
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Dual Accuracy-Quality-Driven Neural Network

for Prediction Interval Generation
Giorgio Morales , Member, IEEE, and John W. Sheppard , Fellow, IEEE

Abstract— Accurate uncertainty quantification is necessary to
enhance the reliability of deep learning (DL) models in real-
world applications. In the case of regression tasks, prediction
intervals (PIs) should be provided along with the deterministic
predictions of DL models. Such PIs are useful or “high-quality
(HQ)” as long as they are sufficiently narrow and capture
most of the probability density. In this article, we present a
method to learn PIs for regression-based neural networks (NNs)
automatically in addition to the conventional target predictions.
In particular, we train two companion NNs: one that uses one
output, the target estimate, and another that uses two outputs,
the upper and lower bounds of the corresponding PI. Our
main contribution is the design of a novel loss function for the
PI-generation network that takes into account the output of the
target-estimation network and has two optimization objectives:
minimizing the mean PI width and ensuring the PI integrity
using constraints that maximize the PI probability coverage
implicitly. Furthermore, we introduce a self-adaptive coefficient
that balances both objectives within the loss function, which
alleviates the task of fine-tuning. Experiments using a synthetic
dataset, eight benchmark datasets, and a real-world crop yield
prediction dataset showed that our method was able to maintain a
nominal probability coverage and produce significantly narrower
PIs without detriment to its target estimation accuracy when
compared to those PIs generated by three state-of-the-art neural-
network-based methods. In other words, our method was shown
to produce higher quality PIs.

Index Terms— Companion networks, deep regression, predic-
tion intervals (PIs), uncertainty quantification.

I. INTRODUCTION

DEEP learning has gained a great deal of attention due

to its ability to outperform alternative machine learning

methods in solving complex problems in a variety of domains.

In conjunction with the availability of large-scale datasets and

modern parallel hardware architectures (e.g., GPUs), convolu-

tional neural networks (CNNs), as one popular deep learning

(DL) technique, have attained unprecedented achievements in

fields such as computer vision, speech recognition, natural

language processing, medical diagnosis, and others [1].

Manuscript received 1 November 2022; revised 29 March 2023 and
9 August 2023; accepted 1 December 2023. This work was supported in part
by the United States Department of Agriculture (USDA)-National Institute
of Food and Agriculture (NIFA)-Agriculture and Food Research Initiative
(AFRI) Food Security Program Coordinated Agricultural Project under Grant
2016-68004-24769 and in part by the USDA-Natural Resources Conser-
vation Service (NRCS) Conservation Innovation Grant from the On-farm
Trials Program under Award NR213A7500013G021. (Corresponding author:

John W. Sheppard.)

The authors are with the Gianforte School of Computing, Montana
State University, Bozeman, MT 59717 USA (e-mail: giorgiol.moralesluna@
student.montana.edu; john.sheppard@montana.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3339470.

Digital Object Identifier 10.1109/TNNLS.2023.3339470

While the undeniable success of DL has impacted applica-

tions that are used on a daily basis, many theoretical aspects

remain unclear, which is why these models are usually referred

to as “black boxes” in the literature [2]. In addition, numerous

reports suggest that current DL techniques typically lead to

unstable predictions that can occur randomly and not only

in worst-case scenarios [3]. As a consequence, they are con-

sidered unreliable for applications that deal with uncertainty

in the data or in the underlying system, such as weather

forecasting [4], electronic manufacturing [5], or precision

agriculture [6]. Note that, in this context, reliability is defined

as the ability for a model to work consistently across real-

world settings [7].

One of the limitations of conventional neural networks

(NNs) is that they only provide deterministic point estimates

without any additional indication of their approximate accu-

racy [8]. Reliability and accuracy of the generated point

predictions are affected by factors such as the sparsity of

training data or target variables affected by probabilistic

events [9]. One way to improve the reliability and credibility

of such complex models is to quantify the uncertainty in the

predictions they generate [10]. This uncertainty (σ 2
y) can be

quantified using prediction intervals (PIs), which provide an

estimate of the upper and the lower bounds within which a

prediction will fall according to a certain probability [11].

Hence, the amount of uncertainty for each prediction is

provided by the width of its corresponding PI. PIs account

for two types of uncertainty: model uncertainty (σ 2
model) and

data noise variance (σ 2
noise) [11], where σ 2

y = σ 2
model + σ 2

noise.

Model uncertainty arises due to model selection, training data

variance, and parameter uncertainty [12]. Data noise variance

measures the variance of the error between observable target

values and the outputs produced by the learned models.

Recently, some NN-based methods have been proposed

to solve the PI generation problem [11], [12], [13], [14],

[15], [16]. These methods aim to train NNs using loss

functions that aim to balance at least two of the following

three objectives: minimizing mean PI width, maximizing PI

coverage probability, and minimizing the mean error of the

target predictions. Although the aforementioned works have

achieved promising results, there exist some limitations that

need to be addressed. For instance, they rely on the use

of deep ensembles; however, training several models may

become impractical when applied to complex models and

large datasets [17]. Furthermore, their performance is sensitive

to the selection of multiple tunable hyperparameters whose

values may differ substantially depending on the application.

Therefore, fine-tuning an ensemble of deep NNs becomes a

computationally expensive task. Finally, methods that generate

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Example of our PI-generation method on a synthetic dataset.

PI bounds and target estimations simultaneously have to deal

with a trade-off between the quality of generated PIs and the

accuracy of the target estimations.

Pearce et al. [12] coined the term high-quality (HQ) prin-

ciple, which refers to the requirement that PIs be as narrow

as possible while capturing some specified proportion of the

predicted data points. Following this principle, we pose the

PI generation problem for regression as a multiobjective opti-

mization problem. In particular, our proposal involves training

two NNs: one that generates accurate target estimations and

one that generates narrow PIs (see Fig. 1).

The first NN is trained to minimize the mean squared

error (MSE) of the target estimations. Our main contribution

is the design of a loss function for the second NN that,

besides the generated PI bounds and the target, considers

the output of the first NN as an additional input. It mini-

mizes the mean PI width and uses constraints to ensure the

integrity of the generated PIs while implicitly maximizing the

probability coverage (Section III-A). Our second contribution

is a method that updates the coefficient that balances the

two optimization objectives of our loss function automati-

cally throughout training (Section III-C). Our method avoids

generating unnecessarily wide PIs by using a technique that

sorts the mini-batches at the beginning of each training epoch

according to the width of the generated PIs (Section III-B).

Then, we apply a Monte Carlo-based approach to account

for the uncertainty of the generated upper and lower bounds

(Section III-E). Finally, when compared to three state-of-the-

art NN-based methods, we show that our method is able to

produce PIs that maintain the target probability coverage while

yielding better mean width without detriment to its target

estimation accuracy (Section IV).

Our specific contributions are summarized as follows.

1) Our main contribution is a novel loss function called

dual accuracy-quality-driven (DualAQD) used to train

a PI-generation NN. It is designed to solve a multiob-

jective optimization problem: minimizing the mean PI

width while ensuring PI integrity using constraints that

maximize the probability coverage implicitly.

