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Abstract

In recent years, federated learning (FL) has emerged as an important distributed
machine learning paradigm to collaboratively learn a global model with multiple
clients, while keeping data local and private. However, a key assumption in most
existing works on FL algorithms’ convergence analysis is that the noise in stochas-
tic first-order information has a finite variance. Although this assumption covers all
light-tailed (i.e., sub-exponential) and some heavy-tailed noise distributions (e.g.,
log-normal, Weibull, and some Pareto distributions), it fails for many fat-tailed
noise distributions (i.e., “heavier-tailed” with potentially infinite variance) that
have been empirically observed in the FL literature. To date, it remains unclear
whether one can design convergent algorithms for FL systems that experience
fat-tailed noise. This motivates us to fill this gap in this paper by proposing an
algorithmic framework called FAT-Clipping (federated averaging with two-sided
learning rates and clipping), which contains two variants: FAT-Clipping per-round
(FAT-Clipping-PR) and FAT-Clipping per-iteration (FAT-Clipping-PI). Specifi-
cally, for the largest tail-index « € (1, 2] such that the fat-tailed noise in FL still
has a bounded a-moment, we show that both variants achieve O((mT)z?Ta) and

o((mT) 31affé) convergence rates in the strongly-convex and general non-convex
settings, respectively, where m and T" are the numbers of clients and communication
rounds. Moreover, with more clipping operations compared to FAT-Clipping-PR,
FAT-Clipping-PI further enjoys a linear speedup effect with respect to the number
of local updates at each client and being lower-bound-matching (i.e., order-optimal).
Collectively, our results advance the understanding of designing efficient algorithms
for FL systems that exhibit fat-tailed first-order oracle information.

1 Introduction

In recent years, federated learning (FL) has emerged as an important distributed machine learning
paradigm, where, coordinated by a server, a set of clients collaboratively learn a global model, while
keeping their training data local and private. With intensive research in recent years, researchers
have developed many FL algorithms (e.g., FedAvg [1] and many follow-ups [2—12]) that have been
theoretically shown to achieve fast convergence rates in the presence of various types of randomness
and heterogeneity resulted from training data, network environments, computing resources at clients,
etc. Moreover, many of these algorithms enjoy the so-called “linear speedup” effect, i.e., the
convergence time to a first-order stationary point is inversely proportional to the number of workers
and local update steps.

However, despite the recent advances in FL algorithm design and theoretical understanding, a “cloud
that remains obscures the sky of FL” is a common assumption that can be found in almost all works
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on performance analysis of FL algorithms, which states that the random noise in stochastic first-order
oracles (e.g., stochastic gradients or associated estimators) has a finite variance. Although this
assumption is not too restrictive and can cover all light-tailed (i.e., sub-exponential) and some heavy-
tailed noise distributions (e.g., log-normal, Weibull, and some Pareto distributions), it fails for many
“fat-tailed” distributions (i.e., “heavier-tailed” with potentially infinite variance'). In fact, fat-tailed
distributions have already been empirically observed under centralized learning settings [15-19], let
alone in the more heterogeneous FL environments. Later in Section 3, we will also provide empirical
evidence that shows that fat-tailed noise distributions can be easily induced by FL systems with
non-i.i.d. datasets and heterogeneous local updates across clients.

The presence of fat-tailed noise poses two major challenges in FL algorithm design and analysis:
1) Experimentally, it has been shown in [20] that many existing FL algorithms suffer severely from
fat-tailed noise and frequently exhibit the so-called “catastrophic failure of model performance” (i.e.,
sudden and dramatic drops of learning accuracy during the training phase); ii) Theoretically, the
infinite variance of the random noise in the stochastic first-order oracles renders most of the proof
techniques in existing FL algorithmic convergence analysis inapplicable, which necessitates new
algorithmic ideas and proof strategies. In light of these empirical and theoretical challenges, two
foundational questions naturally emerge in FL algorithm design and analysis: 1) Can we develop FL
algorithms with convergence guarantee under fat-tailed noise? 2) If the answer to 1) is “yes,” could
we characterize their finite-time convergence rates? In this paper, we provide affirmative answer to
the above questions. Our major contributions in this paper are highlighted as follows:

* To address the challenges of the fat-tailed noise in FL algorithm design, we propose an algorithmic
framework called FAT-Clipping (federated averaging with two-sided learning rates and clipping),
which leverages a clipping technique to mitigate the impact of fat-tailed noise and uses a two-sided
learning rate mechanism to lower communication complexity. Our FAT-Clipping framework
contains two variants: FAT-Clipping per-round (FAT-Clipping-PR) and FAT-Clipping per-iteration
(FAT-Clipping-PIl). We show that, for the largest tail-index o € (1,2] such that the fat-tailed

noise in FL still has a bounded a-moment, both FAT-Clipping variants achieve O((mT)*=")

11—« . .
and O((mT)3==2) convergence rates in the strongly-convex and general non-convex settings,
respectively, where m and " are the numbers of clients and communication rounds.

» Between the proposed FAT-Clipping variants, FAT-Clipping-PR only performs one clipping oper-
ation in each communication round before client communicates to the server, while FAT-Clipping-
PI performs clipping in each iteration of local model update. We show that, at the expense of more
clipping operations compared to FAT-Clipping-PR, FAT-Clipping-PI further achieves a linear
speedup effect with respect to the number local model updates at each client and is lower-bound
matching in terms of convergence rate.

* In addition to theoretical analysis, we also conduct extensive numerical experiments to study the fat-
tailed phenomenon in FL systems and verify the efficacy of our proposed FAT-Clipping algorithms
for FL systems with fat-tailed noise. We first provide concrete empirical evidence that fail-tailed
noise distributions are not uncommon in FL systems with non-i.i.d. datasets and heterogeneous
local updates. We show that our FAT-Clipping algorithms render a much smoother FL training
process, which effectively prevents the “catastrophic failure” in various FL settings.

For quick reference and easy comparisons, we summarize all convergence rate results in Table 1. The
rest of the paper is organized as follows. In Section 2, we review the literature to put our work in
comparative perspectives. In Section 3, we provide empirical fat-tailed evidence for FL to further
motivate this work. Section 4 presents our FAT-Clipping algorithms and their convergence analyses.
Section 5 presents numerical results and Section 6 concludes this paper. Due to space limitation, all
proof details and some experiments are provided in the supplementary material.

'In the literature, the terminologies “heavy-tailed” and “fat-tailed” are not universally defined and could
be interchangeable sometimes. In this paper, we follow the convention of those authors who reserve the term
“fat-tailed” to mean the subclass of heavy-tailed distributions that exhibit power law decay behavior as well as
infinite variance (see, e.g., [13, 14]). Thus, every fat-tailed distribution is heavy-tailed, but the reverse is not true.



Table 1: Convergence rate comparisons under fat-tailed noise distributions (shaded parts are our
results; metrics: f(x) — f(x*) < eand ||V f(x)|| < e for strongly-convex and non-convex functions,
respectively): a = 2 and « € (1, 2) correspond to non-fat-tailed and fat-tailed noises, respectively.
Here, R is the total number of iterations for centralized algorithms (SGD and GClip); K and T are
local update steps and communication rounds in the FL setting, respectively; m is the number of
clients. N/A means no theoretical guarantee for convergence. Note that the total number of iterations
R in FL can be computed as R = KT, which relates to that in the centralized setting.

Methods Strongly Convex Objective Functions Nonconvex Objective Functions
Fat-Tailed Non-Fat-Tailed Fat-Tailed Non-Fat-Tailed

SGD [21] N/A OR™Y) N/A O(R™T)

GClip [22] O(RFE™) O(R™) O(R3a=2) O(R™ 1)
FedAvg [3,7] N/A O((mKT)™1) N/A O((mKT)~ E )
FAT-Clipping-PR | O((mT) =" K4) O((mKT)™1) O((mT)3=2 K35=2) | O((mKT) %)
FAT-Clipping-PI O((mKT) e ) O((mKT)™ 1) 0((mKT)31a_7—a2 ) O((mKT)~ %)
Lower Bound Q((mKT)> =) Q((mKT)™ 1) Q((mKT)3a=2) Q((mKT)" 1)

2 Related work

In this section, we will provide a quick overview on three related topics in the literature: i) federated
learning, ii) heavy-tailed noise in learning, and iii) the clipping techniques, thus putting our work into
comparative perspective to highlight our novelty and differences.

