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Abstract— Accurate uncertainty quantification is necessary to
enhance the reliability of deep learning (DL) models in real-
world applications. In the case of regression tasks, prediction
intervals (PIs) should be provided along with the deterministic
predictions of DL models. Such PIs are useful or ‘high-quality
(HQ)” as long as they are sufficiently narrow and capture
most of the probability density. In this article, we present a
method to learn PIs for regression-based neural networks (NNs)
automatically in addition to the conventional target predictions.
In particular, we train two companion NNs: one that uses one
output, the target estimate, and another that uses two outputs,
the upper and lower bounds of the corresponding PI. Our
main contribution is the design of a novel loss function for the
PI-generation network that takes into account the output of the
target-estimation network and has two optimization objectives:
minimizing the mean PI width and ensuring the PI integrity
using constraints that maximize the PI probability coverage
implicitly. Furthermore, we introduce a self-adaptive coefficient
that balances both objectives within the loss function, which
alleviates the task of fine-tuning. Experiments using a synthetic
dataset, eight benchmark datasets, and a real-world crop yield
prediction dataset showed that our method was able to maintain a
nominal probability coverage and produce significantly narrower
PIs without detriment to its target estimation accuracy when
compared to those PIs generated by three state-of-the-art neural-
network-based methods. In other words, our method was shown
to produce higher quality PIs.

Index Terms— Companion networks, deep regression, predic-
tion intervals (PIs), uncertainty quantification.

I. INTRODUCTION

EEP learning has gained a great deal of attention due

to its ability to outperform alternative machine learning
methods in solving complex problems in a variety of domains.
In conjunction with the availability of large-scale datasets and
modern parallel hardware architectures (e.g., GPUs), convolu-
tional neural networks (CNNs), as one popular deep learning
(DL) technique, have attained unprecedented achievements in
fields such as computer vision, speech recognition, natural
language processing, medical diagnosis, and others [1].
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While the undeniable success of DL has impacted applica-
tions that are used on a daily basis, many theoretical aspects
remain unclear, which is why these models are usually referred
to as “black boxes” in the literature [2]. In addition, numerous
reports suggest that current DL techniques typically lead to
unstable predictions that can occur randomly and not only
in worst-case scenarios [3]. As a consequence, they are con-
sidered unreliable for applications that deal with uncertainty
in the data or in the underlying system, such as weather
forecasting [4], electronic manufacturing [5], or precision
agriculture [6]. Note that, in this context, reliability is defined
as the ability for a model to work consistently across real-
world settings [7].

One of the limitations of conventional neural networks
(NNs) is that they only provide deterministic point estimates
without any additional indication of their approximate accu-
racy [8]. Reliability and accuracy of the generated point
predictions are affected by factors such as the sparsity of
training data or target variables affected by probabilistic
events [9]. One way to improve the reliability and credibility
of such complex models is to quantify the uncertainty in the
predictions they generate [10]. This uncertainty (ayz) can be
quantified using prediction intervals (PIs), which provide an
estimate of the upper and the lower bounds within which a
prediction will fall according to a certain probability [11].
Hence, the amount of uncertainty for each prediction is
provided by the width of its corresponding PI. PIs account
for two types of uncertainty: model uncertainty (o2 ,,) and
data noise variance (anoise) [11], where 03 = Ifwdel + anzoise.
Model uncertainty arises due to model selection, training data
variance, and parameter uncertainty [12]. Data noise variance
measures the variance of the error between observable target
values and the outputs produced by the learned models.

Recently, some NN-based methods have been proposed
to solve the PI generation problem [11], [12], [13], [14],
[15], [16]. These methods aim to train NNs using loss
functions that aim to balance at least two of the following
three objectives: minimizing mean PI width, maximizing PI
coverage probability, and minimizing the mean error of the
target predictions. Although the aforementioned works have
achieved promising results, there exist some limitations that
need to be addressed. For instance, they rely on the use
of deep ensembles; however, training several models may
become impractical when applied to complex models and
large datasets [17]. Furthermore, their performance is sensitive
to the selection of multiple tunable hyperparameters whose
values may differ substantially depending on the application.
Therefore, fine-tuning an ensemble of deep NNs becomes a
computationally expensive task. Finally, methods that generate
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Fig. 1. Example of our PI-generation method on a synthetic dataset.

PI bounds and target estimations simultaneously have to deal
with a trade-off between the quality of generated PIs and the
accuracy of the target estimations.

Pearce et al. [12] coined the term high-quality (HQ) prin-
ciple, which refers to the requirement that PIs be as narrow
as possible while capturing some specified proportion of the
predicted data points. Following this principle, we pose the
PI generation problem for regression as a multiobjective opti-
mization problem. In particular, our proposal involves training
two NNs: one that generates accurate target estimations and
one that generates narrow PIs (see Fig. 1).

The first NN is trained to minimize the mean squared
error (MSE) of the target estimations. Our main contribution
is the design of a loss function for the second NN that,
besides the generated PI bounds and the target, considers
the output of the first NN as an additional input. It mini-
mizes the mean PI width and uses constraints to ensure the
integrity of the generated PIs while implicitly maximizing the
probability coverage (Section III-A). Our second contribution
is a method that updates the coefficient that balances the
two optimization objectives of our loss function automati-
cally throughout training (Section III-C). Our method avoids
generating unnecessarily wide PIs by using a technique that
sorts the mini-batches at the beginning of each training epoch
according to the width of the generated PIs (Section III-B).
Then, we apply a Monte Carlo-based approach to account
for the uncertainty of the generated upper and lower bounds
(Section III-E). Finally, when compared to three state-of-the-
art NN-based methods, we show that our method is able to
produce PIs that maintain the target probability coverage while
yielding better mean width without detriment to its target
estimation accuracy (Section IV).

Our specific contributions are summarized as follows.

