

1 **Differential coastal uplift quantified by luminescence dating of marine
2 terraces, central Cascadia forearc, Oregon**

3 **¹*McKenzie, K.A., ²Kelsey, H.M., ³Kirby, E., ⁴Rittenour T.M., & ¹Furlong, K.P.**

4 ¹The Pennsylvania State University, University Park, PA

5 ²California State Polytechnic University, Humboldt, Arcata, CA

6 ³The University of North Carolina at Chapel Hill, Chapel Hill, NC

7 ⁴Utah State University, Logan, UT

8 *Present address: The University of North Carolina at Chapel Hill, Chapel Hill, NC; kmckenzie@unc.edu

9

10 **Abstract**

11

12 Flights of marine terraces along the coastline of the Cascadia convergent margin record
13 long-term, sustained crustal uplift of the subduction zone upper plate. At Yaquina Bay (Newport,
14 Oregon) differences in the elevations of previously inferred MIS 5 (5a, 5c, and 5e) marine
15 terraces north and south of the bay imply differences in the long-term uplift rate that are
16 attributed to displacement along the Yaquina Bay fault – a west-to-east trending fault inferred to
17 be located within the bay. Here we present the first direct ages for the marine terrace deposits at
18 Yaquina Bay using luminescence dating of marine terrace sands on terrace treads to quantify
19 long-term and interval uplift rates. These new age results in combination with high-resolution
20 topographic data, allow us to refine previous mapping of marine terraces in the vicinity of
21 Yaquina Bay, including the recognition of a MIS 5a terrace south of Yaquina Bay. Differences in
22 the elevations of terraces north and south of Yaquina Bay confirm relative displacement along
23 the Yaquina Bay fault since the late Pleistocene. Our results imply differences in the long-term
24 uplift rate relative to sea level north and south of Yaquina Bay since ca. 125 ka; south of the
25 fault, uplift rates appear to have been relatively constant at 0.3-0.4 m/kyr, whereas north of the
26 fault, average uplift rates were greater, 0.7-0.9 m/kyr over the past ca. 125 kyrs. Notably, terrace
27 elevations north of the fault require variations in uplift rate through time. Uplift rates appear to
28 have been relatively low (≤ 0.1 m/kyr) between MIS 5e and 5c but increased to rates of ~ 1.6
29 m/kyr in a ~ 20 kyr period between MIS 5c and MIS 5a. Subsequently, uplift rates appear to have
30 decreased to 0.7 m/kyr during the last ~ 80 kyrs, but were sustained at rates approximately double
31 that of the block south of the fault. These results require temporally variable slip along the
32 Yaquina Bay fault since the late Pleistocene.

33 **Key Words**

34 Marine terraces; Luminescence dating, Geomorphology, coastal; North America; Cascadia;
35 Forearc deformation

36

37 **1. Introduction**

38

39 The long-term emergence of coastlines above sea level over tens of thousands of years
40 (encompassing many subduction earthquake cycles) has been documented along several
41 subduction zones including the Cascadia subduction zone (Muhs et al., 1990); the Nankai
42 subduction zone in SW Japan (Matsu'ura, 2015); the Hellenic subduction zone (Gallen et al.,
43 2014); and Nazca plate subduction beneath South America (Saillard et al., 2011). However,
44 models of the subduction zone earthquake cycle (e.g., Govers et al., 2017), often assume that
45 upper-plate deformation is fully elastic and recovered over multiple earthquake cycles, negating
46 any permanent vertical deformation. Field observations suggest otherwise; and in coastal
47 Oregon, the highest rates of vertical displacement of late Pleistocene marine terraces relative to
48 sea level occur adjacent to upper-plate structures, such as faults and folds (Kelsey et al., 1994).
49 In northern Chile, the emergence of the Mejillones Peninsula has been attributed to active
50 folding and faulting resulting from E-W directed extension across the inner portions of the
51 forearc (Victor et al., 2011). In Peru and the Ryuku Islands of Japan, uplift of marine terraces has
52 been attributed to the subduction of oceanic ridges (Hsu, 1992; Muhs et al., 2020). The relative
53 role that upper-plate structures play in generating long-term coastal uplift, and how displacement
54 along these structures is, or is not, related to deformation along the plate interface remain
55 persistent questions in our understanding of convergent margin tectonics.

56 Uplifted marine terraces are one of the few geomorphic markers in landscapes that
57 preserve records of long-term coastal uplift relative to the geoid (Bloom et al., 1974), referred to
58 here as crustal uplift. However, eustatic variations in sea level drive variations in the formation
59 and preservation of these features. There are two primary forms of marine terraces: (1)
60 constructional terraces, that reflect the growth of coral reef (terrace) platforms during sea level
61 highstands (Bloom et al., 1974); and (2) erosional terraces, that primarily form when high sea
62 levels carve sea cliffs and form wave-cut (terrace) platforms (Bradley and Griggs, 1976). During
63 sea-level lowstands (glacial periods) these platforms are exposed above sea level and may be

64 preserved along coastlines when the rate of uplift exceeds subsequent sea-level rise (Bloom et al.
65 1974). Flights of uplifted erosional marine terraces have been identified and studied along the
66 Cascadia subduction zone from northern California to Washington state (Griggs, 1945; Kennedy
67 et al., 1982; Adams, 1984; West and McCrum, 1988; Merritts and Bull, 1989; McInelly and
68 Kelsey, 1990; Muhs et al., 1990; Kelsey, 1990; Kelsey and Bockheim, 1994; Kelsey et al., 1996;
69 Thackary, 1998; Polenz and Kelsey, 1999; Padgett et al., 2019; Figure 1). These terraces record
70 the effects of eustatic sea-level variations superimposed on long-term crustal uplift and upper-
71 plate faulting and folding over numerous Cascadia subduction earthquake cycles. A suite of such
72 marine terraces is preserved in central Cascadia in the vicinity of Yaquina Bay, Newport, Oregon
73 (Figure 1). Here, previous work by Kelsey et al. (1996) found that these marine terraces are
74 offset across Yaquina Bay by an inferred fault, with terraces north of the bay at higher elevations
75 relative to their respective counterparts south of the bay. This interpretation was based on age
76 assignments determined by the correlation of the degree of soil development among terraces at
77 Yaquina Bay and terraces in southern Oregon that had been dated using $^{230}\text{Th}/^{234}\text{U}$ dating of
78 coral or amino acid racemization methods (Muhs et al., 1990; Kennedy et al., 1982; Kelsey et al.,
79 1996; and, more recently by Muhs et al., 2006). Kelsey et al. (1996) correlated the youngest
80 three terraces in this region to sea-level highstands at 80 ka, 105 ka, and 125 ka corresponding to
81 marine oxygen isotope stages (MIS) 5a, 5c, and 5e respectively.

82 Kelsey et al. (1996) report that two faults that offset the inferred 80 ka platform in the
83 vicinity of Newport (Yaquina Bay fault, Yaquina Head fault) have the same sense of offset and
84 general trend as faults mapped by Snavely et al. (1976) in underlying Paleogene sediment.
85 Kelsey et al. (1996) suggest that the late-Pleistocene-active faults may have trends inherited from
86 these earlier structures.

87 In this paper we evaluate the age assignments of Kelsey et al. (1996) based on two new
88 data sets. Recent availability of 1 m (nominal grid size) resolution digital topography derived
89 from Lidar data allows us to use a surface classification model (SCM) (Bowles and Cowgill,
90 2012) to refine the locations and elevations of the mapped marine terrace surfaces and terrace
91 shoreline angles in this region; locations that were previously delineated using aerial photographs
92 followed by field mapping (Kelsey et al., 1996). Combining this high-resolution topographic
93 mapping with optically stimulated luminescence (OSL) dating of quartz and infrared stimulated
94 luminescence (IRSL) dating of potassium (K) feldspar within marine terrace sands, allows us to

95 assign paleo-sea level highstand ages to the marine terraces exposed at Yaquina Bay. We use
 96 these new data to evaluate long-term (and interval-specific) crustal uplift at Yaquina Bay and
 97 evaluate the history of displacement along the Yaquina Bay fault. Finally, we compare our
 98 results to previous estimates of long-term terrace uplift rates and present-day geodetic uplift rates
 99 along the Cascadia margin.

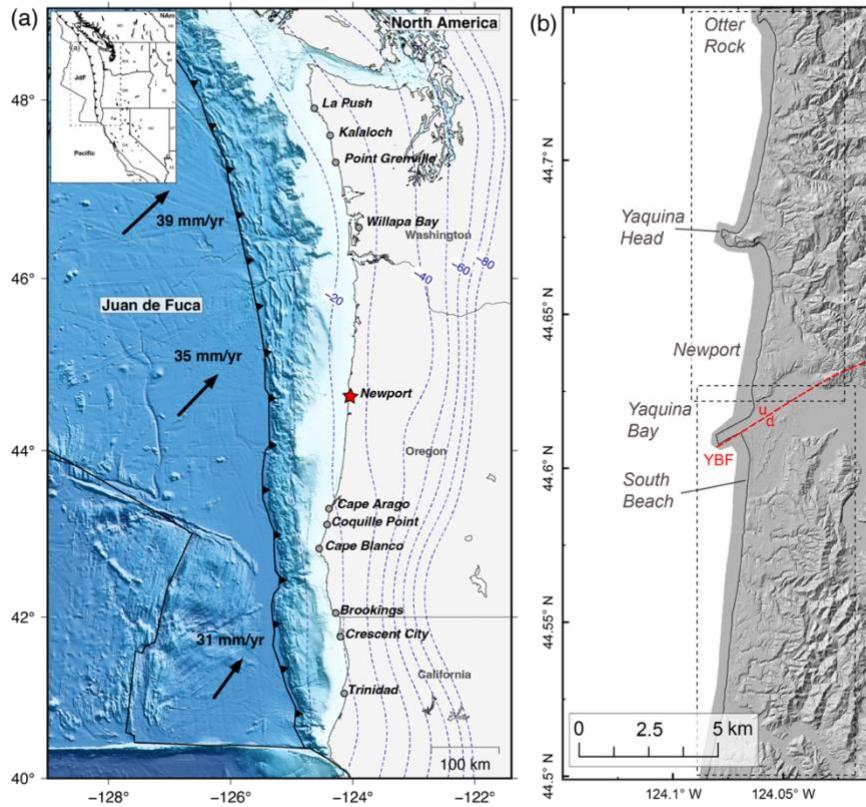


Figure 1: (a) Map of the Cascadia subduction zone showing the locations along the coastline of previous marine terrace studies in Oregon and California (Griggs, 1945; Kennedy et al., 1982; Adams, 1984; West and McCrum, 1988; Merritts and Bull, 1989; McInelly and Kelsey, 1990; Muhs et al., 1990; Kelsey, 1990; Kelsey and Bockheim, 1994; Kelsey et al., 1996; Thackary, 1998; Polenz and Kelsey, 1999; Padgett et al., 2019). Newport is highlighted by the red star. The dashed blue lines are the Slab2 subduction zone slab depth contours (Hayes, 2018). (b) Topographic hillshade map of the study region in the vicinity of Newport, Oregon. The dashed boxes show the regions north and south of Yaquina Bay shown in subsequent figures (2, 3(b) and (c), 5(b) and (c), and 6). The dashed red line is the inferred position of the Yaquina Bay fault (YBF) (Kelsey et al., 1996) - u = upthrown block; d = downthrown block.

101 **2. Background**

102

103 *2.1. The Cascadia subduction zone*

104 The Cascadia subduction zone stretches from northern California to British Columbia
105 (Figure 1) and is characterized by the oblique (NE-directed) subduction of the Juan de Fuca
106 (Gorda south of 43 °N) plate beneath North America. Although there have been no significant
107 recent earthquakes along the Cascadia plate boundary, paleo-seismic data from both estuarine
108 and submarine environments, historic records of tsunami inundation in Japan, and Native
109 American oral traditions provide evidence for previous large megathrust events (e.g. Atwater,
110 1987; Atwater et al., 1991; Nelson et al., 1995; Satake et al., 1996; Atwater and Hemphill-Haley,
111 1997; Yamaguchi, 1997; Clague et al., 2000; Kelsey et al., 2002; Witter et al., 2003; Ludwin et
112 al., 2005; Nelson et al., 2008; Hawkes et al., 2011; Goldfinger et al., 2012). These records
113 provide evidence for the most recent 1700 CE ~Mw 9 earthquake which is inferred to have
114 ruptured the entire length of the subduction zone (Wang et al., 2013), and smaller ~Mw 8+
115 earthquakes that are proposed to have previously ruptured distinct segments on the subduction
116 plate interface (Goldfinger et al., 2012; Kelsey et al., 2005; Witter et al., 2012).

117 In Cascadia, several sequences of late Pleistocene marine terraces record a ~100,000-to-
118 200,000-year history of coastal uplift, and in some locations deformation of these platforms
119 records Quaternary faulting and folding (e.g., Kelsey et al., 1994). This record likely spans
120 hundreds of subduction earthquake cycles over which standard elastic models would produce
121 zero net vertical motion (e.g., Govers et al., 2017). Although such models produce no net uplift
122 or subsidence, the uplift and preservation of marine terraces, coral atolls, and river terraces, as
123 well as faulting and folding along subduction zones imply that some fraction of subduction
124 earthquake-cycle deformation is retained permanently in the geologic record (e.g., Melnick
125 et al., 2006; Meltzner et al., 2006; Ramírez-Herrera et al., 2018; Saillard et al., 2017).
126 Additionally, the Cascadia subduction zone is characterized by an emergent forearc mountain
127 range, that appears to have sustained rock uplift and erosion since at least Miocene time
128 (VanLaningham et al., 2006; Kobor and Roering, 2004; McNeill et al., 2000). A comparison of
129 long-term uplift rates with numerical models of subduction coupling for the Cascadia subduction
130 zone suggest that as much as ~25-50 % of the inter-earthquake deformation along the central
131 Oregon coastline can become permanent upper-plate deformation (McKenzie et al., 2022).

132 However, displacement histories along upper-plate structures are poorly understood along much
133 of the margin, and yet are necessary for a better understanding of the relationship between upper-
134 plate structures and permanent strain above subduction zones.