1) Federated Learning: As mentioned earlier, FL has recently emerged as an important distributed
learning paradigm. The first and perhaps the most popular FL method, the federated averaging
(FedAvg) algorithm [1], was initially proposed as a heuristic to improve communication efficiency
and data privacy. Since then, FedAvg has sparked many follow-ups to further address the challenges
of data/system heterogeneity and further reduce iteration and communication complexities. Notable
approaches include adding regularization for the local loss function [2,5, 6], using variance reduction
techniques [3], taking adaptive learning rate strategy [8] or adaptive communication strategy [23,24],
and many momentum variants [4,9,10]. Empirically, these algorithms are shown to be communication-
efficient [1] and enjoy better generalization performance [25]. Moreover, many state-of-the-art
algorithms enjoy the “linear speedup” effect in terms of the numbers of clients and local update steps
in different FL settings [3, 7, 24,26]. We note, however, that all these theoretical results are built
upon the finite variance assumption of stochastic gradient noise. Unfortunately, when the stochastic
gradient noise is fat-tailed, the finite variance assumption no longer holds, and hence the associated
theoretical analysis is also invalid. This motivates us to fill this gap in this paper and conduct the first
theoretical analysis for FL systems that experience fat-tailed noise.

2) Heavy-Tailed Noise in Learning: Recently, heavy-tailed noise has been empirically observed in
modern machine learning systems and theoretically analyzed [15, 16, 18,22,27-30]. Heavy-tailed
noise significantly affects the learning dynamics and computational complexity, such as the first exit
time escaping from saddle point [27] and iteration complexity [22]. This is dramatically different
from classic dynamic analysis often based on sub-Gaussian noise assumption [31,32] and algorithmic
convergence analysis with bounded variance assumption [21,33]. However, for FL, there exist few
investigations about heavy-tailed behaviors. In this paper, we first demonstrate through extensive
experiments that fat-tailed (i.e., heavier-tailed) noise in FL can be easily induced by data heterogeneity
and local update steps. We then propose efficient algorithms to mitigate the impacts of fat-tails.

3) The Clipping Technique: Since our FAT-Clipping algorithms are based on the idea of clipping,
here we provide an overview on this technique. As far as we know, dating back to at least 1985 [34],
gradient clipping has been an effective technique to ensure convergence for optimization problems
with fast-growing objective functions. In deep learning, clipping is a widely adopted technique to
address the exploding gradient problem. Recently, gradient clipping was theoretically shown to
be able to accelerate the training of centralized learning [17,35-37]. Also, clipping is an effective
approach to mitigate heavy-tailed noise [17,18] in centralized learning. In FL, clipping has been used
as the preconditioning step for preserving differential privacy (DP) [38—40]. Unlike these works, in
this paper, we utilize clipping to address algorithmic divergence caused by fat-tailed noise in FL.



Algorithm 1 Generalized FedAvg Algorithm (GFedAvg).

1: Initialize x;.
2: fort =1,--- ,T (communication round) do
3:  foreach client ¢ € [m] in parallel do

4: Update local model: x} ;, = x;.

5: for k =1,--- , K (local update step) do

6: Compute an unbiased estimate V f;(xf ;, £F ;) of V fi(x} ).
7: Local update: xfjl =}, — LV fi(xF,, &8
8: end for

9: Send A} = 3,5 Vil €F) to the server.
10:  end for
11:  Global Aggregation At Server:
12: Receive Al i € [m].
13: Server Update: x;+1 = x¢ — 12 37, 0 Al
14: Broadcasting x;; to clients.
15: end for

3 Fat-tailed noise phenomenon in federated learning

In this section, we first introduce the basic FL problem statement and the standard FedAvg algorithm
for FL. Then, we provide some necessary background of fat-tailed distributions and provide empirical
evidence to show that fat-tailed noise can be easily induced by heterogeneity of data and local updates
in FL, which further motivates this work. Lastly, we demonstrate the algorithmic divergence and
frequently catastrophic model failure under fat-tailed noise.

1) Problem Statement of Federated Learning and the FedAvg Algorithm: The goal of FL is to
solve the following optimization problem:

min f(x) := %z:fl(x)7 ()

x€R4

where m is the number of clients and f;(x) £ E¢,~.p, [f(x, &)] is the local loss function associated
with a local data distribution D;. A key challenge in FL stems from data heterogeneity, i.e., D; #
D;,Vi # j. In FL, the standard and perhaps the most popular algorithm is the federated averaging
(FedAvg) method. Here in Algorithm 1, we illustrate a more generalized version of the original
FedAvg (GFedAvg) with separate learning rates on the client and server sides [3,7,8]. Note that when
1 = 1, GFedAvg reduces to the original FedAvg [1]. In each communication round of GFedAvg, each
client performs local update steps and returns the update difference A%. The server then aggregates
these results and update the global model ? and the updated model parameters will then be retrieved
by the clients to start the next round of local updates.

2) Empirical Evidence of Fat-Tailed Noise Phenomenon in Federated Learning: With the basics
of FL and the FedAvg algorithm, we are now in a position to demonstrate the empirical evidence
of the existence of fat-tailed noise in FL systems. As mentioned earlier, in most performance
analyses of FL algorithms, a common assumption is the bounded variance assumption of the local
stochastic gradients: E[||V f;(x, £) —V fi(x)]|?] < o2. This assumption holds for all light-tailed noise
distributions (i.e., the sub-exponential family) and some heavy-tailed distributions (e.g., log-normal,
Weibull, and some Pareto distributions).

However, the finite-variance assumption fails to hold for many fat-tailed noise distributions. For
instance, for a random variable X, if its density p(z) has a power-law tail decreasing as 1/|z|**! with
a € (0,2), then only the a-moment of this noise exists with & < 2. To more precisely characterize
fat-tailed distributions, in this paper, we adopt the notion of tail-index « [15] to parameterize fat-tailed
and heavy-tailed distributions. More specifically, if the density of a random variable X’s distribution
decays with a power law tail as 1/|z|*"! where a € (0, 2], then « is called the tail-infex. This
a-parameter determines the behavior of the distribution: the smaller the a-value, the heavier the tail

2We assume all clients participate in the training at each communication round, but the results can be extended
to that with (uniformly random sampled) subset of clients in each communication round [3, 7].
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Figure 1: Distributions of the
norms of the pseudo-gradient
noises computed with CNN on
CIFAR-10 dataset in i.i.d. case
(top) and non-i.i.d. case (bot-
tom). m = 100 clients partic-
ipate in the training.

Figure 2: Estimation of o for
CIFAR-10 dataset. The non-IID
index p represents the data het-
erogeneity level, and p = 10 is
the IID case. The smaller the p,
the more heterogeneous the data
across clients.
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Figure 3: Catastrophic training
failures happen when applying
GFedAvg on CIFAR-10 dataset,
where the test accuracy expe-
riences a sudden and dramatic
drop and the pseudo-gradient
norm increases substantially.

of the distribution. Also, the a-parameter also determines the moments: E[|X|"] < oo if and only if
r < «, which implies that X has infinite variance when « < 2, i.e., being fat-tailed.

Next, we investigate the tail property of model updates returned by clients in the GFedAvg algorithm.
Due to multiple local steps in the GFedAvg algorithm, we view the whole update vector A¢ returned
by each client, which we called “pseudo-gradient,” as a random vector and then analyze its statistical
properties. Note that in the special case with the number of local update K = 1, A! coincides with a
single stochastic gradient of a random sample, (i.e., Al =V, (xt,&))-

We study the mismatch between the “non-fat-tailed” condition (o = 2) and the empirical behavior
of the stochastic psudo-gradient noise. In Fig. 1, we illustrate the distributions of the norms of
the stochastic pseudo-gradient noises computed with convolutional neural network (CNN) on the
CIFAR-10 dataset in both i.i.d. and non-i.i.d. client dataset settings. We can clearly observe that the
non-i.i.d. case exhibits a rather fat-tailed behavior, where the pseudo-gradient norm could be as large
as 1.6. Although the i.i.d. case appears to have a much lighter tail, our detailed analysis shows that
it still exhibits a fat-tailed behavior. To see this, in Fig. 2, we estimate a-value for the CIFAR-10
dataset in different scenarios: 1) different local update steps, and 2) different data heterogeneity. We
use a parameter p to characterize the data heterogeneity level, with p = 10 corresponding to the i.i.d.
case. The smaller the p, the more heterogeneous the data among clients. Fig. 2 shows that the a-value
is smaller than 1.15 in all scenarios, and « increases as the non-i.i.d. index p increases (i.e., closer to
the i.i.d. case). This implies that the stochastic pseudo-gradient noise is fat-tailed and the “fatness”
increases as the clients’ data become more heterogeneous.

