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Abstract: Bayesian optimization (BO) is a powerful black-box optimization framework that
looks to efficiently learn the global optimum of an unknown system by systematically trading-
off between exploration and exploitation. However, the use of BO as a tool for coordinated
decision-making in multi-agent systems with unknown structure has not been widely studied.
This paper investigates a black-box optimization problem over a multi-agent network coupled
via shared variables or constraints, where each subproblem is formulated as a BO that uses
only its local data. The proposed multi-agent BO (MABO) framework adds a penalty term to
traditional BO acquisition functions to account for coupling between the subsystems without
data sharing. We derive a suitable form for this penalty term using alternating directions method
of multipliers (ADMM), which enables the local decision-making problems to be solved in
parallel (and potentially asynchronously). The effectiveness of the proposed MABO method

is demonstrated on an intelligent transport system for fuel efficient vehicle platooning.
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1. INTRODUCTION

Multi-agent decision-making problems (often formulated
as optimization tasks) arise in a wide range of application
areas, such as in collaborative robotics, intelligent trans-
port systems, integrated energy systems, sensor networks,
and modular manufacturing, where a collection of agents
work together to achieve one or more well-defined goals. A
common framework for multi-agent decision-making is the
decomposition-coordination approach, where the agents
solve their own local subproblems, and a central coor-
dinator accounts for the coupling/interactions between
the different agents, thus facilitating a coordinated action
(Bertsekas, 2016; Lasdon, 2002). One such popular dis-
tributed optimization approach is the alternating direc-
tions method of multipliers (ADMM) Boyd et al. (2011).

In the traditional optimization framework, each local agent
requires analytical expressions (i.e., models) that relate
the local decision variables to the local objectives and
constraints in every subsystem. Obtaining reliable models
is a time consuming and tedious work, and modeling effort
is often one of the biggest bottlenecks in many application
areas (Chachuat et al., 2009). Accurate models may also
be challenging to obtain in some applications, due to
lack of domain knowledge. This requirement hinders the
use of traditional distributed optimization methods that
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rely on exploiting the structure of such models (in the
form of gradients or relaxations) on applications for which
accurate models are not readily available.

A class of optimization methods known as “black box”
optimization is a promising alternative that circumvents
the need for detailed mathematical models. Here, the sys-
tem is considered to be an unknown “black-box” that can
be queried through a series of simulations or experiments.
The data observed from such evaluations can then be used
to find the optimum. Bayesian optimization (BO) is one
such zeroth-order black-box optimization scheme, where
the optimum is learned by sequentially interacting with
the system (Kushner, 1964; Shahriari et al., 2015; Jones
et al., 1998).

However, in the context of multi-agent systems, formu-
lating the subproblems using BO does not account for
the coupling and the interactions between the different
agents. In BO, the next sequence of actions are computed
by optimizing a so-called “acquisition function” induced
from a probabilistic surrogate model for the local objec-
tive function. Several different acquisition functions have
been proposed in the BO literature, which fundamen-
tally attempt to trade-off exploration (learning for the
future) and exploitation (immediately advancing toward
goal). Interested readers are referred to the review pa-
pers (Shahriari et al., 2015; Frazier, 2018) for detailed
discussions on the different type of acquisition functions
and the relationship between them. In the distributed
setting, however, the local acquisition function in each



subsystem does not account for the coupling to the other
subsystems. A truly distributed BO algorithm requires the
local acquisition functions to be modified so that, e.g., a
central coordinator can influence the local BO decision-
making in each subsystem. Despite the growing popularity
of BO, decomposition-coordination frameworks for BO has
received very limited attention in the literature.

To address this gap, this paper proposes a multi-agent
Bayesian optimization (MABO) framework that is capable
of solving black-box optimization problems defined over
a multi-agent network coupled via shared variables or
constraints. An important and realistic assumption made
about the network is that direct data sharing is not allowed
between the local agents due to data privacy concerns
or bandwidth limitations. Such constraints would not be
satisfied by traditional “centralized” BO methods, but
is naturally handled by our proposed MABO approach,
which augments the local acquisition functions with addi-
tional penalty terms expressed directly in terms of limited
information received from the central coordinator. MABO
can be used in combination with any existing acquisition
function from the BO literature and, thus, provides a
bridge between the developments in BO and distributed
optimization.