135

136 *2.2 Characterization of Marine Terraces at Yaquina Bay*

137 Yaquina Bay is situated along the coast at Newport in central Oregon approximately
138 ~100 km east of the subduction trench and ~25 km above the plate interface (Figure 1) (Hayes,
139 2018). In this region six marine terrace platforms have been identified above present-day sea
140 level (Kelsey et al., 1996). The three youngest, lowest elevation terraces at Yaquina Bay have
141 been previously assigned ages of 80 ka, 105 ka, and 125 ka, corresponding to MIS 5a, 5c and 5e
142 respectively (Kelsey et al., 1996). These age correlations were based on the degree of soil
143 development (Kelsey et al., 1996) of dated terraces along the southern Oregon coast (Muhs et al.,
144 1990; Kennedy et al., 1982). Older, higher elevation terraces are also observed at Yaquina Bay,
145 the lowest of which is assumed to be associated with the next oldest paleo-sea level highstand at
146 ~200 ka (Kelsey et al., 1996). However, this terrace and the two older terraces are highly
147 dissected by stream networks and are poorly preserved in this region (Kelsey et al., 1996; this
148 study).

149 Here we analyze the extent and distribution of the terraces preserved at Yaquina Bay,
150 focusing on the three lowest, inferred to be MIS 5a, 5c and 5e terraces (Kelsey et al., 1996). We
151 combine high-resolution elevation models with age determinations for these terraces using OSL
152 dating of quartz and IRSL dating of K-feldspar within marine terrace sands. This allows us to
153 test these previous age assignments, and in doing so, quantitatively assess the long-term crustal
154 uplift rates and the potential for active upper-plate faulting in the region.

155

156 **3. Geomorphic characterization of terraces**

157

158 *3.1 Terrace Surface Mapping*

159 We use a 1 m horizontal resolution Lidar-derived digital elevation model (DEM)
160 accessed through the Oregon Department of Geology and Mineral Industries (DOGAMI) website
161 (<https://www.oregongeology.org>, collected by the Oregon Lidar Consortium) to map marine
162 terrace surfaces and estimate the location of paleoshorelines associated with each mapped

163 terrace. We used the method of Bowles and Cowgill (2012) to create a surface classification
164 model (SCM) that identifies areas of low topographic slope and roughness inferred to represent
165 terrace surfaces. Several authors have used this method (Bowles and Cowgill, 2012) to map
166 marine terrace surfaces from DEMs (e.g., Racano et al., 2020; Padgett et al., 2019). Following
167 these previous studies, first we generated a slope map from the Lidar-derived DEM (Figure 2)
168 and determined the standard deviation of the slope (defined as terrain roughness (Frankel and
169 Dolan, 2007)), using a 3x3 cell rectangular moving window. Marine terraces typically slope 1-6°
170 (Bowles and Cowgill, 2012) oceanward but slope values up to 15° have been observed (Bradley
171 and Griggs, 1976). Thus, we only used slope values $\leq 15^\circ$ in our analysis. Regions of high
172 topographic roughness may reflect artifacts of low-resolution regions within the DEM and thus
173 we removed roughness values greater than 1 standard deviation from the mean roughness (> 4).
174 The SCM was then determined by normalizing and combining the slope and roughness values
175 (weighted equally) using (1) (Bowles and Cowgill, 2012):

176

$$177 \quad SCM = 0.5 \left(\frac{slope}{15} \right) + 0.5 \left(\frac{std(slope)}{4} \right) \quad (1)$$

178 $0 < slope < 15$

179 $0 < std(slope) < 4$

180

181 We manually digitized marine terrace surfaces by outlining low SCM regions (close to 0)
182 overlain on a hillshade map generated from the 1 m resolution Lidar DEM (Figure S1). Outlining
183 terrace surfaces manually allowed us to avoid false identification of terrace surfaces in low SCM
184 regions that instead represent roads, the present-day beach and bay area adjacent to Newport,
185 large river channels, and the airport south of Yaquina Bay. We constructed a frequency
186 distribution of elevations within the outlined terrace surfaces to identify peaks in elevation
187 ranges that can be used to differentiate terrace surfaces (Figure S2; Bowles and Cowgill, 2012).

188 A (paleo)shoreline angle is a quasi-linear feature that defines the intersection between a
189 marine wave-cut platform and corresponding (paleo)sea cliff that is used as a marker for mean
190 sea level at the time the wave-cut platform was formed (Lajoie, 1986). At Yaquina Bay, the
191 paleoshoreline angles are buried beneath cover sediment and thus we defined the surface
192 expression of a paleoshoreline angle as a quasi-linear feature sub-parallel to the present-day
193 shoreline that lies at the base of a steep slope and separates mapped terrace surfaces within

194 different elevation ranges (Figures 2, 3). In regions where the paleoshoreline could not be
195 defined (i.e., because of dense stream networks and/or human-made features) we interpolated the
196 paleoshoreline location between regions where the feature was better preserved. We chose not to
197 connect the paleoshorelines across regions cut by large west-east channels that have dissected the
198 landscape.

199



Figure 2: Slope maps for the Yaquina Bay/Newport region. (a) North of Yaquina Bay, (b) South of Yaquina Bay. The locations of (a) and (b) are shown in Figure 1(b).

200 *3.2 Mapping Results*

201 We identified three distinct terrace platforms north of Yaquina Bay and five distinct
202 terrace platforms south of Yaquina Bay. The lower elevation (younger) terraces are well defined
203 compared to the higher elevation (older) terraces that have been significantly dissected and
204 eroded over time (Figures 3, 4 and 5). We analyzed marine terraces on the north and south side
205 of Yaquina Bay separately to test previous work suggesting that these terraces have been offset
206 vertically across Yaquina Bay (Kelsey et al., 1996). In our description of the terraces below, we
207 do not assume a terrace age *a priori*, and instead define the terraces as surfaces 1n, 2n, 3n (north

208 of Yaquina Bay), 1s, 2s, 3s, 4s and 5s (south of Yaquina Bay), with surfaces 1n and 1s being the
 209 lowest elevation terraces at both sides of the bay. Figure 3 shows the elevation of the mapped
 210 surfaces and paleoshorelines and Figure 4 shows shoreline perpendicular elevation profiles
 211 through the three lowest elevation terrace surfaces at either side of Yaquina Bay.

212

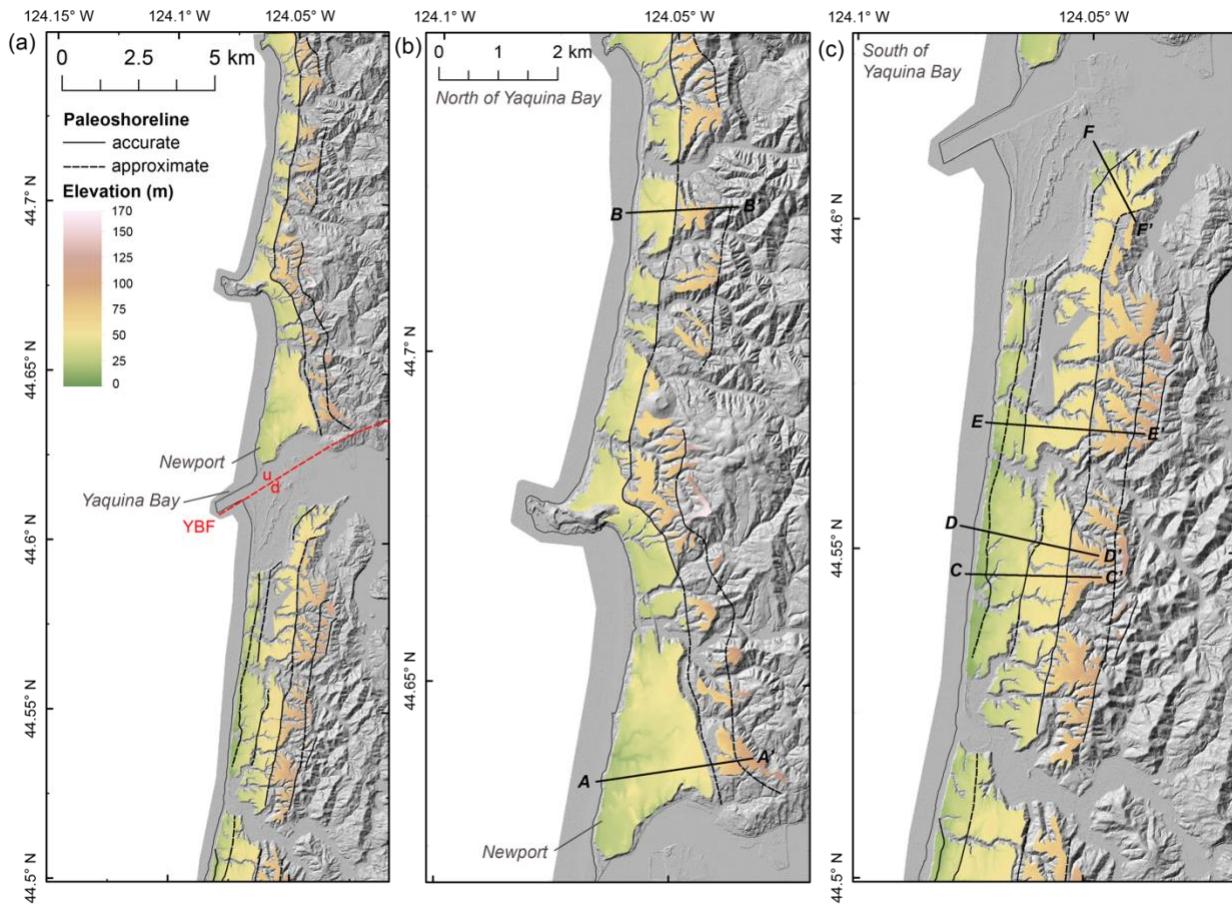


Figure 3: Lidar hillshade maps overlain by polygons of terrace surfaces (determined from SCM analysis) and estimated locations of terrace paleoshorelines. (a) Map of full Yaquina Bay region. The dashed red line is the inferred position of the Yaquina Bay fault (YBF) (Kelsey et al., 1996) - u = upthrown block; d = downthrown block. (b) Map north of Yaquina Bay. (c) Map south of Yaquina Bay. The location of elevation profiles (A-A', B-B', C-C', D-D', E-E', and F-F') shown in Figure 4 are shown in (b) and (c).

213

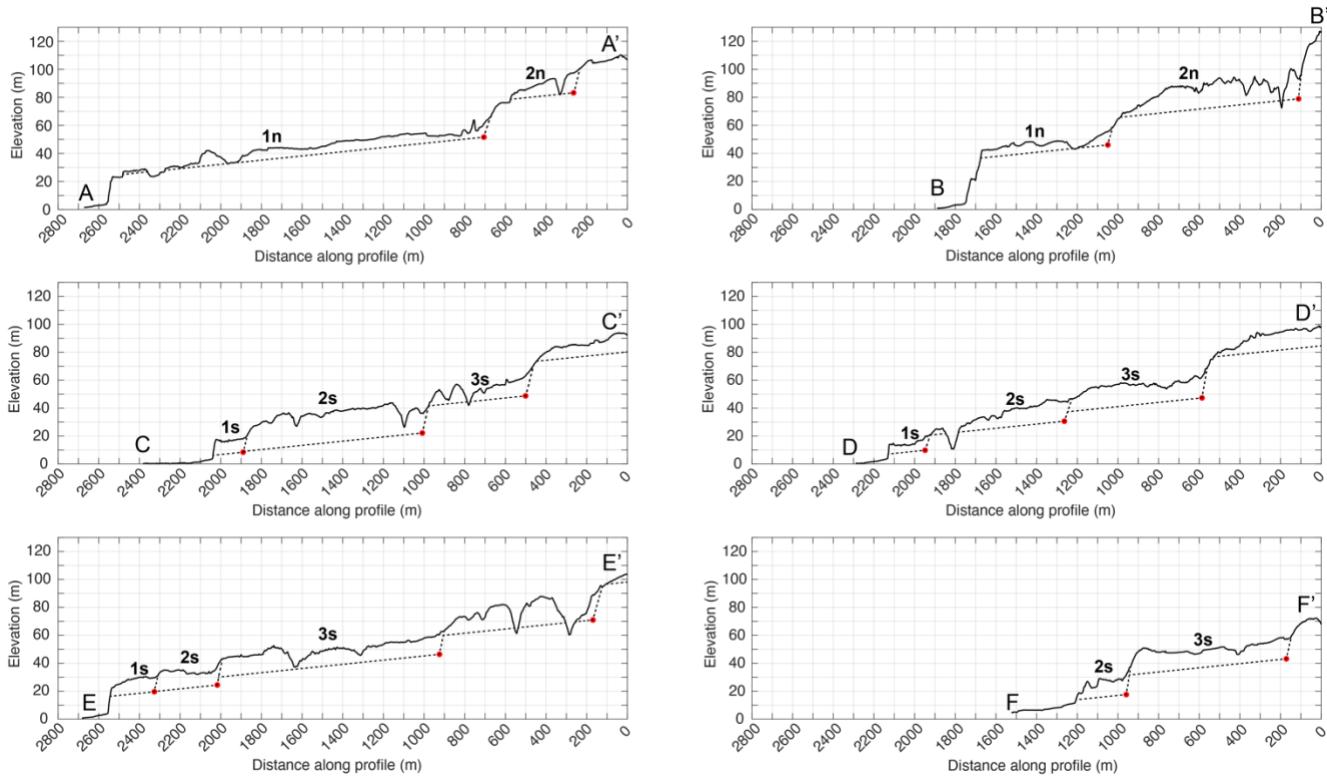


Figure 4: Vertically exaggerated shoreline perpendicular elevation profiles (west to east) through the marine terraces mapped north and south of Yaquina Bay. The location of each profile line is shown in Figures 3(b) and (c). Profiles A-A' and B-B' are locations north of Yaquina Bay and profiles C-C', D-D', E-E' and F-F' are location south of Yaquina Bay. Terraces are labeled based on their relative elevation: 1n, 2n, 3n (north of Yaquina Bay), 1s, 2s, and 3s (south of Yaquina Bay). The red dots show the approximate location of the paleo-shoreline angle for each terrace, below an assigned average cover sediment thickness (Table 2). The black dashed lines show our interpretation of where the terrace platforms and paleo-sea cliffs are beneath the present-day surface and terrace cover sediment. The methodology for estimating the paleo-shoreline angle is described in section 5.1.1.