3) The Impacts of Fat-Tailed Noise on Federated Learning: Next, we show that the fat-tailed
noise could lead to a “catastrophic model failure” (i.e., a sudden and dramatic drop of learning
accuracy), consistent with previous observations in the FL literature [20]. To demonstrate this, we
apply GFedAvg on the CIFAR-10 dataset and randomly sample five clients among m = 10 clients
in each communication round. In Fig. 3, we illustrate a trial where a catastrophic training failure
occurred. Correspondingly, we can observe in Fig. 3 a spike in the norm of the pseudo-gradient. This
exceedingly large pseudo-gradient norm motivates us to apply the clipping technique to curtail the
gradient updates. It is also worth noting that even if the squared norm of stochastic gradient may
not be infinitely large in practice (i.e., having a bounded support empirically), it could still be too
large and cause catastrophic model failures. In fact, under fat-tailed noise, the FedAvg algorithm
could diverge, which follows from the fact that there exists one function that SGD diverges under
heavy-tailed noise (see Remark 1 in [22]). As a result, the returned value by one client might be
exceedingly large, leading to divergence of the FedAvg-type algorithms.

It is worth pointing out that, although we have empirically shown heavy/fat-tailed noise in FL for the
first time in this paper, we are by no means the only one to have observed heavy-tailed or fat-tailed
noise phenomenon property in learning. Previous works have also found heavy/fat-tailed noise
phenomenon in centralized training with SGD-type algorithms. For example, the work in [15] showed
the heavy-tailed noise phenomenon while (centralized) training the AlexNet on CIFAR-10. Here, we
adopt a procedure similar to that in [15] to evaluate the tail index « of the noise norm distribution in



Algorithm 2 The FAT-Clipping-PR Algorithm.

1: Initialize x;.
2: fort =1,---,T (communication round) do
3:  foreach client ¢ € [m] in parallel do

4: Update local model: x; ; = X;.

5: for k =1,---, K (local update step) do

6: Compute an unbiased estimate V f;(xf ;, ;) of V fi(xF,).
7: Local update: xfjl =x};, =V fi(xf,, €F).

8: end for

9: Let A} = 3 pe(x Vfi(xg i &6s) -
10: Clipping: A} = min {1, m}A;, where A} = 3, gy VFi(xF 5 E5:)-
11: Send A! to the server.
12:  end for
13:  Global Aggregation At Server:
14: Receive Al i € [m).
15: Server Update: x;+1 = x; — 112 37, Al
16: Broadcasting x;; to clients.
17: end for

FL. As indicated above, we also observe that the (pseudo-)stochastic gradient noise is heavy/fat-tailed
rather than Gaussian.

It is also worth noting that it remains controversial whether the heavy/fat-tailed noise phenomenon
exists in all models and datasets. For example, the work in [19] showed that the stochastic gradient
noise is Gaussian at least in the early phases of training, while [41] showed that the stationary
distribution of stochastic gradient noise is heavy-tailed and state-dependent. Also, the evaluation
methodologies of a could be different in different works with different statistical errors, thus leading
to different observations [19,22]. We believe that the phenomenon of heavy/fat-tailed noise in training
with SGD-type methods is an under-explored area that deserves more efforts from the community.

To conclude this section, we would also like to leave a caveat regarding catastrophic training failures.
In this section, we have shown that, under heavy/fat-tailed noises, catastrophic training failures
happen in FL training, which is consistent with the observations in large-cohort FL training [20].
However, this does not necessarily mean that all FL trainings will suffer from catastrophic failures.
Sometimes, such catastrophic failures may not happen at all (see the appendix for such empirical
evidence). Here, we hypothesize that the heavy/fat-tailed noise phenomenon in FL is highly correlated
with catastrophic failures in FL. This is based on our subsequent observations that such catastrophic
failures in FL can be effectively mitigated by employing clipping methods. However, whether or not
the heavy/fat-tailed noise phenomenon is truly the culprit for catastrophic failures still needs further
investigations. Nonetheless, the mere existence of such a correlation between heavy/fat-tailed noise
and catastrophic failures in FL warrants our study on mitigating heavy/fat-tailed noise in this paper.

4 The FAT-Clipping algorithmic framework for fat-tailed federated learning

Given the evidence of fat-tailed noise in FL and its potential catastrophic training failure as shown in
Section 3, there is a compelling need to design an efficient FL algorithm with provable convergence
guarantee under fat-tailed noise in FL. Interestingly, the observation of an exceedingly large pseudo-
gradient norm in Fig. 3 suggests a natural idea to mitigate fat-tailed noise: clipping. Toward this end,
in Section 4.1 we first propose a clipping-based algorithmic framework called FAT-Clipping, which
contains two variants: FAT-Clipping per-round (FAT-Clipping-PR) and FAT-Clipping per-iteration
(FAT-Clipping-Pl). Then in Section 4.2, we analyze their convergence rate performances.

4.1 The FAT-Clipping-PR and FAT-Clipping-PI algorithms

We illustrate the FAT-Clipping-PR and FAT-Clipping-PI algorithms in Algorithms 2 and 3, respec-
tively. It can be seen that both FAT-Clipping-PR and FAT-Clipping-PI share a similar algorithmic



Algorithm 3 The FAT-Clipping-PI Algorithm.

1: Initialize x;.

2: fort =1,---,T (communication round) do
3:  foreach client ¢ € [m] in parallel do

4 Update local model: x; ; = X;.

5: for k =1,---, K (local update step) do
6.

7

Compute an unbiased estimate V f;(xf ;, ;) of V fi(xF,).

Clipping: 6fi(xf,i’€f,i) = min {1, m}vﬁ(xﬁpfﬁi)-

8: Local update: x; 7' = xF, — nVf;(xF,, &8)).
9: end for _
10: Send Af =31k V fi(x};, €F;) to the server.
11:  end for
12:  Global Aggregation At Server:
13: Receive Al i € [m).
14: Server Update: x¢41 = x; — 222 37, () Al
15: Broadcasting x;1 to clients.
16: end for

structure with GFedAvg, with the key differences lying in the additional clipping operations. In
FAT-Clipping-PR, each client performs a clipping in each communication round on the returned Aj}:

. A A
Al —min{l,,}Al, 2)
' N
and then sends A? instead of A to the server (Line 10 in Algorithm 2). By contrast, in FAT-Clipping-
PI, each client clips the stochastic gradient before each local update step (Line 7 in Algorithm 3):

~ A

sz invgki :mln{lv}vf’b invgki 9 (3)
Gt 1) NECTCAIIARRERR

ijl = X?,i - nvai(Xf,ia gfz) “4)

Then, Al = 3" ke[K] v Ji(x};, &F;) is sent to the server for aggregation (Line 10 in Algorithm 3).

4.2 Convergence analysis of the FAT-Clipping algorithms

Before conducting the convergence analysis for the FAT-Clipping algorithms, we first state two
standard assumptions that are commonly used in the literature of first-order stochastic methods.

Assumption 1 (L-Lipschitz Continuous Gradient). There exists a constant L > 0, such that
IV fi(x) = VL) < Lllx = yll, vx,y € R, and i € [m].

Assumption 2 (Unbiased Local Gradient Estimator). The local gradient estimator is unbiased, i.e.,
E[Vfi(x,8)] = Vfi(x), Vi € [m], where & is a random local data sample at the i-th worker.

Next, we state the key bounded a-moment assumption for faz-tailed the stochastic first-order oracle,
which leverages the notion of tail-index introduced in Section 3:

Assumption 3 (Bounded a-Moment). There exists a real number o € (1,2] and a constant G > 0,
such that B[||V fi(x, €)||%] < G%, Vi € [m],x € R%

1) Convergence Rates of the FAT-Clipping-PR Algorithm: We first state the convergence rates of
FAT-Clipping-PR for p-strongly convex and non-convex objective functions.

