
A Stochastic Linearized Augmented Lagrangian
Method for Decentralized Bilevel Optimization

Songtao Lu† Siliang Zeng‡ Xiaodong Cui† Mark S. Squillante†
Lior Horesh† Brian Kingsbury† Jia Liu∗ Mingyi Hong‡

†IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
songtao@ibm.com,{cuix,mss,lhoresh,bedk}@us.ibm.com

‡Dept. of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
{zeng0176,mhong}@umn.edu

∗Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210
liu@ece.osu.edu

Abstract

Bilevel optimization has been shown to be a powerful framework for formulating
multi-task machine learning problems, e.g., reinforcement learning (RL) and meta-
learning, where the decision variables are coupled in both levels of the minimization
problems. In practice, the learning tasks would be located at different computing
resource environments, and thus there is a need for deploying a decentralized
training framework to implement multi-agent and multi-task learning. We develop
a stochastic linearized augmented Lagrangian method (SLAM) for solving general
nonconvex bilevel optimization problems over a graph, where both upper and lower
optimization variables are able to achieve a consensus. We also establish that the
theoretical convergence rate of the proposed SLAM to the Karush-Kuhn-Tucker
(KKT) points of this class of problems is on the same order as the one achieved by
the classical distributed stochastic gradient descent for only single-level nonconvex
minimization problems. Numerical results tested on multi-agent RL problems
showcase the superiority of SLAM compared with the benchmarks.

1 Introduction

In this paper, we consider the following general decentralized bilevel optimization (DBO) framework
with applications to machine learning problems. Suppose that there are n nodes over a connected
graph G = {E ,V}, where E and V represent the edges and vertices. Let Ni denote the set of
neighboring nodes for node i. Then the goal of DBO is to have these nodes jointly minimize two
levels of optimization problems. More formally, DBO is expressed as

min
x1,...,xn

1

n

n∑
i=1

fi(xi,y
∗
i,1(xi), . . . ,y

∗
i,m(xi)) (1a)

s.t. xi = xj , j ∈ Ni, ∀i ∈ [n] (1b)

y∗
k(x) = arg min

y1,k,...,yn,k

1

n

n∑
i=1

gi,k(xi,yi,k) s.t. yi,k = yj,k, j ∈ Ni, ∀k ∈ [m], (1c)

where vector xi is the upper level (UL) optimization variable at each node i, vector yi,k denotes
the lower level (LL) decision variable for the kth learning task at node i, fi(;) is a (smooth) UL
loss function and possibly nonconvex with respect to (w.r.t.) both the UL and LL variables, gi,k(,)
denotes the LL objective function of the kth task at node i, m represents the total number of LL

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

optimization problems, the consensus constraints xi = xj ,yi,k = yj,k, j ∈ Ni, ∀i ∈ [n], ∀k ∈ [m],
enforce the model agreements at each level of the problems and for each LL learning task, and y∗

k =
[y∗

1,k, . . . ,y
∗
n,k]

T is the optimal solutions of the kth LL problem under the consensus constraints.

Applications of Bilevel Optimization. Many machine learning problems can be formulated math-
ematically as a form of bilevel optimization or, more precisely, a special case of problem (1), e.g.,
meta-learning or meta reinforcement learning (RL), actor-critic (AC) schemes in RL, hyperparameter
optimization (HPO), and so on.

Classical bilevel optimization is referred to as the case where there is no consensus constraint but
with only two levels of the minimization subproblems, i.e., minx f(x,y

∗(x)), s.t. y∗(x) =
argminy g(x,y), which is also known as Stackelberg games [1] with the UL decision variable as
the leader and the LL decision variable as the follower. It turns out that this class of optimization
problems is useful in formulating a wide range of hierarchical or nested structured machine learning
problems. For example, one of the most popular domain adaption learning models, model-agnostic
meta-learning (MAML) [2, 3], can be written as a special case of bilevel programming [4], where
the UL model provides a good initialization for accelerating learning procedures by implementing
the LL algorithms. The idea behind the model design is that the UL model is considered as the meta
learner that searches for a permutation-invariant subspace over multiple task-specific learners at the
LL so that the performance of the MAML model can be generalized well for unseen or testing data
samples. The theoretical analysis of the generalization performance of this class of bilevel problems
has shown that MAML can indeed decrease the generalization error as the number of tasks increases,
at least for strongly convex loss functions [5]. Subsequently, a thorough ablation study from the
latent representation perspective shows that feature reuse is the actual dominant factor in improving
the generalization performance of MAML [6], and the authors propose a neural network-oriented
algorithm with almost no inner loop (ANIL) that splits the neural network parameters into two
parts corresponding to the UL and LL optimization problems, respectively. Extensive numerical
experiments illustrate that ANIL achieves almost the same accuracy as the classical MAML but
with significant computational savings. This example further strengthens the necessity of variable
splitting in the learning structure by optimizing two levels of objective functions to enhance the
generalization performance. Beyond the traditional supervised meta-learning scenarios, MAML has
also been applied to increasing the generalization ability of agents in RL problems by replacing the
(stochastic) gradient with the (natural) policy gradient (PG) [3] under the same two-level structure.

Besides meta-learning problems, AC structure in RL is another class of common learning frameworks
that can be formulated by a bilevel optimization problem in nature [7, 8, 9], where the actor step at
the UL aims at optimizing the policy while the critic step at the LL is responsible for value function
evaluation. In addition, as the expressiveness of neural networks increased sharply over the past
decades, the reuse of large models with adaptation to multi-task learning problems presents promising
solutions by leveraging the pre-train and fine-tune strategy, such as in applications of HPO [10, 11]
where the hyperparameters are trained at the UL problem so that the downstream learning tasks are
learned with low costs including the expense of both computation and memory.