1) Our main contribution is a novel loss function called

dual accuracy-quality-driven (DualAQD) used to train
a Pl-generation NN. It is designed to solve a multiob-
jective optimization problem: minimizing the mean PI
width while ensuring PI integrity using constraints that
maximize the probability coverage implicitly.
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2) We present a new PI-generation framework that consists
of two companion NNs: one that is trained to produce
accurate target estimations, and another that generates
HQ PIs; thus, avoiding the common trade-off between
target estimation accuracy, and quality of PIs.

3) We introduce a self-adaptive coefficient that balances
the two objectives of our DualAQD loss function. This
differs from previous approaches that consider this bal-
ancing coefficient as a tunable hyperparameter with a
fixed value throughout the training process.

4) We present a method called batch-sorting that sorts the
mini-batches according to their corresponding PI width
and, as such, avoids generating unnecessarily wide PIs.

5) Our method is shown to generate higher quality PIs and
better reflects varying levels of uncertainty within the
data than the compared methods.

II. RELATED WORK

One of the more common approaches to uncertainty
quantification for regression tasks is via Bayesian approaches,
such as those represented by Bayesian NNs (BNNs), which
model the NN parameters as distributions. As such, they have
the advantage that they allow for a natural quantification of
uncertainty. In particular, uncertainty is quantified by learning
a posterior weight distribution [18], [19]. The inference
process involves marginalization over the weights, which
in general is intractable, and sampling processes such as
Markov chain Monte Carlo (MCMC) can be computationally
prohibitive. Thus, approximate solutions have been formulated
using variational inference (VI) [20]. However, Wu et al. [21]
argued that VI approaches are fragile since they require
careful initialization and tuning. To overcome these issues,
they proposed approximating moments in NNs to eliminate
gradient variance. They also presented an empirical Bayes
procedure for selecting prior variances automatically.
Moreover, Izmailov et al. [22] discussed scaling BNNs to
deep NNs by constructing low-dimensional subspaces of
the parameter space. By doing so, they were able to apply
elliptical slice sampling and VI, which struggle in the
full parameter space. In addition, Lut et al. [23] presented
a Bayesian-learning-based sparse stochastic configuration
network that replaces the Gaussian distribution with a Laplace
one as the prior distribution for output weights.

Despite the aforementioned improvements in Bayesian
approaches, they still suffer from various limitations. Namely,
the high dimensionality of the parameter space of deep
NNs, including complex models such as CNNs, makes the
cost of characterizing uncertainty over the parameters pro-
hibitive [24]. Attempts to scale BNNs to deep NNs are
considerably more expensive computationally than VI-based
methods and have been scaled up to low-complexity problems
only, such as MNIST [25]. Conversely, non-Bayesian methods
do not require the use of initial prior distributions and biases
to train the models [11]. Recent works have demonstrated
that non-Bayesian approaches provide better or competitive
uncertainty estimates than their Bayesian counterparts [11],
[12], [26]. In addition, they are scalable to complex problems
and can handle millions of parameters.

MC-Dropout was proposed by Gal and Ghahramani [8]
to quantify model uncertainty in NNs. They cast dropout
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training in deep NNs as approximate Bayesian inference in
deep Gaussian processes. The method uses dropout repeatedly
to select subsamples of active nodes in the network, turning a
single network into an ensemble. Hence, model uncertainty is
estimated by the sample variance of the ensemble predictions.
MC-Dropout is not able to estimate PIs themselves, as it
does not account for data noise variance. Therefore, Zhu and
Laptev [27] proposed estimating PIs by quantifying the model
uncertainty through MC-Dropout, coupled with estimating the
data noise variance as the MSE calculated over an independent
held-out validation set.

Recently, several non-Bayesian approaches have been
proposed for approximate uncertainty quantification.
Such approaches use models whose outputs provide
estimations of the predictive uncertainty directly. For
instance, Schupbach et al. [28] proposed a method that
estimates confidence intervals in NN ensembles based
on the use of U-statistics. Other techniques estimate PIs
by using ensembles of feedforward networks [29] or
stochastic configuration networks [30] and bootstrapping.
Lakshminarayanan et al. [26] presented an ensemble
approach based on the mean-variance estimation (MVE)
method introduced by Nix and Weigend [31]. Here, each
NN has two outputs: one that represents the mean (or target
estimation) and the other that represents the variance of
a normal distribution, which is used to quantify the data
noise variance. Other approaches use models that generate
PI bounds explicitly. Khrosavi et al. [11] proposed a lower
upper bound estimation (LUBE) method that uses a NN and
a loss function to minimize the PI width while maximizing
the probability coverage using simulated annealing.

Similar approaches have attempted to optimize the LUBE
loss function using methods such as genetic algorithms [13]
and particle swarm optimization [14]. Pearce et al. [12] pro-
posed a method called QD-Ens that consists of a quality-driven
loss function similar to LUBE but that is compatible with gra-
dient descent. Then, Salem et al. [16] proposed QD+ which
is based on QD-Ens, which uses exactly the same two penalty
functions to reduce the PI width and maximize the probability
coverage. They used three-output NNs and included a third
penalty term that aims to decrease the MSE of the target
predictions and a fourth penalty term to enforce the point
predictions to lay inside the generated PIs. In our work,
we use only three penalty terms; the differences are explained
in Section III-F. Finally, both QD-Ens and QD+ used an
ensemble approach to estimate the model uncertainty while
we use a Monte Carlo approach on a single network.

III. PROPOSED METHODOLOGY
A. DualAQD Loss Function

Let X2 = {xq,...,xy} be a training batch with N samples
where each sample x; € R? consists of z covariates. Further-
more, let y» = {y;,..., yn} be a set of corresponding target
observations where y; € R. We construct a NN regression
model that captures the association between X’ and y?. More
specifically, f(-) denotes the function computed by the NN,
and 6 ; denotes its weights. Hence, given an input X;, f(x;, 0 r)

computes the target estimate y;. This network is trained to
generate accurate estimates y; with respect to y;. We quan-
tify this accuracy by calculating the MSE of the estimation
MSE. = (1/N) Zf\’:l(yi — y;)%. Thus, f is conventionally
optimized as follows:

0 ; = argmin MSE.
br

Once network f(-) is trained, we use a separate NN whose
goal is to generate PIs for y” given data X’. Let g(-) denote
the function computed by this PI-generation NN, and 6,
denotes its weights. Given an input x;, g(x;,6,) generates
its corresponding upper and lower bounds, y¥ and &f, such
that [)7?, y¢1 = g(x;, 0,). Note that there is no assumption of
f}f and 3% being symmetric with respect to the target estimate
9 produced by network f(-). We describe its optimization
procedure below.

