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Abstract. Let A denote von Mangoldt’s function, and consider the averages
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We prove sharp €P-improving for these averages, and sparse bounds for the maximal
function. The simplest inequality is that for sets F, G A r0, Ns there holds
FI |G FI |G| t
I |N 2I I Log ! IN 2I I
where t “ 2, or assuming the Generalized Riemann Hypothesis, t “ 1. The corresponding
sparse bound is proved for the maximal function sup A~ 1. The inequalities fort“ lare
sharp. The proof depends upon the Circle Method, and an interpolation argument of
Bourgain.
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1. Introduction

We consider discrete averages over the prime integers. The averages are weighted by
the von Mangoldt function.
1V )
Anfpxg “ — fpx " ngApng
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H

logppg n “ p?,p prime

/\ n o
eng 0 Otherwise.

Our interest is in scale free 8" improving estimates for these averages. The question
presents itself in different forms.

For an interval | in the integers and function f : | N C, set
Yoy 1
xfy,e “ |11 [fpxql”
xP1

If r “ 1, we will suppress the index in the notation. And, set Logx “ 1" |logx|, for
x g 0.

The kind of estimate we are interested in takes the the following form, in the simplest
instance. What is the ‘smallest’ function ¢ : r0,1s N r1, 8q so that for all integers N and
indicator functions f,g : | N t0, 1u, there holds

N *xAnf, gy d xfyxgyiypxfyixgyiq.
That is, the right hand side is independent of N, making it scale-free. We specified that
f, g be indicator functions as that is sometimes the sharp form of the inequality. Of course it
is interesting for arbitrary functions, but the bound above is not homogeneous, so not the
most natural estimate in that case.

The points of interest in these two results arises from, on the one hand, the distinguished
role of the prime integers. And, on the other, endpoint results are significant interest in
Harmonic Analysis, as the techniques which apply are the sharpest possible. In this
instance, the sharp methods depend very much on the prime numbers.

For the primes, we expect that the Riemann Hypothesis to be relevant. We state
unconditional results, and those that depend upon the Generalized Riemann Hypothesis
(GRH). Note that according to GRH all zeroes in the critical strip 0 3 Repsq a 1 of an
arbitrary L' function Lpf, sq are on the critical line Repsq “ 51 Under GRH, the primes
are equitably distributed mod q, V\{jth very good error bounds. Namely,

“" y 174 X N =
(1.1) Ppx,q,aq Apng “ —— " Opx? log?pqqq.
i dpaq

n”a pmod qq
Theorem 1.2. There is a constant C so that this holds. For integers N g 30, and
interval | of length N, the following inequality holds for all functions f “ 1 and g “ 1g

with F, G A |
#

Logpxfy xgy A assuming GRH
pLogpx | xg aq’
The inequality assuming GRH is sharp, as can be seen by taking f to be the indicator

of the primes, and g “ 1p. It is also desirable to have a form of the inequality above that
holds for the maximal function

N ‘xAnf, gy d Cxfy;xgy, "~

A'f “ sup|Anf].
N

Our second main theorem is sparse bound for A". The definition of a sparse bound is
postponed to Definition 6.3. Remarkably, the inequality takes the same general form,
although we consider a substantially larger operator.
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Theorem 1.3. For functions f “ 1; and g “ 1g, for finite sets F, G A Z, there is a
sparse collection of intervals S so that we have

. .Y
xA f, gy A xfyixgyipLogxfyixgyiq*|1], ips
where we can take t “ 1 under GRH, and otherwise we take t “ 2.

The sparse bound is very strong, implying weighted inequalities for the maximal op-
erator A". These inequalities could be further quantified, but we do not detail those
consequences, as they are essentially known. See [6]. One way to see that the sparse
bound is stronger is these inequalities are a corollary.

Corollary 1.4. The maximal operator A" satisfies these inequalities, where t “ 1 under

GRH, and t “ 2 otherwise. First, a sparse bound with ° norms. For all 13 p a 2, there
holds

. N ) , y
(1.5) XA 1, 1gy A pp” 1gtsup  xley pxlgyipll].
S ps

Second, the restricted weak-type inequalities

A . s
(1.6) sup ————|tA 1 3 Au| A |F].
057\?1 pLog)\th Fa A [F]
Third, the weak-type inequality below holds for finitely supported non-negative functions f
on Z

A30

where the last norm is defined in §7.

