

Protocol

A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices

Advances in super-resolution imaging enable us to delve into its intricate structural and functional complexities with unprecedented detail. Here, we present a pipeline to visualize and analyze the nanoscale organization of cortical layer 1 apical dendritic spines in the mouse prefrontal cortex. We describe steps for brain slice preparation, immunostaining, stimulated emission depletion super-resolution microscopy, and data analysis using the Imaris software package. This protocol allows the study of physiologically relevant brain circuits implicated in neuropsychiatric disorders.

Publisher's note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.

Ezra Kruzich, Rhushikesh A. Phadke, Alison Brack, Dimitri Stroumbakis, Oriannys Infante, Alberto Cruz-Martín

ezrak@bu.edu (E.K.) martini.cruz@gmail.com (A.C.-M.)

Highlights

Outlines a detailed tissue preparation protocol for STED super-resolution microscopy

Includes a comprehensive guide for optimization of image acquisition parameters

Utilizes STED superresolution imaging and a custom Imaris/ MATLAB analysis pipeline

Determines the nanoscale protein organization within mouse prefrontal cortex slices

Kruzich et al., STAR Protocols 4, 102707 December 15, 2023 © 2023 The Author(s). https://doi.org/10.1016/ j.xpro.2023.102707

Protocol

A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices

Ezra Kruzich,^{1,5,*} Rhushikesh A. Phadke,² Alison Brack,² Dimitri Stroumbakis,¹ Oriannys Infante,^{3,4} and Alberto Cruz-Martín^{1,2,6,*}

SUMMARY

Advances in super-resolution imaging enable us to delve into its intricate structural and functional complexities with unprecedented detail. Here, we present a pipeline to visualize and analyze the nanoscale organization of cortical layer 1 apical dendritic spines in the mouse prefrontal cortex. We describe steps for brain slice preparation, immunostaining, stimulated emission depletion super-resolution microscopy, and data analysis using the Imaris software package. This protocol allows the study of physiologically relevant brain circuits implicated in neuropsychiatric disorders.

BEFORE YOU BEGIN

While neuroscientists have taken various approaches to investigate the nanoscale protein organization of the synapse using Stimulated Emission Depletion (STED) nanoscopy¹³ and the interactive microscopy image analysis software Imaris (Oxford Instruments, Abingdon, United Kingdom), this protocol uses specifi fundamental principles of labeling, data collection, and analysis to characterize the morphological features of brain cell types and determine the localization of proteins within subcellular compartments or colocalization of two proteins in physiologically relevant circuits using fied brain slices.

We designed this protocol to investigate three primary questions.

- 1. What is the density and morphology of dendritic spines in apical tufts of cortical layer (L) 2/3 pyramidal cells in the mouse prefrontal cortex (PE)?
- 2. What is the proportion of α -amino-3-hydroxy-5-methyl-4soxazolepropionic acid (AMPA) GR1 subunit clusters localized to lysosome-associated membrane protein 1 (LAMP1)-positive lysosomes within specifi dendritic compartments?
- 3. What is the nanoscale organization of specifi synaptic and lysosomal proteins within dendritic sub-compartments?

In pursuit of these questions, we utilize the following specifi approaches.

¹Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA

²Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA

³Montclair State University, Montclair, NJ 07043, USA

⁴Summer Undergraduate Research Fellowship Program, Boston University, Boston, MA 02215, USA

⁵Technical contact: ezrak@bu.edu

⁶Lead contact

^{*}Correspondence: ezrak@bu.edu (E.K.), martini.cruz@gmail.com (A.C.-M.) https://doi.org/10.1016/j.xpro.2023.102707

STAR Protocols Protocol

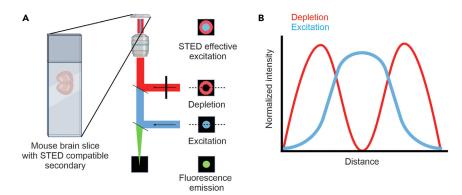


Figure 1. Experimental setup and STED microscopy basics

(A) Basic experimental setup and principles of STED microscopy. Mouse brain slices are stained with STED compatible secondaries and subjected to both excitation and depletion beams, resulting in fluorescence emission of reduced size.

(B) Pseudo-graph for visualization of normalized intensity as a function of distance along the dotted lines across the depletion (red) and excitation (blue) beams shown in (A)..

- 4 The use of fied brain slices : Exed brain slices maintain the natural 3D structure and architecture of the brain, allowing researchers to study the spatial relationships between different cell types, regions, and structures. This is particularly valuable for understanding connectivity and circuitry within the brain. Exed brain tissue mirrors in vivo conditions more accurately than dissociated neuronal cultures. This is important for investigating processes that are inflenced by the overall environment of the brain, such as developmental changes, neurodegeneration, and immune responses. It should be noted that fiation can affect the 3D structure of cells and tissues in ways that could alter the immunostaining results. For more information regarding potential solutions, please see 'tissue fiation' in the limitations section.
- 5. The use of genetic labeling with florescent proteins to image neuronal morphology: We optimized this protocol using in utero electroporation (IUE) for sparse genetic labeling of L2/3 pyramidal in the medial (m) PE with E. 4,5 However, this protocol can be adapted to label neurons and other brain cell types with far-red to near-infrared florescent proteins, such as TagRP657, metune2, method and method
- 6. The use of synaptic and lysosomal markers: In this protocol, we performed immunohistochemistry (IHC) for the lysosomal marker LAMP1^{12,13} and the AMPA glutamate receptor subunit @R1. 146
- 7. The use of super-resolution imaging: In this protocol, we utilized techniques that enable resolution of structures below the diffraction limit of light. This diffraction limit refers to the smallest feature size that can be resolved by an optical imaging system due to restraints imposed by the physics of light. This limit is approximately 250 nm laterally for a light microscope, with an axial resolution limit of around approximately \$0700 nm depending on the wavelength. 18 The typical STED experimental setup uses a confocal laser scanning microscope equipped with an additional depletion beam with a donut" shaped intensity profe (Figure 1 A). 17,19,20

The STED donut is aligned with the diffraction limited excitation spot, depleting or turning off the excited florophores at the periphery of the excita tion spot, allowing only those florophores in the hole of the STED donut to floresce spontaneously (Figure 1 A). 17,19,20 This reduces the area of detectable florescence and drastically improves the lateral resolution (Figure 1 B). 17,19,20 The STED resolution can be described with the following equation:

$$d \approx \lambda / \left(2NA\sqrt{1+I/Is}\right)$$
.

Protocol

where *NA* refers to the numerical aperture, *I* represents the maximum intensity of the STED beam, and *Is* refers to the intensity when the depletion beam deactivates a fraction of the florescent molecules. For more details regarding these relationships, please see Wildanger et al. This protocol is optimized for the Abberior Ecility Line STED experimental setup (Abberior GobH, Gomany) but also describes a general approach to multiple STED imaging contexts. A more indepth discussion of STED super-resolution microscopy can be accessed elsewhere. 1,6,17,19,22

Institutional permissions

Investigators must obtain institutional permission to perform animal studies and collect tissues under an approved Institutional Animal Care and Use Committee (IACUC) or Institutional Review Board protocol. All experimental protocols were conducted according to the Ational Institutes of Health (NH) guidelines for animal research and were approved by the Boston University Institutional Animal Care and Use Committee (IACUC; protocol \$201853)?

Perfusion

⊙ Timing: ~30 min for preparation and first mouse, <=20 min/additional mouse

This step describes the basic process of perfusing the mouse, fing the brain, and preparing the tissue for slicing. For a more detailed protocol, please see Wu et al. 23

- 8 Administer an overdose of sodium pentobarbital to the animal intraperitoneally.
- 9 Transcardially perfuse with phosphate buffered saline (PBS) then %paraformaldehyde (PA) in PBS.
- 10. Extract brain and postfi in \$8\mathbb{A}\$ for 24h.
- 11. Transfer to 30%w/v) sucrose solution and store at 4 °C for at least 24n.

Note: We typically perfuse mice at a rate of 5 mL/min (Step 2).

Sectioning of tissue

⊙ Timing: ~1 h for preparation and first mouse, <=30 min/additional mouse
</p>

This step describes the process of sectioning the tissue for STED imaging experiments. The user should be aware that the mismatch in refractive index between the optics of the STED microscope and the tissue leads to optical aberration, which induces distortions on the laser wavefront that can severely degrade the quality of the STED point spread function (PSF. 1,24

 Δ CRITICAL: Thus, a key principle for the ensured success of a STED imaging experiment is to decrease the thickness of the tissue. Our protocol restricts slice thickness to approximately 30–40 μ m, allowing us to obtain 30 μ m long horizontally aligned dendritic shafts, which reduces spine density variability between dendrites.

Note: In this protocol, we are extracting and processing brain tissue to isolate the mouse mPE.

- 12. Adequately crush dry ice into small pieces and apply to stage until stage is fully frozen (approximately 540 min for freezing platform).
- 13. Use a small amount of OCT compound to mount the caudal part of the brain to the stage (with cerebellum removed), with olfactory bulbs pointing upwards and the cortex facing the blade.
- 14 Apply crushed dry ice on and around the brain for approximately 5 min or until brain is fully frozen.
- 15. Remove dry ice from the brain and section at a thickness of approximately 30Φ μm.