2) We present a new PI-generation framework that consists

of two companion NNs: one that is trained to produce

accurate target estimations, and another that generates

HQ PIs; thus, avoiding the common trade-off between

target estimation accuracy, and quality of PIs.

3) We introduce a self-adaptive coefficient that balances

the two objectives of our DualAQD loss function. This

differs from previous approaches that consider this bal-

ancing coefficient as a tunable hyperparameter with a

fixed value throughout the training process.

4) We present a method called batch-sorting that sorts the

mini-batches according to their corresponding PI width

and, as such, avoids generating unnecessarily wide PIs.

5) Our method is shown to generate higher quality PIs and

better reflects varying levels of uncertainty within the

data than the compared methods.

II. RELATED WORK

One of the more common approaches to uncertainty

quantification for regression tasks is via Bayesian approaches,

such as those represented by Bayesian NNs (BNNs), which

model the NN parameters as distributions. As such, they have

the advantage that they allow for a natural quantification of

uncertainty. In particular, uncertainty is quantified by learning

a posterior weight distribution [18], [19]. The inference

process involves marginalization over the weights, which

in general is intractable, and sampling processes such as

Markov chain Monte Carlo (MCMC) can be computationally

prohibitive. Thus, approximate solutions have been formulated

using variational inference (VI) [20]. However, Wu et al. [21]

argued that VI approaches are fragile since they require

careful initialization and tuning. To overcome these issues,

they proposed approximating moments in NNs to eliminate

gradient variance. They also presented an empirical Bayes

procedure for selecting prior variances automatically.

Moreover, Izmailov et al. [22] discussed scaling BNNs to

deep NNs by constructing low-dimensional subspaces of

the parameter space. By doing so, they were able to apply

elliptical slice sampling and VI, which struggle in the

full parameter space. In addition, Lut et al. [23] presented

a Bayesian-learning-based sparse stochastic configuration

network that replaces the Gaussian distribution with a Laplace

one as the prior distribution for output weights.

Despite the aforementioned improvements in Bayesian

approaches, they still suffer from various limitations. Namely,

the high dimensionality of the parameter space of deep

NNs, including complex models such as CNNs, makes the

cost of characterizing uncertainty over the parameters pro-

hibitive [24]. Attempts to scale BNNs to deep NNs are

considerably more expensive computationally than VI-based

methods and have been scaled up to low-complexity problems

only, such as MNIST [25]. Conversely, non-Bayesian methods

do not require the use of initial prior distributions and biases

to train the models [11]. Recent works have demonstrated

that non-Bayesian approaches provide better or competitive

uncertainty estimates than their Bayesian counterparts [11],

[12], [26]. In addition, they are scalable to complex problems

and can handle millions of parameters.

MC-Dropout was proposed by Gal and Ghahramani [8]

to quantify model uncertainty in NNs. They cast dropout

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

MORALES AND SHEPPARD: DUAL ACCURACY-QUALITY-DRIVEN NN FOR PI GENERATION 3

training in deep NNs as approximate Bayesian inference in

deep Gaussian processes. The method uses dropout repeatedly

to select subsamples of active nodes in the network, turning a

single network into an ensemble. Hence, model uncertainty is

estimated by the sample variance of the ensemble predictions.

MC-Dropout is not able to estimate PIs themselves, as it

does not account for data noise variance. Therefore, Zhu and

Laptev [27] proposed estimating PIs by quantifying the model

uncertainty through MC-Dropout, coupled with estimating the

data noise variance as the MSE calculated over an independent

held-out validation set.

Recently, several non-Bayesian approaches have been

proposed for approximate uncertainty quantification.

Such approaches use models whose outputs provide

estimations of the predictive uncertainty directly. For

instance, Schupbach et al. [28] proposed a method that

estimates confidence intervals in NN ensembles based

on the use of U-statistics. Other techniques estimate PIs

by using ensembles of feedforward networks [29] or

stochastic configuration networks [30] and bootstrapping.

Lakshminarayanan et al. [26] presented an ensemble

approach based on the mean-variance estimation (MVE)

method introduced by Nix and Weigend [31]. Here, each

NN has two outputs: one that represents the mean (or target

estimation) and the other that represents the variance of

a normal distribution, which is used to quantify the data

noise variance. Other approaches use models that generate

PI bounds explicitly. Khrosavi et al. [11] proposed a lower

upper bound estimation (LUBE) method that uses a NN and

a loss function to minimize the PI width while maximizing

the probability coverage using simulated annealing.

Similar approaches have attempted to optimize the LUBE

loss function using methods such as genetic algorithms [13]

and particle swarm optimization [14]. Pearce et al. [12] pro-

posed a method called QD-Ens that consists of a quality-driven

loss function similar to LUBE but that is compatible with gra-

dient descent. Then, Salem et al. [16] proposed QD+ which

is based on QD-Ens, which uses exactly the same two penalty

functions to reduce the PI width and maximize the probability

coverage. They used three-output NNs and included a third

penalty term that aims to decrease the MSE of the target

predictions and a fourth penalty term to enforce the point

predictions to lay inside the generated PIs. In our work,

we use only three penalty terms; the differences are explained

in Section III-F. Finally, both QD-Ens and QD+ used an

ensemble approach to estimate the model uncertainty while

we use a Monte Carlo approach on a single network.

III. PROPOSED METHODOLOGY

A. DualAQD Loss Function

Let Xb = {x1, . . . , xN } be a training batch with N samples

where each sample xi ∈ R
z consists of z covariates. Further-

more, let yb = {y1, . . . , yN } be a set of corresponding target

observations where yi ∈ R. We construct a NN regression

model that captures the association between Xb and yb. More

specifically, f (·) denotes the function computed by the NN,

and θ f denotes its weights. Hence, given an input xi , f (xi , θ f)

computes the target estimate ŷi . This network is trained to

generate accurate estimates ŷi with respect to yi . We quan-

tify this accuracy by calculating the MSE of the estimation

M SEest = (1/N)
∑N

i=1(ŷi − yi)
2. Thus, f is conventionally

optimized as follows:

θ f = argmin
θ f

MSEest.

Once network f (·) is trained, we use a separate NN whose

goal is to generate PIs for yb given data Xb. Let g(·) denote

the function computed by this PI-generation NN, and θ g

denotes its weights. Given an input xi , g(xi , θ g) generates

its corresponding upper and lower bounds, ŷu
i and ŷℓ

i , such

that [ŷℓ
i , ŷu

i] = g(xi , θ g). Note that there is no assumption of

ŷℓ
i and ŷu

i being symmetric with respect to the target estimate

ŷi produced by network f (·). We describe its optimization

procedure below.

We say that a training sample xi ∈ Xb is covered (i.e.,

we set ki = 1) if both the predicted value ŷi and the target

observation yi fall within the estimated PI

ki =

{

1, if ŷℓ
i < ŷi < ŷu

i and ŷℓ
i < yi < ŷu

i

0, otherwise.
(1)

Then, using ki , we define the PI coverage probability (PICP)

for Xb as the percent of covered samples with respect to the

batch size N : PICP =
∑N

i=1 ki/N .