This subject is an outgrowth of Bourgain’s fundamental work on arithmetic ergodic
theorems [1,3]. These inequalities proved therein focused on the diagonal case, principally
gP to &P estimates for maximal functions. Bourgain’s work has been very influential, with
a very rich and sophisticated theory devoted to the diagonal estimates. We point to just
two papers, [12], and very recently [22]. The subject is very rich, and the reader should
consult the references in these papers.

Shortly after Bourgain’s first results, Wierdl [25] studied the primes, and the simpler
form of the Circle method in that case allowed him to prove diagonal inequalities for all p
3 1, which was a novel result at that time. The result was revisited by Mirek and
Trojan [19]. The unconditional version of the endpoint result (1.6) above is the main
result of Trojan [23]. The approach of this paper differs in some important aspects from
the one in [23]. (The low/high decomposition is dramatically different, to point to the
single largest difference.)

The subject of sparse bounds originated in harmonic analysis, with a detailed set of
applications in the survey [20], with a wide set of references therein. The paper [4] initiated
the study of sparse bounds in the discrete setting. While the result in that paper of an
‘0 improvement’ nature, for averages it turns out there are very good results available, as
was first established for the discrete sphere in [10,14]. There is a rich theory here, with a
range of inequalities for the Magyar-Stein-Wainger [17] maximal function in [15]. Nearly
sharp results for certain polynomial averages are established in [5,9], and a surprisingly



4 LACEY, MOUSAVI, AND RAHIMI

good estimate for arbitrary polynomials is in [7]. The latter result plays an interesting
role in the innovative result of Krause, Mirek and Tao [16].

The 2P improving property for the primes was investigated in [8], but not at the end-
point. That paper result established the first weighted estimates for the averages for the
prime numbers. This paper establishes the sharp results, under GRH. Mirek [18] ad-
dresses the diagonal case for Piatetski-Shapiro primes. It would be interesting to obtain
£P improving estimates in this case.

Our proof uses the Circle Method to approximate the Fourier multiplier, following
Bourgain [1]. In the unconditional case, we use Page’s Theorem, which leads to the
appearance of exceptional characters in the Circle method. Under GRH, there are no
exceptional characters, and one can identify, as is well known, a very good approximation to
the multiplier.

The Fourier multiplier is decomposed at the end of §4 in such a way to fit an interpola-
tion argument of Bourgain [2], also see [11]. We call it the High/Low Frequency method.
To acheive the endpoint results, this decomposition has to be carefully phrased. There
are two additional features of this decomposition we found necessary to add in. First,
certain difficulties associated with Ramanujan sums are addressed by making a significant
change to a Low Frequency term. The sum defining the Low Frequency term (4.12) is
over all Q-smooth square free denominators. Here, the integer Q can vary widely, as small as
1 and as large as N0, say. (The largest Q-smooth square denominator will be of the order
of e2.) Second, in the unconditional case, the exceptional characters are grouped into
their own term. As it turns out, they can be viewed as part of the Low Frequency term.
The properties we need for the High/Low method are detailed in §5. The following sections
are applications of those properties.

2. Notation
3. Notation

We write A | B if there is a constant C so that A d CB. In such instances, the exact
nature of the constant is not important.
Let F denote the Fourier transform on R, defined for by
z

Ffp€q “  fpxqge 2™ dx, f P L'pRa.
R

The Fourier transform on Z is denoted by f@ defined by

“ y ‘2ming 1
HEq fpnge ) f P £ pZq.

nPZ

Throughout, we denote Aq “ ta PZ{qZ : pa,qq“ 1u, so that |Aq| “ ¢pqq, the totient
function. We have

q

(3.1) -+t
Log Logq

I ¢pggd g 1.
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It is known that for non-principal charactersy, we have |Gpx,aq| 3 q 7, see [13, Chapter
3]. In particular, if x is the principal character, then we get Ramanujan’s sum
Yy  ra’
cpng 1 “ ¢pagGpla, aq “ e — .
rPAgq
Let x4 denote the exceptional character. It is a non-trivial quadratic Dirichlet character
modulo g, that is x4 takes values "1, 0, 1, and takes the value "1 at least once. We also
know that x4 is primitive, namely that its period is q. As a matter of convenience, if q
does not have an exceptional character, we will set x4 ” 0, and B4 “ 1. These properties
are important to Lemma 5.9.
Page’s Theorem uses the exceptional characters to give an approximation to the prime
counting function. Counting primes in an arithmetic progression of modulus g, we have

. N XqPXa,1 log N
(3.2) UpN;q,rq” ——  22R I1xPa | Ne© logN,
¢paq  ¢pag " °

4. Approximations of the Kernel

v

L
Denote the kernel of Ay with the same symbol, so that Aypxg “ N 1! - gn \PNAdnpXa.
It follows that

.
Ay pEq “ Ni/\pnqe,zr”‘g. ndN

The core of the paper is the approximation to %J\,pﬁq, and its further properties, detailed
in the next section.
Set
y

M “ mP " pn’ 1gPs6,, 13 pd 1

1
N B ndN
We write My “ MI\% when B “ 1, which is the standard average. For B a 1, these are
not averaging operators. They are the operators associated to the exceptional characters.

The Fourier transforms are straight forward to estimate.

Proposition 4.1. We have the estimates
(4.2) [Winpgal ! mintl, pN [§q™y,
(4.3) K1ipgal ! pNIE]a”,
[Kafpga” BENPH| L NPIE].
For integers g and a P A,
(4.4) ¥pEq “ Gpla,, aqkivpEq” Gpxq, aqVIRipeq
We state the approximation to the kernel at rational point, with small denominator.

Lemma 4.5. Assume that [E’ %I d N'1'Q forsome 1d ad qd Q and gcdpa,qq “ 1.
Then

n .
(@] N 799, Assuming GRH
(4.6) Kupga” ¥i'pe’ 2q0 OPORd Y

OpQe’c Mg, Otherwise
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Proof. We proceed under GRH, and return to the unconditional case at the end of the
argument. The key point is that we have the approximation (1.1) for YypN;q,rq. Set
a:“¢’ % Using Abel summation, we can write

P Zn 2
NMpypag“ NepaNg” Nepa Ng’  2nia | e dt® Op Nq.
N
Turning to the primes, we separate out the sum below according to residue classes mod
q. Since & “ g a,

y y
ep&ea/\ptq ep&ta/\ptq
edN Odrdq 2d'N
gedpr,qq“1€”r  mod q
“u y ) ra ) y
e 2 epalg/\plq.
rPAq edN
£”r modq
Examine the inner sum. Using Abel’s summation formula, and the notation { for prime
counting function, we have
y ?__ v
epalaNpta “ YpN;q,rgepaNg” ¢p N;qg,rgepa Ng
gd'N
£”r modq .
ZN ?_
2riia ,  Ypt;q,rgepatqdt” Op Nq.
N

At this point we can use the Generalized Riemann Hypothesis. From (1.1), it follows
that

., N B ., N
epoa/\ptq ¢—WINpaq pYpN;q, rqg d)—epaquepaNq
CdN paq paq
£”r modq .
Zy 5
2riac , eptagpypt;q,rq” tgdt’ Op Ng
T
,_t7edt’ OpN79q
N

N[

| Nber @
N
I QN?°.

The proof without GRH uses Page’s Theorem (3.2) in place of (1.1). We omit the
details.

The previous Lemma approximates Ay p€q near a rational point. We extend this ap-
proximation to the entire circle. This is done with these definitions.

.
Y,,npéq “ Gpla,, agMypg” afaansp§ " afqq,

a{qPRs
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« y B P ,
WenpEq GpXq, aq157pE * afgansp€ * afqq,
a{qPRs
Ry “ taf{g : aPA,, 2°d q& 2%y,
and Ro “ tOu. Further 1,144,145 d n d 1r142,1025, and np€q “ npd*€q. In (4.11), recall
that if q is not exceptional, we have x4 “ 0. Otherwise, x4 is the associated exceptional

Dirichlet character. Given integer N “ 2", set
# q_
e¢ "4 where cis as in (4.6)

N‘ "
N5 under GRH

Lemma 4.7. Let N “ 2". Write Ay “ By Erry, where

o y s
(4.8) BN Vs'n Ws,n.

s 1 254pN q1{400
Then, we have kErryfke: | pN g 1{1000Kf kg, .
Proof. We estimate the 22 norm by Plancherel’s Theorem. That is, we bound
kXy ~ By kpsprq ! pNq 22000,
Fix € P T, where we will estimate the L% norm atzove. By Dirichlet’s Theorem, there
are relatively prime integers a,q with 0d ad q d pNg'® with
€ alel 3

The argument now splits into cases, depending upon the size of q.