214 3.2.1 *North of Yaquina Bay*

215 We identified three terrace surfaces north of Yaquina Bay, with the most distinctive terrace being
 216 the lowest terrace (surface 1n). This terrace is separated from the next highest terrace by a steep
 217 N-S trending escarpment – representing its corresponding paleo-sea cliff – north of the town of
 218 Newport (Figure 2). Surface 1n is ~30-50 m in elevation above present-day sea level (Figures 3,
 219 4, S2) and ranges in width from ~2000 m at Newport to ~600-700 m north of 44.65 °N (Figure
 220 3). Just north of Yaquina Bay, within Newport itself, we approximated the location of the
 221 paleoshoreline between surface 1n and surface 2n by changes in elevation because dissection of

222 the landscape by rivers and human-made features such as road networks and buildings made
223 identifying any slope changes here difficult. Surface 2n and its respective paleoshoreline location
224 were most easily identified near to Yaquina Head and Otter Rock (Figure 1(b)) at the northern
225 end of our study region (Figures 2, 3 and 4). Surface 2n is ~500-900 m in width and ~70-90 m in
226 elevation north of Yaquina Bay. Surface 3n is ~100-120 m in elevation. Identification of surface
227 3n was only possible in certain locations where erosion and channel dissection were minimal.
228 Due to this slope degradation, we could not confidently determine the location of the surface 3n
229 paleoshoreline from the Lidar mapping or the range of widths for surface 3n north of Yaquina
230 Bay.

231

232 *3.2.2 South of Yaquina Bay*

233 We mapped five distinct terrace surfaces south of Yaquina Bay (surfaces 1s-5s). The
234 lowest-most surface, surface 1s, is relatively narrow (100-200 m where exposed), ranges in
235 elevation from ~10-20 m, and dips shallowly (0.1-0.2 °) to the south. In many locations the
236 paleoshoreline separating surfaces 1s and 2s was approximated based on subtle slope changes in
237 the Lidar-derived DEM (Figures 2, 3 and 4). Surface 1s cannot be identified by a distinctive peak
238 in the frequency distribution plot of terrace surface elevations (Figure S2), likely because of its
239 patchy exposure compared to the higher elevation surfaces (Figures 3, 4 and 5). Surface 2s
240 ranges in elevation from ~20 – 40 m and ranges in width from ~200 – 900 m, with the narrowest
241 exposure being closest to Yaquina Bay, where surface 1s is not exposed (Figure 3 and 4(f)). The
242 paleoshoreline separating surfaces 2s and 3s is most distinct near to profiles C-C' and E-E'
243 (Figures 2, 4(c) and 4(d)), but in many cases it was approximated based on changes in elevation
244 and subtle slope changes identified from shoreline perpendicular profiles. Surfaces 2s and 3s
245 were differentiated by two prominent peaks at ~35 m and ~50 m in the frequency distribution
246 plot of surface elevations (Figure S2). There are several N-S striking stream channels most
247 apparent near to profiles C-C' and D-D' (Figures 2, 3), that appear to separate these two surface
248 elevation bands and are sub-parallel to the paleoshoreline separating surfaces 2s and 3s. This
249 may suggest that when this paleoshoreline was exposed above sea level, preexisting stream
250 channels preferentially flowing along the base of the sea cliff, maintained course and obscured
251 any evidence of a distinct slope break associated with a paleoshoreline. Surface 3s ranges in
252 elevation from ~40-60 m and ranges in width from ~500-1100 m. The paleoshoreline between

253 surfaces 3s and 4s was identified at the base of a prominent linear (high slope) feature
254 representing a paleo-sea cliff (Figure 2). Surface 4s is ~80-90 m in elevation (Figures 3, 4) and
255 ranges in width from ~500-1000 m. Surface 5s is > 100 m in elevation and is extensively eroded
256 by stream networks (Figures 2 and 3).

257

258 *3.2.3 Comparison to Previous Mapping*

259 North of Yaquina Bay, our mapping results are consistent with the previous mapping of
260 Kelsey et al. (1996), with minor differences in the location/elevation of the paleoshorelines and
261 the extent of the mapped surfaces. We were able to refine these features with the high-resolution
262 Lidar data. South of Yaquina Bay, we identified three terrace surfaces between the present-day
263 shoreline and surface 4s, in contrast with the previous field mapping (Kelsey et al., 1996) that
264 only mapped two surfaces. The identification of the two lowest terraces (surfaces 1s and 2s)
265 south of Yaquina Bay was based on subtle topographic features observed in the high-resolution
266 Lidar data, including slope breaks observed discontinuously from north to south (Figure 4), N-S
267 trending (shoreline parallel) stream networks (Figure 3), and the frequency distribution of
268 elevations of the mapped surfaces (Figure S2). The mapping of higher platforms remains the
269 same. We now present luminescence ages for these terrace platforms to determine the age-
270 elevation distribution of the terraces mapped north and south of Yaquina Bay.

271

272 **4. Luminescence Age Determinations: Methods and Results**

273

274 *4.1 Overview*

275 We use luminescence dating of terrace sands in the vicinity of Yaquina Bay to compare
276 to the previous terrace age estimates at Yaquina Bay (Kelsey et al., 1996), and develop new
277 uplift rate estimates (Figures 3, 4 and 5). At the time of initial terrace mapping (Kelsey et al.,
278 1996), luminescence techniques were not a feasible approach to determine marine terrace age.
279 The ages reported here represent the first direct ages for these coastal localities and the first OSL
280 and IRSL ages for any marine terraces along the Cascadia margin. The applicability of
281 luminescence techniques to dating marine terraces heralds promise for more extensive dating of
282 marine terrace sand in mid-latitude settings where traditional radiometric dating techniques have

283 been limited by the lack of suitable sample material (Jacobs, 2008; Morel et al., 2022; Muhs et
284 al., 2022).

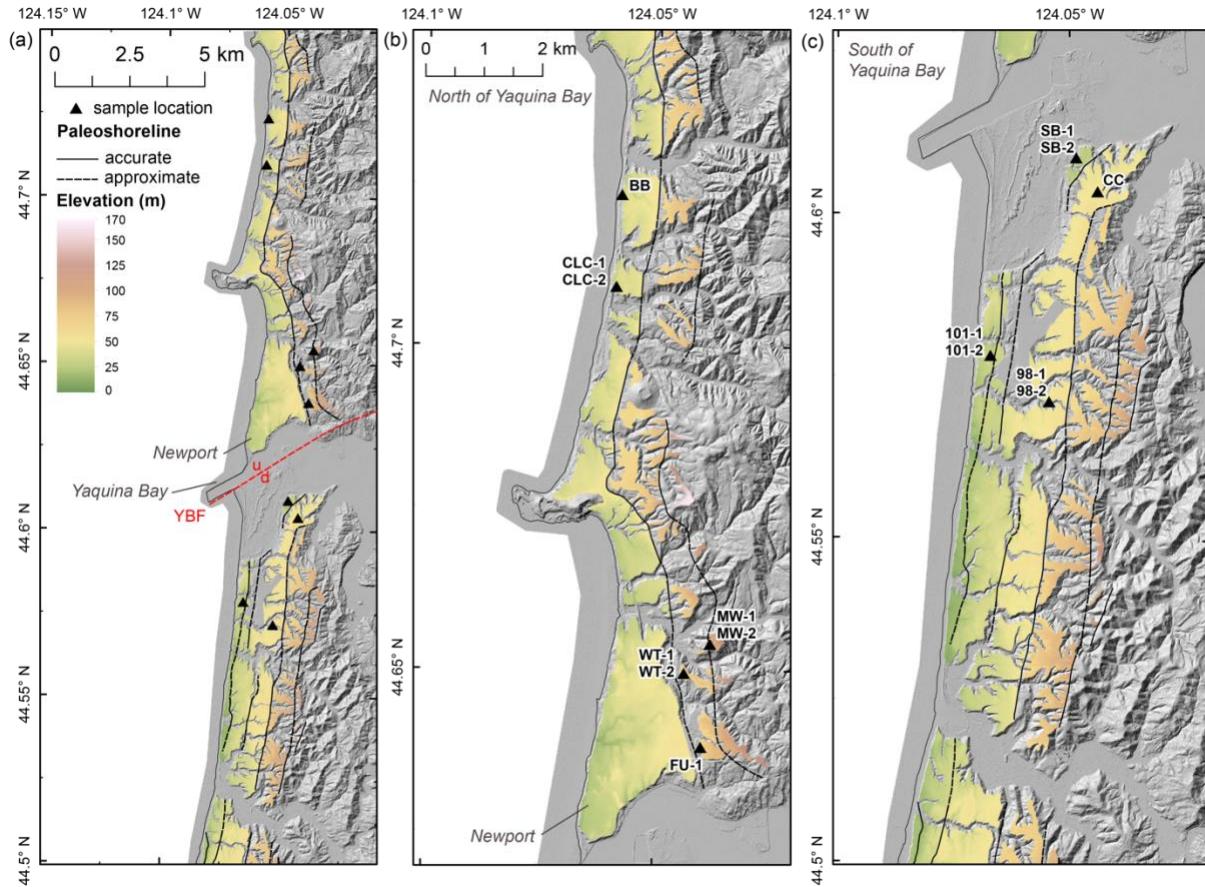


Figure 5: Lidar hillshade maps overlain by polygons of terrace surfaces and estimated locations of terrace paleoshorelines. The location of the luminescence sample sites are shown by black triangles and labeled in (b) and (c). The red dashed line in (a) shows the approximate location of the Yaquina Bay fault.

285
286
287 *4.2 Sample Collection*
288 We use OSL of quartz and IRSL of K-feldspar to date sand deposited above the mapped
289 terrace platforms on either side of Yaquina Bay. Sites that were sampled for OSL had the
290 following characteristics: we selected massive sand that in most instances had evidence of
291 undisturbed sedimentary structure in the form of planar beds or cross beds. The presence of
292 undisturbed sedimentary structure minimized the possibility of bioturbation. We sampled sand as

293 close to the underlying platform as possible to ensure that we were sampling nearshore or beach
294 sand and not any overlying fluvial sand if present. We did not observe any evidence of fluvial
295 features such as cross cutting channels at any of our sample locations. Samples were collected in
296 a metallic tube (1.5" diameter, 8" length) hammered horizontally into a fresh surface exposure
297 and sealed from light upon collection. One sample (FU-1) was taken vertically to avoid observed
298 bioturbation at the site. Fifteen total samples were collected, distributed across nine field sites.
299 These include duplicates collected at six sites and single samples collected at three sites (BB, CC
300 and FU-1). Samples were collected from the three lowest elevation terraces north of Yaquina
301 Bay (previously assigned as terraces that formed during MIS 5a, 5c, and 5e (Kelsey et al.,
302 1996)), and the three lowest elevation terraces south of Yaquina Bay (previously mapped as two
303 terraces and assigned ages of MIS 5c and 5e (Kelsey et al., 1996)). Samples 101-1 and 101-2 are
304 from a single sample site located along highway 101 (Figure 5) within the region previously
305 mapped as the MIS 5c terrace by Kelsey et al. (1996). Sample nomenclature is as follows:
306 Abbreviated location of sample-sample number (upper sample (U) or lower sample (L)), e.g.,
307 CLC-1(U). Photographs of samples sites and a table of their locations are in the supplemental
308 material (Figures S3 and S4, Table S1).

309

310 *4.3 Sample Processing and Age Determinations*

311 Samples were processed and analyzed at the Utah State University Luminescence
312 Laboratory. Samples were opened in dim amber light and wet sieved to 150-250 μm , then treated
313 with hydrochloric acid and peroxide to remove carbonates and organic material. The K-feldspar
314 fraction was isolated for IRSL dating, using sodium polytungstate separation at 2.58 g/cm³. The
315 quartz fraction was separated for OSL dating using mineral separation at 2.72 g/cm³, and
316 subsequently underwent hydrochloric acid and hydrofluoric acid treatments to etch and purify
317 the quartz. The presence of residual feldspar within quartz samples (i.e., the purity of the quartz)
318 was determined using infrared-stimulation.

319

320 *4.3.1 Dose Rate Determination*

321 The concentration of U, Th, K and Rb in terrace deposits was measured by ICP-MS and
322 ICP-AES. Dose rate calculations were then determined using conversion factors from Guérin et
323 al. (2011). For feldspar analyses, the internal grain beta dose rate was calculated assuming 12.5%

324 K (Huntley and Baril, 1997) and 400 ppm Rb (Huntley and Hancock, 2001) attenuated to grain
325 size using Mejdahl (1979). An ‘a-value’ (efficiency factor) of 0.09 ± 0.01 (Rees-Jones, 1995)
326 was used to determine the alpha contribution to the IRSL dose rate. Radio-elemental chemistry
327 (U, Th, K content), sediment moisture and cosmic contribution were taken into account for dose
328 rate determinations (Aitken and Xie, 1990; Aitken, 1998). To avoid applying sediment moisture
329 values that appear to have greater precision and accuracy than we could obtain from the one-time
330 water content samples, we rounded moisture content values to the nearest 5%, based on field
331 point measurements and field capacity constraints (following Nelson and Rittenour, 2015). For
332 OSL and IRSL dating, the sample depth, elevation and location (longitude and latitude) were
333 used to determine the contribution of cosmic radiation to the dose rate following Prescott and
334 Hutton (1994).