The reminder of the paper is organized as follows. Sec-
tion 2 introduces the preliminaries of Bayesian optimiza-
tion. Section 3 describes the proposed MABO framework
and corresponding penalty terms that are derived using
ADMM. The effectiveness of the MABO framework is then
demonstrated on a fuel efficient vehicle platooning prob-
lem in Section 4, wherein the goal is to minimize overall
fuel consumption of the platoon by selecting an optimal
cruising speed. Lastly, we conclude the paper and discuss
some interesting directions for future work in Section 5.

2. PRELIMINARIES - BAYESIAN OPTIMIZATION

Consider the optimization problem
i 1
vex f(@) (1)

where z € X is the decision variable chosen from a known
compact set X and f : X — R is some cost black-
box function whose mathematical structure is unknown.
Bayesian optimization (BO) consists of the following two
steps:

(1) Learning: A probabilistic surrogate model, typically
a Gaussian process (GP), is derived for the unknown
cost function f(x). The prior distribution for the
surrogate model is updated every time that a noisy
observation of the cost y = f(x) + w, where w is a
stochastic noise term, is available by conditioning on
the observations (Rasmussen and Williams, 2006).

(2) Decision-making: The posterior surrogate model is
then used to induce a suitable acquisition function
a : X — R, which provides a measure of how desirable
querying a point x € X is expected to be with respect
to optimizing the cost. Using this, the next action to
evaluate is computed by solving

1 Note that we choose to define the acquisition function «(-) in a
way that its a minimization problem (as opposed to maximization
problem) without loss of generality.
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Fig. 1. Illustration of Bayesian optimization scheme to
minimize an unknown function f(z).
2F* = argmin a(z|DY), (2)
reX

where D* := {(27,47)}¥_, is the past set of observa-
tions at time k and a(z|D*) denotes the acquisition
function evaluated at x induced by the posterior con-
ditioned on Dy,.

The choice of acquisition function controls the trade-
off between exploration and exploitation when selecting
a suitable next action, with the goal being to find the
global optimum in as few iterations as possible. There
are several choices for the acquisition function such as
probability of improvement, expected improvement, upper
confidence bound, and Thompson sampling. See Shahriari
et al. (2015); Frazier (2018) for a more detailed description
of the different acquisition functions.

In summary, BO is a black-box decision-making strategy
where we sequentially query the system, observe the cost,
update our prior belief and choose the next action to query.
The BO loop is schematically represented in Fig. 1.

3. PROPOSED MULTI-AGENT BAYESIAN
OPTIMIZATION (MABO) FRAMEWORK

Now, let us consider a multi-agent version of (1) that has
the following additively separable cost function

min f(z) = Zfil fi(x), (3)

reX
where f; : X — R denotes a local cost function for the
it" subsystem. We make the following assumption about
these local cost functions.

Assumption 1. The local cost functions f;(z) are unknown
but can be evaluated at any desired x € X for all i =
1,...,N.

If this was our only assumption, we could apply traditional
BO methods (Fig. 1) on the aggregated set of data from all
subsystems. It is worth noting that an improved version
of this algorithm can easily be developed by exploiting
the additive cost structure in (3), as discussed in Kudva
et al. (2022). However, such methods are centralized in the
sense that they require the cost data to be gathered from
all local subsystems at every iteration. There are many
situations where this is not desired or even possible, which
we summarize in the following additional assumption.

Assumption 2. Data cannot be shared across subsystems

such that subsystem i cannot directly use data from any
other subsystem j # .
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Fig. 2. Multi-agent Bayesian optimization (MABO) scheme where each subproblem minimizes its unknown local cost
function f;(x;) using a modified BO method. Each subproblem learns only from the local data set D; which is not
shared among the different subsystems. The acquisition function in each subproblem has additional penalty terms
as a function of the master variables 6; that enables coordinated action of the different subsystems.

A straightforward approach to tackle (3), under Assump-
tions 1-2, is to separately apply BO to each subproblem.
That is, learn a GP surrogate model for each local cost
function f;(z;) based only on its local observations D¥ =
{(x],y!)}¥_,. Any suitable acquisition function a;(z;|Df)
induced by the GP posterior is then used for local decision-
making by each agent. However, computing the next action
by optimizing only the acquisition function induced locally
2y = arg min, a;(2;|DY),

results in each of the different subsystems taking inde-
pendent decisions without any coordination. Solving the
multi-agent version of the problem (3) requires a coor-
dinated solution in which 27 = --- = z};, which is not
necessarily achieved with the aforementioned strategy.