Assume that pNg® 3 g d pNg. This is a situation for which the classical Vino-
gradov inequality [24, Chapter 9] was designed. That estimate is however is not enough
for our purposes. Instead we use [13, Thm 13.6] for the estimate below.

IKup€al ! pa 12" pg{NgM N'M5qlog N | pR g 1000,

So, in this case we should also see that Byp&q satisfies the same bound. The function By & a
sum over Vs , ynd W, z The argument for both is the same. Suppose that V,,p§q %00. The
supporting intervals for nsp€ ~ a{qq for a{q P R are pairwise disjoint. We must have |€~
aofdo| @ 2 2 for some ap{qo P Rs, where 253 pNqX*®, Then,

1€ ao{aol & laofao” afal = 1§ afal & pagoa™” q 2 & q,°.

But then by the decay estimate (4.2), we have
|Gpla,, a0aMnpE " aofdod| ! PNg gt ! N'pNg'o

This estimate is summed over s d pNg* to conclude this case.

4

Proceed under the assumption that g d Ng “ pNg**®. From Lemma 4.5, the inequality

(4.6) holds.
Ay pgq“ ¥pE" 2q° OpN,'q
X Yy a

N 0,
The Big O term is as is claimed, so we verify that Byp€q~ L*%p€’ (a! N 1z
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The analysis depends upon how close € is to a{q. Suppose that |§ a{q| a ZlN(;z. Then
a{q is the unique rational b{r with pb,rq“ 1and 0d ba r d Ny that meets this criteria.
That means that

Bup&a “ ¥'pg " afaanspg ” afaq
where in the last term on the right, 2° d q 8 2°. By definition nsp€ ~ a{qq “ np4*p€’
a{gqq, which equals one by assumption on €. That completes this case.
Continuing, suppose that there is no a{q with | a{q| a N;JZ. The point is that we
have the decay estimates (4.2) and (4.3) which imply

, N 2 .
(WioE " afgal - WRpE" afgal | rNpE” afgas™ 1 21 N7E
But then, from the definition (4.4), we have
X3epE " 2qll NG,

And as well, trivially bounding Gauss sums by 1, we have

n3 ]
|Bnp&al ! T! N 1{5,

by just summing over all a{q P R, with s & pNg¥®. That completes the proof.

The discussion to this point is of a standard nature. We state here a decomposition of
the operator By defined in (4.8). It encodes our High/Low/Exceptional decomposition,
and requires some care to phrase, in order to prove our endpoint type results for the prime
averages. It depends upon a supplementary parameter Q. This parameter Q will play
two roles, controlling the size and smoothness of denominators. Recall that an integer q is
Q-smooth if all of its prime factors are less than Q. Let Sq be the collection of square-free Q-
smooth integers.

Q,|0 “ y , ’
(4.9) ¥.°peq Gpla,, aqMnpE” afgansp€” afqq,
a{qPRs
aPS,
; ) qp
(4.10) i e y ) ,
V=" péq Gpla,,aaMyp§” afg ny € afaq,
a{qPRs
qRSq
(4.11) Ly By ¢ ,
W, npEQ Gpxq, aqN1E°pE " afqansp€ * afqq,
Define 2laPRs
(4.12) y
LOQ,N “ VQ,IO'
s,n
(4.13) -
HiQ,N « Vs?ﬁhi’ Ws,n

s : Qd2sdpNql{400
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y
(414) EXQ,N “ Ws,n
s:2sdQ
Concerning these definitions, in the Low term (4.12), there is no restriction on s, but the
sum only depends upon the finite number of square-free Q-smooth numbers in Sq. (Due
to (5.8), the non-square free integers will not contribute to the sum.) The largest integer
in Sq will be about €2, and the value of Q can be as big as N. In the High term (4.13),
there are two parts associated with the principal and exceptional characters. For the
principal characters, we exclude the square free Q-smooth denominators which are both
larger than Q and less than pN g%, These are included in the Low term. We include
all the denominators for the exceptional characters. In the Exceptional term (4.14), we
just impose the restriction on the size of the denominator to be not more than Q. This
will be part of the Low term.
The sum of these three terms well approximates By .