Theorem 1. (Convergence Rate of FAT-Clipping-PR in the Strongly Convex Case) Suppose that
f () is a u-strongly convex function. Under Assumptions 1-3, if ;np K > ;%T then the output X

of FAT-Clipping-PR being chosen in such a way that X = X; with probability Z“{’ﬁ where
je[r) Wi
wy = (1 — 2 K)'7Y, satisfies:
1 K 4
fxr) — f(x*) < %exp (‘21“777LKT) —&—%GO‘)\Q_O‘—F; [2G2°‘)\2_2°‘+2L2U%K2G°‘)\2_a} ,
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nw mKT?
2—2a 2—2a

constant satisfyingm & KaTet "o > 1, and let nr < (mKT)kTa. It then follows that

where xX* denotes the global optimal solution. Further, let nm K =

where ¢ > lis a

_ % 2—-2a 2
f&xr) = f(x7) = O((mT) =" K=).
Theorem 2. (Convergence Rate of FAT-Clipping-PR in the Nonconvex Case) Suppose that f(-) is
a nonconvex function. Under Assumptions 1-3, if nn, KL < 1, then the sequence of outputs {xy}
generated by FAT-Clipping-PR satisfies:

f(x1) = f(or))
KT

2
tm[l%l]EHVf(xt)HQ < ( +<L2U%K202+K202a/\—2(a—1)+LnLK2G1+a)\1—a)
€

L
+ nnL (KGQ)\zia) .
m
Further, choosing learning rates and clipping parameter in such a way that nnp =
2 —2 —a—2 —a 1—a 4—4a
m3e—2 K3a—2T35a-2 np < (mT)3e—2K3a-2, and \ = (mK*T) -2, we have

min]EHVf(Xt)H2 = O((mT)%K%)
te[T)

Remark 1. We note that the above convergence rates for FAT-Clipping-PR does not generalize
the results of FedAvg when o« = 2 (non-fat-tailed noise). Specifically, FedAvg is able to achieve

O((mKT)~*) and O((mKT)~7) convergence rates for strongly convex (f(x) — f(x*) < ¢) and
non-convex function (||V f(x)|| < e), respectively [3,42]. In contrast, FAT-Clipping-PR achieves

O((mT) 1K) and O((mT)~ %) for strongly-convex and non-convex functions, respectively. These
two rates are consistent with those of FedAvg in terms of m and 7', but not in terms of K.

Interestingly, with a separate proof for non-fat-tailed noise (o = 2), we can show that clipping does
not affect the dependence on K in the convergence rates. Thus, FAT-Clipping-PR has the same
convergence rates as those of FedAvg. Due to space limitation, we state an informal version of these
theorems here. The full versions of Theorem 5 6 and their proofs are formally stated in Appendix.

Theorem 6 & 7 (informal) (Convergence Rates of FAT-Clipping-PR for Non-Fat-Tailed Noise):
For a = 2, CPR-FedAvg achieves convergence rate O((mKT)™Y) for strongly-convex and
O((mKT)~ ) for non-convex functions, respectively.

2) Convergence Rate of the FAT-Clipping-PI Algorithm: Next, we provide the convergence rates
of FAT-Clipping-PI for u-strongly convex and non-convex objective functions.

Theorem 3. (Convergence Rate of FAT-Clipping-Pl in the Strongly Convex Case) Suppose that
f () is a p-strongly convex function. Under Assumptions 1-3, if iy, K > /%T, then the output X

of FAT-Clipping-PI being chosen in such a way that X7 = x; with probability ﬁ, where
Je(T] I
wy = (1 — Fpunn K)'™Y, satisfies:

1 K
fxr) = f(x*) < Eexp (—spmm KT ) + TEZ gopz-e
2 2 2

4
+ ; [2G20&)\—2(()¢—1) + QLQU%K2GO()\2—(X]7

2¢ In(T)
w mKT?
2—2a 2—2«
constant satisfying (mK)~ & T o~ > 1, and let \ = (mKT)=, andn, < (mT) " 2K~2). It
then follows that

where x* denotes the global optimal solution. Further, let nnp K = where ¢ > lisa

~ 2—2a
a

f&xr) = f(x7) = O(mKT)=").

Theorem 4. (Convergence Rate of FAT-Clipping-Pl in the Nonconvex Case) Suppose that f(-) is a
non-convex function. Under Assumptions 1-3, if nn KL < 1, then the sequence of outputs {xy}
generated by FAT-Clipping-Pl satisfies:

. o _ 2(f(x1) = fz1))
gg[l;l]lEIIVf(Xt)ll < KT

+ L7777L (Ga)\2—oz) .
m

+ (QGQQ)\—2(Q—1) + 2L277%K2Ga)\2_a)
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ii.d. case and i.i.d. case.

2a—2 —a —a 1
m3a=2 (KT)3a-2 np, < (mKT)%~1, and A = (mKT)3 -2, we have

min B[V £(x,)[|2 < O((mKT)3%).
te[T]

Remark 2. In comparison to FAT-Clipping-PR, convergence rates of FAT-Clipping-PI generalize
the results of FedAvg for the non-fat-tailed noise case (i.e., « = 2). Specifically, when o = 2,
FAT-Clipping-Pl achieves O((mKT)~") and O((mKT)~ %) convergence rates for strongly convex
and nonconvex objective functions, respectively. These two convergence rates are consistent with
those of FedAvg in terms of m, K and T (ignoring logarithmic factors in the strongly-convex case).

Next, we show that the convergence rates for FAT-Clipping-Pl is order-optimal for o € (1,2] by
proving the following lower bounds.

Corollary 1 (Convergence Rate Lower Bound). Given any a € (1, 2], for any potentially randomized
algorithm, there exists a stochastic strongly-convex function satisfying Assumption 3 with G < 1,
such that the output of xp after T communication rounds has an expected error lower bounded by

E[f(x0)] = f(x:) =

Also, there exists a non-convex function satisfying Assumption 3, such that the output of xr after T’
communication rounds has an expected error lower bounded by

2—2a

Q((mKT)*=").

E[|Vf(x:)|]? = Q((mKT)53).

With 7' communication rounds, the total number of stochastic gradients is mKT'. Thus, the lower
bounds above can be obtained from the centralized SGD with fat-tailed noise [22, Theorems 5 and 6]).
Clearly, the above lower bounds imply the optimality of the convergence rates of FAT-Clipping-P1I .

5 Numerical results

In this section, we conduct numerical experiments to verify the theoretical findings in Section 4 using
1) a synthetic function, 2) a convolutional neural network (CNN) with two convolutional layers on
CIFAR-10 dataset [43], and 3) RNN on Shakespeare dataset. Due to space limitation, we relegate
experiment details and extra experimental results to the supplementary material.

1) Strongly Convex Model with Synthetic Data: We consider a strongly convex model for Prob-
lem (1) as follows: f; (z) = E¢[f (2,€)] and f (2,£) = 3 |)|* + (&, x), where £ is a random
vector. We compare FedAvg, FAT-Clipping-Pl, and FAT-Clipping-PR, where the noise £ is Cauchy
distributed (fat-tailed). Also, we compare FAT-Clipping-PI and FAT-Clipping-PR with £ having
different tail-indexes (o« = 0.5, 1.0, and 1.5). For each distribution, we use the same experimental
setup, and m = 5 clients participate in the training. We show the trajectories of FedAvg, FAT-
Clipping-Pl, and FAT-Clipping-PR for solving Problem (1) with £ having Cauchy tails in Fig. 4 and



with £ having different a-values in Fig. 5. We can clearly observe from Fig. 4 that FAT-Clipping-
Pl and FAT-Clipping-PR converge rapidly in the Cauchy case, and FAT-Clipping-PI converges faster
than FAT-Clipping-PR as our theoretical results predict. In contrast, FedAvg is not convergent in
the Cauchy case. In Fig. 5, we can see that the convergence processes of FAT-Clipping-PR and
FAT-Clipping-Pl become slower as the a-value increases as our theoretical results predict, but the
differences in FAT-Clipping-Pl are much less obvious compared to those of FAT-Clipping-PR.

2) CNN (Non-convex Model) on the CIFAR-10: This setting has m = 10 clients in total, and
five clients are randomly selected to participate in each round of the training. We compare FAT-
Clipping algorithms with FedAvg under different data heterogeneity. To simulate data heterogeneity
across clients, we distribute the data to each client in a label-based partition following the same
procedure as in existing works (e.g., [1,7,44]): we use a parameter p to represent the number of
labeled classes in each client, with p = 10 corresponding to the i.i.d. case and the rest corresponding
to non-i.i.d. cases. The smaller the p-value, the more heterogeneous the data across clients. In
Fig. 6, we present the percentage of successful training over 5 trials when applying FedAvg, FAT-
Clipping-PR and FAT-Clipping-Pl on CIFAR-10 in non-i.i.d. case (p = 2) and i.i.d. case (p = 10).
FAT-Clipping-Pl has 100% successful rates (i.e., no catastrophic model failures) in both non-i.i.d.
and i.i.d cases, and FAT-Clipping-PR has 60% and 20% successful rates in non-i.i.d. and i.i.d. cases,
respectively. However, FedAvg fails in all 5 trials. Thus, compared to FedAvg, FAT-Clipping methods
(FAT-Clipping-Pl in particular) significantly reduce catastrophic training failures.