To enable the required coordination, we propose to incor-
porate additional penalty terms to the local acquisition
function. That is, each subsystem now computes its next
action xf“ by optimizing

P = arg min oy (2;|DF) + (4, 0F), (4)
x, €EX

where 6% € R™ denotes the information that is commu-
nicated to the i*" subsystem at the k' iteration (e.g. by
a central coordinator), z; € X denotes the local decision
variables, «;(-) is any suitable acquisition function used
to optimize the unknown local cost f;(-), and §; : X x
R™ — R is the augmented penalty term that can influence
the local decisions. We propose to derive an expression for
;(+) using the alternating direction method of multipliers
(ADMM) framework, as described below.

The optimization problem (3) can be equivalently rewrit-
ten by introducing a new variable zy as

. N .

min L filxg) sty =29 Vi=1,...,N. (b
min S A : )
The augmented Lagrangian for (5) is given by

N

. P ,

min i$i+AZTxi—x + Bl — 2 (6
zo,{zi}EX ; |:f( ) ( 0) 2” 0” ( )
where A = (A1,...,An) denotes the set of dual variables

(or Lagrange multipliers) associated with the equality

consraints in (5) and p > 0 is a penalty parameter. The
ADMM scheme, which is derived from the augmented
Lagrangian in (6), then consists of the following iterations
(Boyd et al., 2011, Chapter 7)

k+1 1 al k )‘i’c
xO:N;P+Py )
= arggleil)l( filws) + Af T + g”ﬂﬁz —ag 2, (7b)
N = X plat ), (7c)

Since f;(x;) in each subproblem (7b) is unknown under
Assumption 1, we propose to replace it with a local
acquisition function «;(x;|DF). In this case, (7b) has the
same form as (4) with the penalty term equal to

Bi(ai, 0F) = Xy + Loy — a2, (8)
where 0% := (zE+1) \F) denotes the coordinating variables,
which are updated as shown in (7a) and (7c) at every
iteration; these updates are very simple, can be stored with
little memory, and ensure that Assumption 2 is satisfied.
We refer to this overall proposed framework as multi-agent
BO (MABO), which is illustrated in Fig. 2. We also provide
a complete algorithmic description of MABO in Algorithm
1, which has several unique features that we highlight in
the series of remarks below.

Remark 1. (Data privacy). The GP model in each subsys-
tem is conditioned only on the local cost measurement,
which need not be shared with the other subsystems. This
enables a collection of agents to take coordinated actions
without sharing its local data with one another, clearly
respecting data privacy concerns or any other data sharing
limitations (such as bandwidth or connection limitations).

Remark 2. (Choice of acquisition function). Note that the
choice of the local acquisition function is independent from
the coordinating term d;(+). Hence any acquisition function
proposed in the standard BO framework can be directly
used by our MABO approach. Moreover, the choice of the
acquisition function can also be different between the dif-
ferent subsystems. Simply put, in a multi-agent network,
each agent is free to choose its local acquisition function,
without affecting the structure of the MABO strategy.



Algorithm 1 Multi-agent Bayesian optimization.

Input: N local GP models for the local cost functions
fi(z;), initial values 29 and \?, and penalty p > 0

for ADMM iterates kK =0,1,2,... do

k1 1N [k A
To N 2aim |:'rz +

> Central collector

1:

2

3 for subproblems i = 1,..., N do (in parallel)

£ O e [k T

5: 51(32,,95) — /\fTJ?i—Fngi —QSIS-HHQ

6: for local BO iterates 7 =1,2,... do

7 Update local GP model using Df

8 Induce any acquisition function a;(z;|DF)
9 et arg ming, e x i (x4 DF) + (2, 0F)

10: Query and observe the local cost f; (xf“’ﬂ )
11; D « DF U {(2; ™, fi2; ™))}

12: end for )