We say that a training sample x; € X’ is covered (i.e.,
we set k; = 1) if both the predicted value y; and the target
observation y; fall within the estimated PI

(D

b — 1, if $¥ <9 < 9% and §¢ < y; < ¥
" lo, otherwise.

Then, using k;, we define the PI coverage probability (PICP)
for X” as the percent of covered samples with respect to the
batch size N: PICP = 3" k;/N.

The HQ principle suggests that the width of the PIs should
be minimized as long as they capture the target observation
value. Thus, Pearce et al. [12] considered the mean PI width
of captured points (MPIW ) as part of their loss function

1 N
MPIWoap = — == Z(&i L 2)

! i=1
where € is a small number used to avoid dividing by zero.
However, we argue that minimizing MPIW ,,; does not imply
that the width of the PIs generated for the noncaptured samples
will not decrease along with the width of the PIs generated

for the captured samples.!

Furthermore, consider the case where none of the sam-
ples are captured by the PIs, as likely happens at the
beginning of the training. Then, the penalty is minimum
(i.e., MPIW_,, = 0). Hence, the calculated gradients of the
loss function will force the weights of the NN to remain in
the state where Vi, k; = 0, which contradicts the goal of
maximizing PICP.

Instead of minimizing MPIW ., directly, we let

N
1 ou e

Plyen = = D (15 = il + i = 571) 3)

i=1
which we minimize instead. This function quantifies the width
of the PI as the sum of the distance between the upper bound
and the target and the distance between the lower bound and
the target. We argue that Pl is more suitable than MPIW .,

'We provide a toy example demonstrating this behavior in the following link
https://github.com/GiorgioMorales/PredictionIntervals/blob/master/models/
QD_toy_example.ipynb
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given that it forces y¥, y;, and f»f to be closer together. For
example, suppose that the following case is observed during
the first training epoch: y; = 24, y; = 25, ¥ = 0.2, and
$¢ = 0.1. Then, MPIW,,, = O given that the target is not
covered by the PI, while Pl,e, = 47.7. As a result, Pl will
penalize this state while MPIW ,, will not. Thus, we define
our first optimization objective as

min £; = min Ply,.
0, 0,

However, minimizing £; is not enough to ensure the
integrity of the PIs. Their integrity is given by the conditions
that the upper bound must be greater than the target and
the target estimate (¥ > y; and ¥ > J;) and that the
target and the target estimate, in turn, must be greater than
the lower bound (y; > $' and §; > 3$¢). Note that if
the differences (3 — y;) and (y; — $¢) are greater than the
maximum estimation error within the training batch X’ (i.e.,
Of —yi) > max; [§; — y;| and (3} — y;) > max; [J; — yil,
Vi € [1,..., N]), it is implied that all samples are covered
(ki =1,Viell,...,N).

Motivated by this, we include an additional penalty function
to ensure PI integrity and maximize the number of covered
samples within the batch simultaneously. Let us denote the
mean differences between the PI bounds and the target esti-
mates as d, = > (3% — yi)/N and dp = > (v; — $1)/N.
Let £ = max; |J; — y;| denote the maximum distance between
a target estimate and its corresponding target value within the
batch (§ > 0). From this, our penalty function is defined as

P = &5t 4 5, “4)

Here, if the PI integrity is not met (i.e., d, < 0 or d; < 0), then
their exponent magnitude becomes larger than &, producing a
large penalty value. Moreover, these terms encourage both d,
and d, not only to be positive but also to be greater than &.
This implies that the distance between the target y; and any of
its bounds will be larger than the maximum error within the
batch, &, thus the target y; will lie within the PI. From this,
we define our second optimization objective as

min £, = min P.
0.9 0‘2

Then, our proposed DualAQD loss function is given by
Losspuaiagp = £1 + A L (5)

where ) is a self-adaptive coefficient that controls the relative
importance of £; and £,. Hence, our multiobjective optimiza-
tion problem can be expressed as

0, = argmin LoSSpualaQD-
05’

For simplicity, we assume that f(-) and g(-) have L layers
and the same network architecture except for the output layer.
Network f(-) is trained first. Then, weights 0, are initialized
using weights @ ; except for those of the last layer: 0;0)[1 :
L —1]1=0,[1:L — 1]. Note, that, in general, DualAQD can
use different network architectures for f(-) and g(-).
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Fig. 2. L3 penalty calculation. (a) Without batch sorting. (b) With batch
sorting.

B. Batch Sorting

The objective function £, minimizes the term P [see (4)],
forcing the distance between the target estimate of a sample
and its PI bounds to be larger than the maximum absolute
error within its corresponding batch. This term assumes that
there exists a similarity among the samples within a batch.
However, consider the case depicted in Fig. 2 where we show
four samples that have been split randomly into two batches.
In Fig. 2(a), the PIs of the second and third samples already
cover their observed targets. Nevertheless, according to L,
these samples will yield high penalties because the distances
between their target estimates and their PI bounds are less
than £V and £®@, respectively, forcing their widths to increase
unnecessarily.

For this reason, we propose a method called “batch
sorting,” which consists of sorting the training samples with
respect to their corresponding generated PI widths after each
epoch. By doing so, the batches will process samples with
similar widths, avoiding unnecessary widening. For example,
in Fig. 2(b), the penalty terms are low given that (¥, d" >
gD and d?,d? > €@, Note that, during testing, the PI gen-
erated for a given sample is independent of other samples and,
as such, batch sorting becomes unnecessary during inference.

C. Self-Adaptive Coefficient A

The coefficient A of (5) balances the two optimization objec-
tives £ and £,. In this section, we propose that, instead of A
being a tunable hyperparameter with a fixed value throughout
training, it should be adapted throughout the learning process
automatically.