The HQ principle suggests that the width of the PIs should

be minimized as long as they capture the target observation

value. Thus, Pearce et al. [12] considered the mean PI width

of captured points (MPIWcapt) as part of their loss function

MPIWcapt =
1

ǫ +
∑

i ki

N
∑

i=1

(

ŷu
i − ŷℓ

i

)

ki (2)

where ǫ is a small number used to avoid dividing by zero.

However, we argue that minimizing MPIWcapt does not imply

that the width of the PIs generated for the noncaptured samples

will not decrease along with the width of the PIs generated

for the captured samples.1

Furthermore, consider the case where none of the sam-

ples are captured by the PIs, as likely happens at the

beginning of the training. Then, the penalty is minimum

(i.e., MPIWcapt = 0). Hence, the calculated gradients of the

loss function will force the weights of the NN to remain in

the state where ∀i, ki = 0, which contradicts the goal of

maximizing PICP.

Instead of minimizing MPIWcapt directly, we let

PIpen =
1

N

N
∑

i=1

(

|ŷu
i − yi | + |yi − ŷℓ

i |
)

(3)

which we minimize instead. This function quantifies the width

of the PI as the sum of the distance between the upper bound

and the target and the distance between the lower bound and

the target. We argue that PIpen is more suitable than MPIWcapt

1We provide a toy example demonstrating this behavior in the following link
https://github.com/GiorgioMorales/PredictionIntervals/blob/master/models/
QD_toy_example.ipynb

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

given that it forces ŷu
i , yi , and ŷℓ

i to be closer together. For

example, suppose that the following case is observed during

the first training epoch: yi = 24, ŷi = 25, ŷu
i = 0.2, and

ŷℓ
i = 0.1. Then, MPIWcapt = 0 given that the target is not

covered by the PI, while PIpen = 47.7. As a result, PIpen will

penalize this state while MPIWcapt will not. Thus, we define

our first optimization objective as

min
θ g

L1 = min
θ g

PIpen.

However, minimizing L1 is not enough to ensure the

integrity of the PIs. Their integrity is given by the conditions

that the upper bound must be greater than the target and

the target estimate (ŷu
i > yi and ŷu

i > ŷi) and that the

target and the target estimate, in turn, must be greater than

the lower bound (yi > ŷℓ
i and ŷi > ŷℓ

i). Note that if

the differences (ŷu
i − yi) and (yi − ŷℓ

i) are greater than the

maximum estimation error within the training batch Xb (i.e.,

(ŷu
i − yi) > maxi |ŷi − yi | and (ŷu

i − yi) > maxi |ŷi − yi |,

∀i ∈ [1, . . . , N]), it is implied that all samples are covered

(ki = 1, ∀i ∈ [1, . . . , N]).

Motivated by this, we include an additional penalty function

to ensure PI integrity and maximize the number of covered

samples within the batch simultaneously. Let us denote the

mean differences between the PI bounds and the target esti-

mates as du =
∑N

i=1(ŷu
i − yi)/N and dℓ =

∑N
i=1(yi − ŷℓ

i)/N .

Let ξ = maxi |ŷi − yi | denote the maximum distance between

a target estimate and its corresponding target value within the

batch (ξ > 0). From this, our penalty function is defined as

P = eξ−du + eξ−dℓ . (4)

Here, if the PI integrity is not met (i.e., du < 0 or dℓ < 0), then

their exponent magnitude becomes larger than ξ , producing a

large penalty value. Moreover, these terms encourage both du

and dℓ not only to be positive but also to be greater than ξ .

This implies that the distance between the target yi and any of

its bounds will be larger than the maximum error within the

batch, ξ , thus the target yi will lie within the PI. From this,

we define our second optimization objective as

min
θ g

L2 = min
θ g

P.

Then, our proposed DualAQD loss function is given by

LossDualAQD = L1 + λL2 (5)

where λ is a self-adaptive coefficient that controls the relative

importance of L1 and L2. Hence, our multiobjective optimiza-

tion problem can be expressed as

θ g = argmin
θ g

LossDualAQD.

For simplicity, we assume that f (·) and g(·) have L layers

and the same network architecture except for the output layer.

Network f (·) is trained first. Then, weights θ g are initialized

using weights θ f except for those of the last layer: θ
(0)
g [1 :

L − 1] = θ f [1 : L − 1]. Note, that, in general, DualAQD can

use different network architectures for f (·) and g(·).

Fig. 2. L3 penalty calculation. (a) Without batch sorting. (b) With batch
sorting.

B. Batch Sorting

The objective function L2 minimizes the term P [see (4)],

forcing the distance between the target estimate of a sample

and its PI bounds to be larger than the maximum absolute

error within its corresponding batch. This term assumes that

there exists a similarity among the samples within a batch.

However, consider the case depicted in Fig. 2 where we show

four samples that have been split randomly into two batches.

In Fig. 2(a), the PIs of the second and third samples already

cover their observed targets. Nevertheless, according to L2,

these samples will yield high penalties because the distances

between their target estimates and their PI bounds are less

than ξ (1) and ξ (2), respectively, forcing their widths to increase

unnecessarily.

For this reason, we propose a method called “batch

sorting,” which consists of sorting the training samples with

respect to their corresponding generated PI widths after each

epoch. By doing so, the batches will process samples with

similar widths, avoiding unnecessary widening. For example,

in Fig. 2(b), the penalty terms are low given that d(1)
u , d

(1)

ℓ >

ξ (1) and d(2)
u , d

(2)

ℓ > ξ (2). Note that, during testing, the PI gen-

erated for a given sample is independent of other samples and,

as such, batch sorting becomes unnecessary during inference.

C. Self-Adaptive Coefficient λ

The coefficient λ of (5) balances the two optimization objec-

tives L1 and L2. In this section, we propose that, instead of λ

being a tunable hyperparameter with a fixed value throughout

training, it should be adapted throughout the learning process

automatically.

Typically, the PICP value improves as long as the MPIW

value increases; however, extremely wide PIs are not useful.

We usually aim to obtain PIs with a nominal probability

coverage no greater than (1 − α). A common value for the

significance level α is 0.05, in which case we say that we are

95% confident that the target value will fall within the PI.

Let PICP
(t)

train denote the PICP value calculated on the

training set Xtrain after the t th training epoch. If PICP
(t)

train is

below the confidence target (1−α), more relative importance

should be given to the objective L2 that enforces PI integrity

(i.e., λ should increase). Likewise, if PICP
(t)

train is higher than

(1 − α), more relative importance should be given to the

objective L1 that minimizes MPIW (i.e., λ should decrease).