13: MFL NE o p(ai T gkt

14: end for

15: end for

Output: Optimal solution xg

Remark 3. (Multiple BO iterations). It can be seen that
our proposed decomposable MABO framework (Algorithm
1) has a hierarchical structure with two levels of iterations,
namely, the local BO iterations within each subproblem,
and the ADMM iterations between the central coordinator
and the subproblems. As such, MABO can also be imple-
mented with several BO iterations per ADMM iteration.
For example, after every ADMM iterate that updates
0%, the local subproblems can run one or several local
Bayesian optimization iterates for a given 9;‘3. Furthermore,
the different subproblems can also run different number of
BO iterations for each ADMM iterate. This is especially
beneficial where the local evaluation time and budgets are
different in the different agents. This is explicitly shown in
Algorithm 1, where the local BO iterations j can be run
for any desired finite number of steps.

Remark 4. (Optimal sharing). Although we have focused
our MABO derivation on the consensus problem in (5), the
approach extends to optimal sharing problems that have
coupling constraints of the form ) . A;z; = 0. The main
modification needed is to update the form of the penalty
term d;(-) whose structure is shown in Boyd et al. (2011,
Section 7.3). Many important applications involving the
distribution of a shared resource would fall into this class
of problems (e.g., allocation of energy from a centralized
repository in a chemical process).

Remark 5. Although we considered only the ADMM
framework in this section, (4) also allows for other de-
composition strategies such as primal decomposition and
Lagrangian decomposition, with ;(-) and 6; chosen ac-
cordingly.

4. ILLUSTRATIVE EXAMPLE:
FUEL EFFICIENT VEHICLE PLATOONING

We demonstrate the performance of MABO on the prob-
lem of fuel-efficient vehicle platooning, which is a multi-
agent system consisting of several vehicles that take coor-
dinated action to optimize the overall fuel efficiency. Here,

“platooning” refers to a collection of vehicles that drive in
a single-file fashion at close inter-vehicle distance in high-
ways. Platooning of heavy-duty vehicles (e.g., trucks used
for freight transport) has several benefits such as reduced
traffic congestion, greater fuel economy due to reduced air
drag friction, and fewer traffic collisions (Franke et al.,
1995; Browand et al., 2004).

Early work on truck platooning focused on tracking inter-
vehicle distances using adaptive cruise control (Hao and
Barooah, 2013); however, there has been an increasing
interest in optimizing the speed of the platoon to minimize
overall fuel consumption. In fact, a recent experimental
study showed that, although the fuel economy improved
at all platooning speeds, certain speeds resulted in the best
overall fuel economy (Lammert et al., 2014). However, the
effect of cruising speed on fuel consumption is not constant
and depends on several factors such as freight load, road
and driving conditions, time since last engine maintenance,
etc., to name a few. Therefore, developing accurate models
that can be used to find the optimal platoon speed is
challenging.

An attractive alternative is to resort to a black-box opti-
mization strategy. Black-box formulations are particularly
useful when the platoon consists of vehicles that have
different configurations and/or manufacturers since it is
non-obvious how to coordinate different types of vehicles
to minimize overall fuel consumption when each isolated
vehicle has a unique optimum speed. Such problems can
be formulated in the form of (3) where z; and f;(x;),
respectively, denote the speed and fuel consumption of the
it vehicle. Here, we simulate the fuel consumption of a
platoon of N = 7 vehicles using the approach derived by
Sobrino et al. (2016), which leads to a model of the form

b,
filx:) = a; + ;1_+Cixi+dix§7 9)

where speed x; has units of [km/h] and fuel consumption
fi(z;) has units of [g/veh-km]. The nominal model pa-
rameters are given by the experimentally calibrated values
in (Sobrino et al., 2016, Section 5). To emulate N = 7
completely different trucks, we sample perturbed model
parameters from a uniform distribution defined by +20%
of these nominal values. We highlight that (9) is used only
as a source of data generation, as the parameter values and
structure are unknown in accordance with Assumption 1.

The proposed MABO approach (Algorithm 1) was imple-
mented in Python using the GPy package (GPy, since 2012)
to construct and train the GP models using a squared
exponential (SE) kernel. We first use a lower confidence
bound (LCB) acquisition function defined as follows

;(2:| D) = pf (2:) — /ol (), (10)
where uf and 0‘7]:6, respectively, denote the posterior mean
and standard deviation predicted by the GP model for
the i*® subsystem at the k" iteration and S is a scal-
ing parameter used to trade-off between exploration and
exploitation. Based on previous work, we select § = 4
throughout this work (Srinivas et al., 2009). We selected
a penalty value of p = 10 and only run j = 1 local BO
iteration for every ADMM iteration.