6 Conclusions and future work

In this paper, we investigated the problem of designing efficient federated learning algorithms
with convergence performance guarantee in the presence of fat-tailed noise in the stochastic first-
order oracles. We first showed empirical evidence that fat-tailed noise in federated learning can be
induced by data heterogeneity and local update steps. To address the fat-tailed noise challenge in
FL algorithm design, we proposed a clipping-based algorithmic framework called FAT-Clipping .
The FAT-Clipping framework contains two variants FAT-Clipping-PR and FAT-Clipping-Pl , which
perform clipping operations in each communication round and in each local update step, respectively.
Then, we derived the convergence rate bounds of FAT-Clipping-PR and FAT-Clipping-PI for strongly
convex and non-convex loss functions under fat-tailed noise. Not only does our work shed light on
theoretical understanding of FL under fat-tailed noise, it also opens the doors to many new interesting
questions in FL systems that experience fat-tailed noise.
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A Proofs for Fat-Tailed Federated Learning

A.1 Proof of FAT-Clipping-PR
For notional clarity, we have the following update:
Local update: xk'*'1 = xt i LVfl(xt i ft ), k€ [K],
Clipping: xK+1 = Xt,i — nrclipping( Z Vi Xfii,fﬁi)),

ke[K]
Api= Y Vfi(xF €)My = clipping( Y Vfi(xf,;,68),0),
ke[K] ke[K]
At:—ZAH,Af ZA“
i€[m] ze[m

Xt+1 = X — 7777LAt'

Lemma 1 (Bounded Variance of Stochastic Local Updates for FAT-Clipping-PR). Assume f;(x,§)
satisfies the Bounded av—Moment assumption 3, then for FAT-Clipping-PR we have:

E[| A% < K2GoA*e,
N - K?
E[|A; —E[A]|I> € —G*N*7,
m
- vf X; 2 < L2772 K2G2 + K2G2a)\—2(a—1) + L?’]LKQGI-HX)\l_a.
L
Note here the expectation is on the random samples fé‘i i

Proof.
E[||A%] = max E[l| Al
S E[|A;[*A*
<KDY E[IVFE )7

keK
2 2—
< K2GoN2,

where j = argmaxie[m]]E[HAt,iHQ], and the first inequality is due to the clipping, i.e., | As | < A.

2

E|A, —E[A]|> =E % > (Avi - EAL)

i€[m)]
< LS Bl BRI
i€[m]
1 _
<— > E[AL)?
1€[m]
2
< B gayee,
m

4L - V7l < V76 - EIA]| +

< S S E|VAR) - VG| + ZHEAH Al

i€[m] ke[K] LE m]

HE [A] — E[A]
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]

< % > D E|D Viilxi €l +% Z[:JE[
i€lm

1€[m] k€[K] JjE(k]
< I KG + KG\'™°

where 1. } is the indicator function, the last inequality follows from the fact that A;; = At,i
if [|Avill < A and E[|A¢ill1gja,,>a3) < E[lAg:][*IAT"* < K2G*A'™%; the second last

inequality is due to L-smoothness, Jenson’s inequality (i.e.,E[A;; — Az ;]| < E|[[As; — At i]|) and
the clipping step. Then, we have

||* [A] = Vf(@)|? < LPni K*G? + K*G* A7V 4 Ly PG eN e
O

Theorem 1. (Convergence Rate of FAT-Clipping-PR in the Strongly Convex Case) Suppose that
f () is a p-strongly convex function. Under Assumptions 1-3, if in, K > ==, then the output X

of FAT-Clipping-PR bemg chosen in such a way that Xp = X; with probabtllty 7%_ where

.ie[T]

= (1 — $umnrK)' ™, satisfies:

1 K
J(xr) = f(x") < e p<2unnLKT) T G (2GRN L G,
,u
where x* denotes the global optimal solution. Further, let 7777LK = 2:% where ¢ > 1 isa

constant satisfying m2_a2a K% Tet+== > 1, and let ng, < (mKT) . It then follows that

f&xr) = f(x7) = O((mT)

2—2a 2

a Ka).

Proof
Efl[x41 — 2. = Elllx: — s — 2.1%)
= lxe = 22 + PR BN AN = 2 (%0 = 2o, (BIA] = KV f(x,) + KV f(x1)) )
< (B = ol PRSP = 2ne K (= o ( BB - 9500 ) )
= 2L K (f(x¢) — f(x))
< (1~ i K) % — . + PR +

2
= 2mL K (f(x:) — f(x4)) -

87777LK

II* [Ad] = V£ ()2

The first inequality follows from the strongly-convex property, i.e., — (x; — z., Vf(x¢)) <
—(f(x¢) — f(x4) + 4llwe — x.]|*), and the last inequality is due to Young’s inequality. Then
we have

1 [ 1 i
00) = £06.) < o | <Bllxens — 2]+ (1= G )l = .
_ 4 1 -
+ gae BUANR + 2Bl A = V()]

L [l — w2+ (L= pome IO — . 2]

= 2mK | t+1 * 2,U7777L t * ]
7;7;? K200 )\2—« é[LQn,%KQGQ + K2G2e\~2(e-1) +L77LK26'1+‘X>\1_0‘],

I

where the last inequality is due to Lemma 1.
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Letw; = (1 — f;anK )17, %7 = x; with probability Zwﬁ
Jje[r] >a

3 1 Wy 9 1 9
f(@r) f(x)—Zje[T]ij[T:](2nnLK[ s = 2+ (1= G K, = . ]

nmr K
2

1 ( 1 9 9
< [wrlesn — 2l + wes %0 — ] ])
ZJG[T wj t;] 2L K

Ga/\Z o 4[L27’]2K2G2+K2G2a>\ (a—1) +L’I7 K2G1+O¢/\1 a}
1

K 4
+ 77775 GONZ— 4 *[LG%KzGQ + K2G2e)\—2(e-1) 4 LnLK2G1+a)\1—a}
W

1 1

< 1 — |2
Zje[T] wj 2 I

K 4
+ 77’7; GONZ 4 —[LQn%K2G2 + K2G2e)\—2(e-1) | LnLKQGl—i-a)\l—aL
W

where the second inequality follows from w; < w;_1.

=T t

1 1

2 K E wy = 2nL K (1 - 2.U7777LK) E (1 - 2w7nLK>
te[T] te(T]

4 1 -7 1 T
= - (1 - meK) ll - (1 - meK>
I 2 2
4 1 -T 1
> =\ 1=K 1 —exp | =5 KT
I 2 2
=T
2 1
> — (1 - meK> ;
I 2

. . 9
where the last inequality follows from that nn K > T

(1~ Luni )" < exp (~Lpmo KT).

the second last inequality is due to

f@r) = f(x.) < GoNTTe

1 K
(1 - 2W777LK) + 7777;

N \

7[L277%K2G2 + KQGZ(X)\—2(O(—1) + LnLK2G1+a)\1—a]
1%

]77LK

S Ga)\Q «

RS —|—

1
exp < S ML K T>

4
+ 7[L277%K2G2 + K2G2a/\—2(a—l) + LnLK2G1+a>\l_a].
1

Let mrK = 2¢ W) (¢ > 1isaconstantand T7°""a~ < m™a K=), A = (mKT)=, and

nr < (mKT)
f@r) — f(x) < =

2—2a 2—2« 2
a

(T)+ (mT) =" K= = O((mT) = K*).

T + (mK T)

O

Theorem 2. (Convergence Rate of FAT-Clipping-PR in the Nonconvex Case) Suppose that f(-) is
a nonconvex function. Under Assumptions 1-3, if ;KL < 1, then the sequence of outputs {x}
generated by FAT-Clipping-PR satisfies:

2(f(x1) — f(xT))
min BV ()P < =5

+(LG%K2G2+K2G2“)\_2("_1)+L77LK2G1+O‘)\1_“)
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m

Further, choosing learning rates and clipping parameter in such a way that nnp =
2a—2 —a—2 —« 11—« 4—4a
mBe—2 K302 T5-2 np < (mT)3e—2K3a-2, and \ = (mK*T) 52, e have

min B[V f(x,)||> = O((mT) 52 K 55-%).
te[T]

Proof. Due to the smoothness in Assumption 1, taking expectation of f(x;41) over the randomness
at communication round ¢, we have:

E[f(xt1)] = f(x¢) < (Vf(%e), E[xe11 — x]) + gE[HXHl — x¢||?]