Proposition 4.15. Let 1 d Q d N. We have the estimate kErr' fkez A pNqt2kfke.,
where

(4.16) Erry “ Logq,n ~ Hign ® Exn "Erry ~ By.
Proof. From (4.8), we see that
g
Erryipgq ¥.°pgq
s : ZSQpN~q1(4°°

Recalling the definition of VSIC}{'" from (4.9), it is straight forward to estimate this last sum

in L8pTq, using the Gauss-sum-estimate Gpla,,aq ! togloga,

5. Properties of the High, Low and Exceptional Terms

The further properties of the High, Low and Exceptional terms are given here, in that
order.

5.1. The High Terms. We have the £? estimates for the fixed scale, and and for the
supremum over large scales, for the High term defined in (4.13). Note that the supremum
is larger by a logarithmic factor.

Lemma 5.1. We have the inequalities

.~ log|
(5.2) kHiq nkezfiee A "gTogQ,
_ log]| |
(5.3) ksup |Hiqn flk, A 08108 Q 108Q, .
NgQ?

We comment that the insertion of the Q smooth property into the definition of Vs?r;h‘
in (4.10) is immaterial to this argument.

Proof. Below, we assume that there are no exceptional characters, as a matter of con-
venience as the exceptional characters are treated in exactly the same manner. For the
inequality (5.2), we have from the definition of the High term in (4.13), and (4.10),

kHiQ,N kgzNgz “ k[-”Q,N kLsqu
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“ y \ZQ'hi

. L8pTq
s:Qd2sdN

/ hi Z
d kv g’ IkLsqu;Isn:Qd'ZSd’N

d o i max max|Gpl, ,aq|
s:Qle'zsd'l\fZSd'qézS " aPAd e

y 1

25 dq 831 dpaq

s:Qd2sdN a

y , log lo
! logs "2 ° | g—gQ

s :Qd2s Q

The first line is Plancherel, and the subsequent lines depend upon definitions, and the
fact that the functions below are disjointly supported.

tnp” " afgq : 2°d qd 251, aPAqu.
Last of all, we use a well known lower bound ¢pgg " q{loglogq.

For the maximal inequality (5.3), we have an additional logarithmic term. This is direct
consequence of the Bourgain multi-frequency inequality, stated in Lemma 5.4. We then
have

k sup |Hignflkezd V. sup [VOM],
NaQ? s:Qd2s NaQ? s,n
A
! s’ . max.
s :Qd2s 2 dqa%gl

o

kfke A Q kfk®.

heg

pag

Lemma 5.4. Let 01,...,0; be points in T with minjx.|8; ~ 6| g 225 2. We have the
inequality

A A
sup F ! fo Myp’ Gan,p  afdq I log) "kfke.
Na4so jug je1 e

This is one of the main results of [3]. It is stated therein with a higher power of
log). But it is well known that the inequality holds with a single power of logJ. This is
discussed in detail in [8].

5.2. The Low Terms. From the Low terms defined in (4.12), the property is
Lemma 5.5. For a functions f, g supported on interval | of length N “ 2", we have
(5.6) N xLoq n °f,gy ! logQ "xfyxgy.

The following Mébius Lemma is well known.
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Lemma 5.7. For each q, we have

(5.8) Gpla,, aqF 'pMy "np” " afgqapxq %cqpxq-

aPAq d)

Proof. Compute

Gpla,, agF 'pMy “np” " afggapxa “ My ° F *nspxq Gpla,, agepax{qq.

aPAq aPAq
We focus on the last sum above, namely

y
Sqpxq “ Gpl,, agepxa{qq

aPAq

1 vV ¥
d)pqq I’PAq aPAq

1V
" - qur N Xq " “'pqq C p/Xq.
épaa ;.

“

epapr = xafaq

bpag
The last line uses Cohen’s identity.

The two steps of inserting of the property of being Q smooth in (4.9), as well as dropping
an restriction on s in (4.12), were made for this proof.