- 16. Using a point brush to gently remove slices from the blade and add them to 24well plate with 1× PBS.
- 17. Add one slice per well in succession (each well should have 1 mL of 1x PBS).
- 18 Once each well of the plate has three slices, use a new a new plate.
- 19 Store slices at 4 °C.

Note: Although cutting thinner tissue will improve the STED optics, in our context it reduces the probability of imaging horizontally aligned dendritic shafts that are more than 30 μ m, which is critical to reduce spine density variability between dendrites.

Note: If the slices are not used within \$h, add sodium azide (0.02%1%x PBS) to the PBS solution for long-term storage (Step \$

△ CRITICAL: To ensure optimal slice integrity, it is important to avoid temperature fluctuations during slicing, which can be achieved by keeping a supply of quality dry ice on hand, applying small amounts to the stage and around the brain throughout the procedure.

Antibody selection

© Timing: 1-3 h, depending on antibody availability

Primary antibodies should be selected based on their published effacy for IHC in mouse brain slices. Secondary antibody selection is most important for STED imaging: the technique's depletion technology acts on the secondary, so careful selection is vital for quality images. We optimized this protocol for secondary antibodies selected according to compatibility with Abberior Ecility Line STED microscopy applications.

Note: The most important factor in successful antibody selection is to perform a literature search to confim published results. This is essential because unspecifi or bad antibody batches are often sold under different names and catalog numbers, giving the impression that they are different antibodies.

△ CRITICAL: To perform successful STED super-resolution imaging of two or more signals requires careful selection of fluorophores with well-separated emission spectra, ensuring compatibility with STED conditions and photostability.^{25–27} Thorough validation, control experiments, and expert knowledge of STED microscopy techniques and data analysis contribute to achieving accurate, high-resolution imaging outcomes.

Antibody validation

O Timing: 6 days

- 20. To determine the optimal primary antibody concentration, perform a dilution series with the manufacturer's recommended concentration, a more diluted option, and a more concentrated option, holding the secondary antibody concentration constant according to the manufacturer's recommendation.²⁸
 - a. Collect confocal images of each dilution.
 - b. Assess staining effacy with fl/ImageJ(N IH, Bethesda, MD) or another image processing software.

Note: We recommend optimizing initial imaging parameters using the mid-range dilution. **5**r more details regarding imaging parameters, please see the 'optimizing confocal imaging parameters guide" section below.

Protocol

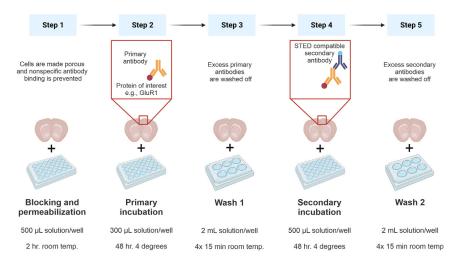


Figure 2. Schematic of IHC steps and important details

Brain slices, explanations of solution functions and proper plate choice (24 or 6 well) at each step are represented. We advise researchers to keep note of changes in solution volumes, shaking temperatures throughout the protocol, and the use of a 6-well plate for steps 3 and 5 as opposed to the 24-well plate used in steps 1, 2, and 4.

- 21. To determine the optimal secondary antibody concentration, perform another dilution series, holding the selected primary concentration from step 1 constant, then using the manufacturer's recommended concentration, a more dilute option, and a more concentrated option.
 - a. Acquire confocal images of each dilution and assess staining effacy with flyImageJ (please see step 1.a, b, for our recommended approach).
 - i. Repeat steps 1 and 2 as needed according to each analyzed result.
- 22. To assess negative controls, prepare a condition with only primary antibody and no secondary as well as a condition with only secondary and no primary, otherwise performing all other steps of the IHC protocol as described below.
 - a. Compare these results with each dilution using the strategy described above.
- Compare antibody results with published use of the antibody in rodent brain slices to ensure antibody specifity.

Note: Antibody specifity should be confined in brain tissue by using KO transgenic mouse lines and by performing staining experiments in HEK29 cells with negative and positive controls.

Note: Keeping the effects of the depletion in mind, ²⁹ we recommend using antibody concentrations that result in strong signal-to-noise ratio (SR), fiding that this works best for STED imaging.

Immunohistochemistry

© Timing: 2–3 h, every other day for 6 days total

Please see Fgure 2 for a schematic of the IHC steps.

- 24 To prepare for immunostaining, block and perm eabilize slices in a blocking buffer (10% onkey serum 4% riton $\times 100$) in a 24 well plate; 500 μ L per well.
- 25. Incubate 10 min at room temperature on a shaker.
- 26. Incubate slices with primary antibody(ies) in a 24well plate: 300 $\,\mu$ L of 1x PBS +0.025%riton X100 with 10%lonkey serum and primary antibody(ies).
- 27. Wrap plate with parafim or plastic wrap to avoid evaporation.

- 28 Incubate for \$\mathbb{4}\$ in 4 °C cold room on a shaker.
- 29 Remove primary antibody solution.
- 30. Wash slices for 14min 4 × with 2 mL 1x PBS +0.025% riton ×100 in a 6-well plate.
- 31. Incubate with secondary antibody(ies) in a 24well plate: 500 $\,\mu$ L of 1x PBS and secondary antibody(ies).
- 32. Wrap plate with parafim or plastic wrap to avoid evaporation.
- 33. Cover plate with an opaque material (aluminum foil or thick cardboard box) to avoid photobleaching of florescent probes.
- 34 Incubate for **4** in 4 °C cold room on a shaker.
- 35. Remove secondary antibody solution.
- 36. Wash slices for 15 min 4x with 2 mL 1x PBS in a 6-well plate.

Note: If the background is high when imaging, additional washes may improve the signal (Step 13).

Mounting

- [™] Timing: ~10–15 min/slide
- 37. Mount slices with a DAPI-less mounting media that matches the refractive index of the objective as closely as possible, in our case Diamond Fuoromount (see key resources table).
 - △ CRITICAL: Mounting media including DAPI, or other dyes can interfere with the coordination between emission and depletion lasers (e.g., DAPI might be excited by the STED laser, leading to increased background), so STED microscopy must be performed with a DAPI-less mounting media.

Note: It is important to note that homogeneity of an imaging environment's refraction index helps ensure high penetration depth and minimizes aberrations. This can be helped by using mounting media with a refractive index that matches the immersion medium of the objective.

- 38 Using a paintbrush, gently slide the brush und erneath the tissue and lift the brain slice from the plate.
- 39 To mount the brain slice, press the right side of the brush to the side of a 1.5 mm coverslip and slowly roll the brush clockwise.
 - △ CRITICAL: The next step in limiting sample-to-objective distance is to mount the brain slices onto the coverslip, not the slide, so the tissue is closer to the objective than the mounting media. The DAPI-less mounting media is preferable to the alternative but can still interfere with the localization of the STED donut, further necessitating the coverslip mounting.
- **Q**. Use the 1x PBS saturated brush to gently adjust the tissue so it is £1 on the coverslip.
- 4. Let slices dry approximately 8\%\until they appear crystalline and mostly translucent).
- **2**. Apply approximately 100 μ L of mounting media to the slide, forming a perpendicular line of media adjacent to the label and a parallel line down the slide forming a T" shape.
- 3. Place one side of the coverslip onto the top of the T, then slowly lower the other side.
- 4 Cover the mounted slides to avoid photobleaching and then dry overnight before they are used.

Note: To increase SN during STED imaging, it is essential to decrease non-specifi background florescence. Several actions that can be taken to reduce autoflorescence, namely: performing negative staining controls (see 'antibody validation' section), prioritizing florophores that emit a wavelength farther from the emission of autoflorescent endogenous

Protocol

molecules and pigments of the tissue (such as far-red selections),³⁰ and using background reducers such as TrueBlack, Sudan black B, or Eriochrome black T.³¹

Note: Optical aberrations can be further reduced by combining STED with tissue-clearing approaches, typically performed when mounting the slice.²⁴

Optimizing confocal imaging parameters guide

 \odot Timing: \sim 10–15 min

When utilizing florescence microscopy techniques, achieving a good SN while avoiding florophore saturation is essential for obtaining high-quality images. We recommend consulting this guide of empirical methods and tips prior to and throughout imaging experiments to ensure a good SN without florophore saturation.

- 5. Monitor pixel intensity.
 - a. Capture an image of the sample and inspect the histogram of pixel intensities in the confocal acquisition software.

Note: A good SN image should have a well-distributed histogram without a signifiant portion of pixels reaching the maximum intensity value (i.e., saturation).

- **6**. Optimize laser power.
 - a. Start with lower laser power and gradually increase it while monitoring the image quality.
 - b. Look for the point at which increasing laser power results in no further increase in signal intensity (a plateau). This is the optimal power level to prevent saturation while maximizing SRI.
- **4**. Adjust pinhole size.

Note: A smaller pinhole allows the capture of light only from a very thin optical section, reducing background noise although potentially lowering signal intensity. A larger pinhole captures more light, increasing signal intensity with the opposite effect on background noise.

Note: We recommend experimenting with different pinhole sizes to fid those that best accommodate one's imaging needs.

& Adjust gain and offset adjustment.

Note: The gain amplifes the signal, while the offset sets the baseline for the image.

9 Perform an average of multiple frames during image acquisition to reduce noise while increasing signal intensity.

Note: This may help prevent saturation due to the averaging out of noise as the signal accumulates.

50. Choose a region of interest (ROI).

Note: Some imaging applications are best suited for focus on a specifi region of interest rather than imaging the entire fild of view. R educing the imaging area can increase the SR for specifi structures of interest.