335

336 4.3.2 Luminescence Measurements

337 Due to continual reworking of sediment in nearshore and beach environments, the
338 luminescence signal of sediment in these environments has been shown to be reset quickly, e.g.,
339 young (< 100 yr) coastal and marine sediments have been shown to give accurate luminescence
340 ages (Madsen and Murray, 2009). We used the single-aliquot regenerative-dose (SAR)
341 procedures for OSL dating of quartz sand (Murray and Wintle, 2000, 2003; Wintle and Murray,
342 2006), and for IRSL dating of K-feldspar measured at 50°C (Wallinga et al. 2000). Each sample
343 was irradiated at five different dose levels: below, at, above the equivalent dose (D_E), zero dose,
344 and a repeated dose to test for recuperation of the signal and sensitivity correction. The resulting
345 dose-response curve results were fit with a saturating exponential curve. Fading corrections (loss
346 of the signal with time) were calculated for IRSL ages using the linear-fit method of Auclair et
347 al. (2003) and the age correction method of Huntley and Lamothe (2001). OSL and IRSL ages
348 were determined using the Central Age Model (CAM) of Galbraith and Roberts (2012).

349

350 4.4 OSL and IRSL Results

351 Table 1 contains the age results for the OSL analyses. Table 1 also contains IRSL results
352 for two samples whose (fading-corrected) ages are consistent with the OSL age for the same
353 sample. Further results including dose rate information and equivalent dose distributions can be
354 found in the supplemental material (Table S2, Figure S5).

355 Samples BB, CLC-2, 101-1 and 101-2 returned ages (within the analytical uncertainty)
356 consistent with MIS 5a (84 ka). 101-1 and 101-2 are located south of Yaquina Bay, within
357 surface 1s (Figures 5 and 6) and therefore imply that the MIS 5a terrace is exposed south of the
358 bay. CLC-1 has an anomalously young age of 63 ± 7 ka compared to MIS 5a, which may
359 indicate that this sample contains younger sand, suggesting a later aeolian input or mixing of
360 younger sediment through bioturbation and/or soil processes. Samples SB-1, SB-2, WT-1 and
361 WT-2 have ages that can be associated with MIS 5c (106 ka). The OSL and IRSL ages (113 ± 14
362 ka and 114 ± 11 ka respectively) of sample FU-1 overlap with MIS 5c (106 ka) and MIS 5e (125
363 ka) within uncertainty, however we assign this sample to MIS 5c based on its geomorphic
364 association with the map-surface 2n (Figures 5 and 6). Samples 98-1, 98-2, MW-1, MW-2, and
365 CC (OSL age) can be attributed to an MIS 5e (125 ka) terrace. The IRSL age for sample CC (112 ± 11 ka),
366 similar to FU-1, overlaps with MIS 5c and MIS 5e. We assign sample CC to MIS 5e
367 based on its location within surface 3s (Figures 5 and 6).

368

369 *4.5 Discussion of Luminescence Results*

370 The luminescence age results presented in Table 1 allow us to assign the lowest terrace
371 south of Yaquina Bay, recognized through our terrace surface classification, to be a MIS 5a
372 terrace (Figure 6). We evaluated the marine soils data presented in Kelsey et al. (1996) in light of
373 our new terrace interpretation south of the bay. Soil samples LC2 and TH2 that are located
374 within our mapped surface 1s, near luminescence samples sites 101-1 and 101-2, have a thinner
375 Bt horizon thickness (0-30 cm) compared to sample NS2 (Bt thickness of 65 cm) that is located
376 within our mapped surface 2s, near to luminescence samples site SB-1 and SB-2 (Kelsey et al.,
377 1996). These observations suggest samples LC2 and TH2 are from a younger terrace than sample
378 NS2, and thus are consistent with our luminescence results (Table 1) and Lidar mapping (Figure
379 5). Our mapping of the (inferred) MIS 5e terrace at Hinton Point, OR (south of Yaquina Bay)
380 agrees with previous age assignments and mapping by Kelsey et al. (1996) and the age
381 determined by Kennedy et al. (1982) through the correlation of amino acid racemization
382 methods. Thus, our results allow us to correlate the mapped terraces across Yaquina Bay and
383 evaluate previous correlation of Kelsey et al. (1996). These correlations imply differential
384 displacement of terrace surfaces since the late Pleistocene along the Yaquina Bay fault.

385

386 **Table 1: OSL and IRSL age results**

Sample ID	Mapped Surface	Method	Depth from outcrop surface (m)	No. of aliquots [†]	Dose rate (Gy/kyr)	Equivalent Dose ^{††} ± 2 σ (Gy/kyr)	Age ± 1 σ (ka)	Assigned marine isotope stage (MIS)*
North of Yaquina Bay								
BB	1n	OSL	2.55	8(14)	1.68 ± 0.07	138.92 ± 42.12	83 ± 14	MIS 5a
CLC-1(U)	1n	OSL	1.8	11(21)	1.81 ± 0.07	113.93 ± 15.41	63 ± 7	MIS 5a
CLC-2(L)	1n	OSL	2.25	12(23)	1.76 ± 0.07	153.80 ± 21.59	88 ± 9	MIS 5a
WT-1(U)	2n	OSL	2.2	10(13)	1.73 ± 0.08	180.83 ± 27.33	110 ± 12	MIS 5c
WT-2(L)	2n	OSL	2.8	10(21)	1.62 ± 0.08	169.54 ± 26.03	105 ± 12	MIS 5c
FU-1	2n	OSL	2.1	11(14)	1.76 ± 0.07	198.77 ± 35.56	113 ± 14	MIS 5c
FU-1	2n	IRSL^{††} (4.9 ± 1.6)	2.1	17(19)	2.85 ± 0.12	194.99 ± 20.03	114 ± 11	MIS 5c
MW-1(U)	3n	OSL	4	14(23)	1.73 ± 0.07	211.29 ± 39.52	122 ± 15	MIS 5e
MW-2(L)	3n	OSL	4.55	10(21)	1.54 ± 0.06	198.36 ± 28.00	129 ± 14	MIS 5e
South of Yaquina Bay								
101-1(U)	1s	OSL	2.5	11(23)	1.82 ± 0.08	156.44 ± 20.26	86 ± 9	MIS 5a
101-2(L)	1s	OSL	3.5	11(26)	1.61 ± 0.07	139.91 ± 9.13	87 ± 8	MIS 5a
SB-1(L)	2s	OSL	8.5	13(30)	1.35 ± 0.05	149.16 ± 24.11	110 ± 13	MIS 5c
SB-2(U)	2s	OSL	7	14(19)	1.55 ± 0.06	163.83 ± 42.84	106 ± 16	MIS 5c
98-1(U)	3s	OSL	1.8	13(18)	1.73 ± 0.07	216.83 ± 28.53	126 ± 13	MIS 5e
98-2(L)	3s	OSL	2.1	12(20)	1.79 ± 0.07	224.21 ± 28.81	126 ± 13	MIS 5e
CC	3s	OSL	1	12(20)	1.79 ± 0.07	211.03 ± 21.73	118 ± 11	MIS 5e
CC	3s	IRSL^{††} (3.6 ± 0.8)	1	15(16)	2.75 ± 0.11	215.53 ± 25.00	112 ± 11	MIS 5e

*MIS 5a = 84 ka; MIS 5c = 106 ka; MIS 5e = 125 ka.

†Age analysis using the single aliquot regeneration-dose procedure of Murray and Wintle (2000) on 1-mm small-aliquots of quartz sand (OSL 150-250 μ m) or 1-mm feldspar sand following Wallinga et al. (2000) at 50°C (IRSL 50-250 μ m). Number of aliquots used in age calculation and number of aliquots analyzed in parentheses

††Equivalent doses (D_E) calculated using the Central Age Model (CAM) of Galbraith and Roberts (2012)

‡IRSL age on each aliquot corrected for fading (fading rate g2days, %/decade) following the method by Auclair et al. (2003) and correction model of Huntley and Lamothe (2001)

387

388 **5. Long-term rock uplift from terrace elevations**

389 To calculate the long-term uplift rate of marine terraces relative to modern sea level we
 390 need to know or estimate the elevation of the paleoshoreline angle (a marker for mean sea level

391 at the time of terrace formation) at present and the paleo-sea level highstand elevation relative to
392 present-day sea level.

393

394 *5.1 Paleoshoreline Angle and Paleo-Sea Level Values*

395 5.1.1 Paleoshoreline Angle

396 The elevation of the paleoshoreline angles for each terrace beneath the present-day
397 surface can be determined by subtracting the cover sediment thickness from the elevation of the
398 mapped location of the paleoshoreline (Figure 3, 4). Due to the dense vegetation cover and land-
399 use within the study region, we observed the wave-cut platform in few places and could not
400 directly measure the cover sediment thickness across the entire study region. Following a similar
401 methodology as Padgett et al. (2019), we assume that the MIS 5 terrace platforms preserved at
402 Yaquina Bay experienced similar coastal processes to regions in southern Oregon and northern
403 California and are overlain by a similar thickness of cover sediment. We estimated the average
404 cover sediment thickness for each platform by taking the average of the maximum and minimum
405 sediment thicknesses for the MIS 5 terraces mapped in northern California, and southern and
406 central Oregon (Kelsey et al. 1996; Padgett et al. (2019), and references therein) (Table 2). Based
407 on the elevation of two exposures of the MIS 5c wave-cut platform relative to the elevation of
408 the observed cover sediment, we estimated a cover sediment thickness of 4-6 m above the MIS
409 5c wave-cut platform. These values are towards the lower end of the cover sediment thickness
410 estimates for the MIS 5c terrace along the Oregon coastline (Table 2). We note that the wide
411 range of cover sediment thickness estimates (Table 2) introduces errors (up to 8 m) in the
412 estimates of the paleoshoreline angle elevation, and we include these errors in our uplift rate
413 calculations. We used the field measured paleoshoreline height given in Kelsey et al. (1996) for
414 the MIS 5e terrace north of Yaquina Bay, since we were unable to locate the MIS 5e
415 paleoshoreline from the Lidar. We then assumed an average platform slope of 15 m/km (Bradley
416 and Griggs, 1976) for each terrace platform beneath this defined cover sediment thickness
417 (Figure 4), to estimate the location of the terrace platform beneath the present-day topography.

418

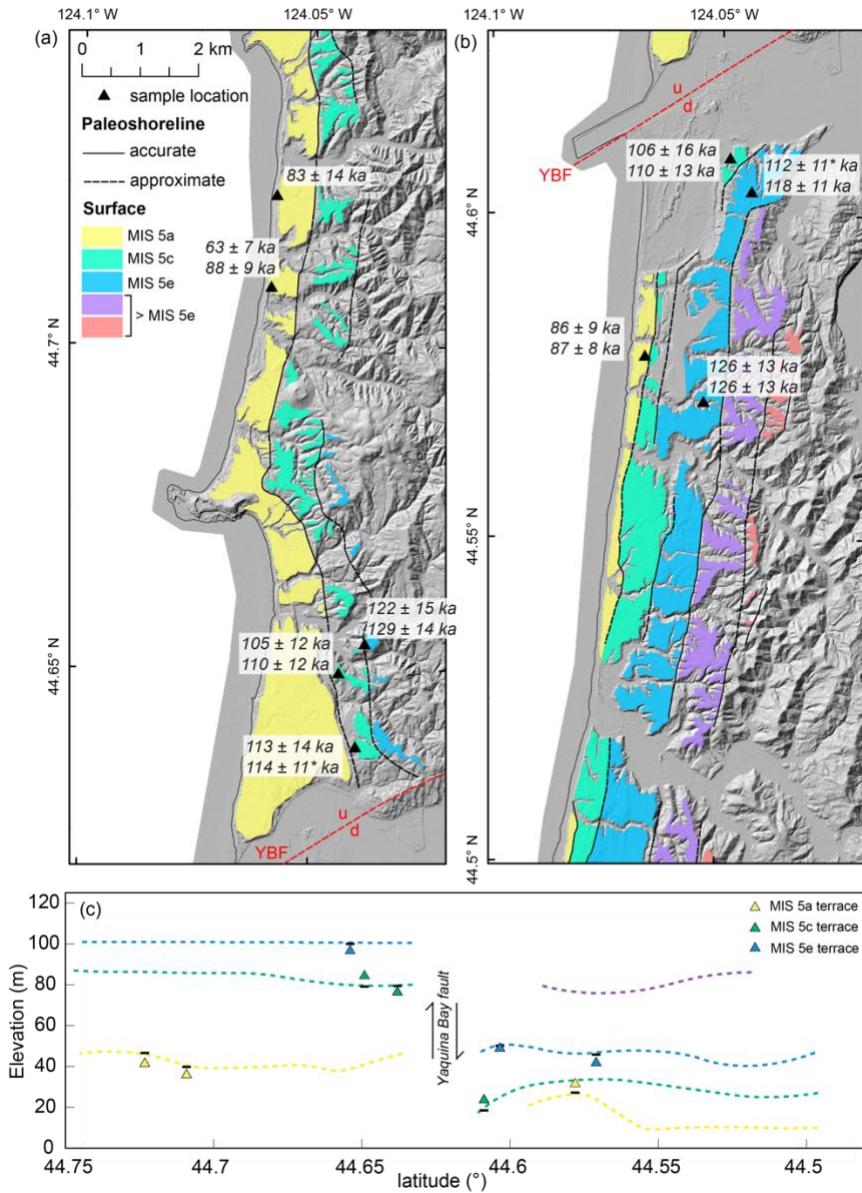


Figure 6: Terrace surface map showing the luminescence ages at each sample site. (a) North of Yaquina Bay. (b) South of Yaquina Bay. Surfaces are color-coded and assigned a marine isotope stage based on the luminescence age determinations: yellow = MIS 5a; green = MIS 5c; blue = MIS 5e; purple and red are undated but are inferred to be older than MIS 5e based on their elevation. (c) Age-Latitude plot showing the elevation of samples with latitude, colored by their assigned surface age. Dashed lines are the approximated elevations of the paleo-shoreline angles, colored by the respective surface they correspond to. Black bars are the locations of the paleo-shoreline angles at the latitude of the sample sites (shown as triangles). *indicates IRSL age in (a) and (b).