We formalize this intuition by defining the cost C that

quantifies the distance from PICP
(t)

train to the confidence target

(1−α): C = (1−α)−P I C P
(t)

train. Then, we propose to increase

or decrease λ proportionally to the cost function C after each

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

MORALES AND SHEPPARD: DUAL ACCURACY-QUALITY-DRIVEN NN FOR PI GENERATION 5

Algorithm 1 DualAQD Method

1: function TRAINNNWITHDUALAQD(Xtrain, Ytrain, f, g, α, η)
2: λ← 1
3: for each t ∈ range(1, max Epochs) do
4: if t > 1 then
5: Batches ← batchSorting(Xtrain, Ytrain, widths)
6: else
7: Batches ← shu f f le(Xtrain, Ytrain)

8: for each batch ∈ Batches do
9: x, y ← batch

10: ŷ ← f (x)

11: ŷu, ŷℓ ← g(x)

12: loss ← Dual AQ D(λ, y, ŷ, ŷu, ŷℓ)

13: update(g, loss)

14: P I C P
(t)

train, widths(t) ← metrics(Xtrain, Ytrain)

15: // Update coefficient λ

16: C ← ((1− α)− P I C P
(t)

train)

17: λ = λ+ η · C

18: return g

training epoch as follows (see Algorithm 1):

λ
(t) = λ

(t−1) + η · C (6)

where λ
(t) is the value of the coefficient λ at the t th iteration

(we consider that λ
(0) = 1), and η is a tunable scale factor.

Note that Algorithm 1 takes as inputs the data Xtrain

and corresponding targets Ytrain as well as the trained

prediction network f , the untrained network g, the

significance level α, and the scale factor η. Function

batchSorting(Xtrain, Ytrain, widths(t−1)) returns a list of

batches sorted according to the PI widths generated during

the previous training epoch (see Section III-B). Function

DualAQD(λ, y, ŷ, ŷu, ŷℓ) represents the DualAQD loss

function [see (5)] while update(g, loss) encompasses the

conventional backpropagation and gradient descent processes

used to update the weights of network g. Furthermore, function

metrics(Xtrain, Ytrain) passes Xtrain through g to generate the

corresponding PIs and their widths, and to calculate compares

the output to Ytrain to calculate the PICP
(t)

train value using Ytrain.

D. Parameter and Hyperparameter Selection

We train a NN on the training set Xtrain during T epochs

using LossDualAQD as the loss function. After the t th training

epoch, we calculate the performance metrics zt = {PICP
(t)

val,

MPIW
(t)

val} on the validation set Xval. Thus, we consider that

the set of optimal weights of the network, θg , will be those that

maximize performance on the validation set. The remaining

question is what are the criteria to compare two solutions zi

and z j .

Taking this criterion into account, we consider that a solu-

tion zi dominates another solution z j (zi � z j) if.

1) PICP
(i)

val > PICP
(j)

val and PICP
(i)

val ≤ (1− α).

2) PICP
(i)

val == PICP
(j)

val < (1 − α) and MPIW
(i)

val <

MPIW
(j)

val .

3) PICP
(i)

val ≥ (1− α) and MPIW
(i)

val < MPIW
(j)

val .

In other words, if α = 0.05, we seek a solution whose PICPval

value is at least 95%. After exceeding this value, a solution zi

is said to dominate another solution z j only if it produces

narrower PIs.

We use a grid search to tune the hyperparameter η for

training [see (6)]. For each value, we train a NN using ten-fold

cross-validation and calculate the average performance metrics

on the validation sets. Then, the hyperparameters are selected

using the dominance criteria explained above.

E. PI Aggregation Using MC-Dropout

In Section I, we explained that both the model uncertainty

(σ 2
model) and the data noise variance (σ 2

noise) have to be taken

into account when generating PIs. A model trained using

LossDualAQD generates PI estimates based on the training data;

that is, it accounts for σ 2
noise. However, we still need to quantify

the uncertainty of those estimates due to σ 2
model.

Unlike previous work that used explicit NN ensembles to

quantify σ 2
model [12], [26], we propose to use a Monte Carlo-

based approach. Specifically, we use MC-Dropout [32], which

consists of using dropout layers that ignore each neuron of

the network according to some probability or dropout rate.

Then, during each forward pass with active dropout layers,

a slightly different network architecture is used and, as a

result, a slightly different prediction is obtained. According

to Gal and Ghahramani [8], this process can be interpreted as

a Bayesian approximation of the Gaussian process.

Our approach consists of using M forward passes through

the network with active dropout layers. Given an input xi , the

estimates ŷ
(m)
i , ŷ

u(m)
i , and ŷ

ℓ(m)
i are obtained at the mth itera-

tion. Hence, the expected target estimate ȳi , the expected upper

bound ȳu
i , and the expected lower bound ȳℓ

i are calculated

as: ȳi = (1/M)
∑M

m=1 ŷ
(m)
i , ȳu

i = (1/M)
∑M

m=1 ŷ
u(m)
i , ȳℓ

i =

(1/M)
∑M

m=1 ŷ
ℓ(m)
i .

F. Comparison to QD-Ens and QD+

Here, we consider the differences between our method

(DualAQD) and the two methods QD-Ens [12] and QD+ [16].

For reference, we include the loss functions used by QD-Ens

and QD+

LossQD = MPIWcapt + δ
N

α(1− α)
max(0, (1− α)− PICP)2

LossQD+ = (1− λ1)(1− λ2)MPIWcapt

+λ1(1−λ2) max(0, (1−α)−PICP)2+λ2 MSEest

+
ξ

N

N
∑

i=1

[

max
(

0,
(

ŷu
i − ŷi

)

+max
(

0,
(

ŷi − ŷℓ
i

)]

where δ, λ1, λ2, and ξ are hyperparameters used by QD-Ens

and QD+ to balance the learning objectives. The differences

compared to our method are listed in order of importance from

highest to lowest as follows.

1) QD-Ens and QD+ use objective functions that maximize

PICP directly aiming to a goal of (1 − α) at the batch

level. We maximize PICP indirectly through L2, which

encourages the model to produce PIs that cover as many

training points as possible. This is achieved by pro-

ducing PIs whose widths are larger than the maximum

absolute error within each training batch. Then, the

optimal weights of the network are selected as those

that produce a coverage probability on the validation set

of at least (1− α).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

2) Note that PICP is not directly differentiable as it involves

counting the number of samples that lay within the

predicted PIs. However, QD-Ens and QD+ force its

differentiation by including a sigmoid operation and

a softening factor (i.e., an additional hyperparameter).

On the other hand, the loss functions of DualAQD are

already differentiable.

3) Our objective L1 minimizes PIpen, which is a more suit-

able penalty function than MPIWcapt (see Section III-A).

4) Our objective L2 maximizes PICP and ensures PI

integrity simultaneously. QD+ uses a truncated linear

constraint and a separate function to maximize PICP.

5) NN-based PI generation methods aim to balance three

objectives: 1) accurate target prediction; 2) generation

of narrow PIs; and 3) high coverage probability.

QD-Ens uses a single coefficient δ within its loss

function that balances objectives 2) and 3) and does not

optimize objective 1) explicitly, while QD+ uses three

coefficients λ1, λ2, and ξ to balance the three objectives.

All of the coefficients are tunable hyperparameters. Our

loss function, LossDualAQD, uses a balancing coefficient

whose value is not fixed but is adapted throughout the

training process using a single hyperparameter (i.e., the

scale factor η).

6) Our approach uses two companion NNs f (·) and g(·)

that optimize objective 1) and objectives 2) and 3),

respectively, to avoid the trade-off between them.

Conversely, the other approaches optimize a single NN

architecture.

7) We use MC-Dropout to estimate the model uncertainty.