Applications of Multi-agent Settings. When multiple computational resources are available and
connected, it is well motivated that exploring them solves distributed large-scale problems with
a reduced amount of training time or performs multi-task learning. The bilevel structure of the
meta-learning (ML) is a good fit in this scenario as either UL/LL or both levels may need to access
the networked data samples rather than local ones. For example, a federated learning setting of
MAML [12] and bilevel optimization [13] have been built up over multiple nodes recently, where the
meta/UL learner finds an initial shared model while the local/LL learners leverage it for adapting data
distributions of individual users. In such a way, the federated MAML model can realize personalized
learning without sharing heterogeneous data over numerous clients. Once there is no central controller
for coordinating the model aggregation, a diffusion-based MAML (Dif-MAML) [14] is proposed
by spreading the model parameters over a network, where the UL parameter is updated by one step
of stochastic gradient descent (SGD) based on a combination of the parameters of neighbors as the
initialization for local model updates.

Decentralized hierarchical structured learning is even more stringent in the multi-agent RL (MARL)
setting [15] as the learning tasks are essentially located at scattered sensors and/or controllers.
Under this setting, MARL problem becomes a multi-objective optimization problem under provided
(approximate) value functions, where the policy of each agent needs to be learned locally by certain

2

efficient iterative methods, such as multi-agent deep deterministic policy gradient (MADDPG) [16],
trust region methods [17], optimal baseline based variance reduced policy gradient [18], and/or
improved by more advanced techniques, e.g., constrained policy optimization [19] and large sequence
models [20]. In such a way, the total reward can be maximized over the distributed agents through
optimizing the networked policy. In a fully collaborative setting, the team-based value function
is even required to be shared over all the agents such that each agent is able to improve its policy
based on the estimated total reward. For example, the decentralized AC (DAC) scheme has been
investigated widely [15, 21, 22], where each agent uses the actor step to optimize its policy while the
critic step performs one step [23] or multiple steps of temporal difference learning with mini-batch
sampling (MDAC) [22, 24] and communications so that the team-based reward over the network is
obtained by each agent. It turns out that DAC can be formulated as a special case of problem (1)
as there is no consensus at the UL. Recently, it has been revealed that if there exists homogeneity
of the state and action spaces, decentralized policy consensus (or a partial policy parameter sharing
strategy) provides significant merits to the centralized training and decentralized execution paradigm
in terms of learning scalability and efficiency[23, 25], which motivates the consensus process at both
UL and LL DBO problems.

Related Theoretical Works. Given the fruitful results across these many applications, the corre-
sponding theoretical analysis has been developing very fast as well for variants of bilevel optimization
problems. For example, the convergence behaviors of classical inexact MAML (iMAML) methods
have been quantified for both convex [26, 27] and nonconvex [28] cases of the UL loss function,
where the LL algorithm only performs one step of stochastic gradient descent (SGD) based on the LL
objective functions as the adaptation step. Moreover, the iteration complexity of ANIL with multiple
iterations for minimizing the LL problems have been studied in [29], which justifies the significant
computational advantages of ANIL compared with MAML in theory. Furthermore, the finite-time
analysis of AC algorithms has shown [30] that, once the learning rates at both the actor and critic sides
are chosen properly, a two timescale AC algorithm can achieve an O(ϵ−2.5) iteration complexity for
finding the first-order stationary points (FOSPs) of general nonconvex reward functions.

Besides these theoretical analyses in a specific learning setting, the algorithm design and correspond-
ing convergence analysis for general bilevel optimization solvers have been recently advancing at a
rapid pace under certain assumptions that the UL objective function is general nonconvex while the LL
objective functions are strongly convex, which covers the existing convergence results shown for AC
algorithms. The typical algorithms include those with double-loop structure, those with two timescale
or single timescale but single-loop, and those with error-correction or accelerated/variance-reduction.
To be more specific, double-loop algorithms, such as bilevel stochastic approximation (BSA) methods
[31] and stochastic bilevel optimizers (stoBiO) [32], mainly request an inner loop to solve the LL
problem up to a certain error tolerance or with a certain number of iterations and then switch back
to optimize the UL problem, which can achieve an O(ϵ−2) convergence rate to the ϵ-FOSPs. In
practice, single-loop algorithms are implemented more efficiently in terms of computational com-
plexity and hyperparameter tuning compared to double-loop algorithms. A two-timescale stochastic
approximation (TTSA) was analyzed in [33], but it is shown that TTSA needs O(ϵ−2.5) number of
iterations to achieve the ϵ-FOSPs. Later, an error correction method, named the Single-Timescale
stochAstic BiLevEl optimization (STABLE) method [34], improves the convergence rate of the
single-loop algorithm to O(ϵ−2) and a tighter analysis for ALternating Stochastic gradient dEscenT
(ALSET) shows that the single-loop algorithm can also achieve a convergence of O(ϵ−2) without the
error correction technique. When more advanced momentum-assisted or variance reduction methods
are adopted in the algorithm design, the subsequent works, such as the momentum-based recursive
bilevel optimizer (MRBO) [35] and the single-timescale double-momentum stochastic approximation
(SUSTAIN) [36] and the variance reduced BiAdam (VR-BiAdam) [37], can sharpen the convergence
rate of bilevel algorithms to O(ϵ−1.5).