= (V£ () E[A]) + §77277%E[||At||2]

= L9 f e ? — T A + TER |V 5 () — EIA + L”;“IE[HA 17
_ m)LK e Ln™n 7777LK
= TR g >||2+(—2K+ 2L)||E[ I+ T 9 e - LELA?
- L”;”%Em& ~ (A1
K L -
<~ 0 e 2 + T v e - LEAQR LI EA - BANE, )
Ay Az

where the last inequality follows from (—% + %) <0ifgm KL < 1.

From Lemma 1, we have the bound of A; and A, in (5). By rearranging and telescoping, we have:

- Z EHVf ”2 (f(Xl) ;(r{];(xT)) <L27] K2G2 +K2G2a)\ 2(a—1) +LnLK2G1+a)\1 a)
te (T] "ML

LnnL (KGQ)\2 a)
m .
20-2 __—a-2 __—a 1—a 4i—da 1
Suppose nn, = m3a=2 K %a=2 T'3a=2 q;, < (mT)3a=2 K32, and A = (mK*T)%-2,

4—2a

min E[IVf(x)[[* < O((mT) K,
e[r

A2 Proof of FAT-Clipping-PI

For FAT-Clipping-PI, we have the following notions:
At E ¢k © k = k ¢k
oo s V(x5 E00) V(%) = B[V fi(x 5, &)
IV fi(xt 5 68 b " b
Local steps: x} ' = x;, — eV fi(xE, &80,k € [K];
A= Z VIi(xF i &80 A = Z VIi(xF i &)

ke[K] ke[K]

—% Z Ay Ay :% Z At
i€[m]

1€[m]

@fi(xfﬁi, 552) = min{1,

1 ~ -
X1 =X =L Z Z vfi(xf,iagf,i) =X¢ — LA

i€[m] ke[K]
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Lemma 2 (Bounded Variance of Stochastic Local Updates for FAT-Clipping-Pl). Assume f;(x,¢)
satisfies the Bounded av—Moment assumption 3, then we have:

E[|A]°] < K2G*N*7°,
~ ~ K
E||A; — E[A]|? < —GoN\*7°,
m
||%E[At] SV @)|? < 26220 Lar2g? K2Ge N,

Proof.

E[IA )7 = - 3 El|ALlP

1€[m]

< USRI 9r0d gl

i€[m] JEIK]
K o
<K S S B
i€[m] jE[K]
< ](26;104)\27017
where the last inequality follows from the fact that E||V f; (x5}, €F,) || < B[V fi(xF, &F,)[|A* <
G*\2~* (see Lemma 9 in [22]).

EHAt [At ||2 Z Z Vfl th7§tz - Z Z Vfl th

1€[m] ke[K zE [m] k€[K]

<— Z > EIVilxts &) = V)P

m] ke[K]

1

i€[m] kE[K]

< 5(}@)\2—&’
m

where the first inequality follows from the fact that {V f;(x}, &F;) — V fi(xF )} form a martingale
difference sequence (Lemma 4 in [3]), the second inequalities is due to E[|| X —E[X]||?] < E[|| X %]
and the third inequality follows from the fact that E||V f;(x¥;, &F,)||2 < B[V fi(xF,, &F,)[[“A*7 <
G*)\?~ (see Lemma 9 in [22]).

2
II%JE[M—W( W< S S ke 18] (Va0 - fitx)
i€[m]
<% Z > vaz — Ji Xt)H
m] ke[K]
<L PO (2 HVfl xt) = Va2V sk - el )
m) ke[K]

< 2G2‘l)\‘2("‘1) +2L2 = O D Ixti =l

'LG [m] kE[K]
2

o 1 ) )
< 2G?\ 2(a—1) +2L277%ﬁ Z Z Z vf(xg,wgg,z)

i€[m] k€[K] ||j€[K]
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< 2G2(x>\—2(a—1) + 2L277%K2Ga)\2_a,

where the forth inequality is due to ||V f;(x) — Vi) < G2A727D (see Lemma 9 in [22]),
and the last inequality follows from the fact that E||V f; (xt i ft DII? < GeNZe O

Theorem 3. (Convergence Rate of FAT-Clipping-PI in the Strongly Convex Case) Suppose that
f () is a u-strongly convex function. Under Assumptions 1-3, if nn, K > —==, then the output Xt

of FAT-Clipping-PI belng chosen in such a way that Xp = x; with probabtllty
= (1= gumK)'~

fxr) - f(x7) <

-, where
2 [T] w;’
¢ satisfies:

777]LK

M ay2—a
= A
5 —G

1
exp (2/”777LKT)
4
+—[2GPAT2e7 ¢ 2L2n%K2Ga)\2*a],
o’

2¢ In(T)
nw mKT?

> 1, and let \ = (mKT)=, and ng, < (mT

where X* denotes the global optimal solution. Further, let nnp K =

constant satisfying (mK ) == Tet 2=

then follows that

where ¢ > 1is a
V2K It

2a

F(&r) = f(x*) = O((mKT)=").

Proof. Similarly, we have the following one step iteration:

1 1
F0x0) = F062) < o | =Bl =]+ (1= g Ol — )
nnL A 112 4 L3 2
—E[||A —||E[=A; —
+ G BIAIP + Il A~ V()]
1 [ 1 N
< 5 _—E[nxtﬂ =Pl (1= K )
7777L 2 oy 2—a 200y —2(a—1) 2.2 1.2 oy 2—«
—K A 2 A 2L°n1 K A
where the last inequality is due to Lemma 2.
_ . .- w
Letw; = (1— 2 mm LK)t %7 = x; with probability 7ng[;] o
Far) = 1) £ s 3 (G |l =l (L G = 2
- * ) - t+1 — Lx - 5 t = Lx
2 e Wi fem 2 K 2
K
7777;/ Ga)\Q @ M[2G2a/\72(a71)+2L2U%K2Ga)\27a]
< s ¥ (G [l = ol + vl - o)
ZjET wj te[T] 2 K
K
+7777L G2« M[QGQa/\—Q(a—l)+2L2n%K2Ga)\2—a]
1 1

< —a.|?
ZJE 7] Wj 2nnLK”

nnLKGa)\Q—Oz
2

+ + *[ZGZQ)\_%O(_D + QLQH%KZGQ)\Q_G].
yz

1 - 1 !
(1 - 2m777LK> (1 - 2mmLK>
te(T)

-T T
4 1 1
=- (1 - meK> [1 - (1 - meK> ]
7 2 2
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>

1 - 1
(1 - 2,LL7)77LK> [1 — exp (ZWWKTH
1 -T
1- §/anK ;

where the last inequality follows from that nnp K >
(1= LK) " < exp (=4 KT).

>

TN T

;%T’ teh second last inequality is due to

K 4
f(jT) - f(X*) <E 5 (1 B 2M7777LK> + 77775 Ga)\2—oz H[2G2a)\ 2(a—1) + 2L2n2 KZGa)\2 a}
1 K 4
< gexp (Q,umyLKT> ”"L MLE Gayz—a 4 ;[2G2ax2<°‘*1> 2L K2GON2.

Let n K = % In(T) (¢ > 11is a constant and T~ o222 < (mK)Qfaza = (mKT)é, and

uw mKT
nr < (mT)’%Kfi,

f(jT) - f(X*) <

2— 2« ~ 2—2«

+ (mKT) = In(T)=0(mKT) = ).

1
Te
O

Theorem 4. (Convergence Rate of FAT-Clipping-Pl in the Nonconvex Case) Suppose that f(-) is a
non-convex function. Under Assumptions 1-3, if yn, KL < 1, then the sequence of outputs {x}
generated by FAT-Clipping-Pl satisfies:

. 2(f(x1) — f(z1)) —2(a— -
2 < 2ay —2(a—1) 2. 2 12 Yay2—«
win B[V f(x)|? < 50 (2622 + 2L} K2GN )

L
Lnnr (GaAQ a) )
m
Further, choosing learning rates and clipping parameter in such a way that nmp =
2a—2 —a —a
m3e=2 (KT)3a=2 ny, < (mKT)%~1, and A = (mKT) 552, we have
min |V ()| < O((mKT)55).
te

Proof. Due to the smoothness in Assumption 1, taking expectation of f(x;41) over the randomness
at communication round ¢, we have:

IS (xea)] — f(xe) < (VF0x0), Bl = xil) + 2Bllxesr — )

= e (VFee) E[A) + ZoPndE(I A

K K 1 Ln?n? <
= TR V£ = TENEA 2 + FE= IV £(xe) — EIAI? + ZLALE] A, )

B 202
_ WKHW o+ (-2 L2 ”L)HE[ A7 + T 9 ) — ZBIAIP + LR A, -

2K

L -
< =10 e 2+ T 9 ) — LA+ L A, — BIA) ©)

Ay Az

where the last inequality follows from (fg”—; + LnTzni) <0ifgm KL < 1.

