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ENDPOINT ℓr IMPROVING ESTIMATES FOR PRIME AVERAGES

M I CHA E L  T .  L A C E Y ,  HAMED MOUSAVI, AND YAGHOUB RAHIMI

A bs t r ac t .  Let Λ  denote von Mangoldt’s function, and consider the averages

A N  f pxq “  
1 ÿ

f px ´  nqΛpnq.
1 ď n ď N

We prove sharp ℓp-improving for these averages, and sparse bounds for the maximal
function. The simplest inequality is that for sets F , G  Ă  r0, N s there holds

N ´ 1 x A N  1F  , 1G y !  
|F|  ̈|G| ´

Log 
|F|  ̈|G| ¯t

,

where t “  2, or assuming the Generalized Riemann Hypothesis, t “  1. The corresponding
sparse bound is proved for the maximal function sup     A N  1F  . The inequalities for t “  1 are
sharp. The proof depends upon the Circle Method, and an interpolation argument of
Bourgain.
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1. I n t r o d u c t i o n

We consider discrete averages over the prime integers. The averages are weighted by
the von Mangoldt function.

AN f pxq “  
1  ÿ  

f px ´  nqΛpnq
1ď nďN

MTL:  The author is a 2020 Simons Fellow. Research supported in part by grant from the US National
Science Foundation, DMS-1949206.
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Λpnq “

” ı

2

ÿ

n ă x

x
2

I I

pLogpxf xgI I
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#

logppq n “  pa, p prime
0 Otherwise.

Our interest is in scale free ℓr improving estimates for these averages. The question
presents itself in different forms.

For an interval I  in the integers and function f  : I  Ñ  C,  set

xf yI , r  “  |I|´1 
ÿ

|f pxq|r 
1{r

.
x P I

If r  “  1, we will suppress the index in the notation. And, set Log x  “  1 `  |log x|, for
x  ą  0.

The kind of estimate we are interested in takes the the following form, in the simplest
instance. What is the ‘smallest’ function ψ : r0, 1s Ñ  r1, 8q so that for all integers N  and
indicator functions f , g : I  Ñ  t0, 1u, there holds

N ´ 1 xA N f , g y  ď  xf yI xgyIψpxf yI xgyI q.
That is, the right hand side is independent of N , making it scale-free. We specified that
f , g be indicator functions as that is sometimes the sharp form of the inequality. Of course it
is interesting for arbitrary functions, but the bound above is not homogeneous, so not the
most natural estimate in that case.

The points of interest in these two results arises from, on the one hand, the distinguished
role of the prime integers. And, on the other, endpoint results are significant interest in
Harmonic Analysis, as the techniques which apply are the sharpest possible. In this
instance, the sharp methods depend very much on the prime numbers.

For the primes, we expect that the Riemann Hypothesis to be relevant. We state
unconditional results, and those that depend upon the Generalized Riemann Hypothesis
(GRH). Note that according to GRH all zeroes in the critical strip 0 ă  Repsq ă  1 of an
arbitrary L´function Lpf, sq are on the critical line Repsq “  1 . Under GRH, the primes
are equitably distributed mod q, with very good error bounds. Namely,

(1.1) ψpx, q, aq “ Λpnq “  
φpqq 

`  Opx
1 

log2pqqq.

n ” a      pmod qq

Theorem 1.2. There is a constant C  so that this holds. For integers N  ą  30, and
interval I  of length N ,  the following inequality holds for all functions f  “  1F  and g “  1G

with F , G Ă  I
#

N ´ 1 xA N f , g y  ď  C xf yI xg yI  ˆ
Logpxfy

y
xgy

y
q

qqt
assuming GRH

The inequality assuming GRH is sharp, as can be seen by taking f  to be the indicator
of the primes, and g “  10. It is also desirable to have a form of the inequality above that
holds for the maximal function

A ˚ f  “  sup|AN f |.
N

Our second main theorem is sparse bound for A ˚ .  The definition of a sparse bound is
postponed to Definition 6.3. Remarkably, the inequality takes the same general form,
although we consider a substantially larger operator.
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Theorem 1.3. For functions f  “  1F  and g “  1G , for finite sets F , G Ă  Z ,  there is a
sparse collection of intervals S  so that we have

xA ˚ f , g y À xf yI xgyI pLogxf yI xgyI qt|I|, I P S

where we can take t “  1 under GRH, and otherwise we take t “  2.

The sparse bound is very strong, implying weighted inequalities for the maximal op-
erator A ˚ .  These inequalities could be further quantified, but we do not detail those
consequences, as they are essentially known. See [6]. One way to see that the sparse
bound is stronger is these inequalities are a corollary.

Corollary 1.4. The maximal operator A ˚  satisfies these inequalities, where t “  1 under
GRH, and t “  2 otherwise. First, a sparse bound with ℓp norms. For all 1 ă  p ă  2, there
holds

(1.5) xA ˚1 F  , 1Gy À  pp ´  1q´t sup x1F yI ,px1GyI,p|I|.
S      I P S

Second, the restricted weak-type inequalities

(1.6)
0 ă λ ă 1  pLog λqt |tA ˚1F ą  λu| À  |F|.

Third, the weak-type inequality below holds for finitely supported non-negative functions f
on Z

(1.7) sup λ|tA ˚ f  ą  λu| À  kf kℓplog ℓqtplog log ℓq
λ ą 0

where the last norm is defined in §7.

This subject is an outgrowth of Bourgain’s fundamental work on arithmetic ergodic
theorems [1,3]. These inequalities proved therein focused on the diagonal case, principally
ℓp to ℓp estimates for maximal functions. Bourgain’s work has been very influential, with
a very rich and sophisticated theory devoted to the diagonal estimates. We point to just
two papers, [12], and very recently [22]. The subject is very rich, and the reader should
consult the references in these papers.

Shortly after Bourgain’s first results, Wierdl [25] studied the primes, and the simpler
form of the Circle method in that case allowed him to prove diagonal inequalities for all p
ą  1, which was a novel result at that time. The result was revisited by Mirek and
Trojan [19]. The unconditional version of the endpoint result (1.6) above is the main
result of Trojan [23]. The approach of this paper differs in some important aspects from
the one in [23]. (The low/high decomposition is dramatically different, to point to the
single largest difference.)

The subject of sparse bounds originated in harmonic analysis, with a detailed set of
applications in the survey [20], with a wide set of references therein. The paper [4] initiated
the study of sparse bounds in the discrete setting. While the result in that paper of an
‘ǫ improvement’ nature, for averages it turns out there are very good results available, as
was first established for the discrete sphere in [10, 14]. There is a rich theory here, with a
range of inequalities for the Magyar-Stein-Wainger [17] maximal function in [15]. Nearly
sharp results for certain polynomial averages are established in [5, 9], and a surprisingly
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good estimate for arbitrary polynomials is in [7]. The latter result plays an interesting
role in the innovative result of Krause, Mirek and Tao [16].

The ℓp improving property for the primes was investigated in [8], but not at the end-
point. That paper result established the first weighted estimates for the averages for the
prime numbers. This paper establishes the sharp results, under GRH. Mirek [18] ad-
dresses the diagonal case for Piatetski-Shapiro primes. It would be interesting to obtain
ℓp improving estimates in this case.

Our proof uses the Circle Method to approximate the Fourier multiplier, following
Bourgain [1]. In the unconditional case, we use Page’s Theorem, which leads to the
appearance of exceptional characters in the Circle method. Under GRH, there are no
exceptional characters, and one can identify, as is well known, a very good approximation to
the multiplier.

The Fourier multiplier is decomposed at the end of §4 in such a way to fit an interpola-
tion argument of Bourgain [2], also see [11]. We call it the High/Low Frequency method.
To  acheive the endpoint results, this decomposition has to be carefully phrased. There
are two additional features of this decomposition we found necessary to add in. First,
certain difficulties associated with Ramanujan sums are addressed by making a significant
change to a Low Frequency term. The sum defining the Low Frequency term (4.12) is
over all Q-smooth square free denominators. Here, the integer Q can vary widely, as small as
1 and as large as N 1{10, say. (The largest Q-smooth square denominator will be of the order
of eQ.) Second, in the unconditional case, the exceptional characters are grouped into
their own term. As it turns out, they can be viewed as part of the Low Frequency term.
The properties we need for the High/Low method are detailed in §5. The following sections
are applications of those properties.

2. N o tat i o n

3. N o tat i o n

We write A  !  B  if there is a constant C  so that A  ď  C B .  In such instances, the exact
nature of the constant is not important.

Let F  denote the Fourier transform on R, defined for by
ż

F f pξq “  f pxqe´2π ixξ  dx, f  P L1pRq.
R

The Fourier transform on Z  is denoted by f ,  defined by

fpξq “  
ÿ  

f pnqe´2π inξ , f  P ℓ1pZq.
nPZ

Throughout, we denote Aq  “  ta P Z { q Z  : pa,qq “  1u, so that |Aq| “  φpqq, the totient
function. We have

(3.1)
Log Log q 

!  φpqq ď  q ´  1.
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It is known that for non-principal charactersχ, we have |Gpχ, aq| ă  q ´ 2  , see [13, Chapter
3]. In particular, if χ  is the principal character, then we get Ramanujan’s sum

cqpnq : “  φpqqGp1Aq, aq “ e
` ra ˘

.
rPAq

Let χq  denote the exceptional character. It is a non-trivial quadratic Dirichlet character
modulo q, that is χq  takes values ´1, 0, 1, and takes the value ´ 1  at least once. We also
know that χq  is primitive, namely that its period is q. As a matter of convenience, if q
does not have an exceptional character, we will set χq  ”  0, and βq “  1. These properties
are important to Lemma 5.9.

Page’s Theorem uses the exceptional characters to give an approximation to the prime
counting function. Counting primes in an arithmetic progression of modulus q, we have

(3.2) ψpN; q, rq ´  
φpqq 

`  
φpqq 

β ´ 1 xβq  !  N ec
?

log N  .