For the theoretical works on MAML/MARL, it is shown in [22, 24] that when the critic side is
allowed the consensus step at each agent to approximate the networked rewards, MDAC algorithms
can achieve an O(ϵ−2) convergence rate to FOSPs, but both of them require an inner loop procedure
for the LL problem which makes the algorithms double loop. Dif-MAML [14] is able to perform
the UL consensus-based meta learning, but iMAML considered in Dif-MAML is only a very special
case of bilevel. Thus, the applicability of Dif-MAML is restrictive. One of the closest works to ours
is coordinated AC (CAC) [23], which can realize the consensus on both UL and LL problems with
O(ϵ−2.5) number of iterations and is only for DAC problems. A theoretical comparison between our

3

Table 1: A comparison with closely related prior work on (decentralized) bilevel optimization learning.
“Comm.” refer to whether the algorithm only needs one round of communication at either UL or LL
per iteration; “Alg.” refs to the types of the basic stochastic algorithms adopted in the method.

Prior work Consensus Method Rate Comm. Alg. Setting
UL LL

Ghadimi et al. [31] BSA O(1/ϵ2) - SGD bilevel
Hong et al.[33] TTSA O(1/ϵ2.5) - SGD bilevel
Chen et al. [43] ALSET O(1/ϵ2) - SGD bilevel

Khanduri et al. [36] SUSTAIN O(1/ϵ1.5) - Momentum bilevel
Kayaalp et al. [14] ✓ Dif-MAML O(1/ϵ2) ✓ SGD iMAML
Kaiqing et al. [15] ✓ DAC - ✓ PG MARL

Chen et al. [22] ✓ MDAC O(1/ϵ2) PG MARL
Hairi et al. [24] ✓ MDAC O(1/ϵ2) PG MARL
Zeng et al. [23] ✓ ✓ CAC O(1/ϵ2.5) ✓ PG MARL

This work ✓ ✓ SLAM O(1/(nϵ2)) ✓ SGD/PG bilevel

work and closely related previous works on bilevel programming is shown in Table 1. There is a
line of independent work on decentralized optimization. But the existing works are only suitable for
single-level minimization of only nonconvex problems, such as distributed SGD [38, 39], stochastic
gradient tracking [40, 41] and stochastic primal dual algorithm [42], which can achieve an O(1/(nϵ2))
convergence rate to FOSPs for general nonconvex objective function optimization problems.

Main Contributions of This Work. In this work, we consider a very general DBO setting, where
both UL and LL problems can include a consensus constraint for model parameter sharing and there
would be multiple LL problems coupled with the UL problem. To solve this problem efficiently in a
fully decentralized way, we propose a Stochastic Linearized Augmented Lagrangian Method (SLAM)
for dealing with both of the two levels of the optimization processes and the consensus constraints at
each level. Leveraging the linearized augmented Lagrangian function as a surrogate, the design of
SLAM is simple and easily implemented as it is a single-loop algorithm with only step sizes to be
tuned for convergence. We make the standard assumptions on Lipschitz continuity and convexity
for both the UL and LL optimization problems as shown in the existing literature. We establish the
conditions of SLAM w.r.t. convergence to ϵ-Karush-Kuhn-Tucker (KKT) points of problem (1) at a
rate of O(1/(nϵ2)), matching the standard convergence rate achieved by decentralized SGD type of
algorithm to FOSPs for only single-level nonconvex minimization problems. Remarkably, through
numerical experiments on MARL problems, it is observed that SLAM can converge faster than the
existing MARL methods and even achieve higher rewards in most cases.

To summarize, the main contributions of this work are highlighted as follows:

▶ Our proposed SLAM algorithm is generic, and thus generalizes the single agent-based bilevel
algorithms to the multi-agent setting and is amnable to be specialized to solve multiple consensus-
based DBO problems.

▶ SLAM is a single-timescale and single-loop algorithm that can find the ϵ-KKT points at a rate
of O(1/(nϵ2)), which shows a linear speedup w.r.t. the number of nodes. To the best of our
knowledge, this is the first work that shows a decentralized stochastic algorithm can achieve
this rate under the constraints where any level or both levels of the DBO problem requires the
consensus process.

▶ Numerical results that illustrate the proposed SLAM outperforms the state-of-the-art MARL
algorithms over heterogeneous networks in terms of both convergence speed and achievable
rewards.

Due to space limitations, all technical proofs are deferred to the supplement.

2 Decentralized Bilevel Optimization Framework

Problem formulation of DBO. One of the main motivations for performing decentralized joint
learning is dealing with large-scale dataset or scattered data samples. At each node, the loss func-
tion can be written as fi(xi,y

∗
i,1(xi), . . . ,y

∗
i,m(xi)) ≜ Eξ∈DU

i
[Fi(xi,y

∗
i,1(xi), . . . ,y

∗
i,m(xi); ξ)],

where DU
i denotes the local data distributions at the UL optimization problem, and

Fi(xi,y
∗
i,1(xi), . . . ,y

∗
i,m(xi); ξ) represents the estimation error of the UL learning model on

4

data ξ ∈ DU
i . Similarly, the LL learning tasks also include randomly sampled data from a

local distribution DL
i,k for task k, so the LL cost function at each node can be expressed as

gi,k(xi,yi,k) ≜ Eζ∈DL
i,k
[Gi,k(xi,yi; ζ)], ∀k, where Gi,k denotes the estimation error of the LL

learning model over yk,i on data ζ ∈ DL
i,k. It is well known that SGD is one of the most efficient

algorithms for tackling large amounts of data samples. Before showing the algorithm design, we
first reformulate problem (1) in a concise and compact way from a global view of the variables. Let
x ≜ [x1, . . . ,xn]

T and yk ≜ [y1,k, . . . ,yn,k]
T . Then, problem (1) can be rewritten by concatenated

variables as

min
x

f(x,y∗
k(x)) ≜

1

n

n∑
i=1

fi(xi,y
∗
i,k(xi)) (2a)

s.t. Ax = 0, (2b)

y∗
k(x) = argmin

yk

gk(x,yk) ≜
1

n

n∑
i=1

gi,k(xi,yi,k) s.t. Ayk = 0, ∀k ∈ [m], (2c)

where gk(x,yk) denotes the kth LL loss function, A ∈ R|E|×n represents the incidence matrix1 and
fi(xi,y

∗
i,k(xi)) abbreviates fi(xi,y

∗
i,1(xi), . . . ,y

∗
i,m(xi)) for notational brevity.