Typically, the PICP value improves as long as the MPIW
value increases; however, extremely wide PIs are not useful.
We usually aim to obtain PIs with a nominal probability
coverage no greater than (I — o). A common value for the
significance level « is 0.05, in which case we say that we are
95% confident that the target value will fall within the PL

Let PICPt(r’;in denote the PICP value calculated on the
training set X, after the tth training epoch. If PICPEr’;in is
below the confidence target (1 — ), more relative importance
should be given to the objective £, that enforces PI integrity
(i.e., A should increase). Likewise, if PICPY. is higher than
(1 — o), more relative importance should be given to the
objective £; that minimizes MPIW (i.e., A should decrease).

We formalize this intuition by defining the cost C that
quantifies the distance from PICPt(r';lin to the confidence target
(l-a):C=(U-a)— PICPtf.;)in. Then, we propose to increase
or decrease A proportionally to the cost function C after each
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Algorithm 1 DualAQD Method

1: function TRAINNNWITHDUALAQD (X, 4ins Yirains f> &> @, 1)
2 A<1

3 for each t € range(l, maxEpochs) do

4 if 1 > 1 then

5: Batches < batchSorting(X;ains Yirain, widths)
6: else

7 Batches < shuffleXirains Yirain)

8: for each batch € Batches do

9: X, y < batch
10: Yy« f(x)

11: . 3¢ <« g(x)
12: loss < DualAQD()\, y, 3, $*, 3%

13: update(g, loss)

14: PICPY.  widths® < metrics Xirains Yirain)

15: // Update coefficient A

16: C <« ((1—a)—PICP". )
17: A=A+n-C

18: return g

training epoch as follows (see Algorithm 1):
A =70y g.c (6)

where A\() is the value of the coefficient \ at the tth iteration
(we consider that A® = 1), and 7 is a tunable scale factor.
Note that Algorithm 1 takes as inputs the data Xy,
and corresponding targets Y., as well as the trained
prediction network f, the untrained network g, the
significance level «, and the scale factor 7. Function
batchSort ing(Xeain, Yiain, widths'™D) returns a list of
batches sorted according to the PI widths generated during
the previous training epoch (see Section III-B). Function
DualAQD(A, y, ¥, %, $°) represents the DualAQD loss
function [see (5)] while update(g, loss) encompasses the
conventional backpropagation and gradient descent processes
used to update the weights of network g. Furthermore, function
metrics(Xirain, Yirain) Passes Xain through g to generate the
corresponding PIs and their widths, and to calculate compares
the output to Y., to calculate the PICP". value using Yirain-

train

D. Parameter and Hyperparameter Selection

We train a NN on the training set X, during 7 epochs
using Losspuaiagp as the loss function. After the rth training
epoch, we calculate the performance metrics z; = {PICP\(,’;],
MPIWga)l} on the validation set X,y. Thus, we consider that
the set of optimal weights of the network, 6, will be those that
maximize performance on the validation set. The remaining
question is what are the criteria to compare two solutions z;
and z;.

Taking this criterion into account, we consider that a solu-
tion z; dominates another solution z; (z; < z;) if.

1) PICPY) > PICPY) and PICP) < (1 — ).

val val

2) PICPY) == PICP‘(,Q < (1 —a) and MPIWY, <
MPIW!).

val *

3) PICP‘(,;)1 > (1 — «) and MPIW
In other words, if & = 0.05, we seek a solution whose PICP,,
value is at least 95%. After exceeding this value, a solution z;
is said to dominate another solution z; only if it produces

narrower Pls.

¢ < MPIWY).

val val *

We use a grid search to tune the hyperparameter n for
training [see (6)]. For each value, we train a NN using ten-fold
cross-validation and calculate the average performance metrics
on the validation sets. Then, the hyperparameters are selected
using the dominance criteria explained above.

E. PI Aggregation Using MC-Dropout

In Section I, we explained that both the model uncertainty
(2 =oder) and the data noise variance (Unom) have to be taken
into account when generating PIs. A model trained using
Losspualagp generates PI estimates based on the training data;
that is, it accounts for o2 .. However, we still need to quantify
the uncertainty of those estimates due to arfmdel.

Unlike previous work that used explicit NN ensembles to
quantify o2 ., [12], [26], we propose to use a Monte Carlo-
based approach. Specifically, we use MC-Dropout [32], which
consists of using dropout layers that ignore each neuron of
the network according to some probability or dropout rate.
Then, during each forward pass with active dropout layers,
a slightly different network architecture is used and, as a
result, a slightly different prediction is obtained. According
to Gal and Ghahramani [8], this process can be interpreted as
a Bayesian approximation of the Gaussian process.

Our approach consists of using M forward passes through
the network with active dropout layers. Given an input Xx;, the
estimates 3", 3", and ;" are obtained at the mth itera-
tion. Hence, the expected target estimate y;, the expected upper

bound )"zl, and the expected lower bound )_’, are calculated
as: §i = (/M) 3 S = /M L 5 =
(/M) Sl 5.

F. Comparison to QD-Ens and QD+

Here, we consider the differences between our method
(DualAQD) and the two methods QD-Ens [12] and QD+ [16].
For reference, we include the loss functions used by QD-Ens
and QD+
— PICP)?

Lossgp = MPIW 4 + 6 max (0, (1 —a)

N
oa(l — )
Lossgp+ = (1 — A1 — A)MPIW

A (1—/\2) max(0, (1—a)—PICP)> 4+ A, MSEc
+ = Z max - j;f) ]

where §, A\j, A2, and & are hyperparameters used by QD-Ens
and QD+ to balance the learning objectives. The differences
compared to our method are listed in order of importance from
highest to lowest as follows.

1) QD-Ens and QD+ use objective functions that maximize
PICP directly aiming to a goal of (I — «) at the batch
level. We maximize PICP indirectly through £,, which
encourages the model to produce PIs that cover as many
training points as possible. This is achieved by pro-
ducing PIs whose widths are larger than the maximum
absolute error within each training batch. Then, the
optimal weights of the network are selected as those
that produce a coverage probability on the validation set
of at least (1 — ).

r— y,) + max(O, ()7,
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2) Note that PICP is not directly differentiable as it involves
counting the number of samples that lay within the
predicted PIs. However, QD-Ens and QD+ force its
differentiation by including a sigmoid operation and
a softening factor (i.e., an additional hyperparameter).
On the other hand, the loss functions of DualAQD are
already differentiable.

3) Our objective £; minimizes Pl,e,, which is a more suit-
able penalty function than MPIW ., (see Section III-A).

4) Our objective L, maximizes PICP and ensures PI
integrity simultaneously. QD+ uses a truncated linear
constraint and a separate function to maximize PICP.

5) NN-based PI generation methods aim to balance three
objectives: 1) accurate target prediction; 2) generation
of narrow PIs; and 3) high coverage probability.
QD-Ens uses a single coefficient § within its loss
function that balances objectives 2) and 3) and does not
optimize objective 1) explicitly, while QD+ uses three
coefficients Aj, Ay, and & to balance the three objectives.
All of the coefficients are tunable hyperparameters. Our
loss function, LossSpuaiagp, uses a balancing coefficient
whose value is not fixed but is adapted throughout the
training process using a single hyperparameter (i.e., the
scale factor n).

6) Our approach uses two companion NNs f(-) and g(-)
that optimize objective 1) and objectives 2) and 3),
respectively, to avoid the trade-off between them.
Conversely, the other approaches optimize a single NN
architecture.

7) We use MC-Dropout to estimate the model uncertainty.
By doing so, we need to train only a single model
instead of using an explicit ensemble of models, as in
QD-Ens and QD+. Also, QD+ requires fitting a split
normal density function [33] for each data point to
aggregate the PIs produced by the ensemble, thus
increasing the complexity of the learning process.

IV. EXPERIMENTS

A. Experiments With Synthetic Data

Previous approaches have been tested on datasets with sim-
ilar uncertainty levels across all their samples, or on synthetic
datasets with a single region of low uncertainty surrounded
by a gradual increase of noise. This is a limitation as it does
not allow testing the ability of the PI’s to adapt to rapid
changes of uncertainty within the data. Therefore, we test
all of the methods on a more challenging synthetic dataset
with more fluctuations and extreme levels of uncertainty.
The code is available at https://github.com/GiorgioMorales/
PredictionIntervals.

We created a synthetic dataset with varying PI widths that
consists of a sinusoid with Gaussian noise. Specifically, the
dataset contains 1000 points generated using the equation
y(x) = 5cos(x)+10+€, where x € [—5, 5] and € is Gaussian
noise whose magnitude depends on x: € = (2cos(1.2x)+2) v
where v ~ N(0,1). For these experiments, we trained a
feed-forward NN with two hidden layers, each with 100 nodes
with ReLU activation. A 5 x 2-fold cross-validation design
was used to train and evaluate all networks.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

PI METRICS MSE,,, MPIW,,, PICPy,, AND Pls,,; EVALUATED ON
THE SYNTHETIC DATASET USING 5 x 2 CROSS-VALIDATION

Method MSEyqa MPIW,, | PICP,u (%) Plsoul
DualAQD 527 £027 | 730 £029 | 955 048 | 1.52 £ 0.13
DualAQD_noBS | 527 £ 027 | 9.16 £ 035 | 963 £ 0.77 | 3.08 £ 0.19
QD+ 528 £ 029 | 856 £0.14 | 955 £031 | 3.12 £ 024
QD-Ens 531 £ 026 | 10.17 £0.79 | 94.0 £ 1.57 | 488 £ 0.17
MC-Dropout-PI | 5.22 = 030 | 931 £ 027 | 933 £ 063 | 5.04 & 0.08

Knowing the probability distribution of the noise at each
position x allows us to calculate the ideal 95% PIs (« = 0.05),
[y*, ¥*1, as follows:

y(x) = y(x)+1.96¢, and yg(x) =y(x)—1.96¢

where 1.96 is the approximate value of the 95% confidence
interval of the normal distribution. Therefore, we define a
new metric we called PIs that sums the absolute differences
between the estimated bounds and the ideal 95% bounds for
all the samples within a set X

1
Pl = 15 2 (100 = @1 1 @) = @),
xeX

We compared the performance of DualAQD using batch
sorting and without using batch sorting (denoted as
“DualAQD_noBS” in Table I). All networks were trained
using a fixed mini-batch size of 16 and the Adadelta opti-
mizer. Table I gives the average performance for the metrics
calculated on the validation sets, MSE,,;, MPIW,,, PICP,,,
and Pl;,,, and corresponding standard deviations.

We also compared our DualAQD PI generation
methodology to three other NN-based methods: QD+ [16],
QD-Ens [12], and a PI generation method based on MC-
Dropout alone [27] (denoted MC-Dropout-PI). For the sake
of consistency and fairness, we used the same configuration
(i.e., network architecture, optimizer, and batch size) for all
the networks trained in our experiments. In our preliminary
experiments, for the case of QD+, QD-Ens, and MC-Dropout-
PI, we found that batch sorting either helped to improve their
performance or there was no significant change. Thus, for
the sake of fairness and consistency, we decided to use batch
sorting for all compared methods. In addition, we tested
Dropout rates between 0.1 and 0.5. The obtained results did
not indicate a statistically significant difference; thus, we used
a Dropout rate of 0.1 for all networks and datasets.

Note that the only difference between the network architec-
ture used by the four methods is that QD+ requires three
outputs, QD-Ens requires two (i.e., the lower and upper
bounds), and MC-Dropout-PI requires one. For Dual AQD and
MC-Dropout-PI, we used F = 100 forward passes with active
dropout layers. For QD+ and QD-Ens, we used an ensemble of
five networks and a grid search to choose the hyperparameter
values. Fig. 3 shows the PIs generated by the four methods
from the first validation set together with the ideal 95% PIs.

B. Benchmarking Experiments

We experimented with eight open-access datasets from the
UC Irvine Machine Learning Repository [34]. Note that even
though our experiments use scalar and 2-D regression tasks
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Fig. 3. Performance of PI generation methods on the synthetic dataset.

(Section IV-C), our proposed method can be extended to
other tasks such as classification. For each dataset, we used
a feed-forward NN whose architecture was the same as that
described in Section IV-A. We used ten-fold cross-validation
to train and evaluate all networks. Table II gives the average
performance for the metrics calculated on the validation sets,
MSE,,, MPIW,,, and PICP,,, and corresponding standard
deviations. We applied z-score normalization (mean equal to
0 and standard deviation equal to 1) to each feature in the train-
ing set while the exact same scaling was applied to the features
in the validation and test sets. Likewise, min-max normaliza-
tion was applied to the response variable; however, Table II
shows the results after rescaling to the original scale. Similar
to Section IV-A, all networks were trained using a fixed
mini-batch size of 16, except for the Protein and Year datasets
that used a mini-batch size of 512 due to their large size.
The bold entries in Table II indicate the method that
achieved the lowest average MPIW,, value and that its
difference with respect to the values obtained by the other
methods is statistically significant according to a paired z-test
performed at the 0.05 significance level. The results obtained
by DualAQD were significantly narrower than the compared
methods while having similar MSE,, and PICP,, of at least
95%. Furthermore, Fig. 4 depicts the distribution of the scores
achieved by all the compared methods on all the datasets,
where the line through the center of each box indicates the
median F1 score, the edges of the boxes are the 25th and 75th
percentiles, whiskers extend to the maximum and minimum
points (not counting outliers), and outlier points are those
past the end of the whiskers (i.e., those points greater than
1.5 x IQR plus the third quartile or less than 1.5 x IQR
minus the first quartile, where IQR is the inter-quartile range).

TABLE I

PI METRICS MSEy,, MPIW,, AND PICPy,; EVALUATED ON THE
BENCHMARK DATASETS USING TEN-FOLD CROSS-VALIDATION

Dataset Metric DualAQD QD+ QD-Ens MC-

Dropout-PI

MPIW a1 9.99+2.26 12.14£2.05 | 16.13+0.67 | 12.524+2.28

Boston MSEyaq 8.91£3.90 11.91+5.24 | 15.29+£5.07 8.944+3.87
PICP,q (%) 95.0£1.6 95.6+£1.9 97.2+1.3 96.0+0.9

MPIW, 0 15.724+1.42 | 18.5742.06 | 25.42+1.30 | 20.52+1.74

Concrete MSEyq 22454479 | 26.65+£8.02 | 29.304+5.25 | 22.71+4.96
PICP,q(%) 95.240.5 95.2+1.3 97.9£1.6 95.7£1.2

MPIW 0 1.41+0.12 2.9440.05 10.99+1.47 3.81+0.21

Energy MSEya 0.2540.05 0.31£0.08 0.35£0.25 0.26+0.05
PICP,q (%) 96.5+0.6 99.0£1.0 100.040.0 99.5+0.6

MPIW, a1 0.280+0.01 | 0.311£0.01 | 0.50240.01 | 0.33640.01

Kin8nm MSEya 0.005+0.00 | 0.007£0.00 | 0.009£0.00 | 0.00540.00
PICP,q (%) 95.1£0.1 96.6+£0.4 98.5+0.3 97.5+0.4

MPIW 0 14.60+0.35 | 15.314+0.44 | 27.57+1.54 | 16.08+0.63

Power MSEyq 1523+1.34 | 16.43+£1.34 | 17.14%1.11 15.26+1.31
PICP,q (%) 95.240.1 95.7£0.3 99.6+0.2 96.4+0.5

MPIW q; 13.024+0.26 | 13.051+0.14 | 15.79+0.24 | 15.954+0.20

Protein MSEya 14.794+0.40 | 17.51£0.59 | 18.35+0.87 | 15.0510.42
PICP,q (%) 95.0£0.1 95.4+0.4 95.1£0.5 94.84+0.1

MPIW, a1 1.56+0.42 4.1040.17 10.994+1.47 | 4.74+1.20

Yacht MSEyq 0.51£0.53 0.72£0.70 0.35£0.25 0.53+0.54
PICP, (%) 97.1£0.9 98.4+£2.2 100.0+0.0 100.0+0.0

MPIW 0 29.68+0.29 | 32.68+0.25 | 37.034+0.13 | 34.25+0.16

Year MSEq 73.26+0.76 104.8+8.1 78.12+0.87 | 73.13+0.69
PICP,q (%) 95.1£0.1 95.440.9 37.03+0.1 93.824+0.0

Note that even though QD-Ens uses only one hyperparame-
ter (see Section III-F), it is more sensitive to small changes. For
example, a hyperparameter value of § = 0.021 yielded poor
PIs with PICP,, < 40% while a value of § = 0.02105 yielded
too wide PIs with PICP,, < 100%. For this reason, the hyper-
parameter § of the QD-Ens approach was chosen manually
while the scale factor n of DualAQD was chosen using a grid
search with values {0.001, 0.005, 0.01, 0.05, 0.1}. Fig. 5 shows
the difference between the learning curves obtained during
one iteration of the cross-validation for the Power dataset
using two different n values (i.e., n = 0.01 and n = 0.1).
The dashed lines indicate the training epoch at which the
optimal weights 6, were selected according to the dominance
criteria explained in Section III-D. On the other hand, the
hyperparameters A\; and A\, of QD+ were chosen using a
random search since it requires significantly higher training
and execution time.

C. PIs for Crop Yield Prediction

We assert our approach is general in applicability. To test
this assertion, we decided to experiment with a difficult, real-
world application of 2-D regression using spatially correlated
data to convey the usefulness of our method. Specifically,
we focused on the crop yield prediction problem, which has
an important impact on society and is one of the main tasks
of precision agriculture. Accurate and reliable crop yield pre-
diction, along with careful uncertainty management strategies,
enables farmers to make informed management decisions, such
as determining the nitrogen fertilizer rates needed in specific
regions of their fields to maximize profit while minimizing
environmental impact [35].