420 **Table 2: Table of terrace geomorphic characteristics (paleoshoreline height and cover**
 421 **sediment thickness).**

Terrace	North of Yaquina Bay	South of Yaquina Bay	Cover Sediment Thickness [†] (m)		
	Paleoshoreline height (m)	Paleoshoreline height (m)	Average minimum	Average maximum	Subtracted thickness
MIS 5a	38-52	8-22	5.2	13.9	10 ± 5
MIS 5c	78-94	17-35	6.6	21.8	14 ± 8
MIS 5e	100-105*	37-55	6.8	22.0	14 ± 8

*Measured from the mapped paleo-shoreline elevations (Figure 8) in Kelsey et al. (1996)

[†]Determined from the averages given in Padgett et al. (2019) for southern Oregon and northern California (references therein) with the incorporation of cover sediment thicknesses for terraces in central Oregon given in Kelsey et al. (1996)

N/A = not mapped in this location

422

423 5.1.2 Paleo-Sea Level Values

424 Various studies have determined local and global (eustatic) paleo-sea level highstand elevations
 425 for MIS 5e, MIS 5c and MIS 5a (e.g., Chappell and Shackleton, 1986; Muhs et al., 1990; Muhs,
 426 1992; Muhs et al., 1992; Muhs et al., 2012; Creveling et al., 2015; Simms et al. 2016; Creveling
 427 et al., 2017; Table S3). These estimates are derived from sites inferred to be subject to limited
 428 Earth deformation (e.g., Chappell and Shackleton, 1986, Muhs et al., 1992) or corrected for
 429 changes in surface elevation associated with glacial isostatic adjustment (GIA) (e.g., Creveling et
 430 al. 2015, 2017; Simms et al., 2016). Many highstand estimates derived from field observations
 431 are from far-field localities (relative to North America) and so do not include local GIA effects
 432 that are particularly important at high latitudes. In contrast, local highstand values determined
 433 using GIA-models depend on a variety of factors, including the ice extent, both during the
 434 interstadial period and during preceding colder periods, the location of the peripheral bulge
 435 relative to the coastline, and the upper and lower mantle viscosity structure (Creveling et al.
 436 2015, 2017). In several locations (including at Newport, Oregon), local GIA-corrected highstand
 437 elevations for MIS 5a, 5c and 5e conflict with highstand estimates from sea level models that do
 438 not incorporate GIA corrections (Creveling et al., 2017; Creveling et al. 2015; Simms et al.,
 439 2016; Muhs et al. 2021).

440 We test whether the long-term average and interval-specific uplift rates vary significantly
 441 depending on the highstand elevation chosen for MIS 5c and 5a (Table S4). We test far-field
 442 estimates of paleo sea-level highstands, estimates for North America (not corrected for GIA),

443 and local GIA-corrected modeled values (Table S4). We find that although there are minor
444 differences in the uplift rate estimates during specific time intervals when different MIS 5c and
445 5a highstand values are used, the trends from one time interval to another do not change.
446 Specifically, by employing these sensitivity tests, we find that even by minimizing the difference
447 in highstand elevation between MIS 5e, 5c, and 5a (Figure S4), terrace elevations still require an
448 increase in uplift rate in the block north of Yaquina Bay (Figure 7), implying significant
449 differential displacement across the Yaquina Bay fault post-MIS 5c (Figure 6; Table S4). For the
450 remainder of this manuscript, we present uplift rates based on local GIA-corrected highstand
451 values of $-9 \text{ m} \pm 5 \text{ m}$ and $-15 \text{ m} \pm 5 \text{ m}$ for MIS 5c and MIS 5a respectively (Creveling et al.,
452 2017, to the nearest meter), and $+9.5 \text{ m} \pm 8.5 \text{ m}$ for MIS 5e (Creveling et al., 2015; S.
453 Thompson, *personal communication*). We assign an uncertainty of $\pm 5 \text{ m}$ to the MIS 5a and MIS
454 5c values, comparable to the uncertainties for local MIS 5c and MIS 5a estimates (Creveling et
455 al., 2017).

456

457 5.2 Uplift Rate Calculation

458 We calculated the average long-term uplift rate north and south of Yaquina Bay for each
459 marine terrace by dividing the uplift amount (the difference between the modern elevation of the
460 paleoshoreline angle and the paleo-sea level highstand elevation relative to modern sea level) by
461 the assigned paleo-highstand age at MIS 5a (84 ka), 5c (106 ka) and 5e (125 ka) (Shackleton and
462 Opdyke, 1973; Chappell and Shackleton, 1986; Simms et al., 2016), yielding an estimate of the
463 average uplift rate from each paleo-sea level highstand to the present. We then calculated
464 interval uplift rates between each paleo-sea level highstand, (e.g., the uplift rate for 19 kyrs
465 between 125 ka (MIS 5e) and 106 ka (MIS 5c)) for each adjacent terrace pair north and south of
466 the bay using (2):

467

$$468 U_i = \frac{(E_{s1} - E_{h1}) - (E_{s2} - E_{h2})}{A_{h1} - A_{h2}} \quad (2)$$

469

470 Where U_i = interval uplift rate; E_s = elevation of shoreline angle; E_h = paleo-highstand
471 elevation; A_h = highstand age; and, 1 and 2 refer to the older and younger terrace platforms
472 respectively. E_s and E_h are both relative to present-day sea level.

473

474 *5.3 Long-term Uplift Rates and Differential Uplift across Yaquina Bay*

475 5.3.1 Average Uplift Rates

476 Using the height for each paleoshoreline angle (Table 2) we calculated average coastal
477 uplift rates (from the paleo-sea level highstand time to the present) for the terraces north of
478 Yaquina Bay of 0.7 ± 0.1 m/kyr, 0.9 ± 0.1 m/kyr, and 0.7 ± 0.1 m/kyr for the MIS 5e, 5c and 5a
479 terrace platforms respectively (Table 3). These values are at the higher end of previous uplift rate
480 estimates of 0.5-0.8 m/kyr in this location (Kelsey et al., 1996). South of the bay, average uplift
481 rates from the same terrace sequence are significantly lower at 0.3-0.4 m/kyr for all terrace
482 platforms (Table 3, Figure 7). Our uplift rate estimates from terraces south of Yaquina Bay are
483 consistent with those determined by Kelsey et al., (1996) (0.1-0.4 m/kyr). The average uplift
484 rates since the late Pleistocene north of Yaquina Bay are approximately two times the average
485 uplift rates south of Yaquina Bay. This differential uplift across Yaquina Bay is indicative of
486 faulting within the bay (along the Yaquina Bay fault) at an average vertical slip rate of 0.5 ± 0.1
487 m/kyr (Figure 7).

488

489 5.3.2 Interval Uplift Rates

490 The elevation differences between the MIS 5e and MIS 5c (125-106 ka) terraces north
491 and south of Yaquina Bay are primarily a result of differences in the highstand elevations. There
492 is little additional uplift between MIS 5e and MIS 5c, yielding uplift rates that are near zero (-0.1
493 ± 0.7 m/kyr and 0.1 ± 0.8 m/kyr north and south of the bay respectively (Table 3, Figure 7)).
494 However, between MIS 5c and MIS 5a (106-84 ka), uplift rates increase to 1.6 ± 0.6 m/kyr north
495 of, and 0.2 ± 0.6 m/kyr south of the bay (Table 3, Figure 7), implying a vertical slip rate of ~ 1.4
496 ± 0.8 m/kyr along the Yaquina Bay fault during this time interval. From MIS 5a (84 ka) to the
497 present uplift rates are 0.7 ± 0.1 m/kyr north, and 0.4 ± 0.1 m/kyr south of the bay (Table 3,
498 Figure 7), implying a lower, but still significant, vertical slip rate of 0.3 ± 0.1 m/kyr along the
499 Yaquina Bay fault over the last ~ 84 kyr.

500

501

502

503

504

Table 3: Average Uplift Rates and Interval Uplift rates north and south of Yaquina Bay

Assigned Age (A _h) (ka)	Paleo-shoreline height (E _s) (m)	High-stand elevation (E _h) (m)	Surface uplift (m)	Uplift rate to present (m/kyr)	Surface uplift during interval (m)	Time Interval (kyrs)	Interval uplift rate (U _i) (m/kyr)
<i>North of Bay</i>							
<i>Surface 1n (MIS 5a)</i>							
84	45 ± 7	-15 ± 5	60 ± 9	0.7 ± 0.1	60 ± 8 (Interval=0-84 ka)	84	0.7 ± 0.1
<i>Surface 2n (MIS 5c)</i>							
106	86 ± 8	-9 ± 5	95 ± 9	0.9 ± 0.1	35 ± 13 (Interval=84-106 ka)	22	1.6 ± 0.6
<i>Surface 3n (MIS 5e)</i>							
125	103 ± 3	+9.5 ± 8.5	93.5 ± 9	0.7 ± 0.1	-1.5 ± 13 (Interval=106-125 ka)	19	-0.1 ± 0.7
<i>South of Bay</i>							
<i>Surface 1s (MIS 5a)</i>							
84	15 ± 7	-15 ± 5	30 ± 8	0.4 ± 0.1	30 ± 8 (Interval=0-84 ka)	84	0.4 ± 0.1
<i>Surface 2s (MIS 5c)</i>							
106	26 ± 9	-9 ± 5	35 ± 10	0.3 ± 0.1	5 ± 13 (Interval=84-106 ka)	22	0.2 ± 0.6
<i>Surface 3s (MIS 5e)</i>							
125	46 ± 9	+9.5 ± 8.5	36.5 ± 12	0.3 ± 0.1	1.5 ± 16 (Interval=106-125 ka)	19	0.1 ± 0.8
Errors reported for uplift rates incorporate errors in shoreline angle elevation, cover sediment thickness and paleo-sealevel highstand elevation.							

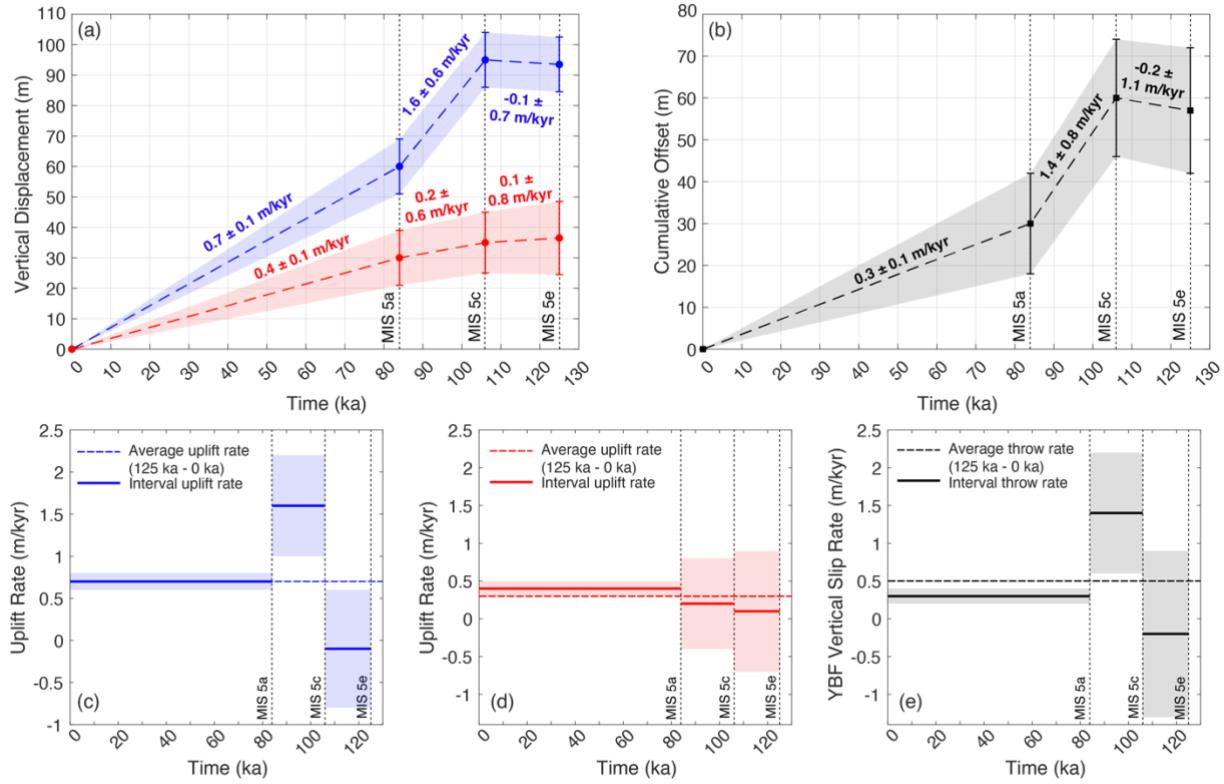


Figure 7: (a) Vertical displacement over the last 125 kyrs. Vertical displacement rates during each time interval are given by the slope of the line. (a)-(b) The shaded region shows the range of vertical displacements for each interval (see Table 3). Blue = north of Yaquina Bay, red = south of Yaquina Bay. (b) Cumulative vertical fault offset over the last 125 kyrs. The slope of the line gives the vertical slip rate over time. (c) Crustal uplift rates through time north of Yaquina Bay. (d) Crustal uplift rates through time south of Yaquina Bay. (e) Differential Uplift (associated with vertical slip along the Yaquina Bay fault (YBF)). (c)-(e) The shaded regions show the error associated with the crustal uplift and slip rates for each time interval (see Table 3). (a)-(e) Dashed black lines indicate the timing of MIS 5e, MIS 5c and MIS 5a.

507 **6. Discussion**

508

509 *6.1 Faulting at Yaquina Bay*

510 The north-side-up offset of the observed MIS 5 terraces across Yaquina Bay (Figures 6
 511 and 7) requires slip since the late Pleistocene on the Yaquina Bay fault, as inferred by Kelsey et
 512 al. (1996). Because the MIS 5e and MIS 5c terraces are offset by approximately the same amount
 513 (~55-60 m) across Yaquina Bay, this suggests that there was little to no fault movement between

514 125 ka to 106 ka. This is consistent with the uplift rate results for this time interval (Table 3,
515 Figure 7), which suggest the majority of the separation between these terraces (MIS 5e and MIS
516 5c) was due to changes in eustatic sea level with little additional uplift related to tectonic activity
517 (Figure 7). In contrast, the MIS 5a terrace is displaced vertically by ~30 m and the MIS 5c
518 terrace is displaced vertically by ~60 m across the bay (Figure 6, Table 3), implying differential
519 motion of at least 0.6 ± 0.1 m/kyr on the Yaquina Bay fault since MIS 5c (~106 ka), in
520 agreement with average throw rates for the fault estimated by Kelsey et al. (1996). Although the
521 long-term displacement rate from MIS 5c to present is 0.6 ± 0.1 m/kyr, the differences in terrace
522 elevation require greater throw rates (1.4 ± 0.8 m/kyr) in the time interval between 106 – 84 ka,
523 reduced throw rates (0.3 ± 0.1 m/kyr) from 84 ka to present, and little to no displacement
524 between 125 – 106 ka (Figure 7). Our results confirm that the Yaquina Bay fault has been active
525 during the late Pleistocene, and it also appears that the fault has experienced significant
526 variations in displacement over the last 125 kyrs, and that a significant amount of displacement
527 accrued during a relatively short time period post-106 ka.

