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Abstract

We propose an empirical Bayes formulation of the structure learning problem, where
the prior specification assumes that all node variables have the same error variance, an
assumption known to ensure the identifiability of the underlying causal directed acyclic
graph (DAG). To facilitate efficient posterior computation, we approximate the poste-
rior probability of each ordering by that of a best DAG model, which naturally leads to
an order-based Markov chain Monte Carlo (MCMC) algorithm. Strong selection consis-
tency for our model in high-dimensional settings is proved under a condition that allows
heterogeneous error variances, and the mixing behavior of our sampler is theoretically in-
vestigated. Further, we propose a new iterative top-down algorithm, which quickly yields
an approximate solution to the structure learning problem and can be used to initialize
the MCMC sampler. We demonstrate that our method outperforms other state-of-the-art
algorithms under various simulation settings, and conclude the paper with a single-cell
real-data study illustrating practical advantages of the proposed method.

Keywords: Directed acyclic graphs; Empirical Bayes methods; Strong selection consistency; Markov
chain Monte Carlo methods; Non-decomposable scores.

1 Introduction

We consider Bayesian structure learning of a directed acyclic graph (DAG) model from
observational data. Bayesian algorithms for structure learning are often classified as score-
based in the literature, since they assign a posterior probability to each candidate DAG, the
logarithm of which can be interpreted as a score [Drton and Maathuis, 2017]. A Markov
equivalence class is a set of all DAGs that encode the same set of conditional independence
relations among node variables. Without a priori knowledge, we cannot distinguish between
two Markov equivalent DAGs using only observational data [Koller and Friedman, 2009]. If
a Bayesian model yields the same score for DAGs in the same equivalence class, we say it
is score equivalent, which is widely considered a desirable property [Andersson et al., 1997].
Most Bayesian structure learning methods used in practice are score equivalent [Geiger and
Heckerman, 2002].
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Since the number of p-node DAGs grows super-exponentially with p, an exact evalu-
ation of the posterior distribution is impossible unless p is extremely small, and Markov
chain Monte Carlo (MCMC) methods are commonly employed to generate samples from
the posterior distribution. As a classical example, structure MCMC, which was proposed in
the seminal work of Madigan et al. [1995], is a random walk Metropolis-Hastings algorithm
on the DAG space that uses single-edge addition, deletion, and reversal as proposal moves.
However, it is known that this algorithm can often suffer from computational inefficiency due
to the considerable time it spends sampling DAGs within the same equivalence class [Ander-
sson et al., 1997, Chickering, 2002]. Even if the data is very informative on the conditional
independence relations among all variables, we are only able to learn the equivalence class of
the underlying true DAG model, which can easily be very large and takes the chain a long
time to explore. In order to overcome slow mixing behavior caused by equivalence classes,
many DAG MCMC samplers have been proposed, which typically introduce new DAG oper-
ations that can realize jumps between very different DAGs, enabling the chain to move more
efficiently across equivalence classes [Grzegorczyk and Husmeier, 2008, Su and Borsuk, 2016].
Another strategy is to devise MCMC samplers on some other spaces that might be easier to
explore than the DAG space. Indeed, one can directly search on the equivalence class space
so that redundant moves between Markov equivalent DAGs are avoided [Castelletti et al.,
2018, Zhou and Chang, 2021]. But this approach is not commonly used in the Bayesian
literature, and one likely reason is that, unlike DAG MCMC samplers, the implementation
of graph operations for equivalence classes can be highly complicated.

A more popular approach is to perform MCMC sampling on the order space [Friedman
and Koller, 2003, Agrawal et al., 2018, Kuipers et al., 2022]. Due to the acyclicity constraint,
every p-node DAG has at least one consistent ordering of the p nodes such that node i pre-
cedes node j whenever the edge i — j is in the DAG. Order-based MCMC methods are
largely motivated by the following observation: the main computational challenge in struc-
ture learning lies in the uncertainty of order estimation, since once the ordering of variables
is fixed, structure learning can be reduced to a collection of variable selection problems that
are often considered to have a much smaller complexity. It is generally believed that the
mixing of order MCMC is better than that of structure MCMC, because the search space
is smaller and the posterior distribution on the order space tends to be smoother [Friedman
and Koller, 2003]. However, the problem of traversing large equivalence classes still exists.
To see this, assume again that all conditional independence relations can be learned from
the data so that the posterior concentrates on one equivalence class. But any two DAGs in
this equivalence class must have different orderings since at least one edge is flipped. This
implies that the posterior distribution on the order space concentrates on a set at least as
large as this equivalence class.

To mitigate the potential mixing problem caused by traversing large equivalence classes,
we propose to impose identifiability conditions so that within each equivalence class, the
posterior mass tends to concentrate on only one DAG. Consequently, the overall posterior
distribution tends to have less and sharper modes. To this end, we follow the work of Pe-
ters and Bithlmann [2014] to consider Gaussian structural equation models with equal error
variances. Intuitively, by assuming equal error variances, the data becomes informative on

edge directions so that an MCMC sampler can quickly learn the best DAG in its equiva-



lence class. For example, consider two correlated variables Xi,X5. The DAGs X; — X5 and
X9 — X1 are Markov equivalent, and in general, we cannot determine the causal direction if
only observational data is available. But the equal variance assumption forces the posterior
score to favor X; — Xo if X5 has a larger marginal variance than X;. Though a score equiv-
alent Bayesian procedure allows us to make posterior inferences by averaging over Markov
equivalent DAGs, this advantage is often merely theoretical due to its slow convergence, even
when dealing with a moderately large number of node variables. Our simulation study and
real data analysis will show that the use of equal variance assumption does provide practical
advantages, and it improves the posterior inference accuracy unless there is a huge degree of
heterogeneity among error variances.

There is a rapidly growing literature on the identifiability conditions for structure learn-
ing [Shimizu et al., 2006, Hoyer et al., 2008, Peters et al., 2011, Peters and Biihlmann,
2014, Strieder et al., 2021, Drton and Maathuis, 2017, Glymour et al., 2019]. In particular,
two deterministic search algorithms have been proposed recently for structure learning with
equal error variances [Ghoshal and Honorio, 2018, Chen et al., 2019], and they are shown
to be advantageous in terms of computational cost and scale well to high-dimensional data.
But to our knowledge, the corresponding Bayesian theory and methodology is largely un-
derdeveloped. Aiming to fill this gap, we formulate an empirical Bayes model under the
equal variance assumption and obtain a posterior score that distinguishes between Markov
equivalent DAGs. We prove a strong selection consistency result for our model, which shows
that the posterior probability of the true DAG tends to one in probability under mild high-
dimensional conditions. In particular, while our prior distribution encodes the equal variance
constraint, the consistency result holds under a weaker assumption known as the minimum-
trace condition [Aragam et al., 2019]. Further, we extend the consistency result to cases
where errors follow sub-Gaussian distributions, which include more interesting settings such
as mixed discrete-Gaussian DAG models.

The posterior score derived from our model is non-decomposable (see Remark 2), which
is expected since, under the equal variance assumption, the marginal likelihood of a DAG
model should depend on how close the residual variances of the p nodes are to each other.
This poses new computational challenges and again makes our method very different from
the existing Bayesian literature, where decomposable scores are almost always used because
the decomposability enables one to evaluate the posterior probability of a DAG by local
calculations at each node [Chickering, 2002].

To numerically evaluate the posterior distribution of our empirical Bayes model, in the
same spirit of the minimal I-MAP MCMC of Agrawal et al. [2018], we approximate the poste-
rior probability of an ordering by that of the best consistent DAG and then build a sampling
algorithm on the order space. We show that, under some conditions on the edge weights,
the chain will never get stuck at a sub-optimal local mode for exponentially many iterations
in expectation, which partially explains why this order MCMC scheme may perform well
in practice. Further, we propose a generalized iterative version of the top-down algorithm
of Chen et al. [2019]. This algorithm is deterministic and quickly finds a likely ordering
of the variables, which can be used as a warm start for our order MCMC sampler. When
estimating edge inclusion probabilities, we tune our estimators via a conditional expectation
calculation so that we can reduce the estimation variance caused by picking one single best



DAG for each ordering. Lastly, though the non-decomposable score of our model cannot be
evaluated locally, we are able to devise an implementation strategy that makes the posterior
evaluation for our model as efficient as that with a decomposable score. The key idea is to
store the search paths of the forward-backward stepwise selection at each node, which can
be reused in finding the best DAG consistent with a given ordering.

2 An empirical Bayes model for order-based structure learn-
ing
2.1 Notation and terminology

We set up the notation and terminology to be used throughout the paper. Let G = (V, E)
denote a DAG, where V is a node set and £ C V x V is a set of directed edges that form
no cycle. Without loss of generality, for a p-node DAG, we assume V = [p] = {1,...,p}.
For ease of notation, we write {i — j} € G to mean that (i,j) € E, and use G U {i — j}
(respectively G\ {i — j}) to denote the DAG obtained by adding (respectively removing)
the edge i — j. We use |G| to denote then number of edges in G. We denote by SP the set
of all bijections from [p] to [p]. An element o € SP is said to be a topological ordering for a
DAG G if the following holds: for any indices k < [, the edge between the nodes o(k) and
o(l) is directed as o(k) — o(l), if it exists in G. Let o~! denote the inverse function of o,
and for each node j € [p], let

Py ={iso7}0) <o)} 1)

denote the set of potential parents of node j under the ordering o, i.e., all nodes preceding j
in 0. Let G be the collection of all p-node DAGs and G be the collection of all p-node DAGs
consistent with topological ordering o; that is, G = {G € G,: {i — j} € G implies o l(i) <
o~ 1(j)}. Given a node j, we use Pa;(G) and Ch;(G) to denote the set of its parent nodes
and that of its child nodes, respectively, in the DAG G. If the underlying DAG is clear from
the context, we simply write Pa; and Ch;. Finally, given a matrix A € R*b 5 € [b], J C [b]
and I C [a], A; denotes the j-th column of A, A; denotes the submatrix of A containing
columns indexed by J, and A ; denotes the subvector of A; with entries {A;;: i € I}. We
use |J| to denote the cardinality of the set J.

2.2 Model specification

Let X = (X1,...,X,) denote a p-dimensional random vector, and denote by X an n x p data
matrix, each row of which is an independent copy of X. For each o € S” and G € G, consider
the following structural equation model for the random vector X,
T iid .
Xj = Bpa, (@), XPaj(c) T &1 € |w ~ N(O,w) for j =1,...,p, (2)
where Pa;(G) C P7 for each j, and B is a p X p matrix. Entries of B that are not involved

in (2) are set to zero. B can be seen as the weighted adjacency matrix of the DAG G such
that {Z — ]} e Gif |BZJ‘ > 0.



We use the following empirical prior on the parameter (o, G, B,w), where 7y denotes the
prior density function:

ind ~ w _ .
Bpa; (@), | Gyw ~ Npa;()] (BPaj(G),j> ;(XPTaj(G)XPaj(G)) 1) . Vielp, (3)
mo(w | o) cw 27, (4)
WO(Gv U) X (pco)—|G| H{GU}(G)v (5)

where Bpaj(G)J' is the least-squares estimator of Bpa;(6),j> 0,7, K are hyperparamters of the
prior, and G in (5) is the best estimate for G among G7; we will detail how to obtain G, later.
This prior is doubly empirical. First, given G and w, we use an empirical prior on Bpa;(6).j
for each j in (3), where the conditional prior mean depends on the data. Following Martin
et al. [2017] and Lee et al. [2019], when computing the posterior distribution, we raise the
data likelihood to the power of «, where @ € (0,1) is a constant, so that we can reduce
the influence of the data that is inflated by the usage of the empirical prior. Lee et al.
[2019] suggests setting « close to 1 to make the a-likelihood behave similarly to the standard
likelihood in finite sample scenarios. Observe that the covariance in (3) is identical to that of
Zellner’s g-prior, proportional to the inverse Fisher information matrix for Bpaj(G)’j [Tadesse
and Vannucci, 2021]. An alternative approach to specifying the prior is to use the fractional
Bayes factor [Carvalho and Scott, 2009, Castelletti and Consonni, 2021]. This yields a
fractional posterior with the value of o determined automatically, but the resulting posterior
is more difficult to calculate than the proposed posterior. Second, according to (5), the
conditional prior distribution of G given o is again empirical: it assigns unit mass to some
G, that can be seen as the solution to a DAG selection problem given ordering o. This
implies that the marginal prior distribution of G has support G = {Go: o € SP}. For
moderately large p, searching the entire space G, is impossible, but the empirical prior (5)
reduces the size of the search space to that of the order space SP. Unfortunately, |[SP| = p! is

still super-exponential in p, making it challenging to devise an efficient MCMC sampler.