We use an early-yield prediction dataset of winter wheat
we curated and presented in a previous work [36]. The early-
yield prediction is posed as a regression problem where
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Fig. 5.  MPIW and PICP learning curves obtained for the Power dataset
using DualAQD. (a) n = 0.01. (b) n =0.1.

the explanatory variables are represented by a set of eight
features obtained during the growing season (March). These
features consist of nitrogen rate applied, precipitation, slope,
elevation, topographic position index (TPI), aspect, and two
backscattering coefficients obtained from synthetic aperture
radar (SAR) images from Sentinel-I. The response variable
corresponds to the yield value in bushels per acre (bu/ac),
measured during the harvest season (August). In other words,
the data acquired in March is used to predict crop yield values
in August of the same year.

The yield prediction problem requires 2-D inputs and
2-D outputs. As such, it can be viewed as a 2-D regression

is denoted as Y. The test set was used to generate a predicted
yield map of the entire field, Y, and its corresponding lower
and upper bounds, Y, and Yy, respectively.

Fig. 6 shows the ground-truth yield map for field “A”
(darker colors represent lower yield values) along with the
uncertainty maps obtained by the four compared methods and
their corresponding PICP and MPIW values. Field “A” is used
as a representative field for presenting our results, since we
obtained similar results on the other fields. Here, we define
the uncertainty map U = Y*—Ylasa map that contains the
PI width of each point of the field (darker colors represent
lower PI width and thus lower uncertainty). That is, the wider
the PI of a given point, the more uncertain its yield prediction.

We used four metrics to assess the behavior of the four
methods (Table III). First, we calculated the root mean square
error (RMSE) between the ground-truth yield map Y and
the estimated yield map Y. Then, we considered the mean PI
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Fig. 6. Uncertainty maps comparison for field A.

TABLE III

PI METRICS RMSE(est, MPIW ey, PICPiest, AND &t EVALUATED ON
THE YIELD PREDICTION DATASETS

Field Method RMSEes: | MPIWiesr | 1 %ﬁte“ W
DualAQD 15.44 53.75 92.8 350
A QD+ 17.73 5427 895 397
QD-Ens 15.55 53.99 923 359
MC-Dropout-PI 15.27 51.68 91.8 355
DualAQD 11.16 43.45 94.9 221
B QD+ 11.83 50.17 937 261
QD-Ens 12.95 73.00 95.6 306
MC-Dropout-PI 10.83 47.18 94.4 241
DualAQD 18.48 59.96 96.6 279
c QD+ 2227 62.02 93.9 336
QD-Ens 17.75 39.93 63.8 490
MC-Dropout-PI 17.15 50.61 893 349

width (MPIW,) and PI probability coverage (PICPy). Note
that k-fold or k x 2 cross-validation cannot be used in this
experimental setting. Thus, to help us explain the advantages
of our method over the others in the context of the HQ princi-
ple, we introduce a new metric that summarizes the MPIW .
and PICP metrics shown in Table III. Let MPIW ¢ represent
the mean PI width after min-max normalization using as upper
bound the maximum MPIW,. value among the four methods
in each field. Let u, denote the weighted geometric mean
between MPIW . and (1 — PICPy) (i.e., the complement of
the PI coverage probability) with w € [0, 1] being the relative
importance between both terms. Then,

P = (MPTWie)” (1 — PICPeq) ' ).

According to the HQ principle that aims to obtain nar-
row PIs and high probability coverage, low wu, values are
preferable when comparing the performance of different
PI-generation methods. Fig. 7 shows the comparison of the
WU, metric obtained for each method on the three tested fields
for different w values. In order to summarize the behavior
shown in Fig. 7 into a single metric, we calculated the integral
n = fol e dw. Since we seek to obtain low u, values for
various w, low u values are preferable. Bold entries in Table I11
indicate the method with the lowest wu.

V. DISCUSSION

Our loss function Losspuaagp Was designed to minimize
the estimation error and produce narrow PIs simultaneously
while using constraints that maximize the coverage probability
inherently. From Tables I and II, we note that DualAQD
consistently produced significantly narrower PIs than the com-
pared methods, according to the paired #-test performed at
the 0.05 significance level, except for the Protein dataset,
where QD+ obtained comparable PI widths. Simultaneously,

Field A Field B

1.0 s DualAQD 1.0 mmm DualAQD
QD+ 4 - QD+
QD-Ens

. 4 0.8
. s MC-Dropout-Pl -

QD-Ens
s MC-Dropout-P|

0.0

1.0
Field C

1.0 mmmm DualAQD
== QD+

0.8 QD-Ens a‘ *
= MC-Dropout-PI Y/ Ad

Fig. 7., versus w comparison on yield prediction datasets.

we yielded PICP,, values of at least 95% and better or com-
parable MSE,, values. In addition, the Pl;,, values reported
in Table I demonstrate that DualAQD is the method that
best adapted to the highly varying uncertainty levels of our
synthetic dataset. Thus, the PI bounds generated by DualAQD
were the closest to the ideal 95% PlIs.

Notice that DualAQD obtains lower MSE,, values than
QD+ consistently despite the fact that QD+ also includes an
objective function that minimizes the error of the target pre-
dictions. The reason is that our method uses a NN [i.e., f(-)]
that is specialized in generating accurate target predictions,
and its optimization objective does not compete with others.
Conversely, QD+ uses a loss function that balances four
objective functions: minimizing the PI widths, maximizing PI
coverage probability, minimizing the target prediction errors,
and ensuring PI integrity. The NN used by QD-Ens, on the
other hand, only generates the upper and lower bounds of the
PIs. The target estimate is then calculated as the central point
between the PI bounds. As a consequence of not using a NN
specialized in minimizing the target prediction error, QD-Ens
achieved the worst MSE,,; values of the compared methods,
except for the Year dataset.