Proof of Lemma 5.5. By (5.8), the kernel of the operator Loq, y is
Log,npxg “ My ° F *nspxq “Sp'xq,

where Spxq “ Y chpxq.
qPSq
We establish a pointwise bound kSkgs ! log Q, which proves the Lemma.

Assume x %00. We exploit the multiplicative properties of the summands, as well as
the fact that if prime p divides x, we have %{‘%‘“cqpxq “ Hppxq. Let Q1 be the primespa Q
such that pp,xq “ 1, and set Q, to be the primes less than Q which are not in Q;.

The multiplicative aspect of the sums allows us to write

[Blesefe] . « HPO1G
—— CPXxq" ——
bpag bpa1g
where q “ g102, and all prime factors of g; are in Q;. If Q; is empty, set q; “ 1. Thus,

Spxg “ S1pxqS,pxq, where the two terms are associated with Q; and Q, respectively. We
have

Ca:P'XQ " P00

» ¥ woq
S1pXq oo SO

g is Q1 smooth

1 |~ HPPACPXq

0P, bppq
z 1
“1° —A,. pPQ;
p°- 1
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This is so, since pppgc,pxq “ 1. It is a straight forward consequence of the Prime Number
Theorem that A, ! logQ. Here, and below, we say that q is Q smooth if all the prime
factors of g are in the set of primes Q.

The second term is as below, where d “ |Qy|. Hereg, in the definition (4.12), there is no
restriction on s, hence all the smooth square free numbers are included. If Q, “ H, then
Sopxq “ 1, otherwise

Sapxq “ ! Hpaq

g is Q2 smooth

“ p'1g’
ji“1 L
' .
“ 10 4 o1gh 1.
jo !

If x “ 0, then SpOq “ S,pxq “ “1. That completes the proof.

5.3. The Exceptional Term. The Exceptional terms are always of a smaller order than
the Low terms.

Lemma 5.9. Let x be an excep"‘cional character modulo q. For x P Z,

y q
(5.10) Gpyx, agepxafaq “  ——
PA dpaq
q

provided px,qq “ 1, otherwise the sum is zero.

Proof. It is also known that exceptional characters are primitive - see [13, Theorem 5.27].

So the sum is zero if px,qqq 1. We use the common notation

y
TPX, Xq “ xpagepax{qq
aPAq

which is ¢pqqGpx, xg. Assuming px,qq “ 1,
Tpx,aq “ tpy, 1q.
This leads immediately to

y a y ,ax
TpX, aqep;(q TpX, 1q Xpagep Fq
aPAq aPAq
., TPXATpX, X , |tpxal’xpxq
dpaq dpag

It is known that |tpxg|?> “ q for primitive characters. And the exceptional character is
quadratic, so this completes the proof.

Lemma 5.11. For a function f supported on interval | of length N “ 2", we have
(5.12) xExq,n “fys ! ploglogQg® “xfy;.
The term on the left is defined in (4.14).
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Proof. Following the argument from Lemma 5.5, we have
y

y . o p
EXq,npXq “ GpXa, agepxafgq "ME * F g, pxa.
qaQ aPAq
Above, 25 d q & 2% 1. The interior sum above is estimated in (5.10). Using the lower
bound on the totient function in (3.1), we have

Exqnpxqf ! loglog Q "xfy, Y 1.
qaqQ
q exceptional
We know that the exceptional q grow at the rate of a double exponential, that is for q,,
being the vth exceptional q, we have q, " C¢", for some C 3 1. It follows that the sum
above is at most log log Q.

6. Proofs of the Fixed Scale and Sparse Bounds

Proof of Theorem 1.2. Let N “ 2", and recall that f “ 1 and g “ 1g where F, G A 1,
and interval of length N.
Let us address the case in which we do not assume GRH. We always have the estimate

(6.1) N *xAnf, gy A nxfyxgy.

?
Hence, if we have xfy,xgy, ! e’c nT100 the inequality with a squared log follows.
We assume that e © ™ | xfy,xgy,, and then prove a better estimate. We turn to the
Low/High/Exceptional decomposition in (4.12)—(4.14), for a choice of integer Q that we
will specify. We have

AN “ LOQ,N ) HiQ,N ! EXQ,N ‘ErrN : Errf\,
These terms are defined (4.12), (4.13), (4.14), (4.8) and (4.16) df respectively.
For the ‘High’ term we have by (5.2),

. . . loglog Q
N *|xHiqn f, gy| A . fv.axey.z
The same inequality holds for both Errq,n f and ErrlQ v T by Lemma 4.7 and Proposi-
tion 4.15. ’
Concering the Low term, by (5.6), we have

N*[xLoqg,n f,gy| A log Qxfyixgy
The Exceptional term satisfies the same estimate by (5.12).

Combining estimates, choose Q to minimize the right hand side, namely

log log Q"
Q

1 R %01{2 . .
(6.2) N “xAnf, gy A xfyixgy log Q "xfyixgy:.

This value of Q is
|OgQ ”)(f X y1{2
fogtogQ » YIXgY| .
?_
Since e © ™ | xfy,xgy,, this is an allowed choice of Q. And, then, we prove the desired
inequality, but only need a single power of logarithm.
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Assuming GRH, from (6.1), we see that the inequality to prove is always true provided
xfyixgy, & cN 4, Assuming this inequality fails, we follow the same line of reasoning
above that leads to (6.2). That value of Q will be at most N{#, so the proof will complete,
to show the bound with a single power of the logarithmic term.

Turning to the sparse bounds, let us begin with the definitions.

Definition 6.3. A collection of intervals S is called sparse if to each interval | P S, thereis
aset E, Al sothat 4|E/| & |I| and the collection tE, : | P Su are pairwise disjoint. All
intervals will be finite sets of consecutive integers in Z.

The form of the sparse bound in Theorem 1.3 strongly suggests that one use a recursive
method of proof. (Which is indeed the common method.) To formalize it, we start with
the notion of a linearized maximal function. Namely, to bound the maximal function
A'f, it suffices to bound ApxqfPxq, where t @ Z N t2" : n P Nuis a function, taken to
realize the supremum. The supremum in the definition of A" f is always attained if f is
finitely supported.

Definition 6.4. Let |y an interval, and let f be supported on 3lp. A mapt : lo N
t1,2,4,..., |lo|u is said to be admissible if

sup IVIprxq d 10XfY3|0,1.

Nétpxq

That is, T is admissible if at all locations x, the averages of f over scales larger than tpxq
are controlled by the global average of f.

Lemma 6.5. Let f and t be as in Definition 6.4. Further assume that f and g are
indicator functions, with g supported on lg. Then, we have

[lo| *xAcf, gy A xfyi,,1xgY10,1 “PLOEXFY315,1XEY10,10",
where t “ 1 assuming RH, and t “ 2 otherwise.

Proof. We restrict T to take values 1,2,4,...,2% ..
have the inequalities

.,. Let |lo] “ Ng “ 2", We always

o] *xAcf, gy A noxfyi,,1xgyio,1
llo| *x1esrAcf, gy A plog T axfyi,,1xgyio, 1.
The top line follows from admissibility.

We begin by not assuming GRH. Then, the conclusion of the Lemma is immediate if
we have pLogxfy.o,lxgy|o,1q2 " ng. It is also immediate if logt ! pLogxfy|0,1xgy|0,1q2. We
proceed assuming
(6.6) pe “ CpLogxfyi,1X8Yi,,10% d co mintno, log tu,
where 03 co a 1 is sufficiently small. ,

We use the definitions in (4.12)—(4.14) for a value of Q & e® ™ that we will specify.

We address the High, Low, Exceptional and both Error terms. First, the Error terms.
From the estimate (??) and (6.6), we have

y
KErrq,: fk3 d KErrq,2. k3,

n: pg dndng
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y L
A kfk2, ec?

n:pidndng

A kf kz,32 " pée'Cpo A kfkiz “xfyzio,1X8VY10,1-

This provided C in (6.6) is large enough. This is a much smaller estimate than we need.
The second error term in Proposition 4.15 is addressed by the same square function
argument.
For the High term, apply (5.3) to see that
H .
: ., togQ-loglogQ
kSUp I |Q,Nf|k2A Q kfkgz.
NaQ?
For the Low term the definition of admissibility and (5.6) that

o] * [XLoq,cpxq fPXa, gy | plog Qaxfyixgy:.
The Exceptional term also satisfies this bound.
We conclude that

, . logQ " loglogQ . .
[lo] *xA:f, gy A g Qg g xfyioxgyi,» ~ log Q "xfyxgy.