528

529 *6.2 Variable Uplift and Slip Rates at Yaquina Bay*

530 Sea level was ~18 m higher during MIS 5e compared to MIS 5c, and the MIS 5e and the
531 MIS 5c paleo-shorelines are separated by ~17 m and 20 m north and south of the bay
532 respectively (Table 3). Thus, most of the separation between the MIS 5e and MIS 5c terraces can
533 be explained by sea level changes. The uplift rates of -0.1 ± 0.7 m/kyr and 0.1 ± 0.8 m/kyr
534 calculated during this time interval (Table 3, Figure 7) are similar, within error, to other long-
535 term uplift rates calculated along the Cascadia subduction zone, away from active upper-plate
536 structures (e.g., Kelsey et al., 1994) (Figure 8). This suggests that the uplift over this time
537 interval may be reflective of broader-scale uplift processes across the Cascadia margin, and not
538 solely from local faulting at Yaquina Bay. Following MIS 5c, however, uplift north of Yaquina
539 Bay was significantly higher in the ~20 kyr period between MIS 5c and MIS 5a – increasing
540 from -0.1 ± 0.7 m/kyr to 1.6 ± 0.6 m/kyr (Figure 7). This is consistent with a differential uplift
541 rate of ~1.4 m/kyr across the bay during this time interval, suggestive of relatively rapid slip
542 along the Yaquina Bay fault between 106 ka to 84 ka. The MIS 5a to present time interval is 84
543 kyrs and significantly longer than the ~20 kyr intervals between MIS 5e and 5c and MIS 5c and
544 5a. Since we find highly variable uplift rates over time intervals of ~20 kyrs prior to 84 ka, it is

545 possible that the uplift rate and thus slip rate on the Yaquina Bay fault has also varied
546 significantly over the last 84 kyr, but no records (i.e., younger terraces) of this are preserved in
547 this location.

548

549 *6.3 Other Examples of Variable Uplift Along the Cascadia Margin and Beyond*

550 Time-variable uplift also appears to characterize some terrace records in southern
551 Cascadia, in the vicinity of Cape Ferrelo. Here, Kelsey and Bockheim (1994) determined long-
552 term uplift rates for MIS 5a, 5c and 5e terraces exposed along a coastal segment between the
553 Whaleshead fault zone and Chetco River Fault. Using equation (2), interval-specific uplift rates
554 here (Table S5) appear to require an increase in uplift post-MIS 5c; the separation between the
555 MIS 5c and MIS 5e terraces can be accounted for solely by changes in eustatic sea level (within
556 the uncertainty of ± 6 , reflecting both paleo-sea level highstand and elevation uncertainties). This
557 implies there was little to no coastal uplift between MIS 5e and 5c in this location. The post-MIS
558 5c increase in uplift rate observed at Yaquina Bay and Cape Ferrelo may suggest an increase in
559 fault slip rate along upper-plate faults in these regions, separated by ~ 300 km along the Cascadia
560 margin. Although speculative, if these reflect coordinated changes in slip rate along upper-plate
561 structures, there may be a broader-scale tectonic driver responsible for this increase in fault slip
562 rates.

563 Variable uplift along the Oregon coast has also been interpreted at Cape Blanco (Kelsey,
564 1990). In this case, active anticlinal folding, has led to the uplift and preservation of MIS 5a, 5c,
565 5e and older terraces above present-day sea level. Here, a terrace platform contains marine
566 sediment associated with three distinct sea level highstand periods (MIS 5e, 5c and 5a). Kelsey
567 (1990) concluded that for this terrace geometry to be preserved, variable uplift over the last 125
568 kyr is required, with an increase in uplift post-MIS 5c.

569 Variable uplift of marine terraces has also been documented in other subduction locations
570 globally. For example, Yildirim et al. (2013) ascribed non-steady uplift since ca. 570 ka at the
571 Sinop Peninsula, northern margin of the Central Anatolian Plateau, to a temporally variable
572 faulting history in the region. Additionally, Saillard et al. (2009), document time-varying uplift

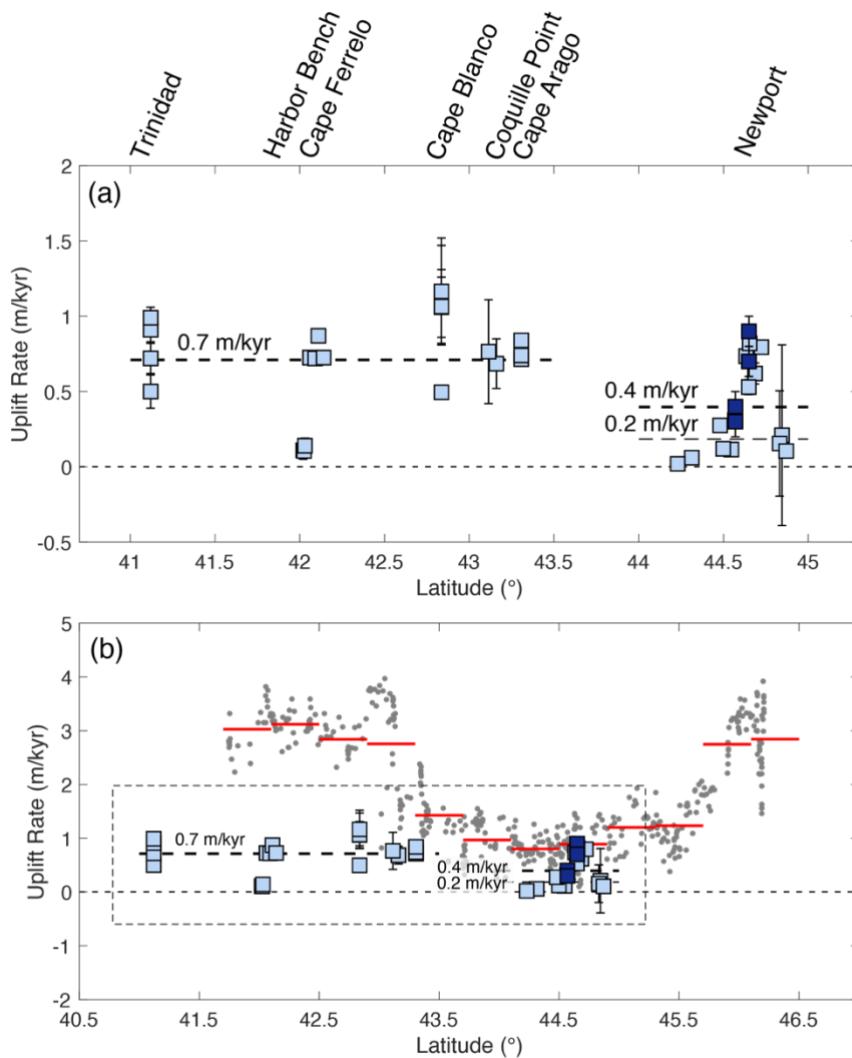


Figure 8: Geodetic and long-term uplift rates along the Cascadia margin. (a) Marine terrace uplift rates (light blue) along the Cascadia margin (Kelsey and Bockheim, 1994; Padgett et al., 2019; Kelsey, 1990; McInelly and Kelsey, 1990; Muhs et al., 1990; Kelsey et al., 1996; this study). The dark blue squares are the uplift rates from this study. Dashed lines show the average uplift rates from 41 °N to 43.5 °N and 44 °N to 45 °N. North of 44 °N the lower dashed line shows the average uplift excluding data north of Yaquina Bay where a coastal structural block from 44.6 °N to 44.8 °N has uplift rates > 0.5 m/kyr. (b) Compilation bench mark leveling uplift rates (grey circles, Burgette et al., 2009) and long-term coastal uplift rates from marine terraces (shown in (a)). The black box is the location of (a). Dashed lines through the marine terrace data are the same as in (a). The horizontal solid red lines through the geodetic data show the average geodetic uplift rate value over 0.4° latitudinal intervals.

574 rates along the Chilean margin, and suggest broader transient subduction-related processes, such
575 as subduction erosion and/or sediment underplating, are responsible for this variable uplift.

576

577 *6.4 Long-term versus Geodetic Uplift*

578 Present-day coastal geodetic uplift rates derived from tidal and leveling data from \sim 43.5
579 $^{\circ}$ N – 46 $^{\circ}$ N are relatively low, typically < 1.5 m/kyr. In comparison coastal geodetic uplift rates
580 further south (\sim 41.5 $^{\circ}$ N – 43.5 $^{\circ}$ N) are on average \sim 3 m/kyr (Figure 8) (Burgette et al., 2009).
581 Elevated geodetic uplift rates in southern Cascadia have been attributed to a variety of tectonic
582 processes, including transitions in upper-plate strength (McKenzie et al., 2022), sediment
583 underplating (Delph et al., 2021), and aestheospheric buoyancy (Bodmer et al., 2020). Similarly,
584 long-term uplift rates from marine terrace platforms are slightly higher between 41 $^{\circ}$ N – 43.5 $^{\circ}$ N
585 (\sim 0.7 m/kyr) than farther north from \sim 43.5 $^{\circ}$ N – 45 $^{\circ}$ N (\sim 0.4 m/kyr) (Kelsey et al., 1994) (Figure
586 8). However, these long-term uplift rates of 0.7 m/kyr and 0.4 m/kyr likely encompass variations
587 in uplift rate associated with Quaternary faulting. For example, excluding the high uplift rates in
588 the fault-bounded block from 44.6 $^{\circ}$ N to 44.8 $^{\circ}$ N (north of Yaquina Bay) implies that the average
589 uplift rate from \sim 43.5 $^{\circ}$ N – 45 $^{\circ}$ N would have been \sim 0.1 – 0.2 m/kyr (Figure 8). Similarly, south
590 of 43.5 $^{\circ}$ N the average long-term uplift rate decreases to \sim 0.2 – 0.3 m/kyr when the effects of
591 faulting are removed, as shown in Kelsey et al. (1994). This uplift (away from upper-plate
592 structures) comprises \sim 10-20% and \sim 5-10% of the geodetic signal in central (\sim 43.5 $^{\circ}$ N – 45 $^{\circ}$ N)
593 and southern (\sim 41.5 $^{\circ}$ N – 43.5 $^{\circ}$ N) Cascadia respectively (Figure 8). This suggests a relatively
594 large, and measurable, fraction of the uplift recorded geodetically (over 10s years) is maintained
595 in the geologic record and recorded by the long-term (100,000-to-200,000 year) uplift of marine
596 terrace platforms.

597 The relative role that upper-plate faults (such as the Yaquina Bay fault) play in generating
598 variations in long-term coastal uplift is still an open question, and in Cascadia, the marine
599 terraces documented in the literature are situated on prominent headlands that host higher than
600 average uplift rates. For example, Point St. George in the hanging wall of the Saint George fault
601 (Polenz and Kelsey, 1999), Trinidad headlands coastal reach (Padgett et al., 2019), Cape Ferrelo,
602 (Kelsey and Bockheim, 1994), Cape Blanco (Kelsey, 1990), Cape Arago (McInelly and Kelsey,
603 1990, and the uplifted coastal block bounded by the Yaquina Bay fault on the south and the Cape
604 Foulweather fault on the north (Kelsey et al., 1996) are all situated on blocks bound by upper-

605 plate faults. Observations from recent megathrust earthquakes suggest that displacement along
606 such upper-plate structures may be linked to co-seismic slip on the subduction megathrust (Bai et
607 al., 2017; Duputel and Rivera, 2017; Furlong and Herman, 2017). For example, co-seismic slip
608 on upper-plate faults has been observed prior to (foreshocks), following (aftershocks) and
609 coincident with megathrust ruptures across subduction zones globally including the 2011 Mw 7.1
610 Aracaunia megathrust event in Chile (Hicks and Rietbrock, 2015); the 2014 Mw 8.1 Pisagua
611 megathrust event in southern Peru-northern Chile (González et al., 2015), and the 2016 Mw 7.8
612 Kaikoura megathrust event in New Zealand (Furlong and Herman, 2017). Many of these upper-
613 plate faults are thought to extend to the subduction interface, and in the Kaikoura case,
614 experienced high amounts of slip (exceeding 10 m in places) (Hamling et al., 2017; Furlong and
615 Herman, 2017; Wang et al., 2018). Additionally, during the Kaikoura event 0.6 m – 4.8 m of
616 coastal uplift was recorded within several upper-plate fault-bounded blocks (Hamling et al.,
617 2017). These observations across subduction zones globally highlight the role of co-seismic
618 upper-plate faulting in generating uplift of fault-bounded blocks along the coastline. However,
619 how these faults behave inter-seismically and how other subduction processes (subduction
620 coupling, post-seismic deformation etc.) generate long-term deformation and contribute to
621 coastal uplift remains poorly understood. We have shown that improved records of marine
622 terrace ages have the potential to start to place constraints on the accumulation of subduction
623 zone upper-plate permanent strain.