Algorithm Design. Towards this end, it is straightforward to construct a variant of the classical
augmented Lagrangian function for the UL optimization problem as

Lργ(x,λ) = f(x,y∗
k(x)) + γ⟨λ,Ax⟩+ ργ

2
∥Ax∥2, (3)

where λ denotes the dual variable (Lagrangian multiplier) for the consensus constraint, ρ > 0, and γ
is a scaling factor (which will be determined later).

Motivated by the primal-dual optimization framework [44], one step of gradient descent based on the
linearized objective function with a following gradient ascent step is sufficient for the minimization
of the general nonconvex loss function under the linear constraints, which means that there is no need
to solve an inner optimization problem before updating the Lagrangian multiplier as is done in the
classical augmented Lagrangian method.

When both the UL and LL objective functions are differentiable and the inverse of the Hessian
matrix at the LL problem exists, i.e., ∇2

ykyk
gk(x,y

∗
k(x)) is invertible, then there exists a closed

form for ∇fi(xi,y
∗
i,k(xi)). Following the existing works on bilevel algorithm designs, replacing

y∗
i,k(xi) by yi,k in the gradient of fi(xi,y

∗
i,k(xi)) w.r.t. xi can serve as an efficient surrogate

for the stochastic gradient estimate. However, in the decentralized setting, only individual loss
functions are observable at each agent, therefore, the local UL implicit gradient is computed through
replacing gk(x,yk) by gi,k(xi,yi,k), denoted as ∇fi(xi,yi,k). Let hr

g,k and hr
f respectively denote

the distributed stochastic gradient estimate of the LL and UL objective functions at points (xr,yr
k)

and (xr,yr+1
k), ∀k, w.r.t. yk and x, where r represents the index of iterations. Thus, our proposed

SLAM can be expressed as

yr+1
k = argmin

yk

⟨hr
g,k + γAT (ωr

k + ρAyr
k),yk − yr

k⟩+
β

2
∥yk − yr

k∥2, ∀k, (4a)

ωr+1
k = ωr

k +
ρ

γ
Ayr+1

k , ∀k, (4b)

xr+1 = argmin
x

⟨hr
f + γAT (λr + ρAxr),x− xr⟩+ α

2
∥x− xr∥2, (4c)

λr+1 = λr +
ρ

γ
Axr+1, (4d)

where ωk is the dual variable for ensuring the LL consensus process for each learning task, α and β
are the parameters of the quadratic penalization terms, and ρ/γ here is the step-size for the updates
of the dual variables.

Implementation of SLAM. Noting that the objective functions in each subproblem, i.e., (4a) and
(4c), are quadratic, we can easily have the updates of both UL and LL optimization variables as

1Here, we assume the problem dimension is 1, without loss of generality, to simplify the notation.

5

yr+1
k = yr

k − 1

β

(
hr
g,k + γATωr

k + ργATAyr
k

)
, ∀k, (5a)

xr+1 = xr − 1

α

(
hr
f + γATλr + ργATAxr

)
, (5b)

where 1/α and 1/β serve as the step-sizes of updating both UL and LL learning models.
Subtracting the equality with the same one from the previous iteration for both (5a) and (5b) ends up
with efficient model updates of both the UL and LL learning problems as follows:

yr+1
k =2Wgy

r
k −W′

gy
r−1
k − 1

β

(
hr
g,k − hr−1

g,k

)
, ∀k, (6a)

xr+1 =2Wfx
r −W′

fx
r−1 − 1

α

(
hr
f − hr−1

f

)
, (6b)

where the mixing matrices, with τg = β/γ and τf = α/γ, are defined as

Wg ≜ I− (1 + γ−1)ρ

2τg
ATA, W′

g ≜ I− ρ

τg
ATA, (7a)

Wf ≜ I− (1 + γ−1)ρ

2τf
ATA, W′

f ≜ I− ρ

τf
ATA. (7b)

According to (6a) and (6b), it can be readily observed that SLAM is amenable to a fully decentralized
implementation. The detailed algorithm description is provided in Algorithm 1 from a local view of
the model update, where [W]ij denotes the ijth entry of matrix W, [hr

g]i,k is the gradient estimate
of ∇gi,k(x

r
i ,y

r
i,k) (i.e., hr

g,k = [[hr
g]1,k, . . . , [h

r
g]n,k]

T), and similarly [hr
f]i is the local gradient

estimate of ∇fi(x
r
i ,y

r+1
i,k) (i.e., hr

f = [[hr
f]1, . . . , [h

r
f]n]

T).

Algorithm 1 Decentralized implementation of SLAM

Initialization: α, β, γ, x1
i ,y

1
i,k, ∀i, k, and set λ1 = ω1

k = 0, ∀k;
1: for r = 1, 2, · · · , T do
2: for i = 1, 2, · · · , n in parallel over the network do
3: Estimate gradient ∇gi,k(x

r
i ,y

r
i,k) for each task and ∇fi(x

r
i ,y

r+1
i,k) locally

4: yr+1
i,k = 2

∑
j∈Ni

[Wg]ijy
r
j,k − [W′

g]ijy
r−1
j,k − β−1

(
[hr

g]i,k − [hr−1
g]i,k

)
▷ LL models

5: xr+1
i = 2

∑
j∈Ni

[Wf]ijx
r
j − [W′

f]ijx
r−1
j − α−1

(
[hr

f]i − [hr−1
f]i

)
▷ UL model

6: end for
7: end for

Besides, if there is a consensus requirement at only one level of the optimization problem, then the
problem at the other level becomes one with multiple objective functions. Our proposed SLAM
can also be applied for solving any of these problems by a minor revision of the generic SLAM
formulation. To be more specific, we provide the following discussion.