Remark 1. The use of the empirical prior (5) makes our approach very different from tra-
ditional Bayesian structure learning methods, where posterior inference is performed by
averaging over all DAG models that satisfy certain sparsity constraints. The seminal order-
based MCMC sampler of Friedman and Koller [2003] imposes a uniform conditional prior
given o on all DAGs satisfying degree constraints in ;. But calculating the un-normalized
marginal posterior probability of an ordering requires summation over all possible DAGs,
which is infeasible unless p is small or the degree constraint is highly demanding. Further,
the technique used in Friedman and Koller [2003, Eq. (8)] to expedite this calculation is not
applicable in our case since our score is not decomposable; see Remark 2. Therefore, we pre-
fer using the empirical prior (5) for its computational efficiency. A similar approach is taken
in Agrawal et al. [2018], which uses empirical conditional independence tests to construct
a minimal independence map for each ordering and restricts the search space to the set of
minimal independence maps. Henceforth, we will always use DAG selection to refer to the
problem of identifying the best DAG with given ordering.

Let 7, denote the posterior distribution given the observed data matrix X. By a standard



normal-inverse-gamma calculation that integrates out the parameters B and w, we get
G
(G, o) e’ )ﬂ{éo}(G)v (6)

where ¢(G) is called the score of G and is given by
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log

log[(1 + a/7)] RSS;(G) |

p
=1

(7)

j
where RSS;(G) = X;F@ﬁaj(G)Xj ‘I>§ =1 — X5(X3X5) ' Xs.

We will also sometimes refer to ¢(G) as the posterior score. For a detailed derivation of
(6), see Section B.7 in the supplementary material. The marginal posterior probability of an
ordering ¢ and that of a DAG G are

Tn(o) x e?99) 1 (G) o ) Z Lo 4 (G). (8)
o€eSP
For our model, 7, (G) is not exactly proportional to the exponentiation of the score of G due
to the factor ) g, 1 {éa}(G)’ and in our high-dimensional analysis we will show this term
is negligible under mild assumptions.

In the rest of this work, we consider the following choice for G,
GYAP (dyy) = arg MaXgege (d,) P(G), Vo €SP, (9)

where G7 (din) = {G € G, : [Pa;(G)| < diy for all j € [p]} is the collection of all p-node DAGs
with maximum in-degree bounded by d;,. For our high-dimensional analysis, we will impose
the condition di, logp = o(n), which is commonly used in the literature on high-dimensional
DAG selection [Cao et al., 2019, Lee et al., 2019]. The superscript MAP indicates that GAE/IAP
is the DAG with the largest posterior score among Gy (din), i.e., the maximum a posteriori

estimate.

Remark 2. In most existing methods for Bayesian structure learning, the posterior score of a
DAG G takes a decomposable form in the sense that it can be written as the sum of p terms,
where the i-th term only involves node 7 and its parent set and thus can be evaluated locally.
But our posterior score given in (7) is not decomposable due to the equal variance assumption
used in the prior: integrating out w results in the logarithm of the sum of p residual sum
of squares (RSS) terms in (7). This non-decomposable score is able to discriminate between
Markov equivalent DAGs, and as we will prove shortly, given sufficiently large sample size,
the posterior distribution of our model concentrates on only the unique true DAG.

2.3 Strong model selection consistency

We consider a high-dimensional setting where n tends to infinity and both p = p(n) and
din = din(n) may grow with n. Strong model selection consistency means that the posterior
probability of the true model converges to 1 in probability with respect to the true probability
measure from which the data is generated. This is often regarded as one of the most impor-
tant theoretical guarantees for a high-dimensional Bayesian model selection procedure. In

the DAG literature, it was proven for DAG selection with known ordering [Cao et al., 2019,



Lee et al., 2019] and structure learning up to equivalence class [Zhou and Chang, 2021].
To the best of our knowledge, there is no strong selection consistency result on Bayesian
structure learning under an identifiability condition.

Though the equal variance assumption was used in the prior specification, for our consis-
tency analysis, we consider a more general setting. Assume the data is generated according
to the structural equation model

X] = ( liaj(G*),j)TXPaj(G*) te, &~ N(O,UJ;) forj=1,...,p, (10)

where G*, B*, {w}k ?:1 denote the true parameter values, and we assume B;; = 0 if and only
if {i — j} € G. Define Q* = diag(wyf,...,wy). Let [0*] denote the set of all orderings
consistent with G*, where o* is some element in [0*] interpreted as the true ordering. Thus,
G* € Gy if and only if o € [0*]. Let P* denote the probability measure corresponding to the
structural equation model (10). Observe that the covariance matrix of the random vector X
can be written as X* = 3(B*, Q*), where

»(B,Q) = (I, - BH™'Q(1, - B)~.. (11)

This is known as the modified Cholesky decomposition. This decomposition of X* is not

unique, as we explain in the following remark.

Remark 3. For each ordering o € SP, there exists a unique tuple (B}, Q%) such that B} is
the weighted adjacency matrix of a DAG in G, 27 is a diagonal matrix with all diagonal

entries being strictly positive, and ¥* = X(B;, ;). Write QF = diag(wy,...,wy) and use
G to denote the DAG with edge set E; = {(7,7) : |(Bg)ij| > 0} and define
d* = maxmax |Pa;(G})|. (12)

o€SP je[p]

To prove that the empirical Bayes model specified in Section 2 has strong model selection
consistency in high-dimensional settings, we make the following two assumptions.

Assumption A (Minimum-trace condition). There exists a universal constant n € (0, co) such
that min, g, tr(Q5)/ tr(€*) > 1 +n~', where tr denotes the trace.

Assumption B (Consistency of DAG selection given true ordering). The estimator G, satisfies
P*(ﬂae[a*}{éa - G*}) >1- C(p) for some C(p) — 0.

The first assumption includes the equal variance assumption as a special case. To see this,
suppose that Q* = diag(w*,...,w*) for some w* > 0. Since the determinant of ¥* satisfies
det(X*) = (w*)P = [[}_; wf for all o € SP, we have pw* < >0_, w? by the inequality of arith-
metic and geometric means. That is, the true ordering o* satisfies tr(2}.) = min, tr(€2}).
Hence, there always exists some 7(n) such that minggp,« tr(€25)/tr(Q*) > 1 +n(n)~'. As-
sumption A just requires that n(n)~! can be bounded away from zero so that we can replace
it with some universal constant 7. Under the equal variance assumption, we can rewrite
Assumption A as follows, which has been used in Van de Geer and Biithlmann [2013] and is

known as the omega-min condition.

Assumption A’ (Assumption A with equal variances). Suppose Q* =diag(w*,...,w*), where
w* > 0 is the error variance shared by all node variables. There exists a universal constant
n € (0,00) such that min, ¢y« p~* (Wl jw) > 1+ n~L.



Remark 4. Recall our score function given in (7) and that RSS;/n is an estimate of the error
variance w7. So our method essentially aims to select the DAG that provides the tightest
fit to the data. More precisely, the score (7) aims to learn the best DAG in GJ where o
minimizes tr(€2}), the sum of error variances; such a DAG is called the minimum-trace DAG.
Our strong consistency result, which only requires Assumption A instead of Assumption A’,
confirms that though the equal variance assumption was used to derive (7), our method has
the theoretical guarantee under a more general setting. We refer readers to Aragam et al.

[2019] for a general theory on structure learning using minimum-trace DAGs.

Remark 5. An interesting open question is, without the equal variance assumption, what
choices of (B*,*) can satisfy the minimum-trace condition so that the true model is iden-
tifiable. We conjecture that if for some o* € SP, we have wg:(l) < wg:(2) << wg:(p), then
tr(Q2%.) = min, tr(€2}). This weakly increasing variance condition falls under the broader
identifiability conditions presented in Park [2020], which extend beyond the equal variance
assumption. We have conducted extensive numerical experiments, which suggest that the
conjecture is likely to be true, but a proof for every p > 2 seems highly challenging. Simula-
tion studies are presented in Section C.2 of the supplement.

The second assumption says that when we are given an ordering o € [0*], the pre-specified
DAG selection procedure is able to identify the true DAG with high probability. This is a very
mild assumption since if the ordering is known, one can often apply an existing consistent
algorithm for high-dimensional variable selection to select the parent set of node j for each
Jj € [p] separately [Ben-David et al., 2011, Yu and Bien, 2017, Shojaie and Michailidis, 2010,
Cao et al., 2019, Lee et al., 2019]. We do not need any assumption on the behavior of G,
when o ¢ [0*]. Among many possible DAG selection methods, we use the estimator defined
in (9) for the following reason. If some other DAG selection method is used, for any o ¢ [0%],
there is no guarantee that G, has a sufficiently large posterior score compared with other
DAGs in G, and the resulting posterior distribution on the order space S” could be very
irregular and contain more sub-optimal local modes. However, no existing consistency result
can be readily applied to the estimator (9) due to the non-decomposable posterior score it
uses. We prove in the following proposition that it does have strong consistency for DAG
selection, and it satisfies Assumption B with ((p) = 4p~!. All the three conditions assumed in
Proposition 1 are commonly used in the literature: (C1) is known as the restricted eigenvalue
condition, (C2) assumes prior parameters are properly chosen, and (C3) is often called the
S-min condition [Lee et al., 2019]. Except universal constants, all parameters are allowed to
depend on n.

Proposition 1. Suppose max; [Pa;(G*)| < din, and the following conditions hold.
(C1) There exist v,7 > 0 and a universal constant § > 0 such that

v v
——s < min o < max o < 71 90
=g = i) < Amacl3) < (g

where Amin, Amax are the smallest and largest eigenvalues, respectively.

(C2) The sparsity parameter dy, satisfies di, log p = o(n), and prior parameters satisfy that
k<np,0<a/y<p?—1,co>pla+l) max;j(w; /wy), and p > 4diy + 6.



(C3) For the true weighted adjacency matrix B*,

P \ 7*logp
Cmin = mln{|(B )1]’2 : (B )Z] 7é 0} 2 16C0m.

Consider the posterior score given in (7) and the estimator defined in (9). For sufficiently

-1

large n, with probability at least 1 — 4p~", all the following three events happen.

(i) For any o € [07], G € G7(2din), j € [p] such that Pa;(G*) C Pa;(G), there exists some
G’ € Gg such that ¢(G') > ¢(G) and G' = G'\ {i — j} for some i € [p].

(ii) For any o € [07], G € G7(2din), j € [p] such that Pa;(G*) € Pa;(G), there exists some
G’ € GJ such that ¢(G') > ¢(G) and G' = G U {i — j} for some i € [p].

(iii) For any o € [0%], GMAP = G*,
Proof. See Section B.2 in the supplementary material. O

Remark 6. For computational efficiency, to estimate GMAP, one may use a forward-backward
stepwise selection to find Pa; for each j separately. This is outlined in Algorithm 4 in
Section A.2 of the supplementary material. Since the posterior score is not decomposable,
the stepwise selection at node j depends on the values of {RSS;: i # j}. A simple solution is
to estimate RSS; by X X; for each i # j. Then, parts (i) and (ii) of Proposition 1 imply that
this procedure is consistent as long as for each j, |Pa;| is bounded by di, at the end of the
forward phase in Algorithm 4. As shown in An et al. [2008] and Zhou [2010], this condition
on the output of forward selection can often be satisfied, with high probability, by choosing
some di, = O(max; |Pa;(G¥)|); i.e., din has the same order as the maximum in-degree of
G*. Actually, Proposition 1 implies that the following procedure is also consistent: starting
from an arbitrary DAG G with maximum in-degree bounded by di,, one performs stepwise
selection at each node j by setting RSS; = RSS;(G) for each i # j.

