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erforming general prognostics and health man-
P agement (PHM), especially in electronic systems,
continues to present significant challenges. The low
availability of failure data makes learning generalized mod-
els difficult and constructing generalized models during the
design phase often requires a level of understanding of the
failure mechanisms that elude the designers. In this paper, we
present a generalized approach to PHM based on two types of
probabilistic models, Bayesian Networks (BNs) and Continu-
ous-Time Bayesian Networks (CTBNs), and we pose the PHM
problem from the perspective of risk mitigation rather than
failure prediction. This paper also constitutes an extension of
previous work where we proposed this framework initially
[1]. In this extended version, we also provide a comparison of
exact and approximate sample-based inference for CTBNs to
provide practical guidance on conducting inference using the
proposed framework.

Introduction
In previous work, we developed a diagnostic modeling tool
using BN called the Standards-based Analysis Platform for
Predictive Health and Integrated Reasoning Environment
(SAPPHIRE) [2], which conforms to IEEE Std 1232-2010 (AI-
ESTATE) [3]. We also developed a modeling tool designed for
prognostics called the Continuous-time Hazard Analysis and
Risk Mitigation (CHARM) system [4]. The models used in
CHARM are based on CTBNs [5], which represent systems as
factored continuous-time conditional Markov processes.
Although these two models are natural to combine, there
is little to no application of these models used in combina-
tion for conducting diagnostics and prognostics under a single
modeling framework. In this work, we discuss an approach
to combining their use for PHM. Our intent is not to focus
on SAPPHIRE or CHARM specifically, but rather to discuss
how BNs and CTBNs can be used together to support PHM.

Therefore, we use SAPPHIRE and CHARM for example pur-
poses only. Ultimately, this paper is about describing a new
process for risk-based PHM that combines elements of diag-
nostics and health state information as a starting point from
which predictive diagnostics (i.e., prognostics) can then be
performed.

Background

Here, we provide background necessary to follow the method
presented in this paper. First, we define what we mean by
Prognostics and Health Management (PHM) relative to cur-
rent views in the industry. We then present the main tools
employed in our approach.

Prognostics and Health Management
Simply put, there is little agreement about the scope and rel-
evant practice of PHM. We take a literal approach when
considering PHM in that we believe PHM must include both
state estimation (health management) and prediction (prog-
nostics). This is contrary to many who believe the focus is on
health management as a practice of diagnostics and condition-
based maintenance, which largely centers on state estimation.
Vichare and Pecht noted that “The term ‘diagnostics’
pertains to the detection and isolation of faults or failures.
‘Prognostics’ is the process of predicting a future state (of reli-
ability) based on current and historic conditions. Prognostics
and health management (PHM) is a method that permits the
reliability of a system to be evaluated in its actual life-cycle
conditions, to determine the advent of failure, and mitigate the
system risks [6].” We see both inspiration and limitation in this
view. As inspiration, we see that we can use reliability informa-
tion during the design phase to create initial predictive models
and consider risks associated with system failure. However, as
limitation, there is no tie between diagnostics and prognostics
in this view of PHM.

This paper contains extended research originally presented at IEEE AUTOTESTCON 2022 and recognized as Best Student
Paper (© IEEE 2022, used with permission, [1]).
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Kalgren et al. also provide a definition of PHM. They
say PHM is “a health management approach utilizing mea-
surements, models, and software to perform incipient fault
detection, condition assessment, and failure progression pre-
diction” [7]. Their view includes incipient fault detection and
condition assessment, which ties back to the current health
state of the system. However, their views related to failure pro-
gression prediction largely depend upon physics-of-failure
models, which are neither generalizable nor scalable in com-
plex systems.

Li et al. pose PHM more literally, as we do. “Prognostic and
Health Management (PHM) systems support aircraft main-
tenance through the provision of diagnostic and prognostic
capabilities, leveraging the increased availability of sensor
data on modern aircraft. Diagnostics provide the functional-
ities of failure detection and isolation, whereas prognostics
can predict the remaining useful life (RUL) of the system” [8].
In this definition, diagnostics are limited to on-board systems,
and prognostics are focused on RUL. We adapt this idea to con-
sider off-board diagnostics and time-to-failure.