A Special Case of DBO (1) (with only consensus in the LL problems). If there is only a need for
consensus of LL model parameters, then problem (2) reduces to the following DBO problem. For
example, in solving multi-agent actor-critic RL problems, the UL optimization problem consists of
improving the policy for each agent while the LL problem requires all the agents to jointly evaluate
the value function over the whole network. The DBO problem is then expressed as

min
xi

fi(xi,y
∗
i,k(xi)), ∀i ∈ [n] (8a)

s.t. y∗
k(x) = argmin

yk

gk(x,yk) ≜
1

n

n∑
i=1

gi,k(xi,yi,k) s.t. Ayk = 0, ∀k ∈ [m]. (8b)

The major difference between problem (2) and (8) is that the UL optimization problem includes
multiple objectives over the model parameters xi, ∀i ∈ [n]. In this case, the updating rule of
variable x in (6b) reduces to xr+1 = xr − hr

f/α by forgoing the dual update w.r.t. λ. The detailed
implementation is summarized in Algorithm 2, where we name this special case of SLAM by
SLAM-L as the LL consensus process is the main feature in this setting.

6

Algorithm 2 Decentralized implementation of SLAM-L
Initialization: α, β, γ, x1

i ,y
1
i,k, ∀i, k, and set ω1

k = 0, ∀k;
1: for r = 1, 2, · · · , T do
2: for i = 1, 2, · · · , n in parallel over the network do
3: Estimate gradient ∇gi,k(x

r
i ,y

r
i,k) for each task and ∇fi(x

r
i ,y

r+1
i,k) locally

4: yr+1
i,k = 2

∑
j∈Ni

[Wg]ijy
r
j,k − [W′

g]ijy
r−1
j,k − β−1

(
[hr

g]i,k − [hr−1
g]i,k

)
▷ LL models

5: xr+1
i = xr

i − α−1[hr
f]i, ∀i ▷ UL models

6: end for
7: end for

A Special Case of DBO (1) (with only consensus in the UL problem). The other special is
analogous to the first one with the difference being the absence of the LL consensus process in
comparison to (2), which is written as follows:

min
x

f(x,y∗
k(x)) ≜

1

n

n∑
i=1

fi(xi,y
∗
i,k(xi)) (9a)

s.t. Ax = 0, y∗
i,k(xi) = argmin

yi,k

gi,k(xi,yi,k), ∀i ∈ [n], ∀k ∈ [m], (9b)

where there are multiple objectives in the LL optimization problems. Problem (9) also covers a wide
range of applications in machine learning, e.g., multi-task and/or personalized learning, and so on. In
this case, the update of variable yk shown in (5a) is changed to yr+1

k = yr
k − hr

g/β as there is no
consensus constraint involved. Analogous to the previous case, the implementation of this algorithm
is presented in Algorithm 3 and termed as SLAM-U.

Algorithm 3 Decentralized implementation of SLAM-U

Initialization: α, β, γ, x1
i ,y

1
i,k, ∀i, k, and set λ1 = 0, ∀k;

1: for r = 1, 2, · · · , T do
2: for i = 1, 2, · · · , n in parallel over the network do
3: Estimate gradient ∇gi,k(x

r
i ,y

r
i,k) for each task and ∇fi(x

r
i ,y

r+1
i,k) locally

4: yr+1
i,k = yr

i,k − β−1[hr
g]i,k ▷ LL models

5: xr+1
i = 2

∑
j∈Ni

[Wf]ijx
r
j − [W′

f]ijx
r−1
j − α−1

(
[hr

f]i − [hr−1
f]i

)
▷ UL model

6: end for
7: end for

3 Theoretical Convergence Results

Before showing the theoretical results about the convergence guarantees of SLAM, we first need five
main classes of assumptions used in showing the descent of some quantifiable function so that SLAM
can reach the ϵ-KKT points of the DBO problems. More detailed definitions and properties regarding
these assumptions are deferred to the supplement.

3.1 Assumptions

Our theoretical results are based on the following assumptions on the properties of the loss functions
in both the UL and LL optimization problems, which are mainly related to the continuity of the
objective function and stochasticity of the gradient estimates.

A1. (Lipschitz continuity of both UL and LL objective functions) Assume that functions
fi(·),∇fi(·,), ∇gi,k(·), ∇2gi,k(·), ∀i, are (block-wise) Lipschitz continuous with constants
Lf,0, Lf,1, Lg,1, Lg,2 for both x and yk, ∀k, and ∇2

xiyi,k
gi,k(·), ∀i are bounded by Cxy .

A2. (Connectivity of graph G) The communication graph G is assumed to be well-connected,
i.e., 1TL = 0 where L = ATA, and the second-smallest eigenvalue of L is assumed to be
strictly positive, i.e., σ̃min(A

TA) > 0.

7

A3. (Quality of the stochastic gradient estimate) The stochastic estimates of ∇fi(xi,yi,k),
∇yi

gi,k(xi,yi,k), ∀i, k, are unbiased and their variances are bounded by σ2
f , σ

2
g .

A4. Assume that the UL objective functions fi(xi,y
∗
i,k(xi)), ∀i, k are lower bounded.

A5. (Strong convexity of gi,k(·) w.r.t. yi,k) Function gi,k(·) is µg-strongly convex w.r.t.
yi,k, ∀i, k.

Note that these assumptions are commonly used in the convergence analysis for bilevel and decen-
tralized optimization algorithms. Given these assumptions, we are now in a position to provide the
following theoretical convergence guarantees.

3.2 Convergence Rates of SLAM

Theorem 1. (Convergence rate of SLAM to ϵ-KKT points) Suppose that A1-A5 hold and assume
∥∇2

yiyi
gi,k(·,yi) − n−1

∑n
i=1 ∇2

yiyi
gi,k(·,y′

i)∥ ≤ Lg∥yi − y′
i∥, ∀i, k if ∇2gi,k(·), ∀i, k are re-

quired in computing the UL implicit gradient. When step-sizes are chosen as 1/α ∼ 1/β ∼
O(

√
n/T), τf , τg ≥ O(ρσmax(A

TA)), the mini-batch size of hr
f is O(log(nT)), then the iterates

{xr,λr,yr
k,ω

r
k, ∀k, r} generated by SLAM satisfy

UL:
1

T

T∑
r=1

E[∥∇f(1xr,y∗
1(1x

r), . . . ,y∗
m(1xr))∥2] ∼ 1

T

T∑
r=1

E[∥Axr∥2] ∼ O(1/
√
nT), (10a)

LL:
1

T

T∑
r=1

E[∥yr
k − y∗

k(x
r)∥2] ∼ 1

T

T∑
r=1

E[∥Ayr
k∥2] ∼ O(1/

√
nT), ∀k, (10b)

where x = n−1
1

Tx, and T denotes the total number of iterations.

Remark 1. It is noted in Theorem 1 that the convergence rate achieved by SLAM to find the ϵ-
approximate KKT points of (1) (including both the first-order stationarity of the solutions and the
violation of constraints) is on the order of 1/(nϵ2). Therefore, it follows that a linear speedup w.r.t. the
number of learners can be achieved by SLAM for DBO, matching the classical results of distributed
SGD for only single-level general nonconvex problems.

Remark 2. In comparison with existing bilevel algorithms, SLAM is a single timescale algorithm
since the learning rates can be chosen as 1/α ∼ 1/β, which is consistent with ALSET [43].

Remark 3. The major novelty of obtaining these theoretical results relies on the developed variant
of the augmented Lagrangian function and subsequently derived recursion of the successive dual
variables, which quantify well the consensus errors resulting from both UL and LL optimization
processes in terms of primal variables. Note that this is distinct from the existing theoretical analysis
of stochastic algorithms, such as distributed SGD [38, 39], stochastic gradient tracking [40, 41],
stochastic primal-dual algorithms [42, 45], etc.
Corollary 1. (Convergence rate of SLAM-L to ϵ-KKT points) Suppose that A1-A5 hold and assume
∥∇2

yiyi
gi,k(xi,yi) −∇2

yygk(x,y
′
i)∥ ≤ Lg∥yi − y′

i∥, ∀i, k if ∇2gi,k(·), ∀i, k are required in com-
puting the UL implicit gradient. When step-sizes are chosen as 1/α ∼ O(1/

√
T), 1/β ∼ O(

√
n/T),

τf , τg ≥ O(ρσmax(A
TA)), ρ ≥ n, the mini-batch size of hr

f is O(log(nT)), the iterates
{xr,yr

k,ω
r
k, ∀k, r} generated by SLAM-L satisfy

UL:
1

T

T∑
r=1

E[∥∇fi(x
r
i ,y

∗
i,1(x

r
i), . . . ,y

∗
i,m(xr

i)∥2], ∀i ∼ O(n/
√
T) and LL: (10b).

Remark 4. Different from Theorem 1, the stationarity of the UL model parameters requires the
shrinkage of the gradient size over each individual UL problem as shown in Corollary 1, so there is
no speedup on the convergence rate guarantee at UL.
Corollary 2. (Convergence rate of SLAM-U to ϵ-KKT points) Suppose that A1-A5 hold. Given
the conditions on 1/α, 1/β, τf , τg and the mini-batch size of hr

f shown in Theorem 1, the iterates
{xr,λr,yr

k, ∀k, r} generated by SLAM-U satisfy

UL: (10a) and LL:
1

T

T∑
r=1

E[∥yr
k − y∗

k(x
r)∥2] ∼ O(1/

√
nT), ∀k.

8

0 50 100 150 200 250 300
Episodes

6

5

4

3

2

1

0

Av
er

ag
e

Re
wa

rd

Navigation (5 Agents)

SLAM-AC
MDAC
DAC

0 50 100 150 200 250 300
Episodes

6

5

4

3

2

1

0

Av
er

ag
e

Re
wa

rd

Navigation (8 Agents)

SLAM-AC
MDAC
DAC

Figure 1: The averaged reward versus the learning process on the cooperative navigation task.

0 100 200 300 400 500
Episodes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

Re
wa

rd

Pursuit (4 Agents)

SLAM-AC
MDAC
CAC

0 100 200 300 400 500
Episodes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

Re
wa

rd

Pursuit (6 Agents)

SLAM-AC
MDAC
CAC

Figure 2: The averaged reward versus the learning process on the pursuit-evasion game. (Consensus with one
layer of the actor neural nets and all layers of the critic neural nets.)

4 Numerical Results

In this section, we evaluate our proposed algorithm using two MARL environments: 1) the cooperative
navigation task [16], which is built on the OpenAI Gym platform [46]; and 2) the pursuit-evasion
game [47], which is built on the PettingZoo platform [48]. Detailed experimental settings and
additional numerical results are provided in the supplement.