51. Monitor signal intensity.

Note: It is important to monitor the signal intensity over time during image acquisition. If the intensity begins to plateau or decrease after a certain point, it may indicate florophore saturation. Adjust settings accordingly.

52. Optimize secondary antibody concentration.

Note: Optimizing lower-concentration secondary antibody solutions can help reduce the chances of saturation due to the dilution of $\mathfrak l$ orophores. However, this may require longer exposure times to achieve a sufficient SRL

53. Use appropriate controls.

Note: Always include negative controls (e.g., samples without florophores) and positive controls (e.g., samples with known florophore concentrations) to validate your imaging conditions and assess SRI.

54 Perform pilot experiments.

Note: As mentioned in multiple contexts throughout this protocol, we highly recommend conducting pilot experiments with various settings and conditions to determine the most optimal parameters for one's imaging needs.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-lūR1 (mouse) (dilution: 1:250)	N ovus Biologicals	BP2 <u>2</u> 23 9
Anti-LAMP1 (rabbit) (dilution: 1:500)	Abcam	Ab2 4 70
Anti- B (mouse) (dilution: 1:500)	Rockland	600-301-215M
Anti-mouse Abberior STAR Orange (dilution: 1:300)	Fisher Scientifi	©1938 3
Anti-rabbit Abberior STAR Red (dilution: 1:1000)	Fsher Scientifi	Ø19380
Chemicals, peptides, and recombinant proteins		
Phosphate-buffered saline 10×	Boston BioProducts	BM-220, 7001104
Paraformaldehyde (P A)	Sigma-Aldrich	15 8 27-500 g
Sucrose	Bio Basic	SB0 £ 25
Donkey serum	Sigma-Aldrich	S30-100 mL
riton XI 00	Sigma-Aldrich	936-195
ProLong Diamond antifade mountant	Thermo Fsher Scientifi	P36 % 1
Sodium pentobarbital	∀rtech Pharmaceuticals	07 -9 1075
Scigen Tissue-Plus O.C.T. compound	Fisher Healthcare	27-730-571
Sodium azide	Sigma-Aldrich	S2002-100 g
Critical commercial assays		
moPURE II	≱ mo Research	D 2 08
experimental models: Organisms/strains		
CD-1 I&mouse (wild type, postnatal day P) 1 2 5, male and female mice)	Charles River	Strain code 022
Recombinant D N		
Bunder the CAGromoter	Addgene	Plasmid #1150
Software and algorithms		
mspector	Abberior Instruments G bH	Imspector Image Acquisition & Analysis Software v16.3 https://imspector.abberior-instruments.com/
magesoftware (Fji)	Schneider et al., 2012	https://imagej.nih.gov/ij/

(Continued on next page)

Protocol

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
MATLAB	MathWorks	RRID: SCRQ01622
Imaris 97 or higher	Oxford Instruments	RRID: SCR <u>0</u> 07370
Spots close to fament border Imaris Xension	Imaris Open	https://imaris.oxinst.com/open/
Colocalize spots Imaris Xension	Imaris Open	https://imaris.oxinst.com/open/
©Hub README fe	@ Hub	https://github.com/CruzMartinLab/ IMARIScompiler
Other		
Sliding microtome	Leica	SM2000
Peristaltic pump	Masterflx C/L dual-channel tubing pump	Cole Parmer
Inverted laser scanning confocal microscope (Non Ti2 with perfect focus, P736 Piezo Estage with an Abberior Ecility Line STED system controlled with the Abberior Imspector software platform)	Non Instruments, Abberior GabH, and Physik Instrumente	Ж
Plan apochromat 60 × 1.4N oil immersion objective	iNon Instruments	MA
1 mm coverslips	Corning	2 9 5-225

MATERIALS AND EQUIPMENT

Materials and equipment	Source	Identifier
Sliding microtome	Leica	SM2000
Peristaltic pump	Masterflx C/L Dual-Channel Tubing Pump	Cole Parmer
Inverted laser scanning confocal microscope (Non Ti2 with perfect focus, P736 Piezo Zstage with an Abberior Ecility Line STED system controlled with the Abberior Imspector software platform	Non Instruments, Abberior GobH, and Physik Instrumente	<i>N</i> A
Plan apochromat 60 × 1.44 oil immersion objective	Non Instruments	AA

STEP-BY-STEP METHOD DETAILS Imaging

© Timing: ∼30 min to 1 h/image

Our experimental design utilizes genetic labeling of L2/3 pyramidal cells with the florescent protein to study neuronal morphology (Question 1). In our protocol, confocal imaging of the the florescent protein is necessary to determine the localization and nanoscale organization of various proteins in dendritic structures.

Note: The user should know that in this case **E**'s natural florescence response is not conducive to super-resolution imaging due to its relatively broad emission spectrum and susceptibility to photobleaching. Once ROIs and Zatacks are selected according to the dendrite of choice, STED parameters may be optimized for the resulting puncta clusters in each channel of interest (in our case **G**R1 and LAMP1, please see the **optimizing confocal imaging parameters guide**" section above).

Note: Excitation power should be initially set so that averaging of the signal results in adequate visualization of dendritic spines for accurate morphological reconstructions. This will result in an image most suitable for Imaris digital reconstruction. Excitation and STED power should be set so that averaging of the signal results in bright low background images without danger of bleaching. Before beginning an experiment, the user should determine

empirically optimized imaging parameters of each dye or florescent protein. Please see optimizing confocal imaging parameters guide" for more information.

 Δ CRITICAL: To reduce optical aberrations, the user should image superficial dendrites, preferably within the first 10–15 μ m of the tissue. Additionally, the user should image horizontally aligned dendrites, where most of the dendritic shaft is contained within a few optical sections.

Note: Imaging the morphology of dendritic structures with nanoresolution can be accomplished by using secondary antibodies that are conjugated with STED compatible florophores (described later). However, in our protocol, because of the limited availability of channels, this is not compatible with protein cluster colocalization experiments.

Note: For imaging, we use an inverted laser scanning confocal microscope with 60 × 1.4N oil immersion objective (Non, Tokyo) outfited with an Abberior Ecility Line STED system controlled with the Abberior Imspector software platform.

- 1. To begin imaging, select **8** nm (for **B**IUE cell **f**I), 561 nm (Abberior STAR Orange for **G**R1), and 60 nm (Abberior STAR Red for LAMP1) pulsed excitation lasers lines.
- 2. Select 775 nm STED depletion laser (Abberior STAR Orange, Abberior STAR Red) line.
- 3. Select ROIs localized to L1 apical dendritic tufts from L2/3 pyramidal cells in the mPE. To fid the best ROI:

Note: Maintain a strict selection criterion when imaging the morphology and density of dendritic spines in the cerebral cortex. In our experience, we have observed signifiant variability in spine density between apical and basal dendrites and dendritic spine segments of different dendritic branch orders 4,10,33 and in how genetic manipulations affect specifi dendritic types. 4 It should be noted that L1 apical tufts are mostly within the fist 50 $\,\mu$ m below the pia. 34

a. Select a region that is away from the dendritic tuft end or the branching region.

Note: This step will reduce spine density variability within individual dendritic shaft segments.

b. Use the cell fi channel in the eye-port of the microscope to fid a dendritic shaft segment that measures at least 30 μ m, parallel to the horizontal plane, as much as possible, so that much of the segments is located within a few \mathbb{Z} steps.

Note: This will reduce the spine density variability within dendritic shaft segments, decrease imaging time and homogenize artifacts from optical aberrations within the ROI.

c. Choose dendritic segments that are isolated from other cells.

Note: Busy" images with several dendrites around and across the dendrite of interest will make reconstruction much more diffiult. The use r can increase the sparseness of transfected cells in L2/3 by optimizing IUE plasmid concentration or the parameters of the voltage pulses applied during the IUE.⁵

Note: If the user is experimenting with Cre-dependent constructs to obtain sparse expression, they can optimize the ratio of the plasmids containing Cre recombinase and the Cre-dependent construct.³⁵

4 Once a dendrite is chosen, set the Ztack according to the cell fl channel, adding a few sections of space above and below the dendrite to image its entirety without question.

Protocol

Note: In our protocol, this is accomplished by acquiring images from dendritic shafts and synaptic markers localized to apical dendritic tufts in L1 as stacks of approximately 2060 optical sections (Zstep $\pm 0.2~\mu m$) with an Xfesolution of Φ px/ μm .

Note: When imaging both the dendrite and puncta, excitation and STED laser power for each channel should be set to levels in which the readout of the signal intensity after a single scan is bright but does not result in photobleaching.

- △ CRITICAL: If the system utilizes a photon-counting detector mode, the excitation and STED laser power should be set so that it does not result in a nonlinear relationship between photon counts and excitation. In the case of the Abberior Imspector software, the excitation should be brought up so that the "counts" readout is not much more than 100 for a single scan (see Note below). We recommend determining which confocal excitation power setting for a channel result in approximately 100 or so counts (a confocal test).
- △ CRITICAL: If one is using a system with a different readout of signal intensity, we recommend determining a confocal excitation power setting that results in a signal that is midway between too dim to see and oversaturated after a signal scan, so that signal averaging or set scan accumulations may be set without photobleaching the sample (please see "optimizing confocal imaging parameters guide" section for detailed instructions and imaging tips).

When using the Abberior STED Ecility line system, the period during which photons are counted in response to each excitation pulse is approximately 27 ns. Avalanche photodiodes can only detect a single photon during that period as they need to be electronically reset to detect a second one. This necessitates measures to ensure that the probability of missing photons is very low. Therefore, we suggest that about half of the intervals are blank. Considering these 27 ns periods are repeated for 5 μ s, we recommend keeping the photon counts to approximately 100 for the 5 μ s period as a rule of thumb. Higher counts will not affect the location of the labeled proteins but will affect the relative brightness. Therefore, a linear range of counts should be implemented if quantifiation of florescence is desired. To do this

- 5. Double the above confocal excitation power value for the STED excitation.
- 6. Set the STED depletion laser power setting at a level that does not detract from the counts given by the confocal test, i.e., addition of the STED depletion laser should not result in lower signal intensity than the confocal test and does not degrade the image (based on the confocal test).

Note: We recommend determining the STED depletion laser power via trial and error with practice areas that won't be used for analysis.

Note: Accumulations/averaging of the signal should be set to provide the brightest image without bleaching the florophores. To do this, the user should test excitation/averaging combinations on practice areas that will not be used for analysis.

STED dendrite imaging

 \odot Timing: \sim 1 h/image

This step describes the strategy for super-resolution STED imaging and analysis of the dendrite for the determination of neuronal morphology (Figure 3) (Question 1).

7. To select and image a dendritic ROI, follow the steps in the previous 'imaging' section.

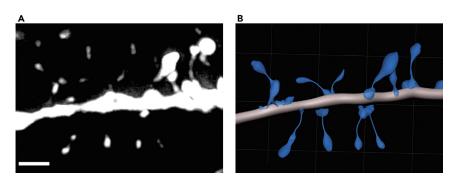


Figure 3. Dendrite imaged with STED then reconstructed in Imaris (Question 1)

(A) GFP-positive dendrite from a transfected L2/3 neuron in the mPFC stained with anti-GFP primary and Abberior STAR Orange secondary, then imaged with STED.

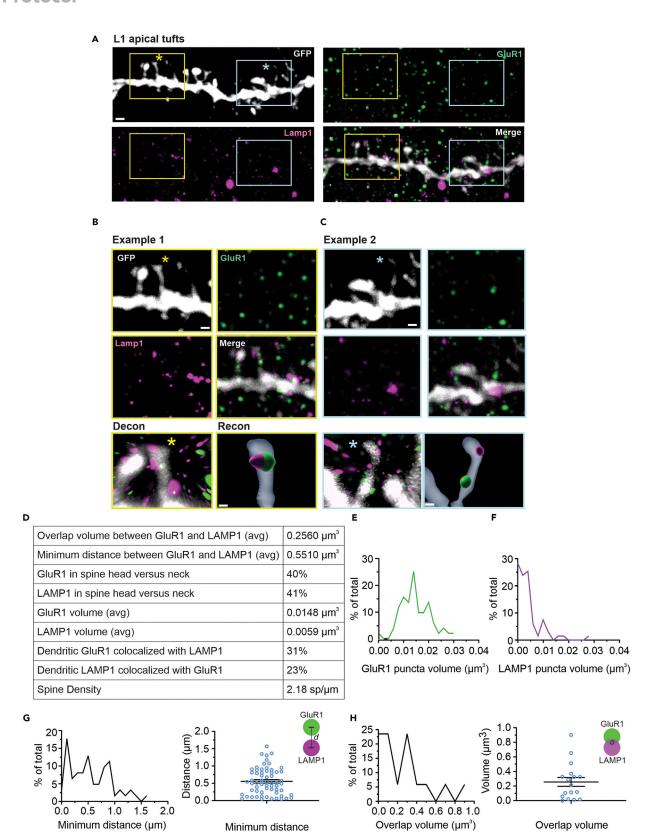
(B) Reconstructed dendritic spines in Imaris with semi-automatic filament reconstruction (described in the protocol). For both images, scale bar = 0.7 µm.

Note: Using the IHC protocol described above, we stain transfected **B**-positive cells and processes with an anti-**B** primary (1:500) and corresponding Abberior STAR Orange or STAR Red secondary (1:300 STAR Orange, 1:1000 STAR Red). This approach allows the cell fl signal to be compatible with STED imaging.

Note: Considering the size and shape of dendritic structures to be imaged with STED, one must be cognizant of the power to counts ratio for resolving small structures such as necks without bleaching the sample. The user should remember that the spine necks will be dimmer relative to spine heads (Figures 3 A and 3B). 4,10,36

Note: Optical aberrations can be further reduced by combining STED with hollow Bessel beams, or adaptive optics described elsewhere. ³⁷³⁹

EXPECTED OUTCOMES


Here, we provide a pipeline to perform morphological super-resolution imaging and Imaris analysis of dendritic spines and protein clusters in L1 apical tufts of L2/3 pyramidal cells. Once the user completes the pipeline, it will have access to several parameters that can be used to determine spine density and morphology, identify protein clusters and determine their size, determine the localization of the protein clusters in the dendrite, and the colocalization of two protein clusters^{3,10,33,02} (Fgure 4).

Using this approach, we determined that the spine density of a representative L1 apical dendrite in the mPE is 2.18-pines/ μ m (Question 1 and Figures 4 AD). Additionally, our data shows that 31% of dendritic GiR1 was colocalized with LAMP1, and 23%f dendritic LAMP1 was colocalized with GiR1 (Figures 4 AD), suggesting that a subpopulation of AMPA GiR1 subunits is being degraded in the lysosome of L1 spine apical tufts (Question 2). Our analysis pipeline also provides a distribution of protein cluster sizes for GiR1 and LAMP1 (Figures 4 E and Figures: GiR1: 0.018 \pm 0.0070 μ m³;LAMP1 0.0059 \pm 0.0060 μ m³, n =puncta).

We used other parameters to measure the colocalization of two protein clusters (@estion 2), including the average minimum distance between dendritic GR1 and LAMP1 clusters and the average overlap volume between dendritic GR1 and LAMP1 surfaces (Figures 4 D, Grand H). For two protein clusters, decreased minimum distance and increased overlap volume suggest increased colocalization, which in our case, can be used to make conclusions about the degradation of synaptic proteins. For one representative dendrite, we found that the average minimum distance between GR1 and LAMP1 was 0.5510 \pm 0.09 μ m, and the average overlap volume

Protocol

Figure 4. Colocalization of GluR1 and lysosomal clusters in L1 apical tufts

(A) Representative $60 \times STED$ image of an Apical Tuft stained with GFP (white, non-STED channel), GluR1 (green), LAMP1 (magenta) (Scale bar = $1.5 \mu m$). (B and C) Yellow and cyan squares show examples of dendritic spines with GluR1 and LAMP1 clusters that colocalize (Left, example 1, yellow asterisk) and that do not (Right, example 2, cyan asterisk). (B) Scale bar = 250 nm. (C) Scale bar = 100 nm.

(D) Selected parameters extracted from the analysis pipeline.

(E and F) Frequency distribution of GluR1 and LAMP1 puncta volumes.

(G) Frequency distribution and scatter plot of minimum distances between colocalized puncta. Schematic showing minimum distance (d) between two puncta.

(H) Frequency distribution and scatter plot of overlap volumes between colocalized puncta. Schematic showing overlap volume between two puncta (Questions 2 and 3). L. layer; Decon, deconvolution; Recon, reconstruction.

between dendritic Ω R1 and LAMP1 surfaces was 0.2560 \pm 0.0609 μ m (Figures 4 D, Ω and Ω m =puncta).

For a representative dendrite, we also show the distribution of minimum distance and overlap volume (Figures 4 Gand #H), which supports the conclusion that the lysosome is degrading a subpopulation of AMPA GaR1 subunits in L1 apic al tufts (Question 2). Lastly, we determined the nanoscale organization of specific synaptic and endo-lysosomal proteins within dendritic subcompartments (Question 3). Our data shows that 40% of the dendritic GaR1 was in the spine head versus the neck, and 4% of the dendritic LAMP1 was in the spine head versus the neck (Figures 4 AD).

We present a comprehensive pipeline for the imaging and analysis of brain slices, utilizing the powerful combination of super-resolution STED microscopy and Imaris software. Brain slices provide a superior experimental model for unraveling the complexities of neurological diseases. By employing STED microscopy in conjunction with Imaris, we demonstrate a highly accessible approach to cracking the nanoscale organization of synaptic proteins.

QUANTIFICATION AND STATISTICAL ANALYSIS

ImageJ file conversion

© Timing: 5 min/image

The Abberior Imspector software saves images as .obf fes, while the Leica SP&TED software saves images as .lif fes. Depending on the system use d, images may need to be converted to .tif to be used in Imaris. In our case, we utilize the following approach to converting .obf fes to .tif format.

- 1. Open FlyImage and import the 3-channel image acquired from the STED microscope.
- 2. Use the color tool to merge the three channels, in our case: STAR Orange (GR1), (Pseudo Colored green), Alexa & IUE cell fl), (Pseudo Colored white), and STAR Red (LAMP1) (Pseudo Colored Magenta).
- 3. Once channels are merged, convert the image to 32-bit format.

Note: While Imaris can utilize images of other bit depths, we recommend converting the images to 32-bit as they are of bating-point format, meaning information stored in this way may avoid rounding errors associated with, for example, a 16-bit fied-point format.

4 Save fe as .tif to convert the fe to the .tif format.

Imaris image processing and deconvolution

Protocol

Imaris is an interactive microscopy image analysis software boasting several packages for various biological investigations from cancer research to cellular biology. Imaris for Auroscientists is a package that enables 3D reconstruction of cells and cellular structures and analysis of various features, such as dendritic spine morphology and arborization complexity. In addition to included modules, this protocol requires free downloadable Imaris Xensions such as Colocalize Spots and Spots close to Flaments (Ell list of necessary Imaris Xensions in key resources table).

Note: Convolution within the context of microscopy is a mathematical operation combining a PSFwith the real object of in terest and system noise. Deconvolution, on the other hand, attempts to use algorithms to reverse this process by separating the PSFand the actual object from the convolved image, effectively reducing the inflence of system noise. By undoing the blurring effects and isolating the desired signal, deconvolution helps improve the image's clarity and fielity. Deconvolution is most often achieved by considering the factors that caused the convolution (pinhole size, objective magnification, immersion media, etc.) and using algorithms to work backward", providing a reliable estimate of the image sharpness.

While numerous deconvolution software and algorithms are available, this protocol was optimized for using Imaris iterative deconvolution algorithm. In principle, iterative algorithms estimate the original image, blur it using the system's PSF and compare the blurred estimate to the original image. With each iteration of this process, the estimated image is updated.

- 5. In the Observe Blder view, select the folder containing the .tif fe of interest.
- 6. Double click the fe to convert it to .ims (Imaris' native format).

Optional: The 3 channels can be pseudo-colored for ease of analysis. As an example, for @estions 2 and 3, we set the dendritic shaft as white, the synaptic marker as green, and the lysosomal marker as magenta.

Imaris dendritic shaft and spine reconstruction

This step describes the digital reconstruction of the dendrite florescence data in Imaris (Fgure 5, Methods video S1) (Question 1). This allows the calculation of dendrite morphology parameters for analysis (described below).

- 7. Open the slice view of Imaris, then use the line tool to measure several wide parts of the neuronal dendrite, then the narrowest parts. Make note of these values for step 4
- 8 Create a new fament object.
- 9 Select the source channel used to image the neuron, in our case channel 2.
- 10. Input largest diameter and thinnest diameter values from step 1.
- 11. Drag dendrite starting points threshold to the right until all are gone, then shift +ight click" to add a starting point on the preferred starting point for reconstruction.
- 12. Drag dendrite seed points threshold until seed points adequately populate the dendrite shaft, using \$hift \text{-left click" to remove unwanted points from other parts of the image (\text{-fgure 5 B}).
- 13. Adjust diameter threshold until visualization adequately coats the dendrite (Fgure 5 C).
- 14 Complete dendrite shaft reconstruction without seeding spines.
- 15. Select the Draw tab of the fament channel used for the dendrite reconstruction.
- 16. Select AutoPath for Method.
- 17. Select Spine for Type.
- 18 Select cell fi channel (or channel 2 in our case) for the source channel.
- 19 Under Correction, select Automa tic Center and Automatic Diameter.
- 20. Shift +ight click" to add the base of the spine (Fgure 6 A).

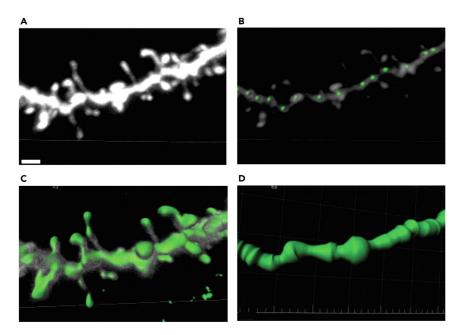


Figure 5. Dendrite shaft reconstruction (Question 1)

- (A) Representative GFP-positive dendritic segment.
- (B) Fluorescent signal for dendrite segment (intensity lowered for visualization purposes) and seed points for dendritic shaft (green spots).
- (C) Visualization of dendritic shaft threshold adjusted according to fluorescence signal.
- (D) Resulting dendritic shaft reconstruction. For all images, scale bar = 0.5 $\mu m.\,$
- 21. Shift left click" to add the end of the spine (Fgures 6 A and 6B; The yellow line represents the automatic recognition of the spine florescence data).
 - a. Once all the spines are manually inserted in this way, recalculate spine diameters in a similar manner as the dendrite diameter calculation shown in Fgures 6 C and 6D by clicking Spine Diameters under the Create tab.

Note: Through trial and error, we have found that manually inserting the spines rather than seeding them results in more accurate reconstructions for our data. However, either method may be used per the best judgment of the investigators.

Imaris puncta reconstruction

In our protocol, imaged puncta represent protein clusters. Their reconstruction in 3D space using Imaris allows us to obtain information regarding their sizes and location within dendritic spines (e.g., spine head versus neck). Puncta can be reconstructed using two methods in Imaris: spots (for the proper determination of puncta position) and surfaces (for the proper determination of puncta morphology). To ensure the most trustworthy analysis of surface and spot reconstructions, puncta are reconstructed as surfaces and spots, the spots are ftered according to the surfaces and the surfaces are then ftered according to the resulting spots (Figure 7, Methods video S1).

- 22. Create a new surface object.
- 23. Select source channel of interest (in our case Channel 1).
- 24 Under the thresholding tool, select Background Subtraction (Local Contrast), with 0.18 μ m as the Diameter of largest Sphere which fis into the Object.

Protocol

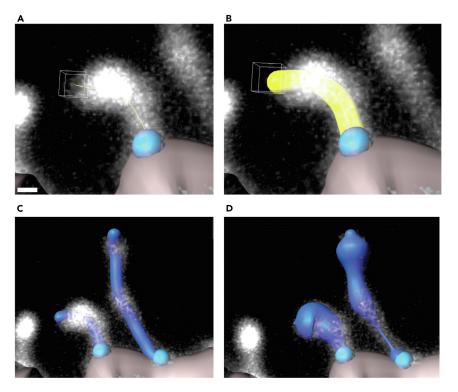


Figure 6. Dendritic spine reconstruction (Question 1)

- (A) Spine start point (blue ball) for a dendritic segment.
- (B) Spine reconstruction after "shift + right click" for manual insertion from A.
- (C) Reconstruction of two dendritic spines before diameter recalculation.
- (D) Reconstructions from panel C after diameter recalculation. For all images, scale bar = 0.5 μm .
- 25. Set threshold so that threshold visualization adequately coats the florescence data.
- 26. Set lower voxel limit to 60.

Note: The value of 0.18 $\,\mu$ m for the Diameter of largest Sphere which fs in the Object (Imaris' default measure of size for surface reconstructions) and 60 for the lower voxel limit suits most surface puncta reconstructions for our purposes but may be adjusted for other applications.

- 27. Delete classifiation fter.
- 28 Create a new spots object.
- 29 Use default creation parameters.
- 30. Under Algorithm Settings, make sure Classify Spots and Object-Object Statistics are selected.
- 31. Select source channel of interest (in our case Channel 1).
- 32. Open slice view of Imaris, then use the line tool to measure several puncta at multiple planes. Note down the average Xdiameter of puncta.
- 33. Under Spot Detection, enter the value from Step 11 in the box for Estimated \mathbf{X} Diameter, in our case 0.11 μ m (the estimated diameter of \mathbf{G} R1 puncta, obtained from our cluster size distribution analysis).
- 34 Set threshold so that spots adequately po pulate the punctate fluorescence signal.

△ CRITICAL: The threshold settings in steps 4 and 13 (steps above) can be determined in a variety of ways. We chose these values with a size distribution analysis of each puncta type by setting visual thresholds for 5 example images. We then fitted a Gaussian curve to the

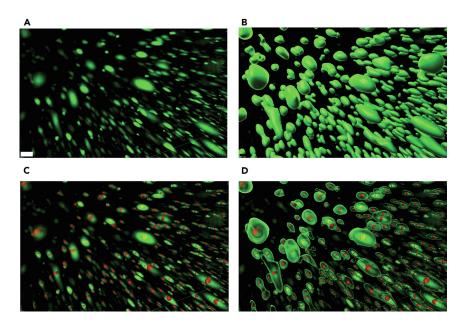


Figure 7. Surface and spot reconstruction (Questions 2 and 3)

- (A) GluR1 signal alone (green).
- (B) Filtered surface reconstruction of GluR1 signal.
- (C) Filtered spot reconstruction of GluR1 signal (red) merged with GluR1 signal (green).
- (D) Surface and spot reconstructions merged with GluR1 signal. For all images, scale bar = $0.3 \mu m$.

obtained distribution to calculate the mean puncta sizes. This threshold can also be determined according to a visual assessment of the fluorescence data. We recommend investigators use trial and error with multiple methods to determine which suits their applications best.

- 35. Delete classifiation fter.
- 36. In the newly created spots object, add a fter.
- 37. Fr ffter Type, select Shortest Distance to Surfaces Surfaces 1".
- 38 Turn off the lower threshold limit, then adjust the upper limit so that only those spots inside surfaces are selected.
- 39 Click Duplicate Selection to new Spots.
- **0**. Delete old spots object and rena me this new duplicated spots object.
- In the surface object, add a fter. Fr the ffter Type, select Shortest Distance to Spots ≤pots
 1".
- **2**. Turn off the lower threshold limit, then adjust the upper limit so that only those surfaces encapsulating the thresholded spots are selected.
- 3. Click Duplicate Selection to new Surfaces.
- 4 Delete old surfaces object and rename this new duplicated surfaces object.

Imaris dendritic puncta filtering and colocalization

© Timing: ∼30 min/image

The following steps are required to continue the processing of puncta as spots. The user will need the fid Spots Near to Filament Border and Colocalize Spots Imaris Xensions, available on the Imaris open website. This step fters spots and surfaces to only analyze the puncta that are associated with the dendrite (Figure 8, Methods video S1). This step allows for the determination of puncta localization within the dendritic spines and shaft in later steps (Questions 2 and 3).

Protocol

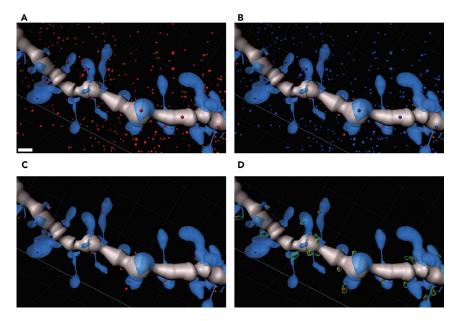


Figure 8. Dendritic spot and surface filtering (Questions 2 and 3)

- (A) Dendrite reconstruction (blue/gray) with filtered GluR1 spots reconstruction (red).
- (B) Results of Spots Close to Filament Border XTension: farther than threshold (blue) and closer than threshold (red).
- (C) Spots closer than the "dendritic" threshold isolated. D) Dendritic spots with dendritic surfaces. Scale bar = $1 \mu m$.
- §. In the newly created spots object, go to Xensions and select Find Spots Nar to Flament Border Xension.
- **6**. Input threshold distance of interest.
- **4**. Delete spots object farther than the threshold cutoff.
- & Rename spots object closer than the threshold cutoff as Dendritic Spots.
- **9** Turn on Dendritic spots and turn off all other spots objects.
- 50. Make the surfaces object of interest translucent and the Dendritic Spots a contrasting color.
- 51. With the Edit tab selected, control \star lick" t he surfaces encapsulating the Dendritic Spots.
- 52. Once all the relevant surfaces are selected, click duplicate.
- 53. Rename the duplicated channels as Dendritic Surfaces.
- 54 Click on one of the spots objects of interest.
- 55. 6 to Xensions and select the Colocalize Spots Xension.
- 56. Shift left click" the two spots objects (selecting them both at once) of which to determine colocalization.
- 57. Enter the distance threshold.

△ CRITICAL: The threshold distance settings in steps 2 and 13 are unique to the structures of interest. We determined these values using the size distribution analysis described in the previous section. These thresholds can also be determined according to measuring of the puncta in the slice view. We recommend investigators use trial and error with multiple methods to determine which suits their applications best.

Imaris puncta surface cutting

 \circ Timing: \sim 30 min/image, depending on puncta density

When puncta are reconstructed as surfaces in Imaris, they are sometimes inaccurately represented as multiple puncta in one surface. This can be remedied by using the surface cutting tool (Figure 9).

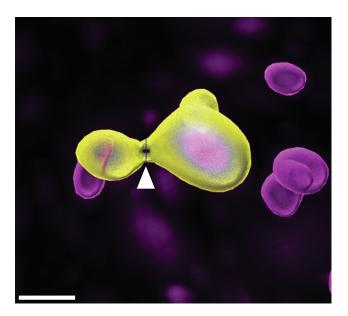


Figure 9. Puncta surface cutting (LAMP1, magenta) (Questions 2 and 3) White arrow points to blue line indicating site of cut. Yellow, selected puncta. Scale bar = $0.2 \mu m$.

We recommend performing this step after surfaces are flered to limit cutting to only those surfaces that will be analyzed/exported (Questions 2 and 3).

58 Select the surface object containing the puncta of interest.

- 59 Select the 'edit" tab.
- 60. The cutting tool is always a vertical line, so the puncta must be oriented so that the correct cut is positioned vertically.
- 61. Shift +eft click" to set the line to be cut.
- 62. In the edit" tab space, select cut".

Imaris data exporting

\odot Timing: \sim 30 min to 3 h/image, depending on puncta density

This step allows for the analysis of florescence data for the analysis of dendrite morphology and the determination of puncta localization within the dendrite (spine head, spine neck, dendritic shaft). This also allows for the determination and manipulation of numerous data parameters including but not limited to puncta surface area, volume, overlap with neighboring puncta, etc. (Questions 2 and 3).

- △ CRITICAL: To ensure proper compatibility with the custom MATLAB code (described below), files must be organized in the following manner per analyzed dendrite (Figure 10).
- 63. First make a folder for the staining condition (e.g., GR1 +AMP1").
- 64 But make a folder for the experimental condition, in our case titled All Imaris Statistics".
- 65. Within this folder, there must be a folder for each dendrite.
- 66. Within this folder, there must be four folders for each major data export.
 - a. Hament (for dendrite and spine morphology data)
 - b. Puncta stain 1 (in our case, GR1)(for localization data, to be explained below)
 - c. Puncta stain 2 (e.g., LAMP1)(for localization data, to be explained below)

Protocol

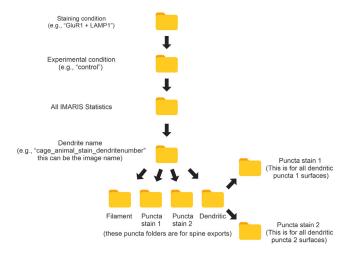


Figure 10. Schematic of file path organization for Imaris data exporting (Questions 1-3)

This organization scheme must be followed to ensure compatibility with the custom MATLAB code.

- d. Dendritic, within this folder there must be two sub folders:
 - i. Puncta stain 1 (for all dendritic surfaces of puncta 1)
 - ii. Puncta stain 2 (for all surfaces of puncta 2)
- 67. In Imaris, click on the fament object.
- 68 Click on the Statistics tab.
 - a. Make sure Overall is highlighted.
- 69 Click Export All Statistics to Ffe.
- 70. Use the name of the image for the exported fe and save in the flament folder described above.
- 71. Click on a spine of interest.
- 72. Click on the Statistics tab.
- 73. Click Selection.
 - a. Make sure Specifi Values is selected.
- 74 Select Spine Length.
- 75. Note down the last 5 digits of the spine ID number.
- 76. Click the surface of interest associated with the spine.
- 77. Click the Statistics tab.
 - a. Make sure Overall is selected.
- 78 Click Export All Statistics to Fle.
- 79 Make sure the fe name is formatted in the following way depending on if the puncta are in the head or neck of the spine:
 - a. last5digitsofIDhead/neck" (e.g., 00051head)

Note: We found the naming scheme described in Step 17 useful for our purposes as it allowed us to keep track of both the spine ID and location in the spine at the same time, but one could also develop their own naming scheme with information for other methods of organization.

- 8. Save the fe in the folder corresponding to the puncta type as described above.
- 8. Do this for all puncta associated with spines. If there are multiple puncta in the head or neck, use control *click" to select all the head or nec k puncta and save them using the spine ID method described in step 17.
- 2. Repeat steps 91 For the next puncta type.
- 8. Click on the Total Dendritic" surface object of interest.
- & Click the Statistics tab.
 - a. Make sure Overall is selected.

- 8. Click Export All Statistics to Fle.
- 8. Use the name of the image for the exported fe and save in the Puncta folder within the dendritic folder described above.
- 8. Repeat steps 21-24 or all punctum types.

MATLAB analysis of Imaris exported data

^⑤ Timing: ∼15 min/image

To maximize the information obtained from data exported using Imaris, we wrote a custom MATLAB script along with supporting functions (see key resources table). The script can be run on any version of MATLAB after the supporting functions are added to path. The script is run as follows.

- 8 In MATLAB, run the fist section of the script using the Run Section" button or by pressing Control Enter."
- **8** Select the folder with the correct staining condition (e.g., folder titled **G**R1 **L**AMP1) in the folder box that pops-up.

Note: Line number 20 of the code (explained further in the 6Hub README fe, https://github.com/CruzMartinLab/IMARIScompiler) will decide which condition in the staining folder will be excluded from analysis.

- **9**. After the fist section completes running, run the second section. This section will result in several fes in the workspace, of which the following are the required output:
 - a. Averageparameters:

Note: Provides information about dendrite length, spine density, spine length, spine volume, average minimum distance between the two stained puncta, average overlap volume between the puncta, average colocalized volume ratio for colocalized puncta.

b. Allsynapticparameters:

Note: Provides information about the number of synaptic puncta occurring in the spine head or neck for each dendrite, their average volumes, and their average areas.

Note: In our case GR1 is referred to as synaptic. In general, in the folder naming scheme, the fst stain named is termed synaptic.

c. Allcompartmentparameters:

Note: Provides information about the number of synaptic puncta occurring in the spine head or neck for each dendrite, their average volumes, and their average areas.

Note: In our case LAMP1 is referred to as compartment. In general, in the folder naming scheme, the second stain named is termed compartment.

d. Spine<u>c</u>lassifiation<u>s</u>ynaptic:

Note: Classifis spines based on number of compartment termed puncta (as described above) in each spine.

Note: histolen*There are 146f these in total. They provide information on individual spine parameters for every dendrite for all metrics mentioned above in Averageparameters.

Protocol

△ CRITICAL: To run the code for a different condition or for a different stain, rerun the first section with required changes as suggested in the GitHub README file, https://github.com/CruzMartinLab/IMARIS_compiler.