4. Approximations o f  t h e  K e r n e l

Denote the kernel of A N  with the same symbol, so that AN pxq “  N ´ 1  
ř

Λpnqδnpxq.
It follows that

A N  pξq “ Λpnqe´
2πnξ. n ď N

The core of the paper is the approximation to AN pξq, and its further properties, detailed
in the next section.

Set

MN “  
1

rnβ ´  pn ´  1qβsδn, 2 ă  β ď  1.
n ď N

We write MN “  M1 when β “  1, which is the standard average. For β ă  1, these are
not averaging operators. They are the operators associated to the exceptional characters.
The Fourier transforms are straight forward to estimate.

Proposition 4.1. We have the estimates

(4.2)

(4.3)

For integers q and a P Aq ,

|MNpξq| !  mint1, pN|ξ|q´1u,

|MNpξq| !  pN|ξ|q´1,

|MNpξq ´  β ´ 1 N β ´ 1 | !  Nβ|ξ|.

(4.4) La,qpξq “  Gp1Aq , aqMNpξq ´  Gpχq, aqMN pξq

We state the approximation to the kernel at rational point, with small denominator.

Lemma 4.5. Assume that |ξ ´  a| ď  N ´ 1 Q  for some 1 ď  a ď  q ď  Q and gcdpa, qq “  1.
Then

a,q               a                   OpQN ´ 1  `ǫq,      Assuming GRH
N                   q                   OpQe´c nq,                   Otherwise
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Proof. We proceed under GRH, and return to the unconditional case at the end of the
argument. The key point is that we have the approximation (1.1) for ψpN; q, rq. Set
α : “  ξ ´  a . Using Abel summation, we can write

N MN  pαq “  NepαNq ´  
?

N epα
?

N q ´  2π iα
ż N      

etα dt `  Op
?

N q.
N

Turning to the primes, we separate out the sum below according to residue classes mod
q. Since ξ “  q `  α,

ÿ  
epξℓqΛpℓq “

ÿ ÿ
epξℓqΛpℓq

ℓ ďN 0ď rďq
gcdpr,qq“1 ℓ ” r      mod q

“ e ra epαℓqΛpℓq.
rPAq

ℓ ” r
ℓ  

mod q

Examine the inner sum. Using Abel’s summation formula, and the notation ψ for prime
counting function, we have

ÿ
epαℓqΛpℓq “  ψpN; q, rqepαNq ´  ψp

?
N ; q, rqepα

?
N q

ℓ ” r
ℓ  

mod q

´  2π iα
ż N      

ψpt; q, rqepαtqdt `  Op
?

N q.
N

At this point we can use the Generalized Riemann Hypothesis. From (1.1), it follows
that

ÿ
epαℓqΛpℓq ´  

φpqq
MNpαq “  pψpN; q, rq ´  

φpqq
epαNqqepαNq

ℓ ” r      mod q
ż  N

´  2πiα ?
N  

eptαqpψpt; q, rq ´  tq dt `  Op Nq

N

!  N  2 ` ǫ  `  
N  ?

N  
t 2 ` ǫ dt `  OpN 2 `ǫq

!  QN 2 ` ǫ .

The proof without GRH uses Page’s Theorem (3.2) in place of (1.1).
details.

We omit the

The previous Lemma approximates A N  pξq near a rational point. We extend this ap-
proximation to the entire circle. This is done with these definitions.

Vs,npξq “  
ÿ  

Gp1Aq , aqMN pξ ´  a{qqηspξ ´  a{qq,
a{q PR s



z y βq

Ñ  “

#

ÿ

˜

˜

x x ˜

˜

1

˜ ˜

x ˜

x x
y z y

˜

0

0
y ˜

˜
˜

x y
N

a
0

x y
N

a
0
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Ws,npξq “  
ÿ  

Gpχq , aqMN pξ ´  a{qqηspξ ´  a{qq,
a{q PR s

R s  “  ta{q : a P Aq , 2s ď  q ă  2s`1 u,

and R 0  “  t0u. Further 1r´1{4,1{4s ď  η ď  1r´1{2,1{2s , and ηspξq “  ηp4sξq. In (4.11), recall
that if q is not exceptional, we have χq  “  0. Otherwise, χq  is the associated exceptional
Dirichlet character. Given integer N  “  2n, set

ec
?

n{4 where c is as in (4.6)
N 1{5 under GRH

Lemma 4.7. Let N  “  2n. Write A N  “  B N  `  ErrN , where

(4.8) B N  “ Vs,n ´  Ws,n.
s : 2săpN q1{400

Then, we have kErrN f kℓ2  !  pN q´1{1000kf kℓ2 .

Proof. We estimate the ℓ2 norm by Plancherel’s Theorem. That is, we bound

kAN  ´  B N  kL 8 pTq  !  pN q´1{1000.

Fix ξ P T,  where we will estimate the L 8  norm above. By Dirichlet’s Theorem, there
are relatively prime integers a, q with 0 ď  a ă  q ď  pNq1{5 with

|ξ ´  a{q| ă  
q2 .