Remark 7. An alternative approach to performing forward-backward DAG selection with
given ordering is to consider all the p nodes jointly; see Algorithm 5 in Section A.3 of the
supplementary material. In the forward phase, we add one best edge consistent with the
given ordering in each iteration, while in the backward phase, we remove one edge in each
iteration. Proposition 1 implies that this algorithm is also consistent for o € [0*], provided
that the maximum in-degree of any DAG on the search path is bounded by djy.

The main result of this section is given in the following theorem.
Theorem 1 (Strong selection consistency). Suppose Assumption A, B hold, and assume that
d* < di, and dip logp = o(n). Then 7,(G*) converges in probability to 1 with respect to P*,

where 7, is as given in (8).
Proof. See Section B.3 in the supplementary material. O

Remark 8. The proof can be further extended to cases where the errors ej, j = 1,...,pin (10)
follow a sub-Gaussian distribution. As any bounded random variable is sub-Gaussian, this
relaxation covers scenarios where some variables are normally distributed and others are dis-
crete and bounded [Lauritzen, 1992]. The proof is given in Section B.4 in the supplementary
material. Some inequalities cannot be obtained as sharply as in the Gaussian case, because

zero correlation does not imply independence in the sub-Gaussian case.



Consider the marginal posterior distribution on the order space SP. The following corol-
lary shows that the posterior mass concentrates on the set of orderings consistent with G*,
and the posterior probabilities of all other orderings vanish.

Corollary 1. Under the setting of Theorem 1, m,([c*]) converges in probability to 1 with
respect to P*.

Proof. This follows from Theorem 1 and m,(G*) = 3o Tn(G*,0) = 3 sc(pe (o). O

3 Posterior sampling via order MCMC

3.1 Metropolis-Hastings algorithms on the order space

To generate posterior samples for our model, we use random walk Metropolis-Hastings algo-
rithms on the order space SP. For each o € SP, let K(o,-) denote the proposal distribution
at state 0. We consider three types of random walk proposals: adjacent transposition, which
is a standard choice for order-based MCMC methods [Friedman and Koller, 2003, Agrawal
et al., 2018], random transpositions and random-to-random shuffles, which are more com-
monly seen in the literature on random walks on symmetric groups [Levin and Peres, 2017,
Bernstein and Nestoridi, 2019]. All three types of proposals correspond to defining K(o, -)
" N(o) 4]
_ o)n P

K(o, A) N VACSP, (13)
for some set N (o) C SP. We refer to N (o) as the neighborhood of o, and now we formally
define this set for each type of proposal. Let (-). denote an ordering in the cycle notation;
for example, u = (a, b, ¢)¢ is the ordering given by u(a) = b, u(b) = ¢, u(c) = a and u(k) =k
for every k ¢ {a,b,c}. Let o denote the composition of two orderings; that is, 7 = o oy is
defined by 7(7) = o(u(i)). Then, we can use o o (i,j). to denote the ordering obtained by
interchanging the i-th and the j-th elements of ¢ while keeping the others unchanged. Let
o0&(i,7) denote the ordering obtained by inserting the i-th element of o to the j-th position,
where £(i,7) is defined by £(4,5) = (4, 4+ 1,...,7)c if i < j, and £(4,5) = (4,4 —1,...,J)c if
i > j. Define the adjacent transposition neighborhood by

Nagj(o) ={o" €SP [0’ =00 (i,i+1)c, i€ [p—1]}

that is, M,qj(0) is the set of all orderings that can be obtained from o by one adjacent trans-
position. Similarly, we denote the neighborhood corresponding to random transpositions by
N:tp and that corresponding to random-to-random shuffles by M., which are defined by

Niw(o) ={o' €SP | o' =00 (i,j)c, i <j,and i,j € [p]},
-A/rrs(a) = {U/ esP ‘ UI = Jof(i,j), { 5&.77 and Z:.] € [p]}

We provide an illustration of the three proposals in the supplementary material A.4. Observe
that all the three neighborhood relations defined above are symmetric: if o/ € N (o), then
o € N(0’). Therefore, by the Metropolis rule, the transition matrix of the algorithm can be
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calculated by

K(o,0')min <1, (0 )K(o’0) , if o/ # o,
P(0.0') — (0,0") { (01K (7,07) } ! # (14)
1-> ., P(o,7), if o/ = o,

where m,(0) is the marginal posterior probability and also the stationary probability of
o. The Hastings ratio K(o/,0)/K(c,0’) = 1 for all the three neighborhood relations we
consider. As explained in Section 2, once we select an ordering o € SP, we can find the
associated G by a pre-specified DAG selection method. Further, given a stationary Markov
chain (o¢)¢>1 with transition matrix P, {Got}t21 can be seen as correlated samples drawn
from the marginal posterior distribution on the DAG space given in (8), which is just the
pushforward of the marginal posterior distribution on S? under the mapping o G,

The choice of the neighborhood N (-) may affect the mixing of the chain significantly.
In order to achieve efficient local exploration, the neighborhood size needs to be small. All
the three types of proposals considered are desirable in this regard, since the corresponding
neighborhood sizes grow at most quadratically in p: |[Nagj(o)| = p — 1, and |[Nyp(o)| =
INMis(o)] = p(p — 1)/2. However, if the neighborhood size is too small, the chain might
get stuck at sub-optimal local modes, where a local mode refers to a state with posterior
probability larger than that of any neighboring state. We will present a simulation study
in Section 4.1 which confirms that all three proposals yield good mixing of the sampler for
moderately large p.

In general, theoretical analysis of the mixing behavior of order-based MCMC methods is
very difficult. Existing results on the mixing of MCMC for high-dimensional model selection
problems suggest that if the posterior distribution is unimodal and tails decay sufficiently
fast, an MCMC sampler is expected to mix rapidly [Yang et al., 2016, Zhou and Chang, 2021,
Chang et al., 2022]; this intuition is highly similar to the rapid mixing of the algorithms with
log-concave targets on continuous spaces [Mangoubi and Smith, 2017, Dwivedi et al., 2018].
However, to rigorously prove a rapid mixing result for our problem seems very difficult. One
possible strategy is to assume a permutation S-min condition [Aragam et al., 2019], but such
a permutation S-min condition is very restrictive since it requires all nonzero edge weights
to be sufficiently large no matter what topological ordering we assume; in our context, this
condition means that Gy is equal to G% for any ¢ € SP. Here we choose to consider a
contrasting setting where all the edge weights of the true DAG G* are not too large. This is
probably more realistic and complements the existing theory, though still being moderately
restrictive; see Remark 10 below. We are able to prove that the acceptance probability
cannot be extremely small for any state proposed from Nyq;(-); see Remark 9. That is, by
using adjacent transpositions, the chain is able to escape from any sub-optimal local mode,
if there is any, in a relatively short amount of time. Observe that for any o € SP, Nyqj(0) is
a proper subset of both N¢p(0) and Niws(o). Hence, our result partly explains why all the
three proposals appear to work well.

Proposition 2. Assume (C1) in Proposition 1 and the following conditions hold.

(C1’) The true covariance matrix Q* = diag(w*,...,w*) for some universal constant w* > 0,

11



and the edge weights of G* satisfy

max \B7}|2 =0 (

72 10gp>
ijelpl " '

v’n

(C2’) The parameter dj, satisfies d* < d;, and

d?nVTng%Oaan%oo.

v’n
Let N;ev(G) denote the set of all DAGs that can be obtained by applying one edge reversal
to GG, and ¢ > 0 be an arbitrary universal constant. Then, for sufficiently large n,

exp(¢(G1)) _ w2/
max max max ————=<p
oESP Glegg (din) GQEMeV(Gl) exp(¢(G2))

)

with probability at least 1 — 6p~".
Proof. See Section B.5 in the supplementary material. O

Remark 9. To see the implication of this result on the mixing of our order MCMC, consider
o=(1,2,...,p), and let 7 = 0o (i,i + 1), for some i. Recall that we use G, = C?’}}MP where
GMAP is defined in (9). Hence, m,(0) /7 (1) < exp(d(Gy))/ exp(¢(G')) where G is the DAG
that results from reversing the edge i — (i+1) of Gy if the edge does not exist, then G/ = G,.
Assuming 7, v are bounded, Proposition 2 implies that with high probability 7, (o) /m,(7)
is bounded from above by p® where ¢ > 0 is arbitrary, as long as G’ € G;(din). For the
schemes we propose on SP, this further implies that an adjacent transposition proposal has
acceptance probability greater than p~¢, and thus the chain cannot get trapped at a local

mode for exponentially many iterations in expectation.

Remark 10. The purpose of Proposition 2 is to theoretically analyze the posterior landscape
when we probably do not have posterior concentration at the true model and Proposition 1
no longer holds. In particular, Proposition 2 does not require any assumption on the hyper-
parameters of our model, so the nonzero entries in B* may or may not be detected, depending
on the choice of ¢y. Condition (C1’) essentially requires that no signal size has a strictly larger
order than the detection threshold given in condition (C3) of Proposition 1. This is restric-
tive but arguably represents a scenario of more practical interest than Proposition 1, since in
reality signals of small or moderate sizes are common. It is possible to construct a scenario
where the assumptions of Propositions 1 and 2 both hold. For example, assume d* = O(1),
which is referred to as the ultra-high sparsity regime in the literature [Van de Geer and
Biihlmann, 2013]. Then we can set di, = O(1), which implies that we can choose ¢y = O(1)
to satisfy condition (C2) of Proposition 1. Assuming 7, v are bounded for convenience, in
order to satisfy condition (C3) of Proposition 1 and condition (C1’) of Proposition 2, we just
need to require that the order of any nonzero entry Bj; is exactly given by n~!logp.
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3.2 Iterative top-down initialization

Standard theory yields that the Markov chain defined in (14) converges to the marginal
posterior distribution on SP in total variation distance regardless of the initial state. However,
the actual mixing rate of the chain we observe depends on the initial state [Sinclair, 1992,
Proposition 1], and in general, it is desirable to start the chain at a state with reasonably
high posterior probability. Since the size of SP grows super-exponentially in p, choosing a
warm start for our sampler can significantly improve the performance of posterior estimation
with MCMC samples. We propose an initialization method for our order MCMC sampler,
called iterative top-down, which aims to quickly find the topological ordering of the true
data-generating DAG G*.

Our method is based on the top-down method proposed by Chen et al. [2019], which
we now briefly explain. We say a node in a DAG is a source if the node has no parents.
If the data is generated according to (2), due to the equal variance assumption, a source
node always has the smallest marginal variance, and any node with at least one parent has a
strictly larger marginal variance. The top-down method first identifies a source node of G*,
which always exists, sets it to 6(1) and then removes it from G*. The resulting subgraph
is also a DAG, and thus we can set (2) to a source node of this subDAG; how to identify
the source node is explained in the next paragraph. Repeating this procedure p times, we
obtain &, the top-down estimator for the ordering.

Suppose that in the first & iterations of the top-down method we have identified o(j) = j
for j = 1,...,k. Then in the (k + 1)-th iteration, we need to estimate the variance of
each remaining node that cannot be explained by the first £ nodes, and pick the node with
the smallest unexplained variance, which we infer as a source node of the subDAG of the
remaining p — k nodes. Chen et al. [2019] estimated the unexplained variance of the node
J (assuming j > k) by mingcx) |s|=d;, XJ-T<I>§X]-, but they noted that a variable selection
procedure may be applied as well. Since our purpose is to find a warm start for our order
MCMC sampler, we estimate the unexplained variance of a node by performing a variable
selection procedure that aims to maximize the score (7). One caveat is that since our score

is non-decomposable, when inferring the parent set of node j, we need to know the residual

Algorithm 1: Score-based top-down algorithm
Input: A positive vector RSS = (RSSy,...,RSS,) (for all displayed algorithms, we
assume the data X and parameters (co,7, a, k, diy) are given).
0 « argmincp, RSS;
while |6] < p do
for j € [p]\6 do
S ¢ argmaxg; cs. |5;|<dy, P3(95, 225 RSSi)
/7 6 (8,R) = —|S|log {po/ T+ a/7) } - 225 0g (R + X[ 04 X;)
5 RSS; X 0gX;

h W N

6 Jo ¢ argminje ) 5 RSS;
7 | 6« (6,]o)

Output: An ordering &, a vector of estimated residual sums of squares RSS.
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Algorithm 2: Iterative top-down algorithm

1 (617D RSS) «+ STD(XlTXl,...,XgXp) // STD refers to Algorithm 1
2 while 1 do

3 (6,RSS’) « STD(RSS)

4 if 61T = & then
5 L RSS « RSS'
6

&ITD

— 0
7 else
8 t return TP

Output: An ordering 6P

sums of squares of all the other p — 1 nodes. This motivates us to propose the iterative
top-down method, detailed in Algorithm 2, which iteratively applies the top-down procedure
and updates all the p residual sums of squares. We prove below that under a condition
similar to that of Chen et al. [2019, Theorem 2], the iterative top-down algorithm identifies
an ordering consistent with G* with high probability. In our simulation studies, we observe
that the algorithm usually converges within 5 iterations.