We first demonstrate the effect of the coordination term
in Fig. 3, which plots the GP model and corresponding
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Fig. 3. The local Bayesian optimization of one of the subsystems at iterates £ = 1,2, and 20. Top subplots show the
Gaussian process of the local cost. Bottom subplots show the acquisition function with (solid green) and without
(dashed green) coordination. The next query point is shown as a red dot.

acquisition functions for a single vehicle at three iterations
k € {1,2,20}. From the bottom subplots, we see that the
local non-perturbed acquisition function a;(z;|DF) (green
dashed lines) behaves quite different from the MABO
acquisition o (z;|DF)+8;(z;, 0F) (green solid line). Already
at iteration k = 1, the effect of the penalty term &;(x;, %)
is evident, which skews the selection process toward lower
wf“ values such that the next query point is not too far
from the average speed of the platoon. By iteration k = 20,
the local BO step converges to around 57 km/hr (near the
true optimal value), which significantly differs from the
optimum point of the unconstrained acquisition function.

We repeat the same simulation test using two additional
types of acquisition functions, probability of improvement
(PI) and expected improvement (EI), in addition to LCB.
Furthermore, to demonstrate the flexibility of MABO, we
also test a “mixed” case wherein the different vehicles use
different acquisition functions (i.e., vehicles 1 and 2 use EI,
vehicles 3 and 4 use PI, vehicles 5 and 6 use LCB, and ve-
hicle 7 using a greedy mean-based policy). The individual
vehicle speeds obtained at each MABO iteration using the
different acquisition function test cases are shown in Fig. 4.
We also show the true optimum with a black dashed line
to serve as a benchmark to compare against. The average
speed of the platoon z§, the primal residual r* := ", ||2F —
zk|13, and the dual residual s* := Np?||zk — zEk~1||3 for the
different cases are shown in Fig. 5 to compare the effect
of the choice of the acquisition function on the progress of
the ADMM iterations. It can be seen that the progress
of the ADMM iterates are not heavily affected by the
choice of the acquisition function. We also benchmark
this against the traditional model-based ADMM with full
model information in each subsystem, which acts as a
lower bound on the achievable residuals. This is shown in
solid black lines. This empirically quantifies the additional
iterations needed to explore the unknown function when
using BO in the subsystems.

5. CONCLUSION AND FUTURE WORK

This paper presents a novel approach for efficiently find-
ing global optimum solutions of multi-agent systems with
unknown (black-box) structure and limitations on infor-
mation sharing by combining elements of distributed opti-

mization with Bayesian optimization (BO). As opposed to
independently applying BO in each of the subsystems, the
key idea is to modify the local acquisition (or expected
utility) function with additional penalty terms that are
properly set according to a master coordinator, which
requires limited communication bandwidth and memory
storage. Our proposed multi-agent BO (MABO) frame-
work is broadly applicable in the sense that it works for
different network structures (e.g., consensus and sharing
formulations) and allows for the use of any well-defined
acquisition function within the local subproblems. Fur-
thermore, the local subproblems can be straightforwardly
formulated using constrained BO (Gelbart et al., 2014;
Paulson and Lu, 2022) or safe BO methods (Berkenkamp
et al., 2021; Krishnamoorthy and Doyle III, 2022) when-
ever local black-box constraints are present in a given sub-
system. The proposed MABO approach is demonstrated
on a vehicle platooning problem, where the goal is to select
a common platoon speed for multiple (different configura-
tion) vehicles such that the overall fuel consumption is
minimized. We show that MABO is capable of quickly
identifying the optimal platoon speed, even with no prior
knowledge of the relationship between speed and fuel con-
sumption in any of the vehicles in the platoon. This work
represents a first step toward a decomposable BO frame-
work and future work should involve better understanding
the theoretical properties (e.g., rate of convergence) of the
proposed method. In addition, it would be interesting to
explore the impact of the update rule chosen for the central
coordinator on performance, as there may exist strategies
that accelerate the speed of convergence in certain appli-
cations.
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