The argument now splits into cases, depending upon the size of q.
Assume that pNq1{400 ă  q ď  pNq1{5. This is a situation for which the classical Vino-

gradov inequality [24, Chapter 9] was designed. That estimate is however is not enough
for our purposes. Instead we use [13, Thm 13.6] for the estimate below.

|ANpξq| !  pq´1{2 `  pq{Nq1{2 `  N ´1{5q log3 N  !  pN q´1{1000.

So, in this case we should also see that BN pξq satisfies the same bound. The function B N  is a
sum over Vs,n and Ws,n. The argument for both is the same. Suppose that Vs,npξq ‰ 0. The
supporting intervals for ηspξ ´  a{qq for a{q P R s  are pairwise disjoint. We must have |ξ ´
a0{q0| ă  2 ´ 2 s  for some a0{q0 P R s ,  where 2s ă  pNq1{400. Then,

|ξ ´  a0{q0| ě  |a0{q0 ´  a{q| ´  |ξ ´  a{q| ě  pqq0q´1 ´  q ´ 2  ě  q ´ 4 .

But then by the decay estimate (4.2), we have

|Gp1Aq , a0qMN pξ ´  a0{q0q| !  pN q ´4 q´1 !  N ´1pN q1{100

This estimate is summed over s ď  pNq1{400 to conclude this case.
Proceed under the assumption that q ď  N0 “  pNq1{400. From Lemma 4.5, the inequality

(4.6) holds.

A N  pξq “  La,q pξ ´  q q `  OpN ´1{2q

The Big O term is as is claimed, so we verify that BN pξq ´  La,q pξ ´  q q !  N
´

1 { 2 .
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The analysis depends upon how close ξ is to a{q. Suppose that |ξ ´ a{q| ă  1 N ´ 2 .  Then
a{q is the unique rational b{r with pb,rq “  1 and 0 ď  b ă  r  ď  N0 that meets this criteria.
That means that

BN pξq “  La,qpξ ´  a{qqηspξ ´  a{qq

where in the last term on the right, 2s ď  q ă  2s ` 1 .  By definition ηspξ ´  a{qq “  ηp4spξ ´
a{qqq, which equals one by assumption on ξ. That completes this case.

Continuing, suppose that there is no a{q with |ξ ´  a{q| ă  N ´ 2 .  The point is that we
have the decay estimates (4.2) and (4.3) which imply

|MNpξ ´  a{qq| `  |MN pξ ´  a{qq| !  rNpξ ´  a{qqs´1 !  
N  

!  N ´ 3 { 5 .

But then, from the definition (4.4), we have

|La,qpξ ´  q q| !  N ´ 1 { 5 .

And as well, trivially bounding Gauss sums by 1, we have

|BNpξq| !  
n3{5 

!  N ´ 1 { 5 ,

by just summing over all a{q P R s ,  with s ă  pNq1{400. That completes the proof.

The discussion to this point is of a standard nature. We state here a decomposition of
the operator B N  defined in (4.8). It encodes our High/Low/Exceptional decomposition,
and requires some care to phrase, in order to prove our endpoint type results for the prime
averages. It depends upon a supplementary parameter Q. This parameter Q will play
two roles, controlling the size and smoothness of denominators. Recall that an integer q is
Q-smooth if all of its prime factors are less than Q. Let S Q  be the collection of square-free Q-
smooth integers.

(4.9) V Q,lopξq “  
ÿ  

Gp1Aq , aqMN pξ ´  a{qqηspξ ´  a{qq,

(4.10)

(4.11)

Define

(4.12)

(4.13)

a{q PR s
qPS

V Q
,
hipξq “  

ÿ  
Gp1Aq , aqMN pξ ´  a{q

q

ηs

p

ξ ´  a{qq,
a{q PR s

q RSQ

Ws,npξq “  
ÿ  

Gpχq , aqMN pξ ´  a{qqηspξ ´  a{qq,
a{q PR s

ÿ
Q,l

o
s,n

HiQ,N “
ÿ  s

V Q,hi ´  Ws,n

s : Qď2sďpN q1{ 4 0 0
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˜

˜
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˜
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˜

z
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q
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Q
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{

E N D P O I N T  ℓ r  I M P ROV I N G  E S T I M AT E S  F O R  P R I M E  AV E R A G E S 9

(4.14) ExQ , N  “
ÿ

Ws,n
s : 2 s ďQ

Concerning these definitions, in the Low term (4.12), there is no restriction on s, but the
sum only depends upon the finite number of square-free Q-smooth numbers in SQ . (Due
to (5.8), the non-square free integers will not contribute to the sum.) The largest integer
in S Q  will be about eQ, and the value of Q can be as big as N . In the High term (4.13),
there are two parts associated with the principal and exceptional characters. For the
principal characters, we exclude the square free Q-smooth denominators which are both
larger than Q and less than pNq1{400. These are included in the Low term. We include
all the denominators for the exceptional characters. In the Exceptional term (4.14), we
just impose the restriction on the size of the denominator to be not more than Q. This
will be part of the Low term.

The sum of these three terms well approximates B N .