624

625 **7. Conclusions**

626

627 We present the first OSL and IRSL ages for marine terrace sand deposits along the
628 Cascadia margin. These ages, in conjunction with our mapping of terrace surfaces show that each
629 of the three MIS 5 marine terraces (5a, 5c and 5e) are exposed at either side of the bay. These
630 terraces have been offset by up to ~60 m across the bay, requiring the presence of an active
631 trench-perpendicular fault within Yaquina Bay, as previously proposed by Kelsey et al. (1996).
632 The relative height of paleoshoreline angles associated with these terrace platforms suggest that
633 this fault accommodates time-variable displacement of the northern block, relative to the
634 southern block, over the past ~125ka. In particular, the uplift rate north of Yaquina Bay between
635 84-106 ka is 1.6 m/kyr, significantly higher than the uplift rate south of Yaquina Bay during this

636 time interval (0.2 m/kyr). This difference in uplift rate across Yaquina Bay implies that the throw
637 rate along the Yaquina Bay fault exceeded ~1 m/kyr during this period (84-106 ka), likely
638 reflecting a series of large-displacement events clustered along this upper-plate fault.

639

640 **Acknowledgements**

641

642 This work was funded under National Science Foundation Grants EAR-1758463 (awarded to
643 EK) and EAR-1757581 (awarded to KPF). The geochronology analyses were funded by an
644 AGeS2 research grant awarded to KAM (based upon work supported by the National Science
645 Foundation under Grants EAR-1759200 and EAR-1759353).

646 We thank Katherine Worms for providing field assistance during sample collection and
647 those at the Utah State University Luminescence Laboratory for their help in sample preparation
648 and analyses. We thank Schmitty Thompson and Jessica Creveling for providing us with a GIA-
649 corrected (modeled) MIS 5e highstand value for Newport, OR. We thank the editor and two
650 anonymous reviewers for their comments, that have helped us in improving the manuscript.

651

652 **References**

653

654 Adams, J. (1984). Active Deformation of the Pacific Northwest Continental Margin. *Tectonics*,
655 3(4), 449-472

656 Aitken, M.J. (1998). An Introduction to Optical Dating: The dating of Quaternary sediments by
657 the Use of photon-stimulated luminescence. Oxford University Press, Oxford, New York,
658 Tokyo. <https://doi.org/10.1017/S0016756899551777>

659 Aitken, M.J., Xie, J. (1990). Moisture correction for annual gamma dose. *Ancient TL*, 8(2), 6-9

660 Atwater, B.F. (1987) Evidence for Great Holocene Earthquakes Along the Outer Coast of
661 Washington State. *Science*, 236(4804), 942-944.
662 <https://doi.org/10.1126/science.236.4804.942>

663 Atwater, B.F., Hemphill-Haley, E. (1997). Recurrence Intervals for Great Earthquakes of the
664 Past 3,500 Years at Northeastern Willapa Bay, Washington. *U.S. Geological Survey
665 Professional Paper 1576*. <https://doi.org/10.3133/pp1576>

666 Atwater, B.F., Stuiver, M., Yamaguchi, D.K. (1991). Radiocarbon test of earthquake magnitude
667 at the Cascadia subduction zone. *Nature*, 353, 156-158. <https://doi.org/10.1038/353156a0>

668 Auclair, M., Lamothe, M., Huot, S. (2003). Measurement of anomalous fading for feldspar IRSL
669 using SAR. *Radiation Measurements*, 37(405), 487-492. <https://doi.org/10.1016/S1350->
670 4487(03)00018-0

671 Bai, Y., Lay, T.L., Cheung, K.F., Ye, L. (2017). Two regions of seafloor deformation generated
672 the tsunami for the 13 November 2016, Kaikoura, New Zealand earthquake. *Geophysical*
673 *Research Letters*, 44(13), 6597-6606. <https://doi.org/10.1002/2017GL073717>

674 Bloom, A.L., Broecker, W.S., Chappell, J.M.A., Matthews, R.K., Mesolella, K.J. (1974).
675 Quaternary Sea Level Fluctuations on a Tectonic coast: New $^{230}\text{Th}/^{234}\text{U}$ Dates from the
676 Huon Peninsula, New Guinea. *Quaternary Research*, 4(2), 185-205.
677 [https://doi.org/10.1016/0033-5894\(74\)90007-6](https://doi.org/10.1016/0033-5894(74)90007-6)

678 Bradley, W.C., Griggs, G.B. (1976). Form, genesis, and deformation of central California wave-
679 cut platforms. *GSA Bulletin*, 87(3), 433-449. <https://doi.org/10.1130/0016->
680 7606(1976)87<433:FGADOC>2.0.CO;2

681 Bodmer, M., Toomey, D.R., VanderBeek, B., Hooft, E.E., Byrnes, J.S. (2020). Body Wave
682 Tomography of the Cascadia Subduction Zone and Juan de Fuca Plate System:
683 Identifying Challenges and Solutions for Shore-Crossing Data. *Geochemistry,*
684 *Geophysics, Geosystems*, 21(12). <https://doi.org/10.1029/2020GC009316>

685 Bowles, C.J., Cowgill, E. (2012). Discovering marine terraces using airborne LiDAR along the
686 Mendocino-Sonoma coast, northern California. *Geosphere*, 8(2), 386-402.
687 <https://doi.org/10.1130/GEOS00702.1>

688 Burgette, R.J., Weldon II, R.J., Schmidt, D.A. (2009). Interseismic uplift rates for western
689 Oregon and along-strike variation in locking on the Cascadia subduction zone. *Journal of*
690 *Geophysical Research: Solid Earth*, 114 (B1), 1-24.
691 <https://doi.org/10.1029/2008JB005679>

692 Clague, J.J., Bobrowsky, P.T., Hutchinson, I. (2000). A review of geological records of large
693 tsunamis at Vancouver Island, British Columbia, and implications for hazard. *Quaternary*
694 *Science Reviews*, 19, 849-863. [https://doi.org/10.1016/S0277-3791\(99\)00101-8](https://doi.org/10.1016/S0277-3791(99)00101-8)

695 Chappell, J. Shackleton, N.J. (1986). Oxygen isotopes and sea level. *Nature*, 324, 137-140.
696 <https://doi.org/10.1038/324137a0>

697 Creveling, J.R., Mitrovica, J.X., Hay, C.C., Austermann, J., Kopp, R.E. (2015). Revisiting
698 tectonic corrections applied to Pleistocene sea-level highstands. *Quaternary Science*
699 *Reviews*, 111, 72-80. <https://doi.org/10.1016/j.quascirev.2015.01.003>

700 Creveling, J.R., Mitrovica, J.X., Clark, P.U., Waelbroeck, C., Pico, T. (2017). Predicted bounds
701 on peak global mean sea level during marine isotope stage 5a and 5c. *Quaternary Science*
702 *Reviews*, 163, 193-208. <https://doi.org/10.1016/j.quascirev.2017.03.003>

703 Delph J.R., Thomas A.M., Levander A. (2021). Subcretionary tectonics: Linking variability in
704 the expression of subduction along the Cascadia forearc. *EPSL*, 556, 116724
705 <https://doi.org/10.1016/j.epsl.2020.116724>

706 Duputel, Z., Rivera, L. (2017). Long-period analysis of the 2016 Kaikoura earthquake. *Physics*
707 *of the Earth and Planetary Interiors*, 265, 62-66.
708 <https://doi.org/10.1016/j.pepi.2017.02.004>

709 Frankel, K.L., Dolan, J.F. (2007). Characterizing arid region alluvial fan surface roughness with
710 airborne laser swath mapping digital topographic data. *JGR: Earth Surface*, 112(F02025).
711 <https://doi.org/10.1029/2006JF000644>

712 Furlong, K.P., Herman, M. (2017). Reconciling the deformational dichotomy of the 2016 M_w 7.8
713 Kaikoura New Zealand earthquake. *Geophysical Research Letters*, 44(13), 6788-6791.
714 <https://doi.org/10.1002/2017GL074365>

715 Galbraith, R.F., Roberts, R.G. (2012). Statistical aspects of equivalent dose and error calculation
716 and display in OSL dating: An overview and some recommendations. *Quaternary*
717 *Geochronology*, 11, 1-27. <https://doi.org/10.1016/j.quageo.2012.04.020>

718 Gallen, S.F., Wegmann, K.W., Bohnenstiehl, D.R., Pazzaglia, F.J., Brandon, M.T., Fassoulas, C.
719 (2014). Active simultaneous uplift and margin-normal extension in a forearc high, Crete,
720 Greece. *Earth and Planetary Science Letters*, 398, 11-24.
721 <https://doi.org/10.1016/j.epsl.2014.04.038>

722 Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E.B.,
723 Gutiérrez-Pastor, J., Eriksson, A.T., Gracia, E., Dunhill, G., Enkin, R.J., Dallimore, A.,
724 Vallier, T. (2012). Turbidite event history – Methods and implications of Holocene
725 paleoseismicity of the Cascadia subduction zones: *U.S. Geological Survey Professional*
726 *Paper* 1661-F, 170 p. <https://doi.org/10.3133/pp1661F>

727 González, G., Salazar, P., Loveless, J.P., Allmendinger, R.W., Aron, F., Shrivastava, M. (2015).
728 Upper plate reverse fault reactivation and the unclamping of the megathrust during the
729 2014 northern Chile earthquake sequence. *Geology*, 43(8), 671-674.
730 <https://doi.org/10.1130/G36703.1>

731 Govers, R., Furlong, K.P., van de Wiel, L., Herman, M.W., Broerse, T. (2017). The Geodetic
732 Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep
733 Processes. *Reviews of Geophysics*, 56(1), 6-49. <https://doi.org/10.1002/2017RG000586>

734 Griggs, A.B. (1945). Chromite-bearing sands of the southern part of the coast of Oregon. USGS
735 Bulletin 945-E. <https://doi.org/10.3133/b945E>

736 Guérin, G., Mercier, N., Adamiec, G. (2011). Dose-rate conversion factors: update. *Ancient TL*,
737 29, 5-8

738 Hamling, I.J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang C., Fielding, E., Litchfield, N.,
739 Villamor, P., Wallace, L., Wright, T.J., D'Anastasio E., Bannister, S., Burbidge, D.,
740 Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., Power, W.,
741 Barnes, P., Barrell, D.J.A., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga,
742 J., Rowland, J., Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8
743 Kaikōura earthquake, New Zealand. *Science*, 356(6334).
744 <https://doi.org/10.1126/science.aam7194>

745 Hawkes, A.D., Horton, B.P., Nelson, A.R., Vane, C.H., Sawai, Y. (2011). Coastal subsidence in
746 Oregon, USA, during the giant Cascadia earthquake of AD 1700. *Quaternary Science*
747 Reviews

748 30(3-4), 364-376. <https://doi.org/10.1016/j.quascirev.2010.11.017>

749 Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological
750 Survey data release. <https://doi.org/10.5066/F7PV6JNV>

751 Hicks, S.P., Rietbrock, A. (2015). Seismic slip on an upper-plate normal fault during a large
752 subduction megathrust rupture. *Nature*, 52, 955-960. <https://doi.org/10.1038/ngeo2585>

753 Huntley, D.J., Baril, M.R. (1997). The K content of the K-feldspars being measured in optical
754 dating or in thermoluminescence dating. *Ancient TL*, 15(1), 11-13

755 Huntley, D.J., Hancock, R.G.V. (2001). The Rb contents of the K-feldspar grains being
756 measured in optical dating. *Ancient TL*, 19(2), 43-46

756 Huntley, D.J., Lamothe, M. (2001). Ubiquity of anomalous fading in K-feldspars and correction
757 for it in optical dating. Canadian Journal of Earth Sciences, 38(7).

758 <https://doi.org/10.1149/e01-013>

759 Hsu, J.T. (1992). Quaternary uplift of the peruvian coast related to subduction of the Nazca
760 Ridge: 13.5 to 15.6 degrees south latitude. Quaternary International, 15-16, 87-97.

761 [https://doi.org/10.1016/1040-6182\(92\)90038-4](https://doi.org/10.1016/1040-6182(92)90038-4)

762 Jacobs, Z. (2008). Luminescence chronologies for coastal and marine sediments. Boreas, 37(4),
763 508-535. <https://doi.org/10.1111/j.1502-3885.2008.00054.x>

764 Kelsey, H.M. (1990). Late Quaternary Deformation of Marine Terraces on the Cascadia
765 Subduction Zone near Cape Blanco, Oregon. Tectonics, 9(5), 983-1014.

766 <https://doi.org/10.1029/TC009i005p00983>

767 Kelsey, H.M., Bockheim, J.G. (1994). Coastal landscape evolution as a function of eustasy and
768 surface uplift rate, Cascadia margin, southern Oregon. GSA Bulletin, 106(6), 840-854.

769 [https://doi.org/10.1130/0016-7606\(1994\)106<0840:CLEAAF>2.3.CO;2](https://doi.org/10.1130/0016-7606(1994)106<0840:CLEAAF>2.3.CO;2)

770 Kelsey, H.M., Engebretson, D.C., Mitchell, C.E., Ticknor, R.L. (1994). Topographic Form of the
771 Coast Ranges of the Cascadia margin in relation to coastal uplift rates and plate
772 subduction. Journal of Geophysical Research, 99(B6), 12245-12255.

773 <https://doi.org/10.1029/93JB03236>

774 Kelsey, H.M., Ticknor, R.L., Bockheim, J.G., Mitchell, C.E. (1996). Quaternary upper plate
775 deformation in coastal Oregon. GSA Bulletin, 108(7), 843-860.

776 [https://doi.org/10.1130/0016-7606\(1996\)108<0843:QUPDIC>2.3.CO;2](https://doi.org/10.1130/0016-7606(1996)108<0843:QUPDIC>2.3.CO;2)

777 Kelsey, H.M., Witter, R.C., Hemphill-Haley, E., (2002). Plate-boundary earthquakes and
778 tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon. GSA Bulletin,
779 114(3), 298-314.

780 [https://doi.org/10.1130/0016-7606\(2002\)114<0298:PBEATO>2.0.CO;2](https://doi.org/10.1130/0016-7606(2002)114<0298:PBEATO>2.0.CO;2)

781 Kelsey, H.M., Nelson, A.R., Hemphill-Haley, E., Witter, R.C. (2005). Tsunami history of an
782 Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia
783 subduction zone. GSA Bulletin, 117(7-8), 1009-1032. <https://doi.org/10.1130/B25452.1>

784 Kennedy, G.L., Lajoie, K.R., Wehmiller, J.F. (1982). Aminostratigraphy and faunal correlations
785 of late Quaternary marine terraces, Pacific Coast, USA. Nature, 299, 545-547.