Theorem 2. Suppose the conditions in Proposition 1 hold, and let € € (0,1). If
n > {7(din + 1) (2 + 30" (1 + 1/Cuain)) /£ }23200(log (p* — p) — log(e/4)),

then for sufficiently large n, Algorithm 2 returns an ordering in [0*] with probability at least
1—e

Proof. See Section B.6 in the supplementary material. O

3.3 Reducing variance of edge estimation

One potential limitation of our order MCMC sampler is that it does not take into account the
uncertainty in DAG selection with given ordering. So we propose to estimate edge posterior
inclusion probabilities using a conditioning scheme. Let ¢® denote the ¢-th sample from our
order MCMC sampler, and T'®) denote the adjacency matrix of the DAG G®) = G -t such
that FS-) = 1if {i —» j} € G® and I‘g-) = 0 otherwise. The posterior inclusion probability
of edge i — j can be estimated by T—! Zthl I‘g-) where T' denotes the number of MCMC
samples. To improve this estimator, for each pair (a(t), G(t)), we calculate T(®) = f(a(t), G(t)),
where the function T is given by

) (HGU{i-7}) -
Fij(aa G) = ed(GUi=7}) + G\ [i3}) ]1ij’ (Z)v Vi,j € [p]

(15)

We can now estimate the posterior inclusion probability of edge ¢ — j by f‘%B =71 ZZ;I fz(;)
The superscript RB indicates that, in a general sense, this can be seen as a Rao-Blackwellized-
type estimator [Robert and Roberts, 2021]. In our numerical experiments, we find this scheme
helps reduce the variance of edge posterior inclusion probability estimates.
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4 Simulation studies

4.1 Mixing behavior

We first present a numerical example which illustrates how the choice of neighborhood and
score equivalence property affect the mixing behavior of order MCMC samplers. We gen-
erate a 20-node random DAG G* where any two distinct nodes are connected by an edge
with probability 0.1, and sample the edge weight B}, for each ¢ — j in G* uniformly from
[-1,-0.5] U [0.5,1]. Then, we simulate the data matrix X using the structural equation
model in (2) with n = 1,000 and error variance w* = 1.

We implement the order MCMC sampler described in Section 3 with N = Naqj, Nrtp
or M. To impartially compare the three types of proposal, we need to take into account
the computational complexity of sampling from each type of neighborhood. Consider a
proposal move from ¢ to ¢/ = oo (i, j). for some i < j. In Section A.3 of the supplementary
material, we present a stepwise procedure for selecting the parent set of a given node in
Algorithm 4, and describe how to efficiently obtain G, from G, by applying Algorithm 4 at
nodes o(i),0(i + 1),...,0(j). Hence, an adjacent transposition always requires performing
Algorithm 4 at two nodes, while for a random transposition, which randomly samples ¢’ from
Nitp(0) with equal probability, on average we need to perform Algorithm 4 at (p+4)/3 ~ p/3
nodes, and the same holds true for a random-to-random shuffle. So, when we run the sampler
defined in (14) for T iterations, we say the effective number of iterations is 27" if N' = N,q;,
and pT/3 if N = Nytp or N = Ny We let the effective number of iterations be 10,000
for all three samplers in our simulation; that is, we run our sampler with N' = N,q; for
5,000 iterations, and the samplers with N' = Ny, and N = Ny for 1,500 iterations. We
plot the trajectories for 30 runs with random initialization in the panels (a), (b), (c) of
Fig. 1, from which we see that all three proposals work well. We have also tried n = 100 and
observed good mixing performance, probably because with a smaller sample size the posterior
distribution tends to be flatter [Agrawal et al., 2018]; we display the result in Section C.1
of the supplementary material. Given that adjacent transposition appears to yield the best
mixing, it will be used for all the remaining numerical studies.

To compare our method with a score equivalent procedure, we consider the following
posterior score, which is decomposable and yields the same value for Markov equivalent
DAG:s,

60q(G) = ~[Gleplogp — S 10g[(1 + /)] — "

P
2* ©3 log (RSS;(G). (16)
j=1
This score can be derived by a slight modification of our model: instead of assuming equal
error variances, use an error variance parameter w; for each e; in (2) and put an inverse-
gamma prior on w; [Zhou and Chang, 2021]. To sample from the corresponding posterior
distribution, we use the minimal I-MAP MCMC sampler of Agrawal et al. [2018], which is
also a Metropolis-Hastings algorithm defined on the order space and proposes moves from the
adjacent transposition neighborhood N,q;(+); compared with our method, the main difference
is that the minimal -MAP MCMC uses conditional independence tests to find G,. We run

the minimal I-MAP MCMC for 10,000 iterations, and plot 30 trajectories with random
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Figure 1: Log posterior probability x10™* versus the effective number of iterations in 30 MCMC runs with
random initialization. The red line gives the log posterior probability of the true ordering o*. Panel (d) is
for the minimal I-MAP MCMC with decomposable score. Panels (a), (b), (¢) correspond to our method with
three types of proposals: (a) adjacent transposition, (b) random transposition, (¢) random-to-random shuffle.
We have checked that, for our method, all 30 x 3 = 90 runs have successfully reached the red line.

initialization in Fig. 1(d). Comparing it with Fig. 1(a), we see that our sampler with non-
decomposable score mixes better in the sense that all 30 trajectories are able to visit some
o € [0*], while the minimal - MAP MCMC may get stuck at local modes depending on the
initialization. As we have explained in Section 1, score equivalence is likely to make the
posterior distribution on the order space (or the DAG space) difficult to explore due to the
existence of large equivalence classes. This simple numerical study verifies that the use of
identifiability conditions does simplify the posterior distribution so that MCMC samplers
tend to mix faster. In Section C.1 of the supplementary material, we show that the same

observation can still be made if we simulate X using unequal error variances.

4.2 Performance evaluation

We conduct simulation studies to empirically evaluate the performance of the proposed
order MCMC sampler. We still use G* to denote the true p-node DAG that governs the
data generating process described in (2) and let I'* be its adjacency matrix. Let Gand I
denote the corresponding estimators, and for our method, we always use [' = I'BB where
I'RB is defined in Section 3.3. Entries of I' are edge posterior inclusion probability estimates
and thus take value in [0, 1], while I'* € {0,1}P*P. We use four performance metrics to
evaluate an estimator. The structural Hamming distance (HD) between G* and G is the
number of different edges between G* and G, which equals > 0h — [y;|. False negative
rate (FNR) and false discovery rate (FDR) are defined as (3_; ; I';;(1 —T';))/|G™| x 100% and
(Em-(l — F;‘j)Fij)/]G| x 100%, respectively. The fourth metric, percentage of flipped edges,
is calculated as (3, ;T';;1';)/|G*| x 100%. We compare our method with two competing
algorithms, the top-down method [Chen et al., 2019] and the algorithm of Ghoshal and
Honorio [2018], and we follow the suggestions given in the two papers to choose the tuning
parameters. These two algorithms are reported to have better performance than others. For
our method, we fix a« = 0.99,v7 = 0.01,x = 0, ¢g = 3 and run MCMC for 3,000 iterations
for each simulated data set and discard the first 1,500 samples as burn-in. We always use
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Method  Signal  Uniform([—1, —0.3] U [0.3, 1]) Uniform([—1, —0.1] U [0.1, 1])
n 100 500 1000 100 500 1000

Proposed HD 10.0+£0.5 0.8+£0.2  0.1+0.1 13.940.7 5.240.3  3.0%0.3
FNR 33.3£1.5 1.6£04  0.2+0.1 47.6+1.7 16.44+1.1 8.4%+1.0
FDR  3.24+0.8 1.4+0.4  0.2+0.1 244£0.6  2.6£0.5 2.5£0.4
Flip 1.9£0.5 1.2+£0.3  0.2£0.1 1.1+£0.3  2.3+0.5 2.2+04
Time 13.3£0.2 13.6£0.2 13.3+£0.2 12.3+£0.2 13.2+0.2 13.44+0.2

TD HD 11.9+0.8 1.5+04  0.3+£0.2 16.0£0.9 5.9+:0.6 4.1+0.6
FNR 378%£1.8 23£0.5 0.3£0.2 52.5+1.7 15.0£1.3 8.2+0.9
FDR  6.44+13 2.84+0.7 0.7£04 7.0£1.4 59+1.0 5H.8+£l.1
Flip 3.6£0.8 1.8+0.5  0.3+0.2 2.94+0.7 4.1+£0.7 4.1+0.6
Time  0.6£0.0 0.5£0.0 0.5+£0.0 0.5£0.0 0.6£0.0  0.5£0.0

LISTEN HD 12.6+0.7 2.1£0.5 0.9+04 16.3£0.9 6.5+0.6 4.24+0.6
FNR 39.5£1.7 3.1£0.7 1.0£0.4 52.241.7 1594+1.1 8.9+1.0
FDR  7.6£1.5  3.9%£1.1 1.8+£08  87£1.7 7.0£1.1 5.5%1.0
Flip 3.6+£0.7  2.6+0.7 1.0+04  3.3+£0.7 4.6+0.7 4.3+0.7
Time 0.5£0.0 0.5+£0.0 0.6£0.0 0.6£0.0 0.6£0.0  0.5+0.0

Table 1: Uniform signal case with p = 40. TD and LISTEN refer to the top-down algorithm and the algorithm
of Ghoshal and Honorio [2018], respectively. Each entry gives mean + 1 standard error. Time is measured in
seconds.

the following procedure to generate the true DAG G*. We fix the true ordering to be
o = (1,...,p), and for each pair (i,7) such that i < j, we add edge i — j to G* with
probability peqge = 3/(2p — 2). Hence, the expected number of edges of G* is 3p/4. The
DAG G* is resampled for each simulated data set.

We first generate the data from the structural equation models given in (2). We fix
p =40, set w* =1, and draw the edge weight B} for each edge i — j in G* independently
from some distribution F'. We let sample size n be 100, 500 or 1,000, and repeat 30 times
for each choice. In Table 1, we present the result for F' being the uniform distribution on
[—1,—0.3] U [0.3,1] and that for F' being the uniform distribution on [-1,—0.1] U [0.1,1].
The result for F' being the standard Gaussian distribution is displayed in Section C.2 in the
supplementary material. Table 1 shows that our method outperforms the other two methods
in all settings by any of the four performance metrics, and in most cases, our method is

better by a margin of at least one standard error.

P n d FNR FDR Flip Time

7 60 1.549 229+3.8 89£2.5 4.84+14 2.3£0.1
14 90 1.897 11.3+£1.8 2.7+£0.8 2.2£0.7 3.7£0.1
28 120 2.191 4.6+0.7 0.6£0.2 0.4%+0.2 6.2+0.1
56 150 2.449 2.7£0.3 0.5£0.2 0.4%+0.2 15.1£0.2
112 180 2.683 1.240.2 0.2+0.1 0.1+0.0 64.4+1.2
224 210 2.898 0.8+£0.1 0.2+£0.1 0.1£0.0 377.2£5.5
448 240 3.098 0.5+0.1 0.1+£0.1 0.1£0.0 2896.41+48.1

Table 2: Simulation under a high-dimensional regime. Each entry gives mean + 1 standard error. Time is
measured in seconds.
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Figure 2: Boxplots for heterogeneous error variance case with n = 500,p = 40. We sample error variances
from Uniform([1—b,14b]) for b= 0,0.1,...,0.9 and nonzero edge weights from Uniform([—1, —0.3]U[0.3, 1]).
The z-axis indicates the heterogeneity parameter b, and the y-axis represents the Hamming distance between
the estimated DAG and G*. MINIMAP is the minimal I-MAP MCMC that uses score (16), and thus it is
score equivalent.