Proposition 4.15. Let 1 ď  Q ď  N . We have the estimate kErr1 f kℓ2  À  pN q´1{2kf kℓ2 ,
where

(4.16) ErrN “  Lo Q , N  `  HiQ,N `  Ex N  ` E r r N  ´  B N .

Proof. From (4.8), we see that

ErrN pξq “
ÿ

V Q,lopξq
s : 2sąpN q1{400

Recalling the definition of V Q,lo from (4.9), it is straight forward to estimate this last sum
in L8 pTq, using the Gauss sum estimate Gp1Aq ,aq !  Log Log q .

5. P ro p e rt i e s  o f  t h e  High, Low a n d  E xc e p t i o n a l  Terms

The further properties of the High, Low and Exceptional terms are given here, in that
order.

5.1. The High Terms. We have the ℓ2 estimates for the fixed scale, and and for the
supremum over large scales, for the High term defined in (4.13). Note that the supremum
is larger by a logarithmic factor.

Lemma 5.1. We have the inequalities

(5.2) kHiQ,N kℓ2 Ñℓ2 À  
log log Q

,

(5.3) k sup |HiQ,N f|k2 À  
log log Q

 ¨  
log Q

kf kℓ2 .
N ą Q 2

We comment that the insertion of the Q smooth property into the definition of V Q,hi

in (4.10) is immaterial to this argument.

Proof. Below, we assume that there are no exceptional characters, as a matter of con-
venience as the exceptional characters are treated in exactly the same manner. For the
inequality (5.2), we have from the definition of the High term in (4.13), and (4.10),

kHiQ,N kℓ2 Ñℓ2 “  kHiQ,N kL8 pTq



˜

z
s,n

ÿ

˜

z
s,n

ÿ
˜

aPA
A q

!
˜

max

Q

ÿ
s,n ℓ

φpqq Qℓ ℓ

s

ÿ
p

ÿ
˜

0
ℓ2
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“  
ÿ

V Q,hi

s  : Q ď 2 s ďN
L 8 p T q

ď kV Q,hikL8 pTq s  : Q ď 2 s ďN

ď max max|Gp1 ,aq|
s : Q ď 2 s ďN  

2 s ď q ă2 s ` 1 q

ÿ 1

s : Q ď 2 s ďN  
2 s ď q ă2 s ` 1  φpqq

!
ÿ

log s  ̈2 ´ s  !  
log log Q

.
s : Qď2 s

The first line is Plancherel, and the subsequent lines depend upon definitions, and the
fact that the functions below are disjointly supported.

tηsp¨ ´  a{qq : 2s ď  q ă  2s ` 1 ,  a P Aq u.

Last of all, we use a well known lower bound φpqq "  q{ log log q.

For the maximal inequality (5.3), we have an additional logarithmic term. This is direct
consequence of the Bourgain multi-frequency inequality, stated in Lemma 5.4. We then
have

k sup |HiQ,N f |kℓ2 ď
 
sup |V Q,hif |

 
2

N ą Q 2                                                         
s  : Qď2 s       N ą Q 2

!
ÿ

s ¨ max
1

 ̈kf k 2 À  
log Q  ̈log log Q

kf k 2 .
s : Qď2 s 2 s ď q ă 2 s ` 1

Lemma 5.4. Let θ1, . . . , θJ be points in T  with minj‰k|θj ´  θk| ą  2 ´ 2 s 0 ` 2 .  We have the
inequality

 J ´ J ¯
 sup F ´ 1      f MN p̈  ´  θjqηs p̈  ´  a{qq !  log J   ̈kf kℓ2 .

N ą 4  0 j “ 1                       j “ 1

This is one of the main results of [3]. It is stated therein with a higher power of
log J .  But it is well known that the inequality holds with a single power of log J . This is
discussed in detail in [8].

5.2. The Low Terms. From the Low terms defined in (4.12), the property is

Lemma 5.5. For a functions f , g supported on interval I  of length N  “  2n, we have

(5.6) N ´ 1 xLo Q , N  ˚f , gy !  log Q  ̈xf yI xgyI .

The following Möbius Lemma is well known.



ÿ
x µpqq

ÿ
x

ÿ

ÿ

q

φpqq

1 ÿ µpqq

ÿ µpqq

pµ pxq

µpqq 1µpq q

φpqq

“ 1 `

ź

p ´  1
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Lemma 5.7. For each q, we have

(5.8)
aPAq 

Gp1Aq , aqF ´1pMN  ̈ηsp  ̈´  a{qqqpxq “  
φpqq

cqp´xq.

Proof. Compute

Gp1Aq , aqF ´1pMN  ̈ηsp  ̈´  a{qqqpxq “  MN ˚  F ´1ηs pxq Gp1Aq , aqepax{qq.
aPAq                                                                                                                                                                                                          aPAq

We focus on the last sum above, namely

Sqpxq “ Gp1q, aqepxa{qq
aPA

“
1 ÿ  ÿ

 epapr `  xq{qq
rPAq aPAq

“  
φpqq 

rPAq 

cqpr `  xq “  
φpqq

cqp´xq.

The last line uses Cohen’s identity.

The two steps of inserting of the property of being Q smooth in (4.9), as well as dropping
an restriction on s in (4.12), were made for this proof.

Proof of Lemma 5.5. By (5.8), the kernel of the operator LoQ , N  is

LoQ,N pxq “  MN ˚  F ´1ηs pxq  ̈S p´xq,

where Spxq “  
q PSQ 

φpqq
cqpxq.

We establish a pointwise bound kS k ℓ 8  !  log Q, which proves the Lemma.
Assume x  ‰ 0. We exploit the multiplicative properties of the summands, as well as

the fact that if prime p divides x, we have φ
p

p
q

 cqpxq “  µppxq. Let Q1 be the primes p ă  Q
such that pp, xq “  1, and set Q2 to be the primes less than Q which are not in Q1.

The multiplicative aspect of the sums allows us to write

φpqq
cqp´xq “  

φpq1q
cq1 p´xq  ̈µpq2q

where q “  q1q2, and all prime factors of qj  are in Qj .  If Q j  is empty, set qj “  1. Thus,
Spxq “  S1pxqS2pxq, where the two terms are associated with Q1 and Q2 respectively. We
have

S1pxq “
ÿ µ

pq
q

cqp´xq

q is Q 1  smooth

ź µppqcpp´xq

pPQ1
φppq

“ 1 `
1

“  Ax .  pPQ1



ÿ

ÿ ˆ
d
j

˙

ÿ d
j

ÿ q

ÿ

ÿ ÿ

q q

“ “ .
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This is so, since µppqcppxq “  1. It is a straight forward consequence of the Prime Number
Theorem that A x  !  log Q. Here, and below, we say that q is Q  smooth if all the prime
factors of q are in the set of primes Q.

The second term is as below, where d “  |Q2|. Here, in the definition (4.12), there is no
restriction on s, hence all the smooth square free numbers are included. If Q2 “  H ,  then
S2pxq “  1, otherwise

S2pxq “ µpqq
q is Q 2  smooth

d

“ p´1qj

j “ 1

d ˆ  ˙
“  ´ 1  ` p´1qj “  ´ 1 .

j “ 0

If x  “  0, then Sp0q “  S2pxq “  ´ 1 .  That completes the proof.

5.3. The Exceptional Term. The Exceptional terms are always of a smaller order than
the Low terms.

Lemma 5.9. Let χ  be an exceptional character modulo q. For x  P Z ,

(5.10)
aPAq 

Gpχ, aqepxa{qq “  
φpqq

provided px, qq “  1, otherwise the sum is zero.

Proof. It is also known that exceptional characters are primitive - see [13, Theorem 5.27].
So the sum is zero if px, qq ą  1. We use the common notation

τpχ, xq “ χpaqepax{qq
aPAq

which is φpqqGpχ, xq. Assuming px, qq “  1,

τpχ, aq “  τpχ, 1q.

This leads immediately to

τpχ, aqep
a

x
q “  τpχ, 1q χpaqep´

ax
q

aPAq aPAq

τpχqτpχ, xq |τpχq|2χpxq
φpqq                    φpqq

It is known that |τpχq|2 “  q for primitive characters.
quadratic, so this completes the proof.

And the exceptional character is

Lemma 5.11. For a function f  supported on interval I  of length N  “  2n, we have

(5.12) xExQ,N ˚ f y 8  !  plog log Qq2  ̈xf yI .

The term on the left is defined in (4.14).



ÿ  ÿ
β

ÿ

v

?

1

Q

Q , N

Q

log Q “ ‰
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Proof. Following the argument from Lemma 5.5, we have

ExQ,N pxq “ Gpχq, aqepxa{qq  ̈MN
v  ˚  F ´ 1 η s q  pxq.

q ăQ  aPAq

Above, 2sq ď  q ă  2s q `1 . The interior sum above is estimated in (5.10). Using the lower
bound on the totient function in (3.1), we have

ExQ,N pxqf !  log log Q  ̈xf y I 1.
q ăQ

q exceptional

We know that the exceptional q grow at the rate of a double exponential, that is for q
being the vth exceptional q, we have qv "  C C v  , for some C  ą  1. It follows that the sum
above is at most log log Q.

6. P r o o f s  o f  t h e  Fixed Sc a l e  a n d  Sparse Bounds

Proof of Theorem 1.2. Let N  “  2n, and recall that f  “  1F and g “  1G where F , G Ă  I ,
and interval of length N .

Let us address the case in which we do not assume GRH. We always have the estimate

(6.1) N ´ 1 xA N f , g y  À  n  ̈xf yI xgyI .

Hence, if we have xf yI xgyI !  e´ c
?

n { 1 00 , the inequality with a squared log follows.
We assume that e ´ c  n  !  xf yI xgyI , and then prove a better estimate. We turn to the

Low/High/Exceptional decomposition in (4.12)—(4.14), for a choice of integer Q that we
will specify. We have

A N  “  LoQ , N  `  HiQ,N ´  ExQ , N  ` E r r N  `  ErrN

These terms are defined (4.12), (4.13), (4.14), (4.8) and (4.16) df respectively.
For the ‘High’ term we have by (5.2),

N ´1|xHiQ,N f, gy| À  
log log Q

xf yI ,2xgyI ,2

The same inequality holds for both ErrQ,N f  and Err1 f  by Lemma 4.7 and Proposi-
tion 4.15.

Concering the Low term, by (5.6), we have

N ´1 |xLoQ,N f, gy| À  log Qxf yI xgyI

The Exceptional term satisfies the same estimate by (5.12).
Combining estimates, choose Q to minimize the right hand side, namely

(6.2) N ´ 1 xA N f , g y  À  
log log Q“

xfyIxgyI
‰1{2 `  log Q  ̈xf yI xgyI .

This value of Q is
Q

log log Q 
»  xf yI xgyI 

´ 1 { 2 .

Since e ´ c
?

n  !  xf yI xgyI , this is an allowed choice of Q. And, then, we prove the desired
inequality, but only need a single power of logarithm.



0

0 0 0 0

0

?

2

ÿ

0

ℓ2
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Assuming GRH, from (6.1), we see that the inequality to prove is always true provided
xf yI xgyI ă  cN ´ 1 { 4 .  Assuming this inequality fails, we follow the same line of reasoning
above that leads to (6.2). That value of Q will be at most N 1{4, so the proof will complete,
to show the bound with a single power of the logarithmic term.

Turning to the sparse bounds, let us begin with the definitions.
Definition 6.3. A  collection of intervals S  is called sparse if to each interval I  P S ,  there is
a set E I  Ă  I  so that 4|EI| ě  |I| and the collection t E I      : I  P S u are pairwise disjoint. Al l
intervals will be finite sets of consecutive integers in Z.

The form of the sparse bound in Theorem 1.3 strongly suggests that one use a recursive
method of proof. (Which is indeed the common method.) To  formalize it, we start with
the notion of a linearized maximal function. Namely, to bound the maximal function
A ˚ f ,  it suffices to bound Aτpxqf pxq, where τ : Z  Ñ  t2n : n P Nu is a function, taken to
realize the supremum. The supremum in the definition of A ˚ f  is always attained if f  is
finitely supported.

Definition 6.4. Let I0  an interval, and let f  be supported on 3I0. A  map τ : I0  Ñ
t1, 2, 4, . . . , |I0|u is said to be admissible if

sup MN f pxq ď  10xf y3I ,1.
N ěτ pxq

That is, τ is admissible if at all locations x,  the averages of f  over scales larger than τpxq
are controlled by the global average of f .

Lemma 6.5. Let f  and τ be as in Definition 6.4. Further assume that f  and g are
indicator functions, with g supported on I0 . Then, we have

|I0|´1xAτ f , gy À  xf yI0,1xgyI0,1  ̈pLogxf y3I0,1xgyI0,1qt,

where t “  1 assuming RH, and t “  2 otherwise.
Proof. We restrict τ to take values 1, 2, 4, . . . , 2t, . . . ,. Let |I0| “  N0 “  2n0 . We always
have the inequalities

|I0|´1xAτ f , gy À  n0xf yI0,1xgyI0,1

|I0|´1x1τ ăT Aτ f , g y À  plog T qxf yI0,1xgyI0,1.

The top line follows from admissibility.
We begin by not assuming GRH. Then, the conclusion of the Lemma is immediate if

we have pLogxf yI ,1xgyI ,1q2 "  n0. It is also immediate if log τ !  pLogxf yI ,1xgyI ,1q2. We
proceed assuming

(6.6) p2 “  CpLogxf yI0,1xgyI0,1q2 ď  c0 mintn0, log τu,
where 0 ă  c0 ă  1 is sufficiently small.

We use the definitions in (4.12)—(4.14) for a value of Q ă  ec n 0  that we will specify.
We address the High, Low, Exceptional and both Error terms. First, the Error terms.
From the estimate (??) and (6.6), we have

kErrQ,τ  f k2 ď kErrQ,2n f k2

n : p 2 ďnďn 0



ℓ2

2

0ℓ ℓ2 2

Q

Q

Q

1ăp ă2

x

sup λ À  |F|.
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À  kf k2
ÿ

e ´ c
?

n

n  : p 0 ďnďn 0

À  kf k2  ̈p2 e´cp0  À  kf k2  ̈xf y3I0 ,1xgyI0,1.

This provided C  in (6.6) is large enough. This is a much smaller estimate than we need.
The second error term in Proposition 4.15 is addressed by the same square function
argument.

For the High term, apply (5.3) to see that

k sup |
H

iQ,N f|k2 À  
log Q  ̈log log Q

kf kℓ2 .
N ą Q 2

For the Low term the definition of admissibility and (5.6) that

|I0|´1|xLoQ,τpxq fpxq, gy !  plog Qqxf yI xgyI .

The Exceptional term also satisfies this bound.
We conclude that

|I0|´1xAτ f , gy À  
log Q ¨

 
log log Q

xf yI ,2xgyI ,2 `  log Q  ̈xf yI xgyI .