Cooperative Navigation Task. In this game, we consider that the n agents are aiming to jointly reach
n different landmarks as soon as possible, where the Erdos Renyi Graph is used. We assume that each
agent can observe the global state and has 5 possible actions: stay, left, right, up, and down. This
task consists of a shared common goal of avoiding collision among the agents while they navigate to
the targeting landmarks. In the simulations, each agent locally maintains two fully connected neural
networks as the actor network (at UL w.r.t. xi) and the critic network (at LL w.r.t. yi), respectively.
Moreover, each agent shares its critic network with its neighbors to cooperatively estimate the global
value function and independently train its actor network to complete its local task.

We compare the performance of our proposed SLAM with application to the DAC setting, named
SLAM-AC, with two benchmark algorithms: DAC [15] and mini-batch DAC (MDAC) [22]. Theoret-
ically, MDAC needs an O(ϵ−1 ln ϵ−1) batch size in its inner loop to update critic parameters before
each update in policy parameters, which is not practical. Here, we set a small batch B = 10 in the
inner loop for MDAC to achieve fast convergence. The simulation results on this coordination game
are presented in Figure1, where the performance is averaged over 5 independent Monte Carlo (MC)
trials for each algorithm.

Pursuit-Evasion Game. In the pursuit-evasion game, there are two groups of nodes: pursuers
(agents) and evaders. The agents are connected through a ring graph. Pursuers could observe the
global state of the video game. An evader is considered caught if two pursuers simultaneously arrive
at the evader’s location. As each pursuer should learn to cooperate with other pursuers to catch the

9

evaders, the pursuers share certain similarities with each other since they need to follow similar
strategies to achieve their local tasks: simultaneously catching an evader with other pursuers.

We follow the experimental set up in [23], where all agents partially share their actor networks with
neighbors for collaborations in their policy spaces and fully share their critic network to cooperatively
learn the global value function. In Figure 2, we compare SLAM-AC with two benchmarks, CAC [23]
and MDAC [22], with 5 MC trials again. To ensure a fair comparison, all algorithms use the same
parameter sharing scheme mentioned above. Note that CAC [23] is a variant of DAC [15] and the
only difference is that CAC can partially share its policy parameters while the policy parameters are
not shared in DAC. In the experiment, each agent maintains two convolutional neural networks, one
for the actor and one for the critic (Please refer to the supplement for detailed structures).

5 Concluding Remark
In this paper, we studied a generic form of the DBO problem, which is shown to have three major
variants that formulate multiple hierarchical machine learning problems. Targeting these DBO
problems, we proposed SLAM – a simple and elegant algorithm to solve DBO in a fully decentralized
way. Under mild conditions, we establish theoretical results showing that our proposed SLAM is
able to find the ϵ-KKT points with a convergence rate of O(1/(nϵ2)), which matches the standard
convergence rate achieved by the classical distributed SGD algorithms for solving only single-level
general nonconvex optimization problems. We tested the performance of SLAM numerically on a
MARL scenario and found that SLAM outperformed the traditional AC algorithms w.r.t. convergence
speed and (in most cases) achievable rewards.

Societal impact. To the best of our knowledge, we do not see any ethical or negative immediate
societal consequence of this work.

Acknowledgments
M. Hong and S. Zeng are partially supported by NSF grants CIF-1910385 and CMMI-1727757.

References
[1] V. Stackelberg, Heinrich, Von, and S. Heinrich, The Theory of the Market Economy. Oxford University

Press, 1952.
[2] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in

Proceedings of International Conference on Machine Learning (ICML), pp. 1126–1135, 2017.
[3] H. Liu, R. Socher, and C. Xiong, “Taming MAML: Efficient unbiased meta-reinforcement learning,” in

Proceedings of International Conference on Machine Learning (ICML), pp. 4061–4071, 2019.
[4] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with implicit gradients,” in

Proceedings of Advances in Neural Information Processing Systems (NeurIPS), vol. 32, 2019.
[5] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Generalization of model-agnostic meta-learning algorithms:

Recurring and unseen tasks,” in Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[6] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals, “Rapid learning or feature reuse? towards understanding
the effectiveness of MAML,” in Proceedings of International Conference on Learning Representations
(ICLR), 2020.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 2018.
[8] Z. Yang, Y. Chen, M. Hong, and Z. Wang, “Provably global convergence of actor-critic: A case for linear

quadratic regulator with ergodic cost,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), vol. 32, 2019.

[9] T. Xu, Z. Wang, and Y. Liang, “Improving sample complexity bounds for (natural) actor-critic algorithms,”
in Proceedings of Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 4358–4369,
2020.

[10] A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated back-propagation for bilevel optimization,” in
Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1723–1732,
2019.

[11] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-task learning framework for face
detection, landmark localization, pose estimation, and gender recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 1, pp. 121–135, 2017.

10

[12] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning with theoretical guarantees: A
model-agnostic meta-learning approach,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[13] J. Li, F. Huang, and H. Huang, “Local stochastic bilevel optimization with momentum-based variance
reduction,” arXiv preprint arXiv:2205.01608, 2022.

[14] M. Kayaalp, S. Vlaski, and A. H. Sayed, “Dif-MAML: Decentralized multi-agent meta-learning,” IEEE
Open Journal of Signal Processing, vol. 3, pp. 71–93, 2022.

[15] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-agent reinforcement
learning with networked agents,” in Proceedings of International Conference on Machine Learning
(ICML), pp. 5872–5881, PMLR, 2018.

[16] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed
cooperative-competitive environments,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), vol. 30, 2017.

[17] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang, “Trust region policy optimisation in
multi-agent reinforcement learning,” arXiv preprint arXiv:2109.11251, 2021.

[18] J. G. Kuba, M. Wen, L. Meng, H. Zhang, D. Mguni, J. Wang, and Y. Yang, “Settling the variance of
multi-agent policy gradients,” in Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), pp. 13458–13470, 2021.