It is worth mentioning that one of the advantages of using
DualAQD over QD+ and QD-Ens is that we achieved better
PIs while requiring less computational complexity. That is, our
method requires training only two NNs and uses MC-Dropout
to account for the model uncertainty while QD+ and QD-Ens
require training ensembles of five NNs. In addition, QD+
requires extra complexity given that it uses a split normal
aggregation method that involves an additional fitting process
for each data point during testing. Note that using deep
ensembles of M models is expected to perform better or
similar to MC-Dropout when using M forward passes [37].
In other words, using an ensemble of five NNs, as QD
and QD+ do, is expected to perform better than using five
forward passes through the NN using MC-Dropout. Neverthe-
less, during inference, we are able to perform not only five
but 100 passes through the NN without significantly adding
computationally cost. Our method becomes more practical in
the sense that, even when it uses the rough estimates of model
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uncertainty provided by MC-Dropout, it is still able to generate
significantly higher-quality PlIs.

In Fig. 5, we see the effect of using different scale factors n
to update the balancing coefficient A of Losspuaagp. Notice
that DualAQD produced wide PIs at the beginning of the train-
ing process in order to ensure PI integrity; as a consequence,
the PICPy,, and PICP,, values improved drastically. Once
the generated PIs were wide enough to cover most of the
samples in the training set (i.e., PICPu,, ~ 1), DualAQD
focused on reducing the PI widths until PICPy.,;, reached the
nominal probability coverage «. The rate at which PICP and
MPIW were reduced was determined by the scale factor 7.

Furthermore, Fig. 5(a) (n = 0.01) and Fig. 5(b) (n = 0.1)
show that both models converged to a similar MPIW,, value
(~15) despite having improved at different rates. It is worth
noting that we did not find a statistical difference between the
results produced by the different n values that were tested on
all the datasets (i.e., n € [0.001, 0.1]), except for the case of
Kin8nm. When various n values were considered equally as
good for a given dataset, we selected the 1 value that yielded
the lowest average MPIW,,;, which was n = 0.01 for Boston,
Concrete, and Yacht, n = 0.005 for Kin8nm, and n = 0.05 for
the rest of the datasets. This is significant because it shows
that the sensitivity of our method to the scale factor 7 is low,
unlike the hyperparameters required by QD-Ens, as explained
in detail in Section IV-B. What is more, our method requires
a single hyperparameter, 1, while QD-Ens requires two: A and
a softening factor used to enforce differentiability of its loss
function; and QD+ requires four: A\, Ay, and A3, and the same
softening factor used by QD-Ens. Note that our method does
not need an additional softening factor given that the functions
of DualAQD are already differentiable.

We see in Table III that DualAQD yielded better PICPy.q
values than the other methods, except for field “B” where
QD-Ens had the highest PICP value, albeit at the expense
of generating excessively wide PIs. What is more, Fig. 7
shows that, in general, DualAQD obtained lower u, values;
as a consequence, it achieved the lowest p value in each
of the three fields (Table III), which implies that it offers
a better width-coverage trade-off in comparison to the other
methods. Notice that Table III shows PICPy values lower than
95% for field A. During training and validation, the coverage
probability did reach the nominal value of 95%. Note that,
since the distribution of the test set (2020) differs from the one
seen during training (2016 and 2018), the PICP values may
not be equal to those obtained during training. This illustrates
the ability to show increased uncertainty when insufficient data
are available for making reliable predictions.

Fig. 6 shows that DualAQD was able to produce better
distributed PIs for field “A” (i.e., with a wider range of values)
while achieving slightly better PICP..y and MPIW, values
than QD-Ens. This means that DualAQD is more dynamic
in the sense that it outputs narrower PIs when it considers
there is more certainty and wider PIs when there is more
uncertainty (recall the behavior in Fig. 3). As a consequence,
54.4%, 44.3%, and 40.3% of the points processed by
DualAQD on field “A” have smaller PI width than QD+, QD,
and MC-Dropout, respectively, while still being able to cover
the observed target values. Similarly, 88.7%, 65.3%, and
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49.9% of the points processed by DualAQD on field “B” have
smaller PI width than QD+, QD, and MC-Dropout while still
covering the observed target values and 62.5%, 6.0%, and
8.8% of the points processed by DualAQD on field “C” have
smaller PI width than QD+, QD, and MC-Dropout while still
covering the observed target values.

Finally, Fig. 6 shows that DualAQD indicates higher uncer-
tainty in the lower (southern) region of the field, which
received a nitrogen rate value that was not used in previous
years (i.e., it was not available for training). Similarly, regions
of high yield values are related to high nitrogen rate values;
however, there exist considerably fewer training samples of
this type, which logically would lead to greater uncertainty.
Thus, there is more uncertainty when predicting regions that
received high nitrogen rate values, and this is represented
effectively by the uncertainty map generated by DualAQD
but not the compared methods. It is worth mentioning that
even though DualAQD showed some degree of robustness
empirically when given previously unseen samples, NN-based
PI generation methods do not offer any guarantee for the
behavior of the model for out-of-distribution samples.

VI. CONCLUSION

Accurate uncertainty quantification is important to increase
the reliability of DL models in real-world applications that
require uncertainty to be addressed. In this work, we focus
on methods that generate PIs using conventional deep NNs
for regression tasks. As such, we presented a method that
uses two companion NNs: one that specializes in generating
accurate target estimations and another that has two outputs
and is trained using a novel loss function designed to generate
accurate and narrow PIs.

We tested our method, DualAQD, with a challenging syn-
thetic dataset and seven benchmark datasets using feedforward
NNs. We also experimented with a real-world application
of 2-D regression using spatially correlated data to convey
the usefulness and applicability of our PI generation method.
Therefore, we conclude that by using our loss function
Losspualagp, we were able to produce higher quality Pls
in comparison to QD+, QD-Ens, and MC-Dropout-PI; that
is, our method generated significantly narrower PIs while
maintaining a nominal probability coverage without detriment
to its target estimation accuracy. DualAQD was also shown to
be more dynamic in the sense that it better reflects varying
levels of uncertainty within the data. It is important to point
out that we achieved better performance metrics than the
competing algorithms using less computational complexity and
fewer tunable hyperparameters. In the future, we plan to adapt
our loss function for its use in BNNG.
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