We also consider the ideas expressed in the recently
approved IEEE Standard 1856, which divides the defini-
tion of PHM into two parts [9]. First, the standard defines
prognostics to be “the process of predicting an object sys-
tem’s RUL by predicting the progression of a fault given the
current degree of degradation, the load history, and the an-
ticipated future operational and environmental conditions
to estimate the time at which the object system will no longer
perform its intended function within the desired specifica-
tions.” Once again, the focus is on remaining useful life and
on failure progression, which would largely be from a point
of failure perspective. Second, the standard defines health
management as “The process of decision-making and im-
plementation of actions based on the estimate of the state of
health derived from health monitoring and expected future
use of the system.” This is good in the sense that the depen-
dence is on state of health, but the definition excludes the
health assessment itself.

We have previously asserted that all aspects of health as-
sessment, including fault detection, localization, isolation,
and even determining there are no faults, are diagnostic pro-
cesses [10]. We assert that PHM begins with diagnosis and then
proceeds to determine when future failures might occur (prog-
nosis). We like to refer to prognostics as predictive diagnostics
in that we also want to know what faults are occurring when.
This sets up a pipeline process whereby PHM consists of a
sequence of five steps: monitoring; health state assessment (di-
agnosis); prediction (prognosis); assessment; and action. This
results in an evidence-based decision-making process that
leads to the overall support of the system.

Risk-based PHM

Motivated by Vichare and Pecht, who draw on reliability infor-
mation, we employ a “risk-based” approach to PHM (rPHM).
We seek to introduce a framework that includes both diag-
nostics and prognostics and incorporates effects or hazards

4 IEEE Instrumentation & Measurement Magazine

using the same model semantics. By building hazards into
the model, predictions can be made about the risks associ-
ated with likely faults and downstream results of those faults.
Our approach incorporates user-specified performance func-
tions (i.e., utility functions) that place value on various system
states, which allows one to assess potential impact on mis-
sion outcomes should hazards be realized or averted. Hence,
the framework also allows modeling of risk mitigation strate-
gies to be employed directly into the decision-making process.
Our approach combines two types of models, one focused on
diagnostics and another on prognostics. We use BNs for diag-
nostics, allowing us to estimate (with uncertainty) the current
health state of the system. Once health state is determined, we
use this as “virtual evidence” in a companion CTBN model to
reason through time.

Bayesian Networks

Here, we provide a brief introduction to BNs. A BN is a
graph-based representation of a joint probability distribu-
tion. Given a set of random variables X = {Xl,..., X, }, the
BN provides a compact representation of joint distribution
P(X)= P(Xl,..., Xn) by applying the product rule of proba-
bilities and properties of conditional independence among the
variables. ABN can be regarded as a “factored” representation
of the joint distribution corresponding to:

P(Xq,..., X, ) = HP(Xi | Pa(X;)) )
X;eX

Representing conditional probabilities P(X1~| X j) in a di-
rected acyclic graph, the vertex for X; is connected by an
outward directed edge to the vertex for X;, in which case we
say X; is a parent of X; (i.e., Xje Pa(X;)). The graph structure,
combined with a parameterization of the local distributions
for each random variable X;, corresponds to the specification

of a BN.

Continuous-Time Bayesian Networks

For predictive modeling, we use CTBNs. At the heart of a
CTBN is a Continuous-Time Markov Process (CTMP). A
CTMP is a model over continuous-time random process X,
consisting of two parts: an initial distribution Py (0)and a tran-
sition intensity matrix Qy defined over the states of X'. The
entries ¢; j in Qy govern the rate of transition from state x; to
state x; as a function of time. The ith diagonal entry, denoted
q;, is constrained to be the negative sum of the rest of the row
(e, gi=—-2 j=i qi,j)- The distribution indicating if the process
remains in state 7 is exponential with rate g;:

fo: = =41 exp (4it)- 2)

Conditional on a transition out of state i occurring at time
t, X transitions from state x; to state x; according to a multino-
mial distribution with probabilities:
i

P(xj|x,-,t)=—;. (3)
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CTBNs provide a factored representation of CTMPs. Let
X :{Xl,..., Xn} be a set of discrete random variables. The
model consists of two parts: a graph structure G and a set of pa-
rameters P. Graph G is a directed, possibly cyclic graph with
nodes corresponding to variables X. Parameterization P corre-
spond to intensity matrices of conditional Markov processes,
one for each X; € X, conditioned on its parents in graph G.
These intensity matrices are referred to as “conditional inten-
sity matrices” (CIMs). We use a CTBN to capture the failure
and hazard dynamics of the system under test.