This is optimized by taking Q so that

“"

y  xf Ix o1t

_ ) .

loglog Q v X8y

And this will be an allowed value of Q since (6.6) holds. Again, the resulting estimate is
better by power of the logarithmic term than what is claimed.

Under RH, the proof is very similar, but a wider range of Q’s are allowed. In particular,
only a single power of logarithm is needed.

7. Proof of Corollary 1.4
The inequality (1.5) follows from the elementary identity that for 0a x a 1, we have
xpLogxq'! min —; .
15pa2 pp~ 1qt
We remark that we do not know an efficient way to pass from the restricted weak type

sparse bound we have established to the similar sparse bounds for functions. The methods
to do this for norm estimates is of course very well studied.

Proof of (1.6). There is a different inequality that is a natural consequence of the sparse
bound, namely

[tA"1¢ 3 Au|
7.1 Sup A - — -
(7.1) )\p plog|tA'lr 3 Au| "[F|?q

Indeed, if (1.6) were to fail, with a sufficiently large constant, it would contradict the
inequality above.
Let |G| g |F|. We show that there is a subset G! A G, with 4|G!| & |G| with

(7.2) xA'f, 1giy ! |F|pLog|F|{|G|q"

A |F].
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This implies (7.1) by taking G “ tA'f g Au, for03 A & 1.
In the opposite case, take G! to be
G!“ GztMf 3 Kpu, p“ IF|"IG|?
where M is the ordinary maximal function. By the usual weak ¢! inequality for M, for K
sufficiently large, we have 4|G'| 3 |G|. Let g “ 1g:. Apply the sparse bound for A™ to see
that i
xA f, gy ! = xfyxgyipLogxfyxgyiq*[l].
IPS
We can assume that for all intervals | P S, that we have xgy, 3 0. That means that xfy, d
;|£|F [{IG]. Turn to a pigeonhole argument. Divide the collection S into subcollections
i keoSi,k Where
Six“ tIPS 127 Kp & xfy, d 27Kp, 2741 & xgy d 27" u.
Then, we have

i y oy
XA f, gy ! xfy,xgy pLogxfy,xgy,q*|1|
j, k80 IPS;j

T T y
LIFI71GIY 27 pj "k Logpg® I
i, k8o IPS;
LY .
L IF] 7G| 27 %pj " k= Logpgtmint|G|2,2%|G|u
k&0

I |F]27%pj " k= Logpq2P a2 1 |F].jxeo0

Here, we have used the standard weak-type inequality for the maximal function, and the
basic property of sparseness, namely
d
VIILA 1.
IPS IPS

This completes the proof of (7.2).

For the proof of (1.7), we need to recall the definition of the Orlicz norm. Given f
finitely supported on Z, let f~ : r0,8q N N be the decreasing rearrangement of f. That
is,

f'pAq“ [txPZ : |fpxq| & Aul.
For a slowly varying function ¢ : r0, 8q N ro, 8q, set
Zg
kf Keppeq “ f pAqepAg dA
VO
»  2ep2igf p2q.
iPz
For @pxq “ 1, this is comparable to the usual €' estimate. For f “ 1., note that
z
[FI
kfkegpeq “  @PAG dA » [F|@p|F[qo
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We are interested in @pxq “ plogxq “LogLogxqt, fort “ 1,2. The proof of the orlicz
norm estimate (1.7) is below.

Proof of (1.7). This argument goes back to at least [21]. Assume that the weak-type
estimate for indicators (1.6) holds. Let f P £plog€qg'ploglogfq be a non-negative function
of norm one. Set

B; “ tx : 2/ d fpxq & 2/ 1y,
and set b; “ f'p2ig. We have )
21, d f d ) 215,
jdo jdo
And, by logarithmic subadditivity for the weak-type norm, and (1.6),
kA'f kis ! K)gpl " jq 2! kA 1 sik1,gido
! tpgpl” jaq "2'|Bj|plog|B;|q’ido
I tpgpl” ja7j,2' IBj| ! kfKeplogeaploglogea “ 1. id0

Above, we appealed to |B;j| d 2'J, for otherwise the norm of f is more than one.
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