Next, we examine the performance of our method with varying n and p. To emulate a
high-dimensional asymptotic regime where n grows linearly and p increases exponentially,
we consider 7 settings where n = 30(k + 1) and p = 7-2*~1 in the k-th setting. When
k =6 or 7, we have p > n. We generate G* with peqge = d/(p — 1), where d = 0.2y/n is the
expected number of neighbors for each node. We sample the edge weight B;; for each i — j
in G* uniformly from [—1,—0.5] U [0.5,1] and set the error variance w* = 1. We use the
same values for «, 7, x, ¢y and run 3,000 MCMC iterations with 1,500 discarded samples as
burn-in. The result of 30 replicates is summarized in Table 2, from which we see that FNR,
FDR and flip rates all decrease as p increases. Further, the method is considerably scalable
as it completes 3,000 iterations within an hour even when p = 448.

Lastly, we generate X by assuming each e; in the structural equation models (2) has
variance w;; thus, the equal variance assumption is violated. We repeat the simulation study
presented in the left column of Table 1 by sampling w; independently from the uniform
distribution on [0.7, 1.3] for each j, and we observe that the advantage of the proposed method
is more significant; see Section C.2 in the supplementary material for the result. To further
examine how the heterogeneity of error variances affects the performance of our method, we
fix n = 500 and p = 40, and sample w; from Uniform([1 —b,1+b]) for b=0,0.1,...,0.9. We
plot the distribution of the HD metric over 30 replicates against b in Fig. 2. The proposed
order MCMC sampler again performs uniformly better than competing algorithms. Besides,
our method appears to be more robust, especially when b is not too large, which is probably
due to the use of model averaging in Bayesian posterior inference.

4.3 Quantification of the bias caused by the equal variance assumption

When the true data generating process does not satisfy the equal variance assumption, our
method is expected to have some bias. This is confirmed in Fig. 2, from which we see that HD
increases with the heterogeneity of error variances. For comparison, we have also included
in Fig. 2 the score-equivalent minimal I-MAP MCMC with score given by (16). Since this
score does not encode the equal variance assumption, the minimal I-MAP MCMC sampler
cannot determine the direction of an edge if reversing it yields another Markov equivalent
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Method b=0 b=03 b=05 b=07 b=09 IG(3,2)

Proposed HD  0.1+£0.0 0.5£0.2 1.6£0.4 2.1+0.5 2.6+0.5 3.3£0.8
SHD 0.0£0.0 0.1£0.0 0.3+0.1  0.44+0.1  0.4£0.1  0.5+£0.2
Flip 1.1£0.7 4.0+1.5 10.0£2.4 13.4+3.0 18.54+3.9 21.1+4.1

MINIMAP HD  3.0+0.3 2.54+0.2 2.6£0.3 2.6+£0.2 2.74+0.2 2.6£0.2
SHD 0.5+0.1 0.3£0.1 0.4#£0.1 044+0.1 0.44+0.1 0.3£0.1
Flip 23.0+£2.9 22.343.1 23.4£3.2 23.74£3.2 24.7+3.1 23.7£3.0

Table 3: Analysis of the posterior distributions for p = 7. MINIMAP uses score (16), and thus it is score
equivalent. The posterior inclusion probabilities of all edges are calculated exactly for both methods. The
error variances are sampled from Uniform([1 — b, 1 + b]) or inverse-Gamma(3,2). Each entry gives mean + 1
standard error.

DAG. This can be clearly seen from Fig. 2: the performance of the minimal -MAP MCMC
does not change significantly with the heterogeneity level b, and it always has HD away
from zero. When the heterogeneity level b = 0.6, which implies that the ratio between the
maximum and minimum error variances can be as large as 4, the minimal I-MAP MCMC has
a comparable performance to our method, and when b > 0.7, the minimal I-MAP MCMC
performs better.

In order to better quantify the bias of our method, we exactly calculate the matrix I'
whose (i, 7)-th element gives the posterior inclusion probability of the edge i — j. We fix
p = 7 so that we can enumerate all possible orderings, and the exact posterior inclusion
probabilities corresponding to scores (7) and (16) can be calculated as

e9(Go) . gbealGY)
i = Z ——1{i—jteG,), TIi= Z _
oesSp ZUGSP e?(Go) Y oesp ZO’ESP ePea(G5!

1({i -} € G,

where G, and C;ﬂ;d are the estimated DAGs given an ordering o by our method and the
minimal I-MAP method, respectively. We set n = 100p and pedge = 3/(2p — 2), sample
nonzero edge weights from Uniform([—1, —0.3] U [0.3,1]), and sample error variances from
Uniform([1 — b, 1 + b]) and the inverse gamma distribution I1G(a1,a2). We set a; = 3, which
is the smallest integer that yields a finite variance, and set as = 2 so that the expected value
equals 1. We generate 30 replicates for each simulation setting. In Table 3, we report three
metrics, HD, Flip, and the Hamming distance for skeletons (SHD); recall that the skeleton of
a DAG is the undirected graph obtained by undirecting all edges. SHD is consistently close
to zero throughout the simulation settings, which implies that the true skeleton is correctly
identified by both methods regardless of the heterogeneity level b. Notably, in all the settings
considered, even when b = 0.9 or in the inverse-gamma case, our method has a smaller flip
rate than the minimal I-MAP method. That is, imposing the equal variance assumption
does not increase the flip rate compared to a score-equivalent approach, which suggests that
the computational gain resulting from this assumption is essentially obtained for free in this

example.

5 Single-cell real data analysis

We use a real data set from the single-cell RNA database for Alzheimer’s disease, known
as scREAD [Jiang et al., 2020], to illustrate the advantages of the proposed algorithm. We
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Figure 3: Result of the proposed method for the real data analysis. Given f‘%B, we infer the edge i — j

exists in the DAG if ng > ¢ where c is the cutoff of posterior inclusion probability. For each ¢, we count
the number of edges occurring in the DAG for control samples (black), the number of edges in the DAG for
case samples (red), the number of edges with edge direction ignored in both DAGs (green), and the number
of directed edges in both DAGs (blue).

only consider genes involved in the brain-derived neurotrophic factor signaling pathway and
expressed in the layer 2-3 glutamatergic neurons. The goal is to learn two DAG models, one
from case samples and the other from control samples, and then inspect how different the
two DAGs are. To mitigate potential batch effects, we only use samples that are generated
at similar sequencing depths by checking the total and median expression level across all
genes for each sample cell, which results in ng = 2300 control samples and n; = 1666 case
samples. Next, we select the genes in this pathway expressed in at least half of the samples
in both data sets, which yields p = 73. The data matrices for both case and control samples
are obtained by performing normalization of log-transformed expression levels [Lee, 2007,
Chapter 6].

For each of the two data sets, we run the proposed order MCMC sampler with iterative
top-down initialization for 2 x 105> MCMC iterations, and then discard the first 10° iterations
as burn-in. It only takes about 480 seconds for each data set. To infer the edge posterior
inclusion probabilities, we use the conditioning scheme described in Section 3.3, and the result
is presented in Fig. 3. The two DAGs learned from the data share a significant proportion
of undirected edges, and more importantly, most of these edges have the same direction
in both data sets: the gap between the blue and green lines in Fig. 3 is narrow. In other
words, the orderings of the variables learned from the two data sets are very similar. The
true ordering of the variables is hard to determine as there may even exist feedback loops
among the selected genes, and we do not know to what extent the true model satisfies the
equal variance assumption. But Fig. 3 suggests that the use of this score is very reasonable
from a pragmatic perspective. For comparison, we have also tried the minimal I-MAP
MCMC with the decomposable score given in (16), which represents a state-of-the-art score
equivalent Bayesian structure learning procedure, and the result is shown in Section C.3 of
the supplementary material. Given the same initialization and same number of MCMC and
burn-in iterations, our method yields a higher proportion of shared directed edges than the
minimal I-MAP MCMC. For example, with the posterior inclusion probability cutoff being
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0.5, for our method 41% of the edges in the inferred DAG for case samples also occur in the
same direction in the DAG for control samples, while this ratio drops to 26% for the minimal
I-MAP MCMC.

To provide further evidence for the advantage of the proposed structure learning method,
we repeat the above analysis 30 times using both our sampler with non-decomposable score
and the minimal - MAP MCMC with decomposable score. Then, for each pair (7,7) with
i # j, we calculate the Gelman-Rubin scale factor [Gelman and Rubin, 1992] using I';;, which
is equal to 1 if i — j is in the sampled DAG and 0 otherwise. Thus, we get p(p — 1) Gelman-
Rubin statistics for each data set, one for each directed edge. We find that 99.7% of the
directed edges in the two DAGs have Gelman-Rubin statistics lower than 1.1 for our method,
and 93.7% for the minimal I-MAP MCMC; we use the threshold 1.1 since this is the most
common choice according to Vats and Knudson [2021]. Moreover, for the minimal I-MAP
MCMC, Gelman-Rubin statistics of 90 directed edges yield infinity, which means that the
within-chain variance of I';; is zero for all 30 runs, but the between-chain variance is nonzero;
that is, in some runs the edge ¢ — j is selected in every iteration excluding burn-in, while in
the other runs the edge ¢ — j is never selected. This observation again illustrates that for a
score equivalent procedure, traversing equivalence classes can sometimes be very difficult and
cause slow mixing of MCMC samplers. In contrast, the maximum Gelman-Rubin statistic
for our method is 2.56 for the control data set and 1.26 for the case data set.
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Supplementary material

A Algorithms

A.1 Overview of the proposed method

We outline the proposed order MCMC algorithm in Algorithm 3. For all displayed algo-
rithms, we assume the data matrix X and model parameters (cg, v, a, K, din) are given. The
R code for the proposed method and simulation studies can be found at https://github.
com/hwchangl1201/bayes.eqvar.

Algorithm 3: Bayesian order-based structure learning

Input: Number of MCMC iterations T', neighborhood function N = Npgj, Nyr or
Nirs, a DAG selection procedure G:SP— Gp (e.g. Algorithm 5)

o « 6TD /7 51TD is the output of Algorithm 2

GO« G(oO)

fort=1,...,7 do

Draw o uniformly from N (o))

Draw u ~ Uniform(0, 1)

a + min(m, () /7, (c®D), 1)

if © < a then

o) — o

G« G(o)

© w0 N o vtk W =

10 else
11 o) o=
12 GH « gt

A

13 r® :f‘(g(t),G(t)) // See (15) for the definition of I

Output: “Rao-Blackwellized” adjacency matrices {f(t)}thl

A.2 Forward-backward algorithms with non-decomposable scores

Recall the posterior score of a DAG given in (7). Define the nodewise score at node j by

c apn + K
;(S,RSS.;) = —|S|log {p o/ + 04/7)} - pTlog (Rss_j + X]-T<I>§Xj> . a7

for S C P;, where RSS_; denotes the total residual sum of squares of nodes other than j, and
P; is the potential parent set defined in (1). Hence, given RSS_;, we can use the standard
forward-backward stepwise algorithm to select the parent set of node j; this is described in
Algorithm 4. We allow using two different estimates for RSS_;, one for the forward phase

and the other for the backward phase; the reason will become clear in the next subsection.

A.3 Implementation of order MCMC with non-decomposable scores

For our model, the main computational challenge is that a local change to the ordering o

can cause some global changes to the maximum a posteriori DAG estimator CAJIC\,/IAP, due to
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Algorithm 4: Nodewise forward-backward selection

Input: Node index j € [p], a set of potential parent nodes P; C [p], two estimates
for the total residual of sum of squares of other nodes RSS_;, RSSfj
Forward phase: S; <+ 0

=

2 for k=1,...,|P;| do

3 lo < argmaxycp\ s, ¢;(Sr U {¢}, RSS.j)
4 S'f — S U {Eo}

5 | if ¢;(St,RSS,;) > ¢;(Se, RSS;) then
6 t Sf — Sf

7 else

8 t break

9 Backward phase: Sy < S

10 for k=1,...,|S¢| do

11 | £ argmaxgeg, ¢;(Sp \ {{},RSS))
12 | Sy Sp\{h}

138 | if ¢;(S,RSS);) > ¢;(Sh, RSS/;) then
14 t Sb < S'b

15 else

16 t break

6utput: A parent set Sy, of node j

the use of the non-decomposable posterior score. Were the posterior score decomposable,
whenever we use an adjacent transposition to move from o to ¢/ = oo (3,7 + 1), we know
that Paj(GMAP) = Paj(éy,AP) for any j ¢ {o(i),0(i + 1)}, since maximizing the score of
the entire DAG is equivalent to maximizing the local score at each node separately.