This is optimized by taking Q so that

log log Q 
»

 

“
xf y

I
xgy

I‰´1{2.

And this will be an allowed value of Q since (6.6) holds. Again, the resulting estimate is
better by power of the logarithmic term than what is claimed.

Under RH, the proof is very similar, but a wider range of Q’s are allowed. In particular,
only a single power of logarithm is needed.

7. P r o o f  o f  C o r o l l a ry  1.4

The inequality (1.5) follows from the elementary identity that for 0 ă  x  ă  1, we have

xpLog xqt !  min 
pp ´  1qt .

We remark that we do not know an efficient way to pass from the restricted weak type
sparse bound we have established to the similar sparse bounds for functions. The methods
to do this for norm estimates is of course very well studied.

Proof of (1.6). There is a different inequality that is a natural consequence of the sparse
bound, namely

(7.1)
|tA ˚1F ą  λu|

λ pLog|tA˚1F ą  λu|  ̈|F |´1q
Indeed, if (1.6) were to fail, with a sufficiently large constant, it would contradict the
inequality above.

Let |G| ą  |F|. We show that there is a subset G1 Ă  G, with 4|G1| ě  |G| with

(7.2) xA ˚ f , 1G 1  y !  |F|pLog|F|{|G|qt



ÿ

Ť

ÿ

ÿ

ÿ

ż

0

F
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This implies (7.1) by taking G  “  t A ˚ f  ą  λu, for 0 ă  λ  ă  1.
In the opposite case, take G1 to be

G1 “  GztM f ą  Kρu, ρ “  |F|  ̈|G|´1

where M is the ordinary maximal function. By the usual weak ℓ1 inequality for M, for K
sufficiently large, we have 4|G1| ą  |G|. Let g “  1G1 . Apply the sparse bound for A ˚  to see
that

xA ˚ f , g y ! xf yI xgyI pLogxf yI xgyI qt|I|.
I P S

We can assume that for all intervals I  P S , that we have xgyI ą  0. That means that xf y I  ď
K|F |{|G|. Turn to a pigeonhole argument. Divide the collection S  into subcollections

j , k ě0
 S j , k  where

Sj , k  “  t I  P S  : 2 ´ j ´ 1 K ρ  ă  xf y I  ď  2 ´ j K ρ ,  2 ´ k ´ 1  ă  xgyI ď  2 ´ k u.

Then, we have

xA ˚ f , g y !
ÿ ÿ  

xf yI xgyI pLogxf yI xgyI qt|I|
j , k ě0  I P S j , k

!  |F|  ̈|G|´1 2 ´ j ´ k p j  `  k `  Log ρqt
ÿ  

|I|
j , k ě0 I P S j , k

!  |F|  ̈|G|´1 2 ´ j ´ k p j  `  k `  Log ρqt mint|G|2j, 2k|G|u
j , k ě0

!  |F|2 ´ j ´ k p j  `  k `  Log ρq2pj `kq{2 !  |F|. j , k ě0

Here, we have used the standard weak-type inequality for the maximal function, and the
basic property of sparseness, namely

ÿ | I |  À  
ď  

I .
I P S I P S

This completes the proof of (7.2).

For the proof of (1.7), we need to recall the definition of the Orlicz norm. Given f
finitely supported on Z,  let f ˚  : r0, 8q Ñ  N be the decreasing rearrangement of f .  That
is,

f ˚pλq “  |tx P Z  : |fpxq| ě  λu|.

For a slowly varying function ϕ : r0, 8q Ñ  r0, 8q, set
8

kfkℓϕpℓq “          f ˚pλqϕpλq dλ

»  
ÿ

 
2jϕp2jqf ˚p2jq.

j P Z

For ϕpxq “  1, this is comparable to the usual ℓ1 estimate. For f  “  1 , note that
ż  |F|

kfkℓϕpℓq “ ϕpλq dλ »  |F|ϕp|F|q 0



ÿ

ÿ

ÿ

´
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We are interested in ϕpxq “  pLog xq  ̈Log Log xqt, for t “  1, 2. The proof of the orlicz
norm estimate (1.7) is below.

Proof of (1.7). This argument goes back to at least [21]. Assume that the weak-type
estimate for indicators (1.6) holds. Let f  P ℓplog ℓqtplog log ℓq be a non-negative function
of norm one. Set

B j  “  tx  : 2j ď  fpxq ă  2 j ` 1 u,

and set bj “  f ˚p2j q. We have 
ÿ  

2j 1B j  ď  f  ď  2 
ÿ  

2 j 1B j  .
j ď0 j ď0

And, by logarithmic subadditivity for the weak-type norm, and (1.6),

kA ˚ f k1 , 8  ! logp1 ´  jq  ̈2 j kA ˚1B j k1,8  j ď0

! logp1 ´  jq  ̈2j|Bj|plog|Bj|qt j ď0

! logp1 ´  jq  ̈j t2
j |Bj | !  kf kℓplog ℓqtplog log ℓq “  1. j ď0

Above, we appealed to |Bj| ď  2 ´ j ,  for otherwise the norm of f  is more than one.
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