π

0
c2

bc̄ sinϑ
∫ π

0 Φk(1− cos 2θ) dθ dϑ .

In expression (10), the approximate sign is used because the

apparent-mass component of lift has been derived with the

assumption that the geometric angle of attack at mid-chord

and its time-derivative are constant along the fluke’s span.

We note that the first term in (10) corresponds to the steady-

state lift coefficient from classical lifting-line theory; see [21,

Eq. (5.53)]. Expressions analogous to (10) can be derived for

the fluke’s drag and pitching-moment coefficients.

F. Equations of Motion

To describe the motion of the animal swimming through

water, the model uses two sets of variables. A set of transport

variables describes the position, velocity, and attitude of a

(pseudo-)body axis reference frame attached to the torso of

the animal. The deformation variables θF and η, introduced

earlier, describe the deformation state of the flexible fluke.
Similar to the work in [30], the derivation of the equations

of motion follows a mixed Newtonian-Lagrangian approach.

On one hand, the equations of motion for transport variables

result from the generalized Newton-Euler equations:

m
(

aO + d2rOG

dt2

)

= f

dhO

dt +mrOG × aO = mO ,

where O and G refer, respectively, to the origin of the

(pseudo-)body axis reference frame and to the CoM of the

animal. On the other hand, the equations of motion for the

deformation variables are derived from the commonly used

Lagrange equations [31, §2.8]:

d
dt

∂T
∂θ̇F

− ∂T
∂θF

+ ∂U
∂θF

= QθF

d
dt

∂T
∂η̇k

− ∂T
∂ηk

+ ∂U
∂ηk

= Qηk
, k = 1, . . . , Nη .

Here, to derive the terms Qηk
, we assume attached flow

conditions and borrow from the work in [32] to describe

the unsteady pressure distribution acting on the fluke blades.

2The indicial formulation adopted assumes that the shed wake extends as
a planar surface from the trailing edge downstream to infinity. Clearly, this
assumption does not hold for cetacean swimming, in which the amplitude
of fluke oscillations is of the same order of magnitude as the fluke mean
chord; see [1, Fig. 2]. However, as postulated in [28] and validated in [29],
indicial formulations are able to accurately predict the influence of the shed
wake on unsteady lift, provided the wavelength of the vortex wake is large
compared to the foil chord. According to the data reported in [1, Fig. 1], in
the range from 0.5 to 2.3 BL/sec, the tail-beat wavelength is between five
to ten times larger than the fluke chord for the cetacean species studied.
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G. Swimming Kinetics

This first-principles modeling approach enables us to an-

alytically determine the joint torques and mechanical power

required to enforce the dorsoventral bending profile. The

model can thus be used to estimate overall positive and

negative mechanical work, entities that can be directly related

to metabolic cost [7].

III. RESULTS

The model was used to investigate steady state swimming

over a wide range of speeds (0.5 to 2.3 BL/sec). Preliminary

kinematic and kinetic results from a heuristically tuned

model match published results well. In fact, steady-state

kinematic characteristics obtained from the model are in

good agreement with kinematic observations previously re-

ported in the literature; see Figure 8. Additionally, estimates

of swimming kinetics (e.g., mean drag coefficient) and swim-

ming energetics (e.g., mean thrust power) are comparable,

over a wide range of speeds, to estimates obtained from

previous works on cetacean swimming performance.

Figure 9 presents representative profiles of the instanta-

neous fluke force and the internal joint torques required

to move the body through one steady-state stroke cycle at

1.5 BL/sec. The vector representation of the fluke force

is shown at the quarter-cord position as the fluke moves

through the cycle, and is colored to indicate when the fluke
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Fig. 8: Model results capture the relationship between tail-beat
frequency, amplitude, and swimming speed that has been observed
during swimming trials with bottlenose dolphins.
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Fig. 9: Results from steady-state simulations at 1.5 BL/sec.
(9a) Estimated joint torques at the two peduncle joints; (9b) Re-
sulting fluke force vectors (the aspect ratio of the force lines is 1:1;
black lines indicate a positive contribution to forward thrust).

is generating propulsive (black) and drag (red) forces during

swimming. Joint torques for the two peduncle joints are

shown for the same cycle. Thrust force and joint torques,

along with the angular velocities of the peduncle joints

and the center of mass velocity, were used to calculate the

summed joint and thrust power during swimming. The power

estimates were then used to calculate estimated propulsive

efficiency; see Figure 10. At slower speeds the efficiency

was as high as 0.85, converging to 0.7 efficiency at the higher

speeds. These results are lower than the estimates in [1], but

comparable to the ones in [33].
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Fig. 10: Propulsive efficiency estimated from steady-state simula-
tions of continuous swimming.
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IV. CONCLUSIONS

This work presented a low-order hydromechanical model

of the sagittal-plane swimming dynamics of a bottlenose

dolphin. The model captures the effect on swimming perfor-

mance of identified key features, including the animal’s body

posture, fluke hydroelasticity, and unsteady hydrodynamics

with delayed fluke stalls. Additionally, the model has been

designed to easily accommodate different body morphomet-

rics, fluke morphology and elasticity, and gait profiles. As a

result, the model represents a versatile tool that enables the

investigation of cetacean swimming biomechanics, especially

as it relates to the energetic cost of swimming. In particular,

the model provides an opportunity to explore the limitations

of single-body models, and the accuracy of energetic proxies

derived from kinematic measurements.

More interestingly, the adopted modeling approach allows

for an inverse dynamics analysis using kinematic data col-

lected with a bio-logging tag. Preliminary work can be found

in [34]. In this framework, the model is used to estimate the

hydrodynamic, elastic, and inertial forces acting on an animal

with set morphology during specific swimming trials, and to

compute the work required to enforce the dorsoventral bend-

ing profile inferred from logged kinematic data. Furthermore,

because of the low computational complexity of the model,

the proposed framework enables the analysis of hundreds of

hours of past and future logged swimming data.
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