From Lemma 2, we have the bound of A; and A5 in (6). By rearranging and telescoping, we have:

- Z EHVf ”2 (f(Xl) — f(xT)) + (2G2o¢>\72(a71) + QLQU%K2GQ)\27Q) + L?nﬂ (GaAzia) )

te 7 L KT
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2a—2 —a —a 1
Suppose nn, = m3=2(KT)3%=2 n;, < (mKT)%=1, and A = (mKT)3-2,
min B[V f(x,)|? < O((mKT)%%).
te[T)

A.3 Proof of FAT-Clipping-PR in Gaussian Noise

In this subsection, we utilize the classic bounded variance and bounded gradient assumption.

Assumption 4. (Bounded Stochastic Gradient Variance) There exists a constant o > 0, such that the
variance of each local gradient estimator is bounded by E[||V fi(x, &) — V fi(x)||?] < o2, Vi € [m).

Assumption 5. (Bounded Gradient ) There exists a constant G > 0, such that gradient is bounded
by IV fi(x)|]? < G2, Vi € [m].

Lemma 3 (Lemma ES5 [18]). Suppose there exists a constant o such that the variance of the
stochastic gradient of F has bounded variance, i.e., E[[|VF(x,§) — VEX)|?] < o% and

[VF(x)||> < 3. then we have the following inequalities for the clipping VF (x;) = E[VF(x,£)] =
E[min{1, W}VF(X )

~ 164
IBIVF(e,6)] - VPG| < 5,

E|VF(x,&) — VF(x)|* < 1802,
E|VF(x,£) — E[VF(x,€)]||? < 1802

We remark that for any stochastic estimator satisfies the above conditions, the above inequalities hold.
The proof is the exactly same as that in original proof [18].

Lemma 4 (Bounded Variance of Clipping Stochastic Local Updates in FAT-Clipping-PR). Assume
fi satisfies the bounded variance assumption, then we have:

E[|As; — E[A]1°] < Ko?.

In addition, assume there exists a constant G such that gradient is bounded ||V fi(x)||* < G2, if we

set clipping parameter as X\* > 2K*G?, i.e., |V f;(x)|| < 3, then we have:

~ 2 16Ko*
B~ Eldw]| < =5
< < 18K
E||A; - E[A][* < 704-

Proof.
E[| A — E[ALIP] = ElIVA(x ;&) — EIV ()]
< Ko?,
where {V f (x{’i, ff’z) E[Vf(x] )} forms martingale difference sequence (Lemma 4 in [3]).

2

Then by applying Lemma 3, we have the bound of HIE[AH] —E[A, ]

2
EHAt [At ||2 Z Atz - Z Atz

18K
< 5t
m

where the last inequality follows from the fact that E[||A; ; — E[A,;]]|%] < Ko?, {Ay; — E[A]}
forms martingale difference sequence and Lemma 3. O
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Theorem 5. Suppose f is non-convex function, under Assumptions 1, 2, 4, and 5, if nm KL < 1,
then the sequence of outputs {xy} generated by Algorithm FAT-Clipping-PR satisfies:

f(xo) — f(x 1 320 18Lnn
1S mvsl < 2B IO A5 (oot 4ty ¢ 20) 4 (B ),
tE 1] L te[T) n

Choosing learning rates and clipping parameter as ny, =
(mT)1/4K73/4,

,1/2 1
(Kn}wﬂn S iR and A\ >

min E[|Vf(x)|? < O((mKT)"?).
te[T]

Proof. Due to the smoothness in Assumption 1, taking expectation of f(x:1) over the randomness
at communication round ¢, we have the same inequality:

Blf(eesn)] — f0x0) < ~ TR V7 Ge)I + T 9 ) - EIAJIZ +LE E]IA, ~ B,

2
Aq Az
(N
where it requires nn KL < 1.
Note that the term A; in (7) can be bounded as follows:
1 -
Ay = |V fx) - EIA?
1 2 9 _ o2
—2|[ Vo) - EIA]] + 25 [Elad - BIAY
2 - 2
K > I Vfilxe) = Vilx H + K2 > HE [Ari] — E[A]
ie[m] ke[K] i€[m]
2
2L 77L J 2
Z Z Z Vfi(xt,hgtz +—= Kg Z HE [Ai] - AtZ]
1€[m] kE[K] JE[K] i€[m)]
< 202 K2 (E VAo ) — VA + [V + 225
3204

2, 2 2 2 2
<2L nLK (0’ -‘rG)“rKT)\%

where the second inequality is due to smoothness assumption 1, the third inequality is due to

Lemma 4, and the last inequality follows from bounded variance assumption 4 and bounded gradient
assumption 5.

From Lemma 4, the term A, in (7) can be bounded as follows:
18K o2
—

As <

Putting pieces together, we can have the one communication round descent in expectation:

~ 22 ~ ~
Bl (i) - fx0) < ~ TR0 702+ T 9 ) — EIAIZ +LTE EIA, ~ BIAIP)

Ao
Ay
7777LK o MK 2.9 72/ 2 2 320! 18LK77277% 2
< IV f(x¢)]] +72 <2L n K=o+ G )+K2/\§ + o o”.

Rearranging and telescoping, we have the final convergence result:

f(xo) — f(x 1 3202 18L
- Z EIV ()2 < 2 (n%) KT( 7)) , 7O (2PRENC G g ) + nfzma"‘ .
T L te[T] K
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ml/2 _
Suppose 7777L = (KT)I/Zan S (mT)1}2K5/2 ’ and A1: 2 (mT)1/4K 3/43

min E||V£(x,)|? < O(mKT)"2).
te[T]

O

Theorem 6. Suppose fis u-strongly convex function, under Assumptions 1-3, if nn LK > =, then

the outputs X7 in Algorithm 2 (FAT-Clipping-PR) by X7 = x; with probability S where
= (1 — JpmnL K)' "~ satisfies:

3204
A2 I

1 K 4
f@r) — flx.) < %GXP <_2N7777LKT> + %02 + ;[2L277%K2(G2 +0°) +

Suppose nmp K = %::g% (¢ > 0is a constant and T~°t! < (mK)~1), A > (mKT)%, and
3
2

nr < (mT)_%K_ ,

f(@r) = f(x.) = O((mKT)™").

Proof.

|--EIA)] - VF()|? <2 me) - LE(A]

g—z > EIVAitx) - VAGEI + o 3 [BlA] - EIA,]
m] ke[K] i€[m]
2

2L27]2 . . 3204
ST X Y B[ VAL E)| T
i€[m] ke[K] jelk]
320
A2

+ 2 [eiad - A

2

<23 K2(G? + 0%) +

Similarly, we have

1 1
f(xe) = f(x4) < oK _—]EH|Xt+1 — x|+ (1 - LK) [x — w*llz_
L T 2
TIL g A ZIE[=A, -V
+ 5 Bl A ]+MII (A = Vi)
1 2 1 2-
< LK __E[HXHI — x|+ (1 — §M7777LK)||Xt — Zu| |
K 4 3204
+ TG 4RI RGP 4 0%) + S

Letw; = (1 — 7;umLK) t, X7 = x; with probability = “["] —.
je[T) Wi

_ 1 Wy 2 1 2
— f(x.) < - — P+ (1= S K)|[x; — o
for) = fe) £ tEE[Tj](MLK[ s =2+ (1 G ) = .

LK 2, 22 (2(G2 4 o2 320"
— G 2Lni K*(G
+ TGP 4 LR )+ =]
1 1 MK o 4.9 9 .9 9 9 3204
< x1 — 2| + G? + —2L*1n2 K*(G? + o) + )
§je[T] w; 2177)LK|| I 2 u[ LK ) A2 ]
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Same as that in heavy-tailed noise case, we have the same bound for 29 K 3, ¢ ) we:

2 1 -7
2L K E wy > — (1 - AanK> )
W 2
te[T]

. . 2
where it requires nnp K > T

T
1 K 4 3954
far) - fx) < 5 (1 - 2“7777LK> + TSGR 4 S RIPEKAGE o) + ST
1 K 4 3954
< Gow <_2“"”LKT> + e LRLMLK(G +0%) + !

Let nm K = %iEgT) (¢ > 0is a constant and T~ < (mK)™1), A > (mKT)z2, and 5, <
(mT)"2K~3,

f(@r) — f(x.) = O(mKT) ™).

B Experiments in Section 3

In this section, we provide experimental details to demonstrate the fat-tailed noise phenomenon in
federated learning. We conduct experiments with CNN on CIFAR-10 dataset as shown in Section 3,
and provide additional results of RNN model on Shakespeare dataset. Furthermore, we verify the
accuracy of a estimation with logistic regression on MNIST dataset.

B.1 CNN on CIFAR-10 Dataset
B.1.1 Experiment details

We run a convolutional neural network (CNN) model on CIFAR-10 dataset using FedAvg. The
CNN architecture is shown in Table 2. To simulate data heterogeneity across clients, we manually
distribute the the data to each client in a label-based partition. Specifically, we split the data according
to the classes (p) of images that each client has. Then, we randomly distribute these partitioned
data to m = 100 clients such that each client has only p classes of images in both training and test
data, which causes the heterogeneity of data among different clients. For example, for p = 10, each
client contains training/test data samples with ten classes. Since CIFAR-10 has 10 classes of images,
p = 10 is the nearly i.i.d case. For the remaining p, each client contains data samples with class p.
Therefore, the classes (p) of images in each client’s local dataset can be used to represent the non-i.i.d.
degree. The smaller the p-value, the more heterogeneous the data between clients.

In this experimental setting, we use the global learning rate 2= = 1.0 and the local learning rate
nr = 0.1. The batch size is set to 500, and the communication round is 7" = 4000. We run this
experiment in different cases, including singleSGD and different local epochs {1, 2,5} and non-iid
index p € {1,2,5,10}. Single SGD means one local update step, which is equivalent to mini-batch
SGD.
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Table 2: CNN architecture for CIFAR-10.

LAYER TYPE SIZE
Convolution + ReLu 3x32x5H
Max Pooling 2x2
Convolution + ReLu 32x64 x5
Max Pooling 2x2

Fully Connected + ReLU 1600 x 512
Fully Connected + ReLU 512 x 128
Fully Connected 128 x 10

B.1.2 Additional experimental results

We provide additional distributions of the norms of the pseudo-gradient noises in different cases as
follows. From Fig. 7- 10, the observation is that the gradient norm statistics are contracted together
for more iid cases while dispersed uniformly for more non-iid cases. This is
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Figure 7: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case
of Single SGD.
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Figure 8: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case

of Local Epoch=1.
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Figure 9: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case
of Local Epoch=2.
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Figure 10: Distributions of the norms of the pseudo-gradient noises for CIFAR-10 dataset in the case
of Local Epoch=35.

B.2 RNN on Shakespeare Dataset
B.2.1 Experiment details

To provide more evidences of the fat-tailed noise phenomenon, we further run a recurrent neural
network (RNN) model on Shakespeare dataset.

Shakespeare dataset is a natural non-iid dataset, and it is built from The Complete Works of William
Shakespeare [1]. The learning task is to predict next character, and there are 80 classes of characters
in total. We use a two-layer LSTM classifier containing 100 hidden units with an 8-dimensional (8D)
embedding layer. The model inputs a sequence of 80 characters, embeds each of the characters into a
learned 8D space, and then outputs one character per training sample after two LSTM layers and a
densely-connected layer. The dataset and model are taken from [45].

There are m = 143 clients participating in this experiment. The global learning rate is chosen as 1.0,
and the local learning rate is chosen as 0.8. The batch size is set to 10, and the communication round
is T = 150.

B.2.2 Experimental results

We show the results when local step is set to be one (Single SGD), and multiple local epochs {1, 2,5}.
In Fig. 11, we observe that the a-value is smaller than 2, and it increases when the number of local
epoch increases. This implies that the gradient noise is fat-tailed. Fig. 12 shows that the distributions
of the norms of the pseudo-gradient noises are fat-tailed.

B.3 Accuracy of Alpha Estimation (Logistic Regression on MNIST Dataset)

Accurate a-value computation requires the full-gradient calculation, and we have to compute both
full-gradient and stochastic gradient in each local step. This is computationally expensive. Instead,
we use an estimation to approximate the exact a-value. The full-gradient is replaced by the mean
value of the stochastic gradients. We verify the accuracy of this estimation method by running logistic
regression on MNIST dataset [46]. The details and the results are described as follows.

B.3.1 Experiment details

MNIST dataset contains ten classes of images, and it is manually partitioned using the same method
as to partition CIFAR-10 dataset (see details in Appendix B.1.1). The number of classes (p) that each
client has can be used to represent the non-iid level.
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Figure 11: Estimation of « for Shakespeare dataset.
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Figure 12: Distributions of the norms of the pseudo-gradient noises for Shakespeare dataset.

m = 100 clients participate in the experiment. The communication round is 7' = 150. The global
learning rate is set to 1.0, and the local learning rate is set to 0.1. The batch size is chosen to be 64.

B.3.2 Experimental results

Table 3 shows the error rate of c-value estimation in different cases, and this implies that the
estimation of a-value is within an acceptable margin of error.

C Experiments in Section 5

In this section, we describe the details of the numerical experiments from Section 5 and provide some
extra experimental results.

C.1 Experiment details

C.1.1 Strongly Convex Model with Synthetic Data

In these experiments, we consider a strongly convex model for Problem (1) as follows:
fi(x) = E¢ [fi (2,8)]
i €)= el + (€,

where x € R3*! and ¢ is a random vector. The optimal solution is f (z*) = 0 with z* = [0;0; 0].

Table 3: Error rate (%) of a-value estimation.
NonlID Index (p)
1 2 5 10
Single SGD -2.82 -1.09 -0.12 3.12
Local Epoch=1 1.19 0.37 1.4 2.08
Local Epoch=2 1.8 1.4 143 174
Local Epoch=5 1.86 0.23 056 0.25
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Figure 13: Percentage of successful training over 5 trials when applying FedAvg, FAT-Clipping-
PR and FAT-Clipping-PI to CIFAR-10 dataset in non-i.i.d. cases.

To compare the performance of FedAvg, FAT-Clipping-PI and FAT-Clipping-PR , we consider the
noise £ to be a Cauchy distribution(a < 2, fat-tailed) with a location parameter of 0 and a scale
parameter of 2.1.

To compare the performance of FAT-Clipping-Pl and FAT-Clipping-PR under different scenarios,
we consider the noise ¢ having different tail-indexes (o = 0.5, 1.0, and 1.5) with the same location
parameters of 0 and the same scale parameters of 1.

For all the distributions of £ mentioned above, we use the same experimental setup. There are m = 5
clients participating in the training. We choose the starting point o = [2; 1; 1.5]. We set the global
learning rate 72t = 0.1 and the local learning rate 7, = 0.1. The local steps we use is K = 2,
and the communication round is 7" = 300. The clipping parameter in FAT-Clipping-P| we select is
A = 3, and the clipping parameter in FAT-Clipping-PR is A = 5.

C.1.2 CNN (Non-convex Model) on the CIFAR-10

To test the performance of FAT-Clipping-PI and FAT-Clipping-PR for non-convex function, we run
a convolutional neural network (CNN) on CIFAR-10 dataset. We compare FAT-Clipping-PIl and
FAT-Clipping-PR with FedAvg under different data heterogeneity.

In this experimental setting, we randomly select five clients from m = 10 clients to participate in each
round of the training. The local epoch we use is two. The clipping parameter in FAT-Clipping-Pl we
selectis A = 50, and the clipping parameter in FAT-Clipping-PR is A = 2. All the remaining settings
are the same as described in Appendix B.1.1.

C.2 Additional experimental Results

We provide two additional results when applying FedAvg, FAT-Clipping-Pl and FAT-Clipping-PR to
the CNN model on CIFAR-10 dataset. In Fig. 13, we show the percentage of successful training over
5 trials in non-i.i.d. cases when the non-i.i.d. index p = 1 and p = 5. These results further support
our finding that FAT-Clipping methods and especially FAT-Clipping-Pl reduce catastrophic training
failures compared to FedAvg.
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