786 <https://doi.org/10.1038/299545a0>

787 Kobor, J.S., Roering, J.J. (2004). Systematic variation of bedrock channel gradients in the central
788 Oregon Coast Range: implications for rock uplift and shallow landsliding.
789 *Geomorphology*, 62(304), 239-256. <https://doi.org/10.1016/j.geomorph.2004.02.013>

790 Lajoie, K.R. (1986). Coastal tectonics *in* Active tectonics: Washington, D.C., National Academy
791 Press, p. 95-124.

792 Ludwin, R.S., Dennis, R., Carver, D., McMillan, A.D., Losey, R., Clague, J., Jonientz-Trisler,
793 C., Bowechop, J., Wray, J., James, K. (2005) Dating the 1700 Cascadia Earthquake:
794 Great Coastal Earthquake in Native Stories. *Seismological Research Letters*, 76(2), 140-
795 184. <https://doi.org/10.1785/gssrl.76.2.140>

796 Madsen, A.T. and Murray, A.S., 2009. Optically stimulated luminescence dating of young
797 sediments: A review. *Geomorphology*, 109(1-2), 3-16.
798 <https://doi.org/10.1016/j.geomorph.2008.08.020>

799 Matsu'ura, T. (2015). Late Quaternary uplift rate inferred from marine terraces, Muroto
800 Peninsula, southwest Japan: Forearc deformation in an oblique subduction zone.
801 *Geomorphology*, 234, 133-150. <https://doi.org/10.1016/j.geomorph.2015.01.012>

802 Mejdahl, V. (1979). Thermoluminescence dating: Beta-dose attenuation in quartz grains.
803 *Archaeometry*, 21, 61-72. <https://doi.org/10.1111/j.1475-4754.1979.tb00241.x>

804 Melnick, D., Bookhagen, B., Echtler, J.P., Strecker, M.R. (2006). Coastal deformation and great
805 subduction earthquakes, Isla Santa María, Chile (37°S). *GSA Bulletin*, 118(11-12), 1463-
806 1480. <https://doi.org/10.1130/B25865.1>

807 Meltzner, A.J., Sieh, K., Abrams, M., Agnew, D.C., Hudnut, K.W., Avouac, J-P., Natawidaja,
808 D.H. (2006). Uplift and subsidence associated with the great Aceh-Andaman earthquake
809 of 2004. *JGR: Solid Earth*, 111(B2). <https://doi.org/10.1029/2005JB003891>

810 Merritts, D., Bull, W.B. (1989). Interpreting Quaternary uplift rates at the Mendocino triple
811 junction, northern California, from uplifted marine terraces. *Geology*, 17(11), 1020-1024.
812 [https://doi.org/10.1130/0091-7613\(1989\)017<1020:IQURAT>2.3.CO;2](https://doi.org/10.1130/0091-7613(1989)017<1020:IQURAT>2.3.CO;2)

813 McInelly, G.W., Kelsey, H.M. (1990). Late Quaternary Tectonic Deformation in the Cape
814 Arago-Bandon Region of Coastal Oregon as Deduced From Wave-Cut Platforms. *JGR: Solid Earth*, 95(B5), 6699-6713. <https://doi.org/10.1029/JB095iB05p06699>

815 McKenzie, K.A., Furlong, K.P., Herman, M.W. (2022). Regional and Local Patterns of Upper-
816 Plate Deformation in Cascadia: The Importance of the Down-Dip Extent of Locking

849 Muhs, D.R., Simmons, K.R., Kennedy, G.L., Ludwig, K.R., Groves, L.T. (2006). A cool eastern
850 Pacific Ocean at the close of the Last Interglacial complex. *Quaternary Science Reviews*,
851 25(3-4), 235-262. <https://doi.org/10.1016/j.quascirev.2005.03.014>

852 Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., Mitrovica, J.X., Laurel, D. (2012).
853 Sea-level history during the Last Interglacial complex on San Nicholas Island, California:
854 implications for glacial isostatic adjustment processes, paleozoogeography and tectonics.
855 *Quaternary Science Reviews*, 37, 1-25. <https://doi.org/10.1016/j.quascirev.2012.01.010>

856 Murray, A.S., Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-
857 aliquot regenerative-dose protocol. *Radiation Measurements*, 32(1), 57-73.
858 [https://doi.org/10.1016/S1350-4487\(99\)00253-X](https://doi.org/10.1016/S1350-4487(99)00253-X)

859 Murray, A.S., Wintle, A.G. (2003). The single aliquot regenerative dose protocol: potential for
860 improvements in reliability. *Radiation Measurements*, 37(4-5), 377-381.
861 [https://doi.org/10.1016/S1350-4487\(03\)00053-2](https://doi.org/10.1016/S1350-4487(03)00053-2)

862 Nelson, A.R., Atwater, B.F., Bobrowsky, P.T., Bradley, L-A., Clague, J.J., Carver, G.A.,
863 Darienzo, M.E., Grant, W.C., Krueger, H.W., Sparks, R., Stafford Jr., T.W., Stuiver, M.
864 (1995). Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago
865 at the Cascadia subduction zone. *Nature*, 378, 371-374. <https://doi.org/10.1038/378371a0>

866 Nelson, M.S., Rittenour, T.M., (2015). Using grain-size characteristics to model soil water
867 content: application to dose-rate calculation for luminescence dating. *Radiation*
868 *Measurements*, 81, 142-149. <https://doi.org/10.1016/j.radmeas.2015.02.016>

869 Nelson, A.R., Sawai, Y., Jennings, A.E., Bradley, L-A., Gerson, L., Sherrod, N.L., Sabean, J.,
870 Horton, B.P. (2008). Great-earthquake paleogeodesy and tsunamis of the past 2000 years
871 at Alsea Bay, central Oregon coast, USA. *Quaternary Science Reviews*, 27(7-8), 747-
872 768. <https://doi.org/10.1016/j.quascirev.2008.01.001>

873 Padgett, J.S., Kelsey, H.M., Lamphear, D. (2019). Upper-plate deformation of Late Pleistocene
874 marine terraces in the Trinidad, California, coastal area, southern Cascadia subduction
875 zone. *Geosphere*, 15(4), 1323-1341. <https://doi.org/10.1130/GES02032.1>

876 Polenz, M., Kelsey, H.M. (1999). Development of a Late Quaternary Marine Terraced
877 Landscape during On-Going Tectonic Contraction, Crescent City Coastal Plain,
878 California. *Quaternary Research*, 52(2), 217-228. <https://doi.org/10.1006/qres.1999.2061>

879 Prescott, J.R., Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and
880 ESR dating. *Radiation Measurements*, 37, 377-381. [https://doi.org/10.1016/1350-4487\(94\)90086-8](https://doi.org/10.1016/1350-4487(94)90086-8)

882 Racano, S., Jara-Muñoz, J., Cosentino, D., Melnick, D. (2020). Variable Quaternary Uplift
883 Along the Southern Margin of the Central Anatolian Plateau Inferred From Modeling
884 Marine Terrace Sequences. *Tectonics*, 29(12). <https://doi.org/10.1029/2019TC005921>

885 Ramírez-Herrera, M.T., Gaidzik, K., Forman, S., Kostoglodov, V., Bürgmann, R., Johnson, C.W.
886 (2018). Relating the long-term and short-term vertical deformation across a transect of
887 the forearc in the central Mexican subduction zone. *Geosphere*, 14(2), 419-439.
888 <https://doi.org/10.1130/GES01446.1>

889 Rees-Jones, J. (1995). Optical dating of young sediments using fine-grain quartz. *Ancient TL*,
890 14, 9-14

891 Saillard, M., Hall, S.R., Audin, L., Farber, D.L., Regard, V., Héral, G. (2011). Andean coastal
892 uplift and active tectonics in southern Peru: ^{10}Be surface exposure dating of differentially
893 uplifted marine terrace sequences (San Juan de Marcona, $\sim 15.4^\circ\text{S}$). *Geomorphology*,
894 128(3-4), 178-190. <https://doi.org/10.1016/j.geomorph.2011.01.004>

895 Saillard, M., Audin, L., Rousset, B., Avouac, J-P., Chlieh, M., Hall, S.R., Husson, L., Farber,
896 D.L. (2017). From the seismic cycle to long-term deformation: linking seismic coupling
897 and Quaternary coastal geomorphology along the Andean megathrust. *Tectonics*, 36(2),
898 241-256. <https://doi.org/10.1002/2016TC004156>

899 Saillard, M., Hall, S.R., Audin, L., Farber, D.L., Héral, G., Martinod, J., Regard, V., Finkel,
900 R.C., Bondoux, F. (2009). Non-steady long-term uplift rates and Pleistocene marine
901 terrace development along the Andean margin of Chile (31°S) inferred from ^{10}Be dating.
902 *Earth and Planetary Science Letters*, 277(1-2), 50-63.
903 <https://doi.org/10.1016/j.epsl.2008.09.039>

904 Satake, K., Shimazaki, K., Tsuji, Y., Ueda, K. (1996). Time and size of a giant earthquake in
905 Cascadia inferred from Japanese tsunami records of January 1700. *Nature*, 369, 246-249.
906 <https://doi.org/10.1038/379246a0>

907 Shackleton, N.J., Opdyke, N.D. (1973). Oxygen Isotope and Palaeomagnetic Stratigraphy of
908 Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a

909 105 Year and 106 Year Scale. *Quaternary Research*, 3(1), 39-55.
910 [https://doi.org/10.1016/0033-5894\(73\)90052-5](https://doi.org/10.1016/0033-5894(73)90052-5)

911 Simms, A.R., Rouby, H., Lambeck, K. (2016). Marine terraces and rates of vertical tectonic
912 motion: The importance of glacio-isostatic adjustment along the Pacific coast of central
913 North America. *GSA Bulletin*, 128(1-2), 81-93. <https://doi.org/10.1130/B31299.1>

914 Snavely, P.D., Jr., MacLeod, N.S., Wagner, H.C., Rau, W.W. (1976). Geologic map of the
915 Yaquina and Toledo quadrangles, Lincoln County, Oregon. Scale 1:62,500, Map I-867,
916 U.S. Geological Survey. <https://doi.org/10.3133/i867>

917 Thackary, G.D. (1998). Convergent-margin deformation of Pleistocene strata on the Olympic
918 coast of Washington, USA. In Stewart, I.S. and Vita-Finzi, C. (eds), *Coastal Tectonics*.
919 Geological Society, London, Special Publications, 146, 199-211.
920 <https://doi.org/10.1144/GSL.SP.1999.146.01.11>

921 VanLaningham, S., Meigs, A., Goldfinger, C. (2006). The effects of rock uplift and rock
922 resistance on river morphology in a subduction zone forearc, Oregon, USA. *Earth
923 Surface Processes and Landforms*, 31, 1257-1279. <https://doi.org/10.1002/esp.1326>

924 Victor, P., Sobiesiak, M., Glodny, J., Nielsen, N., Oncken, O. (2011). Long-term persistence of
925 subduction earthquake segment boundaries: Evidence from Mejillones Peninsula,
926 northern Chile, *JGR: Solid Earth*, 116(B2). <https://doi.org/10.1029/2010JB007771>

927 Wallinga, J., Murray, A., Wintle, A. (2000). The single-aliquot regenerative-dose (SAR) protocol
928 applied to coarse-grain feldspar. *Radiation Measurements*, 32(5-6), 529-533.
929 [https://doi.org/10.1016/S1350-4487\(00\)00091-3](https://doi.org/10.1016/S1350-4487(00)00091-3)

930 Wang, P-L., Engelhart, S.E., Wang, K., Hawkes, A.D., Horton, B.P., Nelson, A.R., Witter, R.C.
931 (2013). Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from
932 coastal subsidence estimates. *JGR: Solid Earth*, 118(5), 2460-2473.
933 <https://doi.org/10.1002/jgrb.50101>

934 Wang, D., Chen, Y., Wang, Q., Mori, J. (2018). Complex rupture of the 13 November
935 2016 M_w 7.8 Kaikoura, New Zealand earthquake: Comparison of high-frequency and
936 low-frequency observations. *Tectonophysics*, 733, 100-107.
937 <https://doi.org/10.1016/j.tecto.2018.02.004>

938 West, D.O., McCrumb, D.R. (1988). Coastline uplift in Oregon and Washington and the nature
939 of Cascadia subduction zone tectonics. *Geology*, 16(2), 169-172.
940 [https://doi.org/10.1130/0091-7613\(1988\)016<0169:CUIOAW>2.3.CO;2](https://doi.org/10.1130/0091-7613(1988)016<0169:CUIOAW>2.3.CO;2)

941 Wintle, A.G., Murray, A.S. (2006). A review of quartz optically stimulated luminescence
942 characteristics and their relevance in single-aliquot regeneration dating protocols.
943 *Radiation Measurements*, 41(4), 369-391. <https://doi.org/10.1016/j.radmeas.2005.11.001>

944 Witter, R.C., Kelsey, H.M., Hemphill-Haley, E. (2003). Great Cascadia earthquakes and
945 tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. *GSA*
946 *Bulletin*, 115(10), 1289-1306. <https://doi.org/10.1130/B25189.1>

947 Witter, R.C., Zhang, Y., Wang, K., Goldfinger, C., Priest, G.R., Allan, J.C. (2012). Coseismic
948 slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake
949 and earthquake-triggered marine turbidites. *JGR: Solid Earth*, 117(B10).
950 <https://doi.org/10.1029/2012JB009404>

951 Yamaguchi, D.K., Atwater, B.F., Bunker, D.E., Benson, B.E., Reid, M.S. (1997). Tree-ring
952 dating the 1700 Cascadia earthquake. *Nature*, 389, 922-923.
953 <https://doi.org/10.1038/40048>

954 Yildirim, C., Melnick, D., Ballato, P., Schildgen, T.F., Echtler, H., Erginal, A.E., Kiyak, N.G.,
955 Strecker, M.R. (2013). Differential uplift along the northern margin of the Central
956 Anatolian Plateau: inferences from marine terraces. *Quaternary Science Reviews*, 81, 12-
957 28. <https://doi.org/10.1016/j.quascirev.2013.09.011>