LIMITATIONS

Cellular dynamics

One limitation of our methodology is that fing the tissue does not allow us to capture the activity-dependent dynamics of spines and protein clusters and GR1 recycling in the postsynaptic compartments.^{1,4}

Tissue fixation

Firmaldehyde brain flation can alter the 3D structur e of cells and tissues and affect the availability of antigens for immunostaining and antibody penetration. Although the effects of PA on the brain's structure are often overlooked, the experimenter must consider these aspects when designing IHC experiments. Firtunately, a few stu dies have made breakthroughs, allowing users to overcome often-encountered obstacles. Fir example, Lai et al. have developed a scalable method to stabilize antibodies (SPEARs) against thermal and chemical denaturation, allowing them to withstand prolonged exposure to high temperatures and harsh denaturants. This advancement enables dynamic modulation of antibody properties, facilitating faster deep tissue immunolabeling and broader compatibility with various tissue processing methods.

Additionally, glyoxal fiation greatly enhanced antibody penetration and immunoreactivity compared to the gold-standard formaldehyde fiative, particularly enabling the detection of buried molecules in brain tissue. ⁵⁰ An additional advantage of glyoxal is that it acts faster than formaldehyde, cross-linked proteins more effectively, and improves the preservation of cellular morphology. ⁸

Antibody selection

Considering the previously mentioned stringent tissue preparation guidelines for proper STED microscopy (tissue thickness, coverslip mounting, etc.), antibody selection for STED must be more particular than that for traditional IHC experiments. For example, STED optics is optimal in thin-sliced tissue, so primary antibodies should be selected and tested with proper penetration and SN kept in mind. As mentioned previously, secondary antibodies should be selected based on their compatibility with STED depletion technology, which could limit possible antibody combinations for certain experiments. It should be mentioned that fill orophore choice for structures of interest should also be kept in mind due to differences in strength between the red and far red lasers that may exist within a particular STED set up, such as the relatively weaker far red laser (in our case, acting on the Abberior STAR Orange) of our Abberior Ecility line system necessitating higher power and signal accumulation settings for that channel as compared to the red laser (in our case, acting on the Abberior STAR Red). Antibody testing and optimization should be performed thoroughly prior to the acquisition and analysis of experimental data.

STED imaging

One of the most salient limitations is that of STED channel availability. The Abberior Ecility line system that we used can only maintain two STED channels at a time due to only two available STED lasers. Ethas been diffiult to use as a STED florophore (but see Rankin et al. 32). Although we do not use Eto perform super-resolution imaging of dendritic spines, we use this florophore to determine the location of protein clusters in the dendrite. STED imaging tends to dim small-volume structures such as spine necks. To improve spine neck signal, we suggest optimizing antibody staining parameters and improving SR (see 'optimizing confocal imaging parameters guide" and 'imaging and STED dendrite imaging" section).

Imaris analysis

Limitations regarding Imaris are those of accessibility to the software and proper computer processing power. Imaris is expensive, and while it is most certainly a good investment for labs and departments alike, we recognize that labs may not have the funds either individually or in a community to access the software. Eirthermore, users might not have access to high performance computer processing power, which can have a signifiant impact of analysis time. If a lab has access to Imaris, we strongly recommend utilizing a computer with specifiations matching or exceeding those recommended by Oxford Instruments for ease of analysis and reduced errors.

There are several alternatives to Imaris for the morphological analysis of cellular data, especially if budget constraints are a concern. Here are a few options: Fji/Image,J CellProfer (www.cellprofer.org), KNME (https://www.knime.com/community/image-processing), Microscopy, Image Browser (MIB, http://mib.helsinki.fi), and Python (https://www.pythonforbiologists.org), including scikit-image, OpenCyand Cellpose.

TROUBLESHOOTING

Problem 1

Optical aberrations in STED images such as changes in spatial resolution and signal intensity (relevant to optimizing confocal imaging parameters guide" and 'imaging and STED dendrite imaging" section).

Potential solution(s)

Attempts to correct optical aberrations can be further achieved by combining STED with tissue-clearing approaches, hollow Bessel beams, or adaptive optics.^{24,3739} It is also important that the user images the most superfiial horizontally aligned dendrites in the tissue.

Problem 2

Endogenous autoflorescent signals and non-specifi autoflorescence (relevant to 'optimizing confocal imaging parameters guide", 'perfusion" section, and 'imaging and STED dendrite imaging: section).

Potential solution(s)

Blood remnants in fied brain tissue result in increased autoflorescent signals and reduced SRI. Therefore, it is crucial to remove blood from the fied brain tissue properly. The user should ensure that the needles used to pump saline and PA solution are not clogged and adequately positioned in the heart. Additionally, it is crucial to fid an optimal perfusion rate that is not too weak or strong, paying attention to organ and tissue appearance and texture as the perfusion progresses.

To increase SN during STED imaging, it is essential to decrease non-specifi background florescence. Several actions that can be taken to reduce autoflorescence, namely: performing negative staining controls (see 'antibody validation" section), prioritizing florophores that emit at wavelengths farther from the emission of autoflorescent endogenous molecules and pigments of the tissue (such as far-red selections), 30 and using background reducers such as TrueBlack, Sudan black B, or Eriochrome black T. 31

Problem 3

The brain slices appear frayed with damage around the edges (sectioning of tissue -step)4

Potential solution(s)

This is likely due to premature thawing of the brain during slicing. Make sure to keep the stage cold by continually adding ice to the stage and around the brain during slicing.

Protocol

Problem 4

When constructing and ftering objects in Imaris, the object of interest is not listed as an option for ftering (Imaris puncta reconstruction).

Potential solution(s)

This is likely because faments, surfaces, and spots were reconstructed and ftered out of order from what is listed in this protocol. Imaris is only able to fter a certain number of objects at a time, so it is essential that the faments, surfaces, and spots are reconstructed and ftered in the order presented to ensure the proper objects are displayed when necessary.

Problem 5

MATLAB is reporting errors related to inabilities to fid necessary fes or fe locations (MATLAB analysis of Imaris exported data -steps 1-3).

Potential solution(s)

While this could be due to several reasons, errors of these kind are most probably due to deviation from the critical fe organization scheme described in the Imaris data exporting section and Figure 9. It should also be noted that naming strategies across all fe handling steps must be kept consistent to avoid errors.

RESOURCE AVAILABILITY

Lead contact

Eirther information and requests for resources and reagents should be directed to and will be fulfled by the lead contact, Alberto Cruz-Martı 'n (martini.cruz@gmail.com).

Materials availability

This study did not generate new reagents.

Data and code availability

The datasets supporting this study are available from the corresponding author upon request.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2023.102707.

ACKNOWLEDGMENTS

We thank all research assistants in the Cruz-Martín lab. We thank Mike Kirber and the BU MED Cellular Imaging Core for using the STED microscope. We thank members of the Cruz-Martín lab for critical reading of the manuscript and helpful discussions. This work was supported by a Ational Institutes of Health R01 grant (NH, R01MH12932) to A.C.-M. and a Brenton R. Lutz Award to R.A.P.

AUTHOR CONTRIBUTIONS

E.K.-conceptualization: formulated composition, goals, and scope of the paper and approaches for analyses; writing (original draft): wrote some parts of the original and revised draft; writing (review and editing): editing and feedback for the original and revised draft; visualization: figure design and generation; experiments: performed imaging experiments; and analysis: performed imaging analysis. R.A.P. -writing (review and editing): edit ing and feedback for the original and revised draft; visualization: figure design and generation; analysis: performed imaging analysis; and wrote and edited the original and revised computer code. A.B. -experiments: performed in utero electroporations to transfect L2/3 pyramidal cells with Ba and writing (review and editing): editing and feedback for the original and revised draft. D.S. -anallysis: performed imaging analysis (assisted with developing the Imaris reconstruction pipeline). O.I. -analysis: performed imaging analysis (assisted with STED image acquisition). A.C.-M. -conceptu alization: formulated composition, goals, and

scope of the paper and approaches for analyses; writing (original draft): wrote some parts of the original and revised draft; writing (review and editing): editing and feedback for the original and revised draft; visualization: figure design and generation; supervision: mentorship and oversight of the project; project administration: management and coordination; and funding acquisition.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

- Nägerl, U.V., and Bonhoeffer, T. (2010). Imaging Living Synapses at the Nanoscale by STED Microscopy. J. Neurosci. 30, 9341–9346.
- Yang, X., and Annaert, W. (2021). The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication. Membranes 11, 248.
- Hruska, M., Henderson, N., Le Marchand, S.J., Jafri, H., and Dalva, M.B. (2018). Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat. Neurosci. 21, 671–682
- Comer, A.L., Jinadasa, T., Sriram, B., Phadke, R.A., Kretsge, L.N., Nguyen, T.P.H., Antognetti, G., Gilbert, J.P., Lee, J., Newmark, E.R., et al. (2020). Increased expression of schizophreniaassociated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol. 18, e3000604.
- Comer, A.L., Sriram, B., Yen, W.W., and Cruz-Martín, A. (2020). A Pipeline using Bilateral In Utero Electroporation to Interrogate Genetic Influences on Rodent Behavior. JoVE 159, e61350.
- Jeong, S., Widengren, J., and Lee, J.-C. (2021). Fluorescent Probes for STED Optical Nanoscopy. Nanomaterials 12, 21.
- Tønnesen, J., Nadrigny, F., Willig, K.I., Wedlich-Söldner, R., and Nägerl, U.V. (2011). Two-Color STED Microscopy of Living Synapses Using A Single Laser-Beam Pair. Biophys. J. 101, 2545–2552.
- 8. Takasaki, K.T., Ding, J.B., and Sabatini, B.L. (2013). Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy. Biophys. J. 104, 770–777.
- Vicidomini, G., Moneron, G., Han, K.Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, J., Eggeling, C., and Hell, S.W. (2011). Sharper low-power STED nanoscopy by time gating. Nat. Methods 8, 571–573.
- Cruz-Martin, A., and Portera-Cailliau, C. (2014). In vivo imaging of axonal and dendritic structures in neonatal mouse cortex. Cold Spring Harb. Protoc. 2014, 57–64.
- Portera-Cailliau, C., Pan, D.T., and Yuste, R. (2003). Activity-Regulated Dynamic Behavior of Early Dendritic Protrusions: Evidence for Different Types of Dendritic Filopodia. J. Neurosci. 23, 7129–7142.
- Yap, C.C., Digilio, L., McMahon, L.P., Garcia, A.D.R., and Winckler, B. (2018). Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J. Cell Biol. 217, 3141–3159.