Diagnostic Bayesian Networks

We now present our formulation for the diagnostic BN. Recall,
a CTMP (and thereby a CTBN) requires a prior distribution to
kick start the process. We use a diagnostic BN as the basis for
that prior distribution. Furthermore, we use a D-matrix [11] to
provide the structure of that BN.

D-Matrices

A variety of diagnostic models are possible for establishing
health state. These include fault trees [10], first principle mod-
els [12], expert systems [13], and BNs [14]. Because it integrates
with our framework, we use a BN derived from a diagnostic
dependency matrix (i.e., D-matrix) [8].

A D-matrix is a binary matrix D mapping faults to tests.
Let F :{Fl,..,, Fd} be a set of faults or diagnostic conclu-
sions to be drawn in a system. Assume each F; is Boolean. Let
T= {Tl,. . Tn} be a set of tests designed to detect presence of
faults. Assume each test is also Boolean. Finally, let D be the
dxnbinary matrix where:

{1 F; is detected by T;
ij = :

0 Otherwise @

AD-matrix can be represented as a BN, similar to the model
described by Schwe et al. [11] which represents the depen-
dency structure via noisy-Or nodes. Each F; and T} are defined
as random variables (i.e., vertices) in the network, and con-
ditional dependence relationships are defined where D; ; =1
indicates F;is a parent of T;. Prior probabilities on each F; can be
based on reliability data, and conditional probabilities P (Tj| F; )
can be defined based on properties of the underlying test sys-
tem [15].

Virtual Evidence

One difficulty with probabilistic diagnostic systems is ac-
counting for uncertainty in evidence collected. Two different
formalisms exist to address evidence uncertainty in BNs: soft
evidence and virtual evidence [16]. Soft evidence corresponds
to replacing the conditional probability P(Tj| Fl) at the time an
observation is made (i.e., the test is performed) to capture the
confidence in the test result. Inference is then applied using
this distribution. More formally, if P(T]- ) reflects probability of
a test result, we derive this by computing P(Tj) = ZT\T/‘ P( D)
(i.e., we marginalize out the rest of the network). With soft ev-
idence, we replace P(Tj) with a revised estimate P'(Tj) and
update using Jeffrey’s rule:
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P(D)= ZP(D| T/)P(T}) ®)

T

Virtual evidence, on the other hand, inserts additional ver-
tices into the model reflecting confidence of the evidence,
P(obs (Tj)| T; ) This is shown graphically in Fig. 1. In this case,
we pre-set test confidences through the definition of obser-
vation distributions and apply the evidence to those vertices.
Corresponding state of fault vertices is then inferred using the
usual inference methods.

Prognostic CTBNs

In previous sections, we spent time setting up tools for prob-
abilistic fault diagnosis. This approach allows us to take
observation uncertainty, dependency uncertainty, and fail-
ure uncertainty into account in a unified way. It also provides
away to specify prior distribution Py (0) for the CTBN that we
will be using for prognosis. We now discuss how prognostic
CTBNs are constructed.

FaultTrees

Within the automatic test systems community, many will have
encountered the concept of a fault tree. The question we face
is what kind of fault tree? In test program sets (TPS), a fault
tree corresponds to the decision process of specifying a test,
observing an outcome, and branching to the next step until a
diagnosis or call out can be returned. Alternative forms of fault
trees arise from Fault Tree Analysis (FTA) [17].

A fault tree arising from FTA corresponds to a directed acy-
clic graph where edge directions all proceed upward, from leaf
to root. Leaves of the tree correspond to faults in the system.
Interior vertices of the graph correspond to failures, effects, or
hazards resulting from a fault. Interior vertices are also repre-
sented using logic gates (e.g., AND, OR, or XOR) indicating
whether the corresponding effect is expected to occur because
of fault(s) at the leaves of the tree. An example fault tree taken
from [1], [18] is shown in Fig. 2.

Fig. 1. Diagnostic BN with virtual evidence, from [1], (© |EEE 2022, used with
permission).
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Fig. 2. Sample Fault Tree, from [1], [18] (© IEEE 2022, used with permission).

Perrault et al. showed how to encode a fault tree as a CTBN
[19]. To parameterize fault nodes, we use an intensity matrix
for fault F corresponding to:

-Af A

o ©)
Hf  THf

where A¢is the failure rate of the fault and 1 is the repair rate. If

we assume interior nodes all have two children, each requires two

CIMs. For the AND nodes, the intensity matrices correspond to:

Qxpacx) =[_3X l(f j @
when Fx (Pa(X)) =1(all ones) and
0 0
Qxlpax) = {HXPa(X) —ux|Pa(X)J' ®)

when Fy (Pa (X )) =0 (not all ones). On the other hand, for OR
nodes, the intensity matrices correspond to

0 0
j, ©)

HX|Pa(X) ~HMX|Pa(X)

Qx|Pa(x) = {

when Fx (Pa(X )) =0 (all zeroes) and

Mitigation Strategies

When employing a risk-based approach to PHM (rPHM),
the intention is to be proactive in mitigating risks. This is
captured by implementing condition-based maintenance
strategies that perform system support prior to system fail-
ure, mitigating potential effects of a failure occurring. This
has the advantage of also providing alternative means for
evaluating effectiveness in terms of the relationship be-
tween support costs and mission success arising from the
application of risk mitigation strategies. Within the context
CTBNSs, mitigation strategies can be added directly as model
components.

To incorporate mitigation strategies, we use a CTBN that
incorporates decision nodes. Perreault referred to the resulting
model as a Continuous-Time Decision Network (CTDN) [18].
A CTDN has two additional types of vertices—decision verti-
ces (supporting the implementation of a mitigation strategy)
and utility vertices (tied to performance functions). A deci-
sion node in a CTDN is a node with no parents whose state
is known at all times, defining a local trajectory over full tra-
jectory o[ X |. The states in | X | must conform to a (possibly
empty) constraint set which defines the set of possible states
that may be assigned over all time intervals [ts, t, ). Thus, a de-

A A
QX|Pa(X) :[ XI(I;”(X) Xlga(x)} (10)  cision vertex is a CTBN vertex where the state is predefined
over the given time interval, forcing a particular child CIM to
when Fx (Pa(X )) =1(not all zeroes). be activated.
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PWR-Sw

Fig. 3. Simple mitigation of power loss, from [1], (© IEEE 2022, used with
permission).

An example mitigation strategy for Fig. 2 is shown in Fig. 3.
Here, two different power sources are available to power a ve-
hicle. The “PWR-Sw” decision node switches between PWR1
and PWR2 based on the health of the two power sources by de-
fining a CIM for the AND node conditioned on the state of the
decision node and the power nodes.

Performance Functions

In a CTDN, utility nodes are included via performance func-
tions [20]. Utility nodes are used to compare the quality of
provided mitigation strategies. Performance functions are
represented by another vertex in the network; however, this
vertex does not have a CIM associated with it. Rather, the ver-
tex depends upon one or more CTMP vertices and defines a

function based on trajectories defined over those CTMPs. Let
o[Y] be a trajectory defined over a set of variables Y — X and
let (ts, te, Yt> be a set of observations over these CTMPs. The
performance function for Y can then be defined as:

flo)= z Fr(et,v):

<t5rtelYt>

(11)

This idea can be extended to include “factored” utility func-
tions [21].

The rPHM Process

Now that we have described the model, we outline the pro-
cess for rPHM. For this discussion, we use the diagram in
Fig. 4. Note that this process does not employ on-board
health monitoring but depends on information collected
from a test program set (TPS) on an automatic test system
(ATS). The intent is to collect data for fault isolation and to
establish health state for the unit under test (UUT). Based
on health state, risk assessments can be made based on fail-
ure progression and mitigation/maintenance strategies
assessed while the UUT is under maintenance.

At the start of the rPHM process is the UUT. At this point,
the UUT has been pulled from the system and sent to be tested.
The UUT is tested on an ATS, such as the US Navy’s eCASS
system, and faults are isolated. Once fault isolation is com-
plete, the UUT is repaired and re-tested to determine if it can
be returned to service. Following return to service testing, test
results are captured, perhaps in standard form [22], and pro-
vided to a separate diagnostic engine based on a BN derived
from a D-matrix. These test results are furnished as virtual ev-
idence to the BN to provide a means to estimate and quantify
uncertainty of the UUT health state.

Tester

Risk Assessment Mitigation

TPS Output

Fig. 4. A probabilistic risk-based PHM process, from [1], (© IEEE 2022, used with permission).
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Once health state is determined, resulting information can
be provided to the CTDN that assesses potential hazards and
mitigation strategies. A default mode where no mitigation is
performed can be used for baseline performance using util-
ity nodes in the CTDN. If utility is deemed too low, alternative
mitigation strategies are tested to assess changes in utility. If
determined that additional maintenance is warranted, infor-
mation can be provided to technicians to take action, re-test,
and re-assess health and failure progression.

Benchmarking Sampling versus Exact
Inference for CTBNs

A computational bottleneck in implementing these models
for large systems is conducting inference in the CTBN mod-
els. Algorithms for efficient inference with BNs exist, so they
are not considered in this part of the discussion. Conducting
exact inference in CTBNs involves two steps. The first step
“amalgamates” the network into a single CTMP, whose tran-
sition intensity matrix has row/column size equal to the total
number of states in the system [5]. The second “query step” in-
volves computing a matrix exponential for the amalgamated
intensity matrix and a subsequent matrix-vector product [5].
Hence, computation time is largely driven by the total num-
ber of states in the system, where the size of the amalgamated
matrix is exponential in the number of state variables. In fact,
it has been proven that, in general, inference in CTBNSs is in-
tractable [23].

Given the general intractability of exact inference, approx-
imate methods are required. In approximate sample-based
inference, one generates trajectories through repeated sampling
from exponential and multinomial distributions where param-
eters come from the defined CTBN [5]. Querying the network
at a given time is done by computing the proportion of trajecto-
ries in a particular state at that time. When querying all states of
the network at a given time, computational complexity is again

dominated by the number of system states. However, one ad-
vantage of sample-based inference is that generation of samples
and computing proportions over the samples are perfectly par-
allelizable. Hence, one can leverage hardware for conducting
approximate inference on larger systems.

However, knowing how many samples one should take is
a difficult task. To understand this problem better, we empir-
ically investigate how approximate inferences are affected by
sample sizes and properties of the network. We use average
KL-divergence integrated across time to measure goodness
of our approximation (denoted as IAKL). For discrete prob-
ability distributions P and Q, KL-divergence of Q from P is
defined as:

12
a() "

We compute average KL-divergence over the network at

D (P Q)=Zi:P(i)10g{MJ-

time f as:

(13)

ﬁZDKL (P(x(0)1 P (x(1)))
xeX
where P(x(t)) is the true probability of state x at time ¢ and
P’(x(t)) is our approximation. Since this is defined for each
t, we obtain average KL-divergence curves over our domain,
and then reduce these curves via integration (i.e., IAKL).

In our experiments, we consider network structure as a pa-
rameter. The structures we consider are chain, ring, star, random
binary-tree, random directed, and random directed-acyclic net-
works with given network size. See Fig. 5 for an illustration of
these networks. They are networks (or subnetworks) that can
each occur in the PHM process. For example, the chain network
can represent a Go/NoGo chain, the ring network can represent
a test/retest OK scenario, the star network represents a “many-
causes” model, and the binary tree model can represent our fault
tree example provided previously.

Network Size,

Ring

Directed Acyclic Graph

()
(e)—{2)
©)

Binary Tree

Network Type &
Network Parameters
Inourexperiments,allnodes

Star

have two states and priors
over those states are spec-
ified as P(0)={0.99,0.01}.
In our first experiment,
CIMs are parameterized
with A =10 and pr =100
(see (6)) and we vary the

Directed Graph

size of the network from
2 to 8, network type (Fig.
5), and sample sizes
n={1000, 2000, ..., 30000}.
We conducted 10 inde-
pendent replicates of each
experiment. In our second

Fig. 5. Network types considered for experiments.
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Fig. 6. Average log(IAKL) plotted against log(n) for (a) Chain and (b) Star networks in first experiment and for (c) Chain with varying CIM parameters in the second

experiment.

Hf € {1, 2,3,4,5,10, 20}, holding all other parameters at pre-
viously specified values for the chain network.

With this experimental setup, we plot the log(IAKL) aver-
aged across the 10 replicates against log(n) for each network
size and two representative network types (Fig. 6a and Fig.
6b) and for varying CIM parameters (Fig. 6c). Notice aver-
age log(IAKL) and log(n) follows a linear relationship with a
slope of approximately —1. Hence, a factor increase in sample
size leads to a factor decrease in average approximation er-
ror of predictions. Surprisingly, we see no effect from network
size and little effect from network type and varying CIM pa-
rameters (only differences in variability). This would be good
news and a further argument to use sampling-based methods
over exact methods for larger networks. However, we caution
against extrapolating these results to larger networks or pa-
rameters outside the range investigated in these experiments
since relationships that appear linear at one scale may appear
quadratic (or worse) at another.

We also fit repeated measures regression models for
each of these two experiments for log(IAKL) as a function
of log(n) with varying intercepts and provide an ANOVA ta-
ble in Table 1, estimated coefficients in Table 2 and estimated
random effects in Table 3. Each of the variables (log of the
number of samples, network type, and node size) have “sig-
nificant” p-values (at an o =0.05 significance threshold).
However, investigating the coefficient table, we see that this
is largely being driven by large sample sizes, and the effects
from network type and node size are not large enough to be
of practical significance. We also see the relationship with the
log of the number of samples is almost exactly 1. In our sec-
ond experiment, we saw similar results to this. That is, we
observed no practical significance associated with varying
CIM parameters and a slope of -1 associated with the log of
the sample size. We omit these tables for the sake of brevity.

Overall, these experiments suggest that for small networks
(up to 1024 states) and steady-state probabilities not too close
to the boundary (between 0.1 and 0.99), average approxi-
mation error decreases by a factor for each factor increase in

August 2023

DF SSE MSE F-value
log(n) 8585.1 8585.1 65693.60
networktype | 5 72.6 14.5 111.18
nodesize 1 60.5 60.5 463.10
o[ ated coe ; 0

e

Coefficients Std. Error
(Intercept) -0.621869 0.039405
log(n) -0.987208 0.003852
networktypeRBT —-0.071483 0.011156
networktypeRDAG 0.107251 0.011156
networktypeRDG -0.0788877 0.011156
networktypeRing -0.033228 0.011156
networktypeStar -0.134366 0.011156
nodesize 0.034652 0.001610

able ated random effe 0

e
Groups Name Variance Std. Dew.
rep (Intercept) 0.0735 0.2711
Residual 0.0594 0.2437
Number of observations: 12600, groups: rep, 420

sample size. Thus, average accuracy on the order of 10~ would
require a sample size somewhere on the order of 107 to 108,
Note, it may still be appropriate to use exact inference when
network size is small and desired accuracy is high.

Summary
We have described an approach to risk-based PHM which
combines BNs for diagnostics and CTBNs for prognostics.
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This approach establishes a new way of looking at the larger
PHM problem where the focus is on managing risks asso-
ciated with emerging faults in a system. By employing this
perspective, the risk-based PHM approach also offers an
alternative method for assessing PHM performance by fo-
cusing on probability of successful operation rather than
life-cycle cost from associated repair efforts. As a means
of implementing this approach, the output of a diagnostic
model serves as the prior distribution for a CTBN that mod-
els hazard progression in a system. In taking this approach,
we have utilized two previously developed tools, namely
SAPPHIRE (for diagnostics BNs), developed with support
of the US Navy, and CHARM (for prognostics CTBNSs), de-
veloped with support from NASA. We have illustrated
computational benefits of using approximate inference with
the prognostic CTBNs as a way of mitigating the computa-
tional complexity that results from such an approach. As part
of an ongoing effort with support from the US Navy, the two
systems are being combined into a single system for prognos-
tics and diagnostics using the modeling approach described
in this work.
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