By doing so, we need to train only a single model

instead of using an explicit ensemble of models, as in

QD-Ens and QD+. Also, QD+ requires fitting a split

normal density function [33] for each data point to

aggregate the PIs produced by the ensemble, thus

increasing the complexity of the learning process.

IV. EXPERIMENTS

A. Experiments With Synthetic Data

Previous approaches have been tested on datasets with sim-

ilar uncertainty levels across all their samples, or on synthetic

datasets with a single region of low uncertainty surrounded

by a gradual increase of noise. This is a limitation as it does

not allow testing the ability of the PI’s to adapt to rapid

changes of uncertainty within the data. Therefore, we test

all of the methods on a more challenging synthetic dataset

with more fluctuations and extreme levels of uncertainty.

The code is available at https://github.com/GiorgioMorales/

PredictionIntervals.

We created a synthetic dataset with varying PI widths that

consists of a sinusoid with Gaussian noise. Specifically, the

dataset contains 1000 points generated using the equation

y(x) = 5 cos(x)+10+ǫ, where x ∈ [−5, 5] and ǫ is Gaussian

noise whose magnitude depends on x : ǫ = (2 cos(1.2 x)+2) v

where v ∼ N (0, 1). For these experiments, we trained a

feed-forward NN with two hidden layers, each with 100 nodes

with ReLU activation. A 5 × 2-fold cross-validation design

was used to train and evaluate all networks.

TABLE I

PI METRICS MSEval , MPIWval , PICPval , AND PIδval EVALUATED ON

THE SYNTHETIC DATASET USING 5 × 2 CROSS-VALIDATION

Knowing the probability distribution of the noise at each

position x allows us to calculate the ideal 95% PIs (α = 0.05),

[yu, yℓ], as follows:

yu(x) = y(x)+ 1.96 ǫ, and yℓ(x) = y(x)− 1.96 ǫ

where 1.96 is the approximate value of the 95% confidence

interval of the normal distribution. Therefore, we define a

new metric we called PIδ that sums the absolute differences

between the estimated bounds and the ideal 95% bounds for

all the samples within a set X

PIδ =
1

|X|

∑

x∈X

(

|yu(x)− ŷu(x)| + |yℓ(x)− ŷℓ(x)|
)

.

We compared the performance of DualAQD using batch

sorting and without using batch sorting (denoted as

“DualAQD_noBS” in Table I). All networks were trained

using a fixed mini-batch size of 16 and the Adadelta opti-

mizer. Table I gives the average performance for the metrics

calculated on the validation sets, MSEval, MPIWval, PICPval,

and PIδval, and corresponding standard deviations.

We also compared our DualAQD PI generation

methodology to three other NN-based methods: QD+ [16],

QD-Ens [12], and a PI generation method based on MC-

Dropout alone [27] (denoted MC-Dropout-PI). For the sake

of consistency and fairness, we used the same configuration

(i.e., network architecture, optimizer, and batch size) for all

the networks trained in our experiments. In our preliminary

experiments, for the case of QD+, QD-Ens, and MC-Dropout-

PI, we found that batch sorting either helped to improve their

performance or there was no significant change. Thus, for

the sake of fairness and consistency, we decided to use batch

sorting for all compared methods. In addition, we tested

Dropout rates between 0.1 and 0.5. The obtained results did

not indicate a statistically significant difference; thus, we used

a Dropout rate of 0.1 for all networks and datasets.

Note that the only difference between the network architec-

ture used by the four methods is that QD+ requires three

outputs, QD-Ens requires two (i.e., the lower and upper

bounds), and MC-Dropout-PI requires one. For DualAQD and

MC-Dropout-PI, we used F = 100 forward passes with active

dropout layers. For QD+ and QD-Ens, we used an ensemble of

five networks and a grid search to choose the hyperparameter

values. Fig. 3 shows the PIs generated by the four methods

from the first validation set together with the ideal 95% PIs.

B. Benchmarking Experiments

We experimented with eight open-access datasets from the

UC Irvine Machine Learning Repository [34]. Note that even

though our experiments use scalar and 2-D regression tasks

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

MORALES AND SHEPPARD: DUAL ACCURACY-QUALITY-DRIVEN NN FOR PI GENERATION 7

Fig. 3. Performance of PI generation methods on the synthetic dataset.

(Section IV-C), our proposed method can be extended to

other tasks such as classification. For each dataset, we used

a feed-forward NN whose architecture was the same as that

described in Section IV-A. We used ten-fold cross-validation

to train and evaluate all networks. Table II gives the average

performance for the metrics calculated on the validation sets,

MSEval, MPIWval, and PICPval, and corresponding standard

deviations. We applied z-score normalization (mean equal to

0 and standard deviation equal to 1) to each feature in the train-

ing set while the exact same scaling was applied to the features

in the validation and test sets. Likewise, min-max normaliza-

tion was applied to the response variable; however, Table II

shows the results after rescaling to the original scale. Similar

to Section IV-A, all networks were trained using a fixed

mini-batch size of 16, except for the Protein and Year datasets

that used a mini-batch size of 512 due to their large size.

The bold entries in Table II indicate the method that

achieved the lowest average MPIWval value and that its

difference with respect to the values obtained by the other

methods is statistically significant according to a paired t-test

performed at the 0.05 significance level. The results obtained

by DualAQD were significantly narrower than the compared

methods while having similar MSEval and PICPval of at least

95%. Furthermore, Fig. 4 depicts the distribution of the scores

achieved by all the compared methods on all the datasets,

where the line through the center of each box indicates the

median F1 score, the edges of the boxes are the 25th and 75th

percentiles, whiskers extend to the maximum and minimum

points (not counting outliers), and outlier points are those

past the end of the whiskers (i.e., those points greater than

1.5 × IQR plus the third quartile or less than 1.5 × IQR

minus the first quartile, where IQR is the inter-quartile range).

TABLE II

PI METRICS MSEval , MPIWval , AND PICPval EVALUATED ON THE

BENCHMARK DATASETS USING TEN-FOLD CROSS-VALIDATION

Note that even though QD-Ens uses only one hyperparame-

ter (see Section III-F), it is more sensitive to small changes. For

example, a hyperparameter value of δ = 0.021 yielded poor

PIs with PICPval < 40% while a value of δ = 0.02105 yielded

too wide PIs with PICPval < 100%. For this reason, the hyper-

parameter δ of the QD-Ens approach was chosen manually

while the scale factor η of DualAQD was chosen using a grid

search with values {0.001, 0.005, 0.01, 0.05, 0.1}. Fig. 5 shows

the difference between the learning curves obtained during

one iteration of the cross-validation for the Power dataset

using two different η values (i.e., η = 0.01 and η = 0.1).

The dashed lines indicate the training epoch at which the

optimal weights θ g were selected according to the dominance

criteria explained in Section III-D. On the other hand, the

hyperparameters λ1 and λ2 of QD+ were chosen using a

random search since it requires significantly higher training

and execution time.

C. PIs for Crop Yield Prediction

We assert our approach is general in applicability. To test

this assertion, we decided to experiment with a difficult, real-

world application of 2-D regression using spatially correlated

data to convey the usefulness of our method. Specifically,

we focused on the crop yield prediction problem, which has

an important impact on society and is one of the main tasks

of precision agriculture. Accurate and reliable crop yield pre-

diction, along with careful uncertainty management strategies,

enables farmers to make informed management decisions, such

as determining the nitrogen fertilizer rates needed in specific

regions of their fields to maximize profit while minimizing

environmental impact [35].

We use an early-yield prediction dataset of winter wheat

we curated and presented in a previous work [36]. The early-

yield prediction is posed as a regression problem where

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Box plots of the MPIWval and MSEval scores of DualAQD, QD+, QD-Ens, and MC-Dropout-PI PI generation methods on the synthetic and
benchmarking datasets. (a) Synthetic. (b) Boston. (c) Concrete. (d) Energy. (e) Kin8nm. (f) Power. (g) Protein. (h) Yacht. (i) Year.

Fig. 5. MPIW and PICP learning curves obtained for the Power dataset
using DualAQD. (a) η = 0.01. (b) η = 0.1.

the explanatory variables are represented by a set of eight

features obtained during the growing season (March). These

features consist of nitrogen rate applied, precipitation, slope,

elevation, topographic position index (TPI), aspect, and two

backscattering coefficients obtained from synthetic aperture

radar (SAR) images from Sentinel-I. The response variable

corresponds to the yield value in bushels per acre (bu/ac),

measured during the harvest season (August). In other words,

the data acquired in March is used to predict crop yield values

in August of the same year.

The yield prediction problem requires 2-D inputs and

2-D outputs. As such, it can be viewed as a 2-D regression

task. To tackle this problem, we trained a CNN using the

Hyper3DNetReg 3-D–2-D network, architecture we presented

in [36], which was specifically designed to predict the yield

values of small spatial neighborhoods of a field simultane-

ously. We then modified this architecture to produce three

output patches of 5 × 5 pixels (i.e., the estimated yield patch

and two patches containing the upper and lower bounds of

each pixel, respectively) instead of one.

For our experiments, we used data collected from three

winter wheat fields, which we refer to as “A,” “B,” and “C,”

respectively. Three crop years of data were collected for each

field. The information from the first two years was used to

create the training and validation sets (90% of the data is used

for training and 10% for validation). The four methods, AQD,

QD+, QD-Ens, and MC-Dropout-PI, were compared using the

results from the test set of each field, which consists of data

from the last observed year and whose ground-truth yield map

is denoted as Y . The test set was used to generate a predicted

yield map of the entire field, Ŷ , and its corresponding lower

and upper bounds, Ŷ L and Ŷ U , respectively.

Fig. 6 shows the ground-truth yield map for field “A”

(darker colors represent lower yield values) along with the

uncertainty maps obtained by the four compared methods and

their corresponding PICP and MPIW values. Field “A” is used

as a representative field for presenting our results, since we

obtained similar results on the other fields. Here, we define

the uncertainty map U = Ŷ u − Ŷ ℓ as a map that contains the

PI width of each point of the field (darker colors represent

lower PI width and thus lower uncertainty). That is, the wider

the PI of a given point, the more uncertain its yield prediction.

We used four metrics to assess the behavior of the four

methods (Table III). First, we calculated the root mean square

error (RMSEtest) between the ground-truth yield map Y and

the estimated yield map Ŷ . Then, we considered the mean PI

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

MORALES AND SHEPPARD: DUAL ACCURACY-QUALITY-DRIVEN NN FOR PI GENERATION 9

Fig. 6. Uncertainty maps comparison for field A.

TABLE III

PI METRICS RMSEtest , MPIWtest , PICPtest , AND µ EVALUATED ON

THE YIELD PREDICTION DATASETS

width (MPIWtest) and PI probability coverage (PICPtest). Note

that k-fold or k × 2 cross-validation cannot be used in this

experimental setting. Thus, to help us explain the advantages

of our method over the others in the context of the HQ princi-

ple, we introduce a new metric that summarizes the MPIWtest

and PICPtest metrics shown in Table III. Let MPIWtest represent

the mean PI width after min-max normalization using as upper

bound the maximum MPIWtest value among the four methods

in each field. Let µω denote the weighted geometric mean

between MPIWtest and (1− PICPtest) (i.e., the complement of

the PI coverage probability) with ω ∈ [0, 1] being the relative

importance between both terms. Then,

µω = (MPIWtest)
ω(1− PICPtest)

(1−ω).

According to the HQ principle that aims to obtain nar-

row PIs and high probability coverage, low µω values are

preferable when comparing the performance of different

PI-generation methods. Fig. 7 shows the comparison of the

µω metric obtained for each method on the three tested fields

for different ω values. In order to summarize the behavior

shown in Fig. 7 into a single metric, we calculated the integral

µ =
∫ 1

0
µω dω. Since we seek to obtain low µω values for

various ω, low µ values are preferable. Bold entries in Table III

indicate the method with the lowest µ.

V. DISCUSSION

Our loss function LossDualAQD was designed to minimize

the estimation error and produce narrow PIs simultaneously

while using constraints that maximize the coverage probability

inherently. From Tables I and II, we note that DualAQD

consistently produced significantly narrower PIs than the com-

pared methods, according to the paired t-test performed at

the 0.05 significance level, except for the Protein dataset,

where QD+ obtained comparable PI widths. Simultaneously,

Fig. 7. µω versus ω comparison on yield prediction datasets.

we yielded PICPval values of at least 95% and better or com-

parable MSEval values. In addition, the PIδval values reported

in Table I demonstrate that DualAQD is the method that

best adapted to the highly varying uncertainty levels of our

synthetic dataset. Thus, the PI bounds generated by DualAQD

were the closest to the ideal 95% PIs.

Notice that DualAQD obtains lower MSEval values than

QD+ consistently despite the fact that QD+ also includes an

objective function that minimizes the error of the target pre-

dictions. The reason is that our method uses a NN [i.e., f (·)]

that is specialized in generating accurate target predictions,

and its optimization objective does not compete with others.

Conversely, QD+ uses a loss function that balances four

objective functions: minimizing the PI widths, maximizing PI

coverage probability, minimizing the target prediction errors,

and ensuring PI integrity. The NN used by QD-Ens, on the

other hand, only generates the upper and lower bounds of the

PIs. The target estimate is then calculated as the central point

between the PI bounds. As a consequence of not using a NN

specialized in minimizing the target prediction error, QD-Ens

achieved the worst MSEval values of the compared methods,

except for the Year dataset.

It is worth mentioning that one of the advantages of using

DualAQD over QD+ and QD-Ens is that we achieved better

PIs while requiring less computational complexity. That is, our

method requires training only two NNs and uses MC-Dropout

to account for the model uncertainty while QD+ and QD-Ens

require training ensembles of five NNs. In addition, QD+

requires extra complexity given that it uses a split normal

aggregation method that involves an additional fitting process

for each data point during testing. Note that using deep

ensembles of M models is expected to perform better or

similar to MC-Dropout when using M forward passes [37].

In other words, using an ensemble of five NNs, as QD

and QD+ do, is expected to perform better than using five

forward passes through the NN using MC-Dropout. Neverthe-

less, during inference, we are able to perform not only five

but 100 passes through the NN without significantly adding

computationally cost. Our method becomes more practical in

the sense that, even when it uses the rough estimates of model

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

uncertainty provided by MC-Dropout, it is still able to generate

significantly higher-quality PIs.

In Fig. 5, we see the effect of using different scale factors η

to update the balancing coefficient λ of LossDualAQD. Notice

that DualAQD produced wide PIs at the beginning of the train-

ing process in order to ensure PI integrity; as a consequence,

the PICPtrain and PICPval values improved drastically. Once

the generated PIs were wide enough to cover most of the

samples in the training set (i.e., PICPtrain ≈ 1), DualAQD

focused on reducing the PI widths until PICPtrain reached the

nominal probability coverage α. The rate at which PICP and

MPIW were reduced was determined by the scale factor η.

Furthermore, Fig. 5(a) (η = 0.01) and Fig. 5(b) (η = 0.1)

show that both models converged to a similar MPIWval value

(∼15) despite having improved at different rates. It is worth

noting that we did not find a statistical difference between the

results produced by the different η values that were tested on

all the datasets (i.e., η ∈ [0.001, 0.1]), except for the case of

Kin8nm. When various η values were considered equally as

good for a given dataset, we selected the η value that yielded

the lowest average MPIWval, which was η = 0.01 for Boston,

Concrete, and Yacht, η = 0.005 for Kin8nm, and η = 0.05 for

the rest of the datasets. This is significant because it shows

that the sensitivity of our method to the scale factor η is low,

unlike the hyperparameters required by QD-Ens, as explained

in detail in Section IV-B. What is more, our method requires

a single hyperparameter, η, while QD-Ens requires two: λ and

a softening factor used to enforce differentiability of its loss

function; and QD+ requires four: λ1, λ2, and λ3, and the same

softening factor used by QD-Ens. Note that our method does

not need an additional softening factor given that the functions

of DualAQD are already differentiable.

We see in Table III that DualAQD yielded better PICPtest

values than the other methods, except for field “B” where

QD-Ens had the highest PICPtest value, albeit at the expense

of generating excessively wide PIs. What is more, Fig. 7

shows that, in general, DualAQD obtained lower µω values;

as a consequence, it achieved the lowest µ value in each

of the three fields (Table III), which implies that it offers

a better width-coverage trade-off in comparison to the other

methods. Notice that Table III shows PICPtest values lower than

95% for field A. During training and validation, the coverage

probability did reach the nominal value of 95%. Note that,

since the distribution of the test set (2020) differs from the one

seen during training (2016 and 2018), the PICPtest values may

not be equal to those obtained during training. This illustrates

the ability to show increased uncertainty when insufficient data

are available for making reliable predictions.

Fig. 6 shows that DualAQD was able to produce better

distributed PIs for field “A” (i.e., with a wider range of values)

while achieving slightly better PICPtest and MPIWtest values

than QD-Ens. This means that DualAQD is more dynamic

in the sense that it outputs narrower PIs when it considers

there is more certainty and wider PIs when there is more

uncertainty (recall the behavior in Fig. 3). As a consequence,

54.4%, 44.3%, and 40.3% of the points processed by

DualAQD on field “A” have smaller PI width than QD+, QD,

and MC-Dropout, respectively, while still being able to cover

the observed target values. Similarly, 88.7%, 65.3%, and

49.9% of the points processed by DualAQD on field “B” have

smaller PI width than QD+, QD, and MC-Dropout while still

covering the observed target values and 62.5%, 6.0%, and

8.8% of the points processed by DualAQD on field “C” have

smaller PI width than QD+, QD, and MC-Dropout while still

covering the observed target values.

Finally, Fig. 6 shows that DualAQD indicates higher uncer-

tainty in the lower (southern) region of the field, which

received a nitrogen rate value that was not used in previous

years (i.e., it was not available for training). Similarly, regions

of high yield values are related to high nitrogen rate values;

however, there exist considerably fewer training samples of

this type, which logically would lead to greater uncertainty.

Thus, there is more uncertainty when predicting regions that

received high nitrogen rate values, and this is represented

effectively by the uncertainty map generated by DualAQD

but not the compared methods. It is worth mentioning that

even though DualAQD showed some degree of robustness

empirically when given previously unseen samples, NN-based

PI generation methods do not offer any guarantee for the

behavior of the model for out-of-distribution samples.

VI. CONCLUSION

Accurate uncertainty quantification is important to increase

the reliability of DL models in real-world applications that

require uncertainty to be addressed. In this work, we focus

on methods that generate PIs using conventional deep NNs

for regression tasks. As such, we presented a method that

uses two companion NNs: one that specializes in generating

accurate target estimations and another that has two outputs

and is trained using a novel loss function designed to generate

accurate and narrow PIs.

We tested our method, DualAQD, with a challenging syn-

thetic dataset and seven benchmark datasets using feedforward

NNs. We also experimented with a real-world application

of 2-D regression using spatially correlated data to convey

the usefulness and applicability of our PI generation method.

Therefore, we conclude that by using our loss function

LossDualAQD, we were able to produce higher quality PIs

in comparison to QD+, QD-Ens, and MC-Dropout-PI; that

is, our method generated significantly narrower PIs while

maintaining a nominal probability coverage without detriment

to its target estimation accuracy. DualAQD was also shown to

be more dynamic in the sense that it better reflects varying

levels of uncertainty within the data. It is important to point

out that we achieved better performance metrics than the

competing algorithms using less computational complexity and

fewer tunable hyperparameters. In the future, we plan to adapt

our loss function for its use in BNNs.

ACKNOWLEDGMENT

The authors would like to thank the members of the Data

Intensive Farm Management project (USDA-NIFA-AFRI and

USDA-NRCS) for their comments through the development

of this work, especially Dr. Paul Hegedus for collecting and

curating the site-specific data. They also would like to thank

Jordan Schupbach for providing advice on the experimental

design.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

MORALES AND SHEPPARD: DUAL ACCURACY-QUALITY-DRIVEN NN FOR PI GENERATION 11

REFERENCES

[1] D. Ghimire, D. Kil, and S.-H. Kim, “A survey on efficient convolutional
neural networks and hardware acceleration,” Electronics, vol. 11, no. 6,
p. 945, Mar. 2022.

[2] V. Buhrmester, D. Münch, and M. Arens, “Analysis of explainers of
black box deep neural networks for computer vision: A survey,” Mach.

Learn. Knowl. Extraction, vol. 3, no. 4, pp. 966–989, Dec. 2021.

[3] M. J. Colbrook, V. Antun, and A. C. Hansen, “The difficulty of
computing stable and accurate neural networks: On the barriers of deep
learning and Smale’s 18th problem,” Proc. Nat. Acad. Sci. USA, vol. 119,
no. 12, Mar. 2022, Art. no. e2107151119.

[4] A. Zarnani, S. Karimi, and P. Musilek, “Quantile regression and cluster-
ing models of prediction intervals for weather forecasts: A comparative
study,” Forecasting, vol. 1, no. 1, pp. 169–188, Oct. 2019.

[5] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on AI-oriented MPSoCs,” Appl. Sci., vol. 11,
no. 14, p. 6455, Jul. 2021.

[6] E. D. Meenken et al., “Bayesian hybrid analytics for uncertainty anal-
ysis and real-time crop management,” Agronomy J., vol. 113, no. 3,
pp. 2491–2505, May 2021.

[7] D. Tran et al., “Plex: Towards reliability using pretrained large model
extensions,” 2022, arXiv:2207.07411.

[8] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. Int. Conf.

Mach. Learn., Jun. 2016, pp. 1050–1059.

[9] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Compre-
hensive review of neural network-based prediction intervals and new
advances,” IEEE Trans. Neural Netw., vol. 22, no. 9, pp. 1341–1356,
Sep. 2011.

[10] D. L. Shrestha and D. P. Solomatine, “Machine learning approaches for
estimation of prediction interval for the model output,” Neural Netw.,
vol. 19, no. 2, pp. 225–235, Mar. 2006.

[11] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Lower
upper bound estimation method for construction of neural network-
based prediction intervals,” IEEE Trans. Neural Netw., vol. 22, no. 3,
pp. 337–346, Mar. 2011.

[12] T. Pearce, A. Brintrup, M. Zaki, and A. Neely, “High-quality prediction
intervals for deep learning: A distribution-free, ensembled approach,” in
Proc. 35th Int. Conf. Mach. Learn., 2018, pp. 4072–4081.

[13] X. Zhang, Z. Shu, R. Wang, T. Zhang, and Y. Zha, “Short-term load
interval prediction using a deep belief network,” Energies, vol. 11,
no. 10, p. 2744, Oct. 2018.

[14] I. M. Galván, J. M. Valls, A. Cervantes, and R. Aler, “Multi-objective
evolutionary optimization of prediction intervals for solar energy fore-
casting with neural networks,” Inf. Sci., vols. 418–419, pp. 363–382,
Dec. 2017.

[15] E. Simhayev, G. Katz, and L. Rokach, “PIVEN: A deep neural net-
work for prediction intervals with specific value prediction,” 2020,
arXiv:2006.05139.

[16] T. Salem, H. Langseth, and H. Ramampiaro, “Prediction intervals: Split
normal mixture from quality-driven deep ensembles,” in Proc. 36th

Conf. Uncertainty Artif. Intell., J. Peters and D. Sontag, Eds., vol. 124,
Aug. 2020, pp. 1179–1187.

[17] M. Ganaie, M. Hu, A. Malik, M. Tanveer, and P. Suganthan, “Ensemble
deep learning: A review,” Eng. Appl. Artif. Intell., vol. 115, Oct. 2022,
Art. no. 105151.

[18] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118. New
York, NY, USA: Springer, 2012.

[19] L. R. Chai, “Uncertainty estimation in Bayesian neural networks and
links to interpretability,” M.S. thesis, Dept. Eng., Univ. Cambridge,
Cambridge, U.K., 2018.

[20] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, Apr. 2017.

[21] A. Wu, S. Nowozin, E. Meeds, R. Turner, J. Hernández-Lobato, and
A. Gaunt, “Deterministic variational inference for robust Bayesian neural
networks,” in Proc. 7th Int. Conf. Learn. Represent., 2019, pp. 1–24.

[22] P. Izmailov, W. Maddox, P. Kirichenko, T. Garipov, D. Vetrov, and
A. Wilson, “Subspace inference for Bayesian deep learning,” in Proc.

35th Uncertainty Artif. Intell. Conf., Jul. 2020, pp. 1169–1179.

[23] J. Lu, J. Ding, C. Liu, and T. Chai, “Hierarchical-Bayesian-based
sparse stochastic configuration networks for construction of prediction
intervals,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8,
pp. 3560–3571, Aug. 2022.

[24] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez, “Quality of uncer-
tainty quantification for Bayesian neural network inference,” 2019,
arXiv:1906.09686.

[25] S. Farquhar, M. A. Osborne, and Y. Gal, “Radial Bayesian neural
networks: Beyond discrete support in large-scale Bayesian deep learn-
ing,” in Proc. 23rd Int. Conf. Artif. Intell. Statist., in Proceedings of
Machine Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108,
Aug. 2020, pp. 1352–1362.

[26] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proc. Adv.

Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–12.

[27] L. Zhu and N. Laptev, “Deep and confident prediction for time series
at uber,” in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW),
Nov. 2017, pp. 103–110.

[28] J. Schupbach, J. W. Sheppard, and T. Forrester, “Quantifying uncertainty
in neural network ensembles using U-statistics,” in Proc. Int. Joint Conf.

Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[29] A. Khosravi, S. Nahavandi, D. Srinivasan, and R. Khosravi, “Con-
structing optimal prediction intervals by using neural networks and
bootstrap method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 8,
pp. 1810–1815, Aug. 2015.

[30] J. Lu, J. Ding, X. Dai, and T. Chai, “Ensemble stochastic configuration
networks for estimating prediction intervals: A simultaneous robust
training algorithm and its application,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 31, no. 12, pp. 5426–5440, Dec. 2020.

[31] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the
target probability distribution,” in Proc. IEEE Int. Conf. Neural Netw.

(ICNN), vol. 1, Jun. 1994, pp. 55–60.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
Jan. 2014.

[33] K. F. Wallis, “The two-piece normal, binormal, or double Gaussian
distribution: Its origin and rediscoveries,” Stat. Sci., vol. 29, no. 1,
pp. 106–112, Feb. 2014.

[34] D. Dua and C. Graff. (2019). UCI Machine Learning Repository.
[Online]. Available: https://archive.ics.uci.edu/ml/index.php

[35] P. B. Hegedus et al., “Towards a low-cost comprehensive process for
on-farm precision experimentation and analysis,” Agriculture, vol. 13,
no. 3, p. 524, Feb. 2023.

[36] G. Morales, J. W. Sheppard, P. B. Hegedus, and B. D. Maxwell,
“Improved yield prediction of winter wheat using a novel two-
dimensional deep regression neural network trained via remote sensing,”
Sensors, vol. 23, no. 1, p. 489, Jan. 2023.

[37] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proc. 31st

Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6405–6416.

Giorgio Morales (Member, IEEE) received the B.S.
degree in mechatronic engineering from the National
University of Engineering, Lima, Peru, in 2015, and
the M.S. degree in computer science from Montana
State University, Bozeman, MT, USA, in 2021,
where he is currently pursuing the Ph.D. degree.

He is currently a member of the Numerical
Intelligent Systems Laboratory (NISL), Montana
State University. His research interests include deep
learning, explainable machine learning, computer
vision, and precision agriculture.

John W. Sheppard (Fellow, IEEE) received the
Ph.D. degree in computer science from Johns
Hopkins University, Baltimore, MD, USA, in 1997.

He is currently a fellow of the Institute of Elec-
trical and Electronics Engineers, Johns Hopkins
University. He is also a Distinguished Professor of
computer science with the Norm Asbjornson College
of Engineering, Gianforte School of Computing,
Montana State University, Bozeman, MT, USA. His
research interests include extending and applying
algorithms in deep learning, probabilistic graphical

models, and evolutionary optimization to a variety of application areas,
including electronic prognostics and health management, precision agriculture,
and medical diagnostics.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 01:51:47 UTC from IEEE Xplore. Restrictions apply.