We describe a strategy for implementing local moves on SP for our model, which is
as efficient as with a decomposable posterior score. We start by proving two monotone
properties of the nodewise score defined in (17).

Lemma 1. Let ¢; be as given in (17), S C [p]\ {j}, k ¢ SU{j} and a > 0.
(i) If ¢;(SU{k},a) > ¢;(S,a), then ¢;(SU{k},b) > ¢;(S,b) for any 0 < b < a.
(ii) If ¢;(S U{k},a) < ¢;(S,a), then ¢;(SU{k},b) < ¢;(S,b) for any b > a.

Proof. To simplify the notation, let Ky = log{p®+/(1 + a/v)} and K; = (apn + k)/2. A
routine calculation shows that ¢;(S U {k},a) > ¢;(S,a) if and only if

a+ X] 05X Ky

log T T —.
a+ X7 P50, X K

The claim follows by observing that the left-hand side is monotonically decreasing in a. [

Motivated by Lemma 1, we use the following procedure to find ég/[AP for a given o € SP.
First, for j = 1,...,p, we find a lower bound and an upper bound on RSS; such that
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Algorithm 5: Forward-backward DAG selection
Input: 0 € S
1 G < empty DAG
// Forward phase
while 1 do
(i0, jo) = argmax; ;. o-1(;)<o=1(j) fi—jpgc PG U{i = j})
G+ GU {io — ]0}
if ¢(G) > ¢(G) then
t G+ G

[=> IR L SNV R ]

else
8 t break

// Backward phase
9 while 1 do
10 | (i1, 51) < argmax; ;. i ye6 ¢(G\ {i = 7))
11 G(—G\{Z1—>j1}
12 | if ¢(G) > ¢(G) then
13 t G+ G
14 else
15 t break

(5utput: DAG G

both bounds do not depend on o¢. An obvious choice for the upper bound on RSS; is
given by 1, = X]TXj, and if p < n, a lower bound is given by By = X}@J[];]\{j}Xj (we
assume (1, is strictly positive). Next, for j = 1,...,p, we apply Algorithm 4 with input
(4, Pj, Zk#j By Zk;ﬁj i ); that is, in the forward stage, we let the algorithm select as many
parent nodes as possible by using minimum estimates for the residual sum of squares of other
nodes, and in the backward stage, we let the algorithm remove as many nodes as possible.
For all nodes, save the search paths of Algorithm 4, including the changes in residual sum of
squares in each step, in the internal memory, and let §? denote the parent set of node j at
the end of the forward stage. Denote by G, the DAG such that Pa;(G,) = S? for each j.
Now to find CA?}Y[AP, we simply apply the backward stage of Algorithm 5 by initializing the
DAG to G,. This can be done very efficiently by using the search paths of Algorithm 4; no
calculation of residual sum of squares is needed.

The above procedure enables an efficient updating algorithm for finding G%AP when
we move locally on the ordering space SP. For example, consider moving from o to ¢’ =
oo (i,i 4+ 1).. We only need to apply Algorithm 4 at nodes o(i) and o(i + 1), and then
perform backward DAG selection using the saved search paths of nodewise forward-backward
selection. The computational time of the DAG selection step is negligible compared to that
of Algorithm 4. Note that the parent sets of nodes other than (i) and o (i + 1) may change.
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A.4 Three random walk proposals

Figure 4 describes (1) adjacent transposition, (2) random transposition, and (3) random-to-
random shuffle, given the current topological ordering o. The random transposition oo (i, j).
interchanges the i-th and the j-th elements of o while keeping the others unchanged. The
adjacent transposition is a special case of random transposition where ¢ and j are adjacent,
i.e., |i —j| = 1. The random-to-random shuffle o 0 £(i, j) inserts the i-th element of o to the

j-th position.

o: o(l) a(2) o(3) o(4) o(b) o(1) a(2) o(3) o(4) o(5) a(l) o(2) a(3) o(4) a(5)

(a) Adjacent transpositions (b) Random transpositions (c) Random-to-random shuffle

oo (2,3). oo (2,4). oo0&(2,4)

Figure 4: Illustration of the three proposals introduced in Section 3.1: adjacent transposition, the random

transposition and the random-to-random shuffle.

B Proofs

B.1 High-probability events

Recall that we assume the data is generated according to the linear structural equation model
(SEM) given in (10). Since the rows of X are assumed to be i.i.d. copies of X, we have

P
X; =) (B*)i;Xi+¢j, where ¢j ~ N,,(0,w}1), for all j € [p]. (18)
i=1
By Remark 3, for each o € SP, we can derive a linear SEM equivalent to (18), which is given
by
p
X; = Z(B;)ini + €7, where €7 ~ N,(0,wfI), for all j € [p]. (19)
i=1

We define the normalized error vectors by

)"2¢; for j € [p], 27 = (w9

7)=2¢ for o € S, j € [p],

zj = (w

where z; and z{ are associated with the true model given in (18) and the linear SEM in (19),

respectively. The sets of the corresponding normalized errors are defined by Zy = {z;: j €
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[pl} and 21 = {27: 0 € SP,j € [p|}. Clearly, Zy C Z; and |Z9| = p. Further, one can show

that
EAESE ( ;’)
where d* is defined in (12).

Before we prove the results given in the main text, we first define some event sets on which
the random components of our generating SEM behaves as desired, and use concentration
inequalities to show that they happen with high probability. We will then prove the main
results of the paper by conditioning on these high-probability events. Recall Py defined in
(1) and let My (d, P) = {S C P: |S| < d}. Define

A={mw<  min = Au(X3Xs) < Amax (X3 Xs) < 17},
T SCM,(2din,[p) (Xs Xs) < SQMI;I(%D,M) ax(X5 Xg) < n

1
B = < min min (z)) @&z, > —np,
JEP) SCMy, (2din, P7) 2

. . 1
B = min min (zg)Tq)fg‘z;’ >-ny,
j€lp),o€SP SCMp(2din, PY) 2

C = { max max 2H(® —®g)z; <plo )
Jjelpl k¢S ASEYD! s)zj < plogp
SU{k}CMp(2din, P

D= min min THET S (1— )
{jE[P]»“ES” SQMp@dm,P;f)( 7) 57 > e,

1
€& = {max max z}@ﬁzj <(1+—)n;p,
JElP] SCMyp(2din,P7™) 4n

XIX; .
i,j€p]
where n, p > 0 are universal constants.

Lemma 2. Under the conditions of Proposition 1, we have P*(ANBNC) > 1 — 4p~! for
sufficiently large n.

< 1607 logp} ,

n

Proof. From Lemma F1 of Zhou and Chang [2021], we have P*(A) > 1 — p~! for sufficiently
large n. The proof for the bounds of P*(B) and P*(C) is analogous to that of Lemma F2
of Zhou and Chang [2021]. A standard calculation using the tail bounds for chi-squared
distributions [Laurent and Massart, 2000][Lemma 1] yields

1
P* {z;r@ﬁzj < Qn} < /48
P* {Z]-T((I)Tu{k} - @T)zj > PIng} < 2e*p10gp/27

for any j € [p], S C Mp(2din,PJ‘7*) and T U {k} C Mp(Zdin,Pj?’*). To conclude the proof,
apply union bounds with the observations |Zy| < p and | M (2diy, Pf*)}| < p?3ntl and the
assumptions di, logp = o(n) and p > 4d;, + 6. O
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Lemma 3. Assume di, logp = o(n) and d* < di,. There exists some universal constant
¢ = ¢(n) > 0 such that P*(DNE) > 1 — 2e~¢" for all sufficiently large n.

Proof. By Lemma 1 of Laurent and Massart [2000],

2 2 2
p*{’fjdg1_a}ge“2d/4, P*{?21+a+a2}§e“2d/47 (20)

where X?z denotes a chi-squared random variable with d degrees of freedom and a > 0 is
arbitrary. Consider P*(D) first. For any j € [p],0 € SP, and S € M, (2din, Pf), by (20),

p* 7(2?)T(I)“J§Z}T <1- 1 < exp _n—l1S|
n—|S| — an [ — 64n2 )

Since |S| < 2di, = o(n/logp), n(n —|S|)7H(1 — (2n) 1) <1 — (4n)~! for sufficiently large n.
Applying the union bound with |Z;| < p®n*! and | M, (2din, P7)| < p*%»t!, we obtain

P*(DC) < p3d1n+2 exp (_ 12Zn2> < e_c/n7

for sufficiently large n. Next, consider P*(£). For any j € [p] and S € /\/lp(Qdin,P]‘-’*), we

have
TaL
2; DS z; 1 1 n—|S|
Py S sy b < —
{n—S]_ 8n 1287]2}_6Xp< 2567}2>7

by (20). Since |Zo| = p and | M (2din, Pf*)| < p?%nt1 ] the union bound gives

P*(£°) < 2din+2 o n < 7c’n‘
( )—p eXp 5127]2 €

Another application of the union bound yields the conclusion. O

Lemma 4. Under the conditions of Proposition 2, we have P*(ANB'NJ) > 1—6p~* for all
sufficiently large n.

Proof. We have obtained the bound P*(A) > 1 — p~! from Lemma 2, and the bound on
P*(B') is proved in Lemma F2 of Zhou and Chang [2021]. Consider P*(J°¢). Let

XX 1
j;;.:{‘ L v | > 1607 ng}.
n n

By Ravikumar et al. [2011, Lemma 1],
P*(J5) < 4exp(—37" log p/ (max T7;)*) < 4p~,

from which we obtain P*(J°) = P*(U; je[p J55) < 4p~! by the union bound. O
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B.2 Proof of Proposition 1

We consider the proof of consistency for the estimator GgAAP defined in (9); that is, we show
that the scoring criterion ¢ is consistent when the ordering o is known. We first prove a
technical lemma, which bounds the residual sum of squares RSS;(G) when the node j is
underfitted (i.e., Pa;(G*) € Pa;(G)).

Lemma 5. Fix some S C [p] such that |S| < di, and S # S* = Pa;(G*). Suppose we are on
the event AN BNC and the conditions of Proposition 1 hold. Then

X (@sughey — ©s)X; > 9covlogp/ oy,
for some kg € S*\ S.

Proof. We denote X; = Z; + €, Z; = Xg+(Bj)s+, where B} is j-th column of the true
weighted adjacency matrix B*. Let ko = arg maxyeg«\g Z‘;‘F((I)SU{’?} — ®g)Z;. By the triangle
inequality,

XS (@suiror — 29)X; = (1 @suirer — Ps)Z511 — [[(@sugey — Ps)ejl])? (21)
On the event set C, we can use ¢y > ap from condition (C2) to obtain that
* _ Co_
1(®suikoy — Ps)esll* < pwjlogp < prlogp < —wlogp,
and thus by Lemma E2 of Zhou and Chang [2021],

|’B§*\5H2nfg2 > 1660?210gpnTg2 > 16¢q
|S*\S| T av’n U «

(@ suiroy — Ps)Zi|1° > vlog p.