- Yap, C.C., Mason, A.J., and Winckler, B. (2022). Dynamics and distribution of endosomes and lysosomes in dendrites. Curr. Opin. Neurobiol. 74, 102537.
- Kopec, C.D., Real, E., Kessels, H.W., and Malinow, R. (2007). GluR1 links structural and functional plasticity at excitatory synapses. J. Neurosci. 27, 13706–13718.
- Lee, H.-K., Takamiya, K., He, K., Song, L., and Huganir, R.L. (2010). Specific Roles of AMPA Receptor Subunit GluR1 (GluA1) Phosphorylation Sites in Regulating Synaptic Plasticity in the CA1 Region of Hippocampus. J. Neurophysiol. 103, 479–489.
- Mead, A.N., Zamanillo, D., Becker, N., and Stephens, D.N. (2007). AMPA-Receptor GluR1 Subunits are Involved in the Control Over Behavior by Cocaine-Paired Cues. Neuropsychopharmacology 32, 343–353.
- Prakash, K., Diederich, B., Heintzmann, R., and Schermelleh, L. (2022). Super-resolution microscopy: A brief history and new avenues. Philos. Trans. A Math. Phys. Eng. Sci. 380, 20210110.
- Galbraith, C.G., and Galbraith, J.A. (2011). Super-resolution microscopy at a glance. J. Cell Sci. 124, 1607–1611.
- Calovi, S., Soria, F.N., and Tønnesen, J. (2021). Super-resolution STED microscopy in live brain tissue. Neurobiol. Dis. 156, 105420.
- Hell, S.W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782.
- Wildanger, D., Bückers, J., Westphal, V., Hell, S.W., and Kastrup, L. (2009). A STED microscope aligned by design. Opt Express 17, 16100–16110.
- Bianchini, P., Peres, C., Oneto, M., Galiani, S., Vicidomini, G., and Diaspro, A. (2015). STED nanoscopy: A glimpse into the future. Cell Tissue Res. 360, 143–150.
- Wu, J., Cai, Y., Wu, X., Ying, Y., Tai, Y., and He, M. (2021). Transcardiac Perfusion of the Mouse for Brain Tissue Dissection and Fixation. Bio. Protoc. 11, e3988.
- 24. Angibaud, J., Mascalchi, P., Poujol, C., and Nägerl, U.V. (2020). A simple tissue clearing method for increasing the depth penetration of STED microscopy of fixed brain slices. J. Phys. D Appl. Phys. 53, 184001.
- Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L., and Hell, S.W. (2011). Simultaneous multi-lifetime multi-color STED imaging for

- colocalization analyses. Opt Express 19 (4), 3130-3143.
- Liu, T., Stephan, T., Chen, P., Keller-Findeisen, J., Chen, J., Riedel, D., Yang, Z., Jakobs, S., and Chen, Z. (2022). Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc. Natl. Acad. Sci. USA 119, e2215799119.
- Sednev, M.V., Belov, V.N., and Hell, S.W. (2015). Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: A review. Methods Appl. Fluoresc. 3, 042004.
- Hoffman, G.E., Murphy, K.J., and Sita, L.V. (2016). The Importance of Titrating Antibodies for Immunocytochemical Methods. Curr. Protoc. Neurosci. 76, 2.12.1–2.12.37.
- Ghithan, J.H., Noel, J.M., Roussel, T.J., McCall, M.A., Alphenaar, B.W., and Mendes, S.B. (2021). Photobleaching reduction in modulated super-resolution microscopy. Microscopy 70, 278–288.
- Spitzer, N., Sammons, G.S., and Price, E.M. (2011). Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. J. Neurosci. Methods 197, 48–55.
- 31. Davis, A.S., Richter, A., Becker, S., Moyer, J.E., Sandouk, A., Skinner, J., and Taubenberger, J.K. (2014). Characterizing and Diminishing Autofluorescence in Formalin-fixed Paraffin-embedded Human Respiratory Tissue. J. Histochem. Cytochem. 62, 405–423.
- 32. Rankin, B.R., Moneron, G., Wurm, C.A., Nelson, J.C., Walter, A., Schwarzer, D., Schroeder, J., Colón-Ramos, D.A., and Hell, S.W. (2011). Nanoscopy in a Living Multicellular Organism Expressing GFP. Biophys. J. 100, L63–L65.
- Cruz-Martín, A., Crespo, M., and Portera-Cailliau, C. (2012). Glutamate induces the elongation of early dendritic protrusions via mGluRs in wild type mice, but not in fragile X mice. PLoS One 7, e32446.
- Cruz-Martín, A., Crespo, M., and Portera-Cailliau, C. (2010). Delayed stabilization of dendritic spines in fragile X mice. J. Neurosci. 30, 7793–7803.
- Chen, J.L., Villa, K.L., Cha, J.W., So, P.T.C., Kubota, Y., and Nedivi, E. (2012). Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361–373.
- 36. Phadke, R.A., Kruzich, E., Fournier, L.A., Brack, A., Sha, M., Picard, I., Johnson, C.,

Protocol

- Stroumbakis, D., Salgado, M., Liu, Y.Y., and Cruz-Martín, A. (2023). C4 Induces Pathological Synaptic Loss by Impairing AMPAR Trafficking. Preprint at bioRxiv. https://doi.org/10.1101/2023.09.09.556388.
- Bancelin, S., Mercier, L., Murana, E., and Nägerl, U.V. (2021). Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue. Neurophotonics 8, 035001.
- 38. Gould, T.J., Burke, D., Bewersdorf, J., and Booth, M.J. (2012). Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20, 20998–21009.
- 39. Yu, J., Sun, X., Cai, F., Zhu, Z., Qin, A., Qian, J., Tang, B., and He, S. (2015). Low photobleaching and high emission depletion efficiency: The potential of AIE luminogen as fluorescent probe for STED microscopy. Opt. Lett. 40, 2313–2316.
- Hruska, M., Cain, R.E., and Dalva, M.B. (2022). Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific. Nat. Commun. 12, 200

- Li, B.-Z., Sumera, A., Booker, S.A., and McCullagh, E.A. (2023). Current Best Practices for Analysis of Dendritic Spine Morphology and Number in Neurodevelopmental Disorder Research. ACS Chem. Neurosci. 14, 1561–1572.
- Mao, Y.-T., Zhu, J.X., Hanamura, K., Iurilli, G., Datta, S.R., and Dalva, M.B. (2018). Filopodia Conduct Target Selection in Cortical Neurons using Differences in Signal Kinetics of a Single Kinase. Neuron 98, 767–782.e8.
- 43. Biggs, D.S. (2010). A Practical Guide to Deconvolution of Fluorescence Microscope Imagery. Micros. Today 18, 10–14.
- 44. Wegner, W., Ilgen, P., Gregor, C., van Dort, J., Mott, A.C., Steffens, H., and Willig, K.I. (2017). In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 7, 11781.
- Richter, K.N., Revelo, N.H., Seitz, K.J., Helm, M.S., Sarkar, D., Saleeb, R.S., D'Este, E., Eberle, J., Wagner, E., Vogl, C., et al. (2018). Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J. 37, 139–159.

- Melan, M.A. (1994). Overview of cell fixation and permeabilization. Methods Mol. Biol. 34, 55–66.
- 47. Schnell, U., Dijk, F., Sjollema, K.A., and Giepmans, B.N.G. (2012). Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods *9*, 152–158.
- 48. Tanaka, K.A.K., Suzuki, K.G.N., Shirai, Y.M., Shibutani, S.T., Miyahara, M.S.H., Tsuboi, H., Yahara, M., Yoshimura, A., Mayor, S., Fujiwara, T.K., and Kusumi, A. (2010). Membrane molecules mobile even after chemical fixation. Nat. Methods 7, 865–866.
- 49. Lai, H.M., Tang, Y., Lau, Z.Y.H., Campbell, R.A.A., Yau, J.C.N., Chan, C.C.Y., Chan, D.C.W., Wong, T.Y., Wong, H.K.T., Yan, L.Y.C., et al. (2022). Antibody stabilization for thermally accelerated deep immunostaining. Nat. Methods 19, 1137–1146.
- Konno, K., Yamasaki, M., Miyazaki, T., and Watanabe, M. (2023). Glyoxal fixation: An approach to solve immunohistochemical problem in neuroscience research. Sci. Adv. 9, eadf7084