[19] S. Gu, J. G. Kuba, M. Wen, R. Chen, Z. Wang, Z. Tian, J. Wang, A. Knoll, and Y. Yang, “Multi-agent
constrained policy optimisation,” arXiv preprint arXiv:2110.02793, 2021.

[20] M. Wen, J. G. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang, “Multi-agent reinforcement learning
is a sequence modeling problem,” arXiv preprint arXiv:2205.14953, 2022.

[21] Y. Lin, K. Zhang, Z. Yang, Z. Wang, T. Başar, R. Sandhu, and J. Liu, “A communication-efficient
multi-agent actor-critic algorithm for distributed reinforcement learning,” in Proceedings of IEEE 58th
Conference on Decision and Control (CDC), pp. 5562–5567, 2019.

[22] Z. Chen, Y. Zhou, R.-R. Chen, and S. Zou, “Sample and communication-efficient decentralized actor-critic
algorithms with finite-time analysis,” in Proceedings of International Conference on Machine Learning
(ICML), pp. 3794–3834, 2022.

[23] S. Zeng, T. Chen, A. Garcia, and M. Hong, “Learning to coordinate in multi-agent systems: A coordinated
actor-critic algorithm and finite-time guarantees,” in Proceedings of the 4th Annual Learning for Dynamics
and Control Conference, pp. 278–290, 2022.

[24] F. Hairi, J. Liu, and S. Lu, “Finite-time convergence and sample complexity of multi-agent actor-critic
reinforcement learning with average reward,” in Proceedings of International Conference on Learning
Representations (ICLR), 2022.

[25] D. Chen, Y. Li, and Q. Zhang, “Communication-efficient actor-critic methods for homogeneous markov
games,” in Proceedings of International Conference on Learning Representations (ICLR), 2022.

[26] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,” in Proceedings of International
Conference on Machine Learning (ICML), pp. 1920–1930, 2019.

[27] M.-F. Balcan, M. Khodak, and A. Talwalkar, “Provable guarantees for gradient-based meta-learning,” in
Proceedings of International Conference on Machine Learning (ICML), pp. 424–433, 2019.

[28] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory of gradient-based model-agnostic
meta-learning algorithms,” in Proceedings of International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 1082–1092, 2020.

[29] K. Ji, J. D. Lee, Y. Liang, and H. V. Poor, “Convergence of meta-learning with task-specific adaptation
over partial parameters,” in Proceedings of Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, pp. 11490–11500, 2020.

[30] Y. F. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite-time analysis of two time-scale actor-critic methods,” in
Proceedings of Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 17617–17628,
2020.

[31] S. Ghadimi and M. Wang, “Approximation methods for bilevel programming,” arXiv preprint
arXiv:1802.02246, 2018.

[32] K. Ji, J. Yang, and Y. Liang, “Bilevel optimization: Convergence analysis and enhanced design,” in
Proceedings of International Conference on Machine Learning (ICML), pp. 4882–4892, 2021.

[33] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework for bilevel optimization:
Complexity analysis and application to actor-critic,” arXiv preprint arXiv:2007.05170, 2020.

[34] T. Chen, Y. Sun, and W. Yin, “Tighter analysis of alternating stochastic gradient method for stochastic
nested problems,” in Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2021.

11

[35] J. Yang, K. Ji, and Y. Liang, “Provably faster algorithms for bilevel optimization,” in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), vol. 34, 2021.

[36] P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A near-optimal algorithm for stochastic
bilevel optimization via double-momentum,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[37] F. Huang and H. Huang, “Biadam: Fast adaptive bilevel optimization methods,” arXiv preprint
arXiv:2106.11396, 2021.

[38] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel stochastic gradient descent,” in Proceedings
of Advances in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

[39] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training over decentralized data,” in
Proceedings of International Conference on Machine Learning (ICML), pp. 4848–4856, 2018.

[40] S. Lu, X. Zhang, H. Sun, and M. Hong, “GNSD: a gradient-tracking based nonconvex stochastic algorithm
for decentralized optimization,” in Proceedings of IEEE Data Science Workshop (DSW), pp. 315–321,
2019.

[41] A. Koloskova, T. Lin, and S. U. Stich, “An improved analysis of gradient tracking for decentralized machine
learning,” in Proceedings of Advances in Neural Information Processing Systems (NeurIPS), vol. 34, 2021.

[42] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A primal-dual SGD algorithm for distributed
nonconvex optimization,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 5, pp. 812–833, 2022.

[43] T. Chen, Y. Sun, and W. Yin, “Tighter analysis of alternating stochastic gradient method for stochastic
nested problems,” in Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2021.

[44] J. Nocedal and S. Wright, Numerical Optimization. Springer Science & Business Media, 2006.

[45] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decentralized and stochastic
optimization,” Mathematical Programming, vol. 180, no. 1, pp. 237–284, 2020.

[46] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “OpenAI
Gym,” arXiv preprint arXiv:1606.01540, 2016.

[47] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using deep reinforcement
learning,” in Proceedings of International Conference on Autonomous Agents and Multiagent Systems,
pp. 66–83, Springer, 2017.

[48] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos, C. Dieffendahl, C. Horsch,
R. Perez-Vicente, et al., “PettingZoo: Gym for multi-agent reinforcement learning,” in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 15032–15043, 2021.

[49] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer Science &
Business Media, 2003.

[50] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning
with function approximation,” in Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), vol. 12, 1999.

12

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to
answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or [N/A] . You are
strongly encouraged to include a justification to your answer, either by referencing the appropriate section of
your paper or providing a brief inline description. For example:

▶ Did you include the license to the code and datasets? [Yes] See
▶ Did you include the license to the code and datasets? [No] The code and the data are proprietary.
▶ Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist
section does not count towards the page limit. In your paper, please delete this instructions block and only keep
the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