The second inequality follows from condition (C3). Plugging the above two displayed bounds
into (21), we obtain the asserted result. O

Proof of Proposition 1. On the event ANBNC defined in Section B.1, we will show that all
the three events stated in the proposition happen. For a non-negative integer d, define

G)=J G
o€lo*]
Event (i). Fix an arbitrary G € G(2d;,) such that Pa;(G*) C Pa;(G) for some j € [p]. We
prove that we can remove all the redundant parents of node j. This is slightly stronger than

the asserted result, but it will be useful later for proving the claim for event (iii). Pick an
arbitrary k € Pa;j(G) \ Pa;(G*) and define G’ = G\ {k — j}. On the event BN C, we have

X (P (1) — Phay (@)X = €5 (Ppay(@) — Praya)es < wiplogp,

RSS;(G) = XZTCIDI%%(G)XZ- > e?@#ai(g)ei > n;}z for i € [p].
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Since 1+ = < exp(x) for z € R and /1 + a/v > 1, we find that

apn+k
P RSS;(G) +Rssj(G')> E

exp(6(C)) :(pcom)_l< B )

exp(¢(G"))
T/l 1 .
<o (14 20 Pruen ~ Vo)
P RSS:(G)
ooy [P EE X (P, ()~ Py ()X
L S U 57 RSS;(G)

(anp + k)wiplogp
(min; w})np

apn+k
2

<p “exp {

< p{max#j(w;/wj)}(a—i-l)p—co <1

In the last line, we have used £ < np and ¢y > max;.;j(w;/w;)(a + 1)p from condition
(C2). The same argument implies that if we define G¢ such that Pa;(Gg) = Pa;(G*) and
Pa;(Go) = Pa;(G) for i # j, then we have

exp(é(G)) (|Pa; (@) —|Pay (G*)){maxi; (w? /o) (a-+1)p—co }
< j 3 17 \W5 /% P=C0s < 1.
exp(¢(Go)) ¥

Event (ii). Fix an arbitrary G € G,(din) such that Pa;(G*) € Pa;(G) for some j € [p].
Since there exists some o € [0*] such that G,G* € G (din), We can apply Lemma 5 to show
that there exists some k € Pa;(G*) \ Pa;(G) such that the DAG G’ = GU {k — j} satisfies
X]-T(CI)paj(G/) — ®@pa;(@)Xj = 9covlogp/a. Further, on the event A, we have RSS;(G) <
XTX; <nv. Now using \/1+ a/vy < p, which follows from condition (C2), we find that

apn+k
RSS;(G) +Rssj(G')> E

exp(0(C) :(WW)( T RO

exp(¢(G'))
T(dL L '
B 7 RSSi(G)

T
< p(CO—H) exp (— anp + £ X; ((I)Paj(G’) - (I)Paj(G))Xj>

apn+k
2

2 P RSSi(G)
< p(c0+1) exp {_ anp + K 9coﬁ10§p/a } < p(_750/2+1).
2 npv

This implies exp(¢(G)) < exp(¢(G')) since ¢g > 4diy + 6 > 2/7 . The same argument shows
that if we define G € G7 such that Pa;(G1) = Pa;(G*) U Pa;j(G) and Pa;(G1) = Pa;(G) for
i # j, then we have
exp(d(G)) |Pa; (G*)\Pa; (G)|(~Tco/2+1)
< pltdi J 0 . 22
exp(6(G1) )

Event (ii1). Consider an arbitrary G' € G (din) such that G # G*. Then, there exists some
J € [p] such that Pa;(G) # Pa;(G*). If the node j is overfitted (i.e., Pa;(G*) C Pa;(G)),
event (i) shows that there exists some Go € Gy (din) such that ¢(Go) > ¢(G). If the node
Jj is underfitted, i.e., Pa;(G*) € Pa;(G), inequality (22) shows that there exists some G €
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G, (2din) such that ¢(G1) > ¢(G) and node j is overfitted. But event (i) again implies that
there exists some G2 € G (din) such that ¢(G2) > ¢(G1). Hence, G' cannot be the maximizer
of ¢ in G (din); that is, G* is the unique DAG in G, (din) that maximizes ¢, which completes
the proof. O
B.3 Proof of Theorem 1

For 7 ¢ [0*], the ratio of exp(¢(G5)) to exp(¢(G*)) is

P(OC)) _ (o GG (S0 RSS; G\
m_<p \/W> ( %1RSSj(G*)> ' (23)

On the event D N & defined in Section B.1, we have

A P TaHL .
Z?:l RSSJ <GT> > j=1 X-] q)Paj(G’T)uPaj(Gi)X]

P . *) — TFHL .
;=1 RSS; (G¥) =1 X P, o)X
D Tl
B j=1(€JT') (Dpaj(éf)upaj(c::)e;
= Tl
E?:l €j (I)Paj (G*)e.]

tr(27)  (1—1/(2n))

= W) L+ 1/(n)

where the error vectors €;, €] are as defined in (18) and (19). Without loss of generality, we

can assume 7 > 3 in Assumption A, from which we obtain that

S RSS; (G (a+y/m-1/ey)  141/By) 1
j—1 RSS;(G*) — 1+1/(4n) 1+1/(4n) '’
for some universal ” > 0. Hence,
~ apn+k apn+k
exp(¢(Gr)) led ( 1 >_ d < 1 >_ ’
S (€] 1 + = S COPGin 1 + —
exp(6(G) ~ " 7 ! "7’

Using di, log p = o(n) and Stirling’s formula, we get

> rdlov] exp(¢(G-)) <l exp(p(Gr))

exp(¢(G*)) T T exp(p(G¥))

for some universal C > 0. For sufficiently large n, by Assumption B and Lemma 3, the event
DNéEN (ﬁge[o*]{éa = G*}) happens with probability at least 1 — ((p) — 2¢=¢" on which

we have

e—Cnp’

IN

P(G” B(G~
n(G*) = Eoclrr ¢ -1 Xl €4 > 1_ e—Cmp
" ZTESP 6¢(GT) - ZO’E[O’*} e(@) = .
That is, m,(G*) converges to 1 in probability. O
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B.4 Proof for the case of sub-Gaussian errors

Let X be an n x p random matrix, each of whose rows is an i.i.d. copy of p-dimensional
sub-Gaussian random vector with mean zero and covariance matrix >* with a sub-Gaussian
parameter bounded by a universal constant Cgy,. We define 3§ as the submatrix of X* with
both rows and columns indexed by the set S. Let X7 ¢ = 35 ; — ¥7 S(ZE)_IZ*S, ; denote the
partial covariance and let f)j|5 = n~1X;®4X; be its estimator for |S| < di, and j ¢ S.
Denote ||-[|,, as the operator norm.

In the sub-Gaussian case, zero correlation does not imply independence anymore, and
thus we need more stringent assumptions. The first condition is that

ﬁ4di%logp Lo, (24)

von

as n goes to infinity. Second, we need Pa;(G,) C Pa;(G%) for 7 ¢ [0*], which means that
the stepwise selection method should estimate the minimal I-map G sparser and should not
include an edge that is not in G%. For the consistency result, the ratio ﬁ)j‘ s/ E;‘ g need to be
controlled. To this end, we need the following lemmas.

Lemma 6. Suppose diy logp = o(n). There exists a constant K, which only depend on Cyp,

< KO /din Ing’
op n

Proof. See Lemma F3 in Zhou and Chang [2021]. O

satisfying for sufficiently large n,

—1vT *
max n X¢Xg—X
SeMy(2din,p]) H 5 s

with probability at least 1 — 2p~%n,

Lemma 7. Suppose din log p = o(n) and a set S and j satisfy |S| < di, and j ¢ S. Let Ky be
the constant in Lemma 6. Then, for sufficiently large n, we have

- . 72 |dyy, logp
%515 — Xl §K0§ p—

din .

with probability at least 1 — 2p~

Proof. Apply the proof of Lemma E4 of Zhou and Chang [2021] by setting 7' = {j}, where
T is a set defined in Lemma E4 of Zhou and Chang [2021]. O

Now, we are ready to prove the sub-Gaussian case. It is sufficient to show

> RSS,(G7)

1
>14+ —.
7RSS, (GF)

/

For fixed > 0, by the condition (24), a sufficiently large n satisfies Ko(7?/v?)+/dinlogp/n
< v/(4n). It follows that

-2
- * 14 dll’llogp
* v
> Xjls = g
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which implies that iﬂS/E;'S >1—(2n)~! by the fact v < 37 s- The other direction can be
obtained by

din logp
n

\5 <X jls T KO V2
< E*|S +
which yields 33 /%% < 1+ (4n)~". Therefore,

DRSS (Gr) S XTRL 00X

>
P RSS; (G*) ~ P XT<I’§3](G*)X

B Ef 1 2jlPay(G2)

01 Ejipa(a)
o tr(@7) (1 —1/(2n)
Totr(Q.)  1+1/(4n)
(1+1/n)(1-1/(2n)) 1

>1+—,
- 14 1/(4n) n

for some universal constant 7' > 0. The rest of the proof is identical to the Gaussian case.
O

B.5 Proof of Proposition 2

By (C1') , we have wj = - = w, = w* in (18) for the true data generating model. Without
loss of generality, assume that id = (1,...,p) is a true ordering. Define
0 = d2 v lg)gp
1%

Lemma 8. Under the setting of Proposition 2,
E;kz = w* + O(Q/dln)a 22} = O(\/é/dln)7
for all 4,j € [p] and i # j.

Proof. For ease of notation, in this proof we write B = B*, and without loss of generality,
we assume the true error variance w* equals 1. Since B is a strictly upper triangular matrix,
its operator norm is zero and B? = (. So we can expand 3 using the Neumann series by

S=U-BYHlU-B)'= ZBT ZB’“
k=0

2p—2
= § > BB => > (BT
k=0 r+s=k k=0 r+s=k
r,s<p

We can calculate B* and (BT)" by treating B* and (B*)" as weighted transition matrices
for a random walk on the DAG with weighted adjacency matrix B. Explicitly, define the set
of all paths from node ¢ to node j with s steps by

PATH?] :{q:(q07q17"-7QS) kK41 %0 fOI‘]C—O —l’qO:iqu:j}’
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and the weight W, of an s-length path ¢ = (qo,...,¢s) by Wy = [1i—; Bgu_1q.- We have
|W,| = 0(6°/2/d3)), since |B;j| = O(v//di,) for any i,j by the condition (C1°). Tt follows
that the (i, j)-th entry of (BT)"B* is given by

((BT)TBS)U = Z (BT):kBZj = Z Z Wq Z Wq

kelp] kelp] \g€PATHy; qePATH],

=2 S WeWy= NG00 ),

ke[p] g€PATH ;o €PATHY,

where N"™*(i, j) denotes the number of possible “paths” that start from node i, move back-

wards for r steps, move forwards for s steps and arrive at node j; such paths are called

treks [Uhler et al., 2013, Sullivant et al., 2010] and we denote them by ¢ = (¢, ¢}, .- .. d._1, ¢, =
s, Qs—1;- - -+ q1,40), Where g = i, go = j. Since d is the maximum number of parent nodes,

given i, j, there are at most d;, different choices for ¢} and ¢;. Similarly, given ¢} and ¢, there

are at most d;, choices for ¢} and go. Repeating this argument yields that N™(i, j) < d." s=1

and it follows that ((BT)TBS)Z.Z. = 00" +9)/2 /d;,). Therefore, for sufficiently large n,

2p—2
i = Z Z (BM)"B%)i

k=0 r+s=k

r,s<p
2p—2

1+ Z Z BT T‘Bk’ T li Z Z ((BT)TB]C—T)M
k=2 1<r<k—1 k=p+1 k—p+1<r<p—1
p 2p—2

=14+ d' (k=100 )+ > d ' (2p—1-k)O(0"?)

k=2 k=p+1

=14 d'O@2F20%%) =14 0(0/di).
k=2

Similarly, for any i < 7,

2p—2
Yij = ((BT) B?)
k=0 r+s=k
r,s<p
p 2p—2
= Bij + Zdl:ll(k Hk/Q Z d k)O(Qk/2),
k=2 k=p+1
from which we obtain that %;; = O(vV0/din) + O(0/din) = O(V0/dyy,). O

Proof of Proposition 2. Define G,(din) = Uaegpgg(din). Let G1,G2 € Gp(din) be such that
{i = j} € G; and G4 can be obtained from G; by reversing i — j. Let S = Pa;(G1) and
T = Pa;(G2); see Fig. 5. The sets S and 7" may not be disjoint.

Assume we are on the event B’ N J defined in Section B.1. Since G1, G5 have the same
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Figure 5: Local structure of GG1, G2 in the proof of Proposition 2.

number of edges, the posterior ratio of Gy to Gs is

exp(6(G1)) _( ileE‘I’#ak<G2)Xk>

exp(o(G2))  \ Xh_, Xi Ppa, () Xk

apn+k
2

apn+k
(1 n X (@rupy — 1) X — X (Psupyy — q)S)Xi) 2

2:1 Xz?@l%ak(cl)Xk

< oxp [ OPREE X (@rugy — 1) X5 — X (Psugsy — Ps)Xi
P 2 npy /2

a+1
< oxp { T @y - 1) - XT(@sug) - B9 X1}

where the first inequality follows from the inequality 1 + = < exp(x) for all z € R and the
second follows from the observation that X, @éak(Gl)X i > nyr/2 for any k € [p] on the event
B’. To conclude the proof, we need to show

X[ (@ropy — 20) X5 — X[ (@sugy — ®s)Xs = o((F2/1?) log p). (25)
By Lemma 8 and condition (C2’), on the event [J, we have

XTx,;

ZT = Y + O(H\/é/dm) =w"+0(0/dpn) + O(Z\/g/dm) = w* + o(1),
XZXJ = Bij +0uV0/din) = O(VO/din) = o(1).

Hence, by Neumann series, for any S C [p] such that |S| < din, we have (n"1 X3 Xg)7! =
(w*)~' + Rg where Rg is a matrix with all entries being O(v/0/di,). This yields, for all
6,5 €[]\ S,

XTosX;,  XIXg (XSTXS)_l XTx;

n n n n

O(0/din)
= [0o/dn) -+ OB/ (@) T+ Rs) |
O(V0/dn)
= diO(0/d5,) + i, 0(0°% /d5,) = O(8/din) = o(1).
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It follows that
(X &7 X;)? - (X[ ogX;)?
Xrolx; XJo5X;

X (®rogy — D1) X5 — X (Psugy — P9)Xi =

2 2
[X;.fxi B XJ.T<I>TXi] [X].TXi B XJ.T<I>5XZ}

n n n n

=N —n
XX,  Xlerx; XIx;  Xfesx;

n n n n

2

XTx, XTorXx, XTx, XToqx; 2
-1 g ‘i J i g J ‘
_ 1+0(1 _ —(1+o0(1 _
n(e) <+0<>>[n - <+0<>>[n 0
oXTX; [XTorX;, XTdsX; xTorx;\> [XTogx;\”
= nw) -2 [ e +< —— ) — [ ST o))

= n {O(V0/din)O(0/din) + O(6% /d2) + 0(0/d2,) } = no(0/d2,) = o((72/v?) log p),

which completes the proof of (25). O

B.6 Proof of Theorem 2

Let § = v2Chin(din + 1)1 (2Chin + 3w* (1 4 Cpin))~ ! and f]ij = XiTXj/n for each (i,7).
Define K = {maxme[p] |55 — Tl < 5} . For any € > 0, using Lemma 1 of Ravikumar et al.
[2011] and our Lemma 2, we can show that P*(ANBNCNK)>1—¢€and

. no? €
PSS — X5 >0} < 4 — < :
{125 ijl >0} < exp{ 3200man(Efj)2} “plp+1)

Further, from the proof of Proposition 1, we know that on the event AN B NC, we have

argmaxgcp,. |sj<da, @5 | S, Y RSSi(G) | = Pa,(G*),
i#j

for any j € [p], P; 2 Pa;j(G*), and G € G;(2din). Observe that Theorem 2 holds if we
can show that for any G € G, (din), Algorithm 1 with input RSS = (RSS;1(G), ..., RSS,(G))
returns some o € [0*], but this follows by an argument completely analogous to the proof of
Theorem 2 of Chen et al. [2019]. O

B.7 Derivation of the posterior distribution

Let L(B,w) be the likelihood function in (2). The a-fractional posterior distribution of B, w,
given the prior distributions in (3) and (4), is

Tn(B,w | G,0) x mo(B,w | G,0)L(B,w)*

- 7T0(37w ‘ G,O’)
= LB L(B,w),

where the first term in the last equation can be regarded as the effective prior distribution for
(B,w) | (G, o). By the normal-inverse-gamma conjugacy, the a-fractional marginal likelihood
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of (G, o) is given by
fa(G, o) x /7T()(B,w | G,0)L(B,w)%d(B,w)

= /WO(B ’ w,G,U)Wo(w ‘ G)g)L(B’w)ad(B,w)

-lGl/2 p 1/2 -
) ) )
O(/ (7) [T det (X7, Xpa,) * exp —%Z(BPW—BPaj,j)T(XganPaj)(BPW_Bpaf"j) 8
j=1 =
K anp o
(W 2 w2 exp ¢ =5 > (Xj = Bpy, i Xpa,) T (Xj — Bia, jXpay) ¢ | d(B.w)
j=1
ey p |Gl/2

w anpt+k « Oé—l_/y

J(5) e e e e (7
7j=1
—|G|/2 P

w /2

/<a+7 .Udet (XP& XPaJ) 8
7j=1
p

o+ T

exXp § — % Zl(BPa],‘] BPa ]) (XPanPa )(BPa]] BPa ]) dBdw
j:
— (1% /2 anptr _q - Tl
_ _’_; w2 exp _7ZX] P, Xj ¢ dw
j=1

Given the prior distribution (5), we obtain the posterior distribution of (G, o) as

(G, 0) X fo(G,0)mo(G, o)

_ anp+k
o —|G|/2 p
= <1+7> [ DoRSS;(@) SIRRRLER PPIN(e)
j=1
G
= D16 1(Q).

C Simulation results

C.1 Mixing behavior

In Fig. 6 we examine the mixing behavior of the three types of proposals for a moderately
small sample size. We repeat the simulation studies shown in panels (a), (b), and (c) of
Fig. 1 in Section 4.1 by choosing n = 100 and keeping all the other simulation settings
unchanged. We confirm that all 90 trajectories have reached the red line, which appears to
be the global mode. Figure 7 shows the mixing behavior of our method and the minimal
I-MAP MCMC for the heterogeneous case where, for each j € [p], we sample error variance
w; for node j uniformly from [0.5, 1.5]. We still observe that some trajectories of the minimal
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Figure 6: Log posterior probability times 10~2 versus the effective number of iterations of 30 MCMC runs
for p = 20 and n = 100. The red line represents the true ordering o*.
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Figure 7: Log posterior probability x10™* versus the effective number of iterations of 30 MCMC runs with

random initialization for the heterogeneous case with p = 20 and » = 1000: (a) minimal I-MAP MCMC, (b)
the proposed method. The red line represents the true ordering o*.

I-MAP MCMC get stuck at local modes, while the mixing behavior of the proposed method
is consistently good despite of the model misspecification.

C.2 Performance evaluation

We consider more scenarios for the simulation study described in Section 4.2. We always fix
p = 40. In Table 4, we still generate X under the equal variance assumption but we sample
each B:j for each edge i — 7 in the DAG G* from the standard Gaussian distribution. The
advantage of the proposed method is as significant as in Table 1 presented in the main text.
In Table 5, we sample the error variance wj for each j uniformly from [0.7,1.3] and sample
each Bj; from the uniform distribution on [-1,—0.3] U [0.3,1]. Comparing Table 5 with the

left column of Table 1, we see that the advantage of our method over the competing ones
becomes more substantial.
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Signal N(0,1)
Method n 100 500 1000
Proposed HD 10.4+0.8 5.24+0.5 4.24+0.4
FNR 34.2+1.7 17.0£1.7 13.8£1.2
FDR 2.3+0.5 1.740.5 1.64+0.4

Flip 0.8+0.3 1.2+0.3 1.0+0.3
Time  12.84£0.2 13.24+0.2 13.24+0.2

TD HD 12.0£0.8  6.3£0.6  6.4+0.6
FNR  39.3£1.8 18.1£1.5 15.5%1.1
FDR 3.7£0.8 48+1.2 6.8£1.2
Filp 1.3£0.4 24+0.6  3.1£0.6
Time 0.6£0.0 0.540.0 0.5+0.0

LISTEN HD 12.5+0.8  6.5£0.6  5.9£0.6
FNR  39.3£1.8 18.84+1.5 15.3%+1.2
FDR 6.6t1.1 4.8+1.1 5.8£1.1
Flip 2.0+0.4 2.6+£0.6  2.840.5
Time 0.5+0.0 0.5%+0.0 0.5+0.0

Table 4: Standard Gaussian signal case with p = 40. Each entry gives mean + 1 standard error. The best
performance with a margin of more than one se is highlighted in boldface. Time is measured in seconds.

We also conduct simulation studies on the proposed algorithm with weakly increas-
ing error variances. We fix n = 1,000 and p = 40, and sample the error variance w; ~
Uniform([1 — b, 1+ b]) for 6 different heterogeneity levels b. We set o0* = (1,...,p) to be the
true ordering and sort the error variances in ascending order to make them weakly increasing
in o*. We generate G* by adding ¢ — j for ¢ < j with probability pedqge = 3/(2p — 2) and
draw the edge weight B;j independently from some distribution F'. In Table 6, we present
the results with 4 metrics: Hamming distance (HD), the false negative rate (FNR), false
discover rate (FDR), and the percentage of flipped edges (Flip). The rows of Uniform and
Gaussian indicate the result for F' being Uniform([—1,—0.3] U [0.3,1]) and that for F' being
the standard normal distribution, respectively. Notably, the Flip rate is always very low,
which indicates that the algorithm can accurately identify the true ordering. When b = 0.9,
FNR tends to be significantly larger. This is because some nodes may have very large error
variances when b = (0.9, and thus the signal-to-noise ratio is low, making it challenging for
the algorithm to detect edges.

C.3 Single-cell real data analysis

Figure 8 shows the result of the minimal -l MAP MCMC (with decomposable score) for the
real data analysis. See Section 5 in the main text for details.
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Signal Heterogeneity
Method n 100 500 1000

Proposed HD 10.3+£0.6 3.2+0.5 4.4+0.8
FNR 33.1+1.6 6.0+1.0 6.0+0.8
FDR 4.4+0.7 6.1£1.2 8.9+£1.5
Flip 2.8+0.5 5.4+1.0 6.0+0.8
Time  12.0£0.2 11.6+£0.2 12.3+0.2

TD HD 15.8£1.0  6.8£0.8 8.0+1.2
FNR  45.5£2.0 10.0£1.1 9.1+£1.2
FDR  1484+1.6 13.44+1.6 16.3£2.3
Filp 7.5£0.9 9.2+1.1 9.0£1.2
Time 0.5+0.0 0.5£0.0 0.5%0.0

LISTEN HD 16.0£1.0  8.4+£1.0 8.9+1.2
FNR  46.24+19 11.3£1.0 10.0+£1.1
FDR  15.2£1.8 16.4£1.8 17.9£2.3
Flip 7.1+£0.8  10.5£1.0 9.7£1.1
Time 0.5+0.0 0.6+0.0 0.5+0.0

Table 5: Heterogeneous error variance case with p = 40. Each entry gives mean + 1 standard error. The best
performance with a margin of more than one se is highlighted in boldface. Time is measured in seconds.

Signal b=20 b=10.1 b=10.3 b=0.5 b=0.7 b=10.9
Uniform HD  0.2+0.1 0.1+0.1  0.1+£0.1  0.1£0.1  0.2+£0.1  1.240.2
FNR 0.3+£0.2 0.3£0.2 0.2+£0.2 0.3+£0.2 0.5+0.2 4.04+0.6

FDR 0.3%0.2 0.240.1 0.1£0.1  0.2+£0.1  0.2+£0.1  0.3+0.2

Flip 0.3+0.2 0.2+0.1 0.1£0.1 0.2+0.1  0.2+0.1  0.2£0.1

Gaussian HD  4.940.5 4.3£0.4 45404 4.7+04 51404 6.0£04
FNR 154#+14 15.3+1.3 149412 155£1.2 17.1+£1.3 20.2+1.3
FDR 22406 0.44+0.2 0.5£0.2 0.3£0.2 0.3+£0.2 0.44+0.2
Flip 14404 0.3£0.1 0.4+£0.2 0.2+0.1 0.240.1  0.2£0.1

Table 6: A table for increasing error variances with heterogeneity level b = 0,0.1,...,0.9 with p = 40. We
sample error variance from Uniform([1 — b,1 + b]) and sort in ascending order. Nonzero edge weights are
from Uniform([—1, —0.3] U [0.3, 1]) in Uniform case and N(0,1) in Gaussian case. Each entry gives mean =+ 1
standard error.

Figure 8: Result of the minimal I-MAP
MCMC for the real case-control data
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