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Abstract—As objectives increase in many-objective optimiza-
tion (MaOO), often so do the number of non-dominated so-
lutions, potentially resulting in solution sets with thousands
of non-dominated solutions. Such a larger final solution set
increases difficulty in visualization and decision-making. This
raises the question: how can we reduce this large solution set
to a more manageable size? In this paper, we present a new
objective archive management (OAM) strategy that performs
post-optimization solution set reduction to help the end-user
make an informed decision without requiring expert knowledge
of the field of MaOO. We create separate archives for each
objective, selecting solutions based on their fitness as well as
diversity criteria in both the objective and variable space. We
can then look for solutions that belong to more than one archive
to create a reduced final solution set. We apply OAM to NSGA-
II and compare our approach to environmental selection finding
that the obtained solution set has better hypervolume and spread.
Furthermore, we compare results found by OAM-NSGA-II to
NSGA-III and get competitive results. Additionally, we apply
OAM to reduce the solutions found by NSGA-III and find that
the selected solutions perform well in terms of overall fitness,
successfully reducing the number of solutions.

Index Terms—many-objective optimization, solution set reduc-
tion, evolutionary algorithms

I. INTRODUCTION

Many-objective optimization (MaOO) focuses on solving

optimization problems with more than three competing objec-

tives [1]. Such problems are becoming more prominent in real-

world applications (e.g., search-based software engineering

[2], hybrid car controlling [3], and automotive engine calibra-

tion [4].) MaOO comes with added difficulties as compared

to multi-objective optimization (MOO). Some of the identified

problems of interest are visualization of the solution set, the

number of non-dominated solutions found, and diversification

of the solutions throughout the search process [5].

To reduce the number of non-dominated solutions as

the objective space increases, Multi-Objective Evolution-

ary Algorithms (MOEAs) are often used; more specifically,

decomposition-based approaches such as MOEA/D [6] and

NSGA-III [7] are widely used. However, these approaches rely

on pre-defined reference vectors to guide the search and adjust

the search throughout the optimization process, i.e., they do

not offer a way to reduce the solution set post-optimization.

Furthermore, such approaches come with their own set of

issues, the most prominent being the decrease in diversity

and the need to determine the appropriate weight vectors [5].

Several adjustments to these decomposition based methods

have been proposed to address these issues [8], [9].

To better address diversity loss in MaOO, methods adjusting

the selection criteria have been proposed. This is accomplished

by changing the Pareto dominance relationship or creating a

specialized fitness function, where the adjustments focus on

achieving a good balance between diversity and convergence.

This has been accomplished through methods such as α-

dominance [10], dominance-ratio adjustment [11], objective

reduction based on dominance relations [12], maximum-

vector-angle-first principle[13], generalized Pareto optimality

[14], clustering of the solutions [15], and adjusted distribution

estimation [16]. Similarly, using a performance indicator to

evaluate solutions can be an effective strategy. Hypervolume-

based evolutionary algorithms are the most common approach

[17], [18], but the hypervolume calculation has two serious

drawbacks: its dependence on a reference point and the high

computational cost [19].

Archive maintenance tactics offer a different kind of so-

lution to the problems found in MaOO. In this approach, the

focus lies on an external archive that maintains the set of found

non-dominated solutions. Archive management strategies often

use ideas from the aforementioned methods, for example,

using the hypervolume indicator [20], reference-point based

archive management [21], and two-archive based methods

where one archive focuses on diversity (indicator-based) and

the other on convergence (Pareto-based) [22], [23].

All of the aforementioned approaches adjust the optimiza-

tion process to address the diversity and solution set size

issues. There is no guarantee the resulting solution set will be

of a “reasonable” size. In psychology and consumer research,

the choice overload hypothesis refers to the fact that “an

increase in the number of options to choose from may lead

to adverse consequences such as a decrease in the motivation

to choose or the satisfaction with the finally chosen solution

[24].” Furthermore, research has found that certain factors can

exacerbate the effects of choice overload, including difficulty

of the task, complexity of the choice set, preference uncer-

tainty, and decision goals [25]. If we consider MaOO to be

a such a difficult task that produces a complex solution set,
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a large number of final solutions (> 26) is more likely to

lead to choice overload for the end user. In this paper, we

focus on managing the number of non-dominated solutions

post-optimization to mitigate the choice overload effect. We

propose a multi-archive approach to reduce the non-dominated

solution set found by any MOEA to facilitate decision making

for the end user, without the need for expert knowledge in the

field of evolutionary optimization.

Our archive management strategy creates separate archives

for each objective based on the non-dominated solutions

produced by an algorithm, where each archive focuses on

maintaining the “best” solutions for the relevant objective

while introducing diversity. We update the objective archives

throughout the generations, and after the final generation, we

find the solutions that belong to multiple archives to create a

small final solution set to present to the end user.

II. SOLUTION SELECTION

MaOO with M objectives can be represented as follows,

assuming minimization:

min
x∈X

f(x) = {f1(x), f2(x), . . . , fM (x)},

where fi ∈ FM represents the objective space, M > 3,

X ∈ R
n is the solution space, and x = [x1, x2, . . . , xn]

⊤

denotes the decision variables. With an increase in competing

objectives, the number of non-dominated solutions in the

Pareto front often increases as well, complicating the search

process and resulting in large Pareto fronts. When dealing with

such large objective spaces, three main problems have been

identified [5]: 1) Convergence and diversity are compromised;

2) The curse of dimensionality arises in the objective space;

3) Visualization of solutions becomes more difficult, as does

making a final solution choice. The first two problem areas

have been addressed in many different ways, mostly focusing

on adjusting algorithms to increase diversity or by adjusting

the selection procedure (e.g., indicator-based selection instead

of Pareto-dominance) [26]. Each of the approaches presented

in Section I offers ways to balance convergence and diversity

as the objectives increase but do not address the issue of large

non-dominated solution sets. Most research focuses on helping

the decision maker in their choice for a final solution focuses

on dimensionality reduction to aid in visualization [19] or by

incorporating preferences directly into the search processes

[27]. However, dimensionality reduction comes at the cost of

information loss in the objective space, and preferences are

highly domain-specific.

There has been research in selecting a subset of solutions

after the final non-dominated solution set has been generated,

but most research in this area has focused on using the

hypervolume metric to find the best solution subset [28], [18].

However, as previously mentioned, the hypervolume indicator

comes with two major drawbacks [19]. A more promising

approach was presented by Takagi et al., where they perform

environmental selection based on an MOEA’s chosen selection

procedure, for example, crowding distance as used by NSGA-

II [29]. We identified two potential downsides to this approach.

Algorithm 1 Objective Archive Management

Input: Number of objectives M , ND archive N , selection parameter
k, diversity parameter ℓ

1: F ← {}
2: k ← ⌈k × |N |⌉
3: for all i = 1 to M do
4: Fi ← {}
5: N ′ ← sort(N , i)
6: Fi ← Fi ∪N

′[: k]
7: N ′′ ← diversify archive(N ′[k : 2k], ℓ) // Algorithm 2
8: Fi ← Fi ∪N

′′

9: end for
10: return F

First, it requires a pre-defined solution set size, and second, it

depends upon a specific algorithm to be selected to determine

the type of environmental selection to be applied. The former

means the end user needs to know how many solutions they

want to keep, and the latter means that expert knowledge is

required to make an appropriate choice [30]. Our research

tries to address the post-optimization solution selection issue

using the proposed Objective Archive Management (OAM)

approach. In other words, we aim to reduce the amount of

non-dominated solutions as generated by any MOEA without

reducing the number of objectives, defining a fixed size of the

final solution set, or the need for expert knowledge (either to

determine reference vectors or for algorithm selection).

III. OBJECTIVE ARCHIVE MANAGEMENT

Since we are organizing a group of non-dominated solutions

S into subgroups Si for each objective, we call our algorithm

“objective” archive management (OAM). Our approach is as

follows. For each objective Mi, we sort S according to Mi.

The first k% of the sorted solution set is added to Si. Then

the second k% of the sorted solution set is selected, from

this second k%, ℓ% diversity solutions are chosen; half of

which are diverse in the objective space, and half of which are

diverse in the variable space, where both spaces are normalized

(Algorithm 1). The collection of archives is referred to as the

Objective Archive (OA). Diversity is determined by creating a

dissimilarity or distance matrix Md for the solutions’ variables

(Mdvar
) and fitness scores (Mdfit

) separately (Algorithm 2).

By checking both objective and variable diversity, we aim

to account for biased problems (as defined in [31]). In our

experiments, we use the cosine similarity metric to measure

diversity due to its useful qualities in high dimensional spaces.

Specifically, cosine similarity distinguishes different solutions

from a directional perspective, making it a good choice to

diversify the solution and variable space [32]. Note, however,

that any distance metric can be used. Selecting for diversity

in this way ensures that the chosen diversity solutions are still

good solutions for objective Mi. However, we do not wish to

select solely based on diversity. Since diversity is calculated

based on all objective values and all decision variables, the

objective we are considering for our OA does not influence

the diversity of the solutions. As a result, if we were to choose

solutions solely based on diversity without taking their ranking
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Sol1 Sol2 Sol3 Sol4 Sol5

Obj1 5 2 4 1 5

Obj2 2 2 4 3 6

Obj3 3 6 4 5 2

TABLE I: Example set of five solutions for three objectives.

k Obj # Selected solutions

40%
1 sol4 sol2

2 sol2 sol1

3 sol5 sol1

60%
1 sol4 sol2 sol3

2 sol2 sol1 sol4

3 sol5 sol1 sol3

TABLE II: Example of selected solutions for each objective

based on parameter k. Bold solutions are those selected for

the final archive based on oc = 2.

Algorithm 2 Diversify Archive

Input: Solution set S , diversity parameter ℓ

1: ℓ← ⌈ℓ× |S|⌉
2: S′ ← {}
3: Svar ← {X0, . . . , X|S|}
4: Sfit ← {F0, . . . , F|S|}
5: Mdvar

← cosine distance(Svar)

6: S′
var ← sort(Mdvar

)

7: S′ ← S′ ∪ S′
var[: ℓ/2]

8: Mdfit
← cosine distance(Sfit)

9: S′
fit ← sort(Mdfit

)

10: S′ ← S′ ∪ S′
fit[: ℓ/2]

11: return S′

for the relevant objective into account, the same diversity

solutions would be selected for each archive. Consequently,

the selected diversity solutions would not be diverse.

To illustrate the intuition behind the design choice of the

k parameter and the use of overlap to find the final non-

dominated solution set, we created a toy example with five

non-dominated solutions and three objectives. Table I shows

the objective values for each solution, and Table II shows

which solutions are selected for each OA. In our example we

do not take diversity into account to showcase the influence of

k. When k = 60%, the three best solutions for each objective

are chosen to be added to the objective archive.1 As we can

see, when k is set to be a larger percentage, this means

more solutions will be selected, resulting in more balanced

solutions being added to each archive. However, even if k is

small, the overlap count oc ensures the solutions being chosen

perform well on at least oc number of objectives, thus avoiding

solutions that only perform well on a single objective.

We can now use the created OA to reduce the non-

dominated solution set into a more manageable size. We do

this by counting how many times each solution occurs in the

1Note that in practice, we would not set k > 50%, since this would result
in a large number of solutions being retained, which defeats the purpose of
solution set reduction.

Algorithm 3 Find Overlapping Solutions

Input: Objective archive OA, overlap count oc
Init: Dictionary count ← {}, reduced solution set S ← {}

1: arch ← flatten(OA)

2: for all X ∈ arch do

3: count[X]← 0
4: end for

5: for all i = 1 to M do

6: for all X ∈ OAi do

7: count[X] = count[X] + 1
8: end for

9: end for

10: for all x, c ∈ count do

11: if c ≥ oc then

12: S ← S ∪ {x}
13: end if

14: end for

15: return S

M objective archives (Algorithm 3). The user can then choose

how many archives a solution needs to belong to (overlap

count oc) to be included in the final solution set.

The OAM approach can be applied in two different ways to

reduce the non-dominated solution set: by keeping an external

OA that is continuously updated at each generation of an

MOEA, or by applying the OAM strategy a single time to

the non-dominated solution set produced after an MOEA has

finished running. We refer to the former as E-OAM (external

OAM), and the latter as S-OAM (single OAM). In both cases,

the final OAM can be used to find overlapping solutions to

reduce the number of non-dominated solutions (Algorithm 3).

IV. EXPERIMENTS

In preliminary studies, we applied NSGA-II, MOEA/D, and

SPEA2 to the DTLZ [33] and WFG [31] benchmark suites

using different variable grouping strategies [34]. We found

that NSGA-II performed well on MaOO problems regardless

of variable grouping (as compared to MOEA/D and SPEA2).

As a result, we decided to use NSGA-II as our base algorithm;

however, as previously stated, the OAM approach could be

applied to any algorithm. We compared OAM-NSGA-II to

the environmental selection approach in [29] and NSGA-III

[7], lastly, we apply OAM to the results obtained by NSGA-

III. Each algorithm was run with a population of 1000, for

100 generations. Through preliminary studies, we found that

solving DTLZ5, DTLZ6, WFG3, and WFG7 resulted in large

non-dominated solution sets (> 500). We used these four

functions for our experiments, each with 5 and 10 objectives

and 100 decision variables [31]. We performed 30 independent

iterations of the algorithms on each problem and report Hyper-

volume (HV ) [35] and Spread (S) [36]. The Wilcoxon rank-

sum test with α = 0.05 was performed to assess statistical

significance for all results.
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TABLE III: Chosen parameter combinations (k and ℓ).

Problem DTLZ5 DTLZ6 WFG3 WFG7

M 5 10 5 10 5 10 5 10

k 0.40 0.40 0.50 0.50 0.40 0.50 0.50 0.50

ℓ 0.30 0.50 0.40 0.40 0.40 0.40 0.20 0.40

A. Convergence vs. Diversity

Before presenting the results of the comparative analysis,

we empirically examined the influence of the convergence and

diversity parameters k and ℓ on solution quality when using

the E-OAM strategy. As explained in Section III, we do not

expect to find statistically significant differences in the k and

ℓ parameters. We ran experiments for all combinations of k =
{0.25, 0.4, 0.5} and ℓ = {0.2, 0.3, 0.4, 0.5}. We evaluated the

archive at each generation using HV and spread. 2

Following statistical hypothesis testing, we found that there

was no significant difference between the different ℓ parameter

settings for HV and spread on problems DTLZ5, DTLZ6, and

WFG3. The same does not hold true for WFG7, where we

do find statistically significant differences. However, there is

little to no convergence for either HV or spread for WFG7,

regardless of the chosen k and ℓ parameters. Additionally,

it is interesting to note that spread decreases for DTLZ5,

which indicates more similar solutions are being found. We

believe the problem lies with the performance of NSGA-II;

since the OA is only updated with solutions found by the

underlying optimization algorithm, it is directly influenced by

that algorithm’s performance. In other words, if the underlying

algorithm has trouble finding good solutions, the OA does not

improve these solutions, it simply selects a subset from the

solutions. Table III shows the parameter combinations we used

throughout the rest of the paper based on our results.

B. Environmental Selection Results

In this section, we consider the solution set reduction aspect

of OAM compared to Environmental Selection (ES) [29]. In

these experiments, we performed reduction using both OAM

and ES on the same non-dominated solution set generated

by NSGA-II. We used the generated OA to find overlapping

solutions to determine the reduced solution set. We looked at

the number of solutions generated by both E-OAM and S-

OAM with overlap equal to 60% and 80% of the number of

objectives. The resulting solution set sizes, as well NSGA-II’s

solution set size, are shown in Table IV. Using 80% overlap

results in empty solution sets for some of the problems, we

recognize that this is an important flaw in our method and

discuss future work to address this issue in our conclusion. In

this paper, we decided to use 60% overlap to generate the final

non-dominated solution sets to avoid empty solution sets.

We applied ES to both the solutions found in the complete

OA generated by E-OAM before finding overlap and to the

non-dominated solution set generated by NSGA-II. We set

2Due to space limitations, we were not able to include all of our re-
sults; therefore, we provide supplementary materials at the following link
https://github.com/AmyLinck/OAM-supplementary .

TABLE IV: Average size for NSGA-II, E-OAM, and S-OAM

with different overlap sizes (indicated by the percentages).

NSGA-II E-OAM S-OAM

Problem M 60% 80% 60% 80%

DTLZ5
5 931 46 0 144 35

10 887 100 31 354 111

DTLZ6
5 654 140 3 381 129

10 776 123 53 291 127

WFG3
5 643 36 0 49 49

10 837 47 33 478 297

WFG7
5 995 61 2 326 75

10 1000 474 119 285 251

TABLE V: HV for NSGA-II, OAM, and ES. Bold indicates

statistical significance with α = 0.05.

Problem M NSGA-II E-OAM ES-E S-OAM ES-S

DTLZ5
5 0.988 0.997 0.985 0.987 0.985
10 0.985 0.998 0.980 0.982 0.980

DTLZ6
5 0.912 0.968 0.879 0.912 0.880
10 0.915 0.920 0.880 0.914 0.881

WFG3
5 0.757 0.758 0.756 0.757 0.756
10 0.066 0.066 0.060 0.066 0.060

WFG7
5 0.106 0.201 0.093 0.105 0.093
10 0.062 0.190 0.144 0.062 0.049

TABLE VI: S for NSGA-II, OAM, and ES. Bold indicates

statistical significance with α = 0.05.

Problem M NSGA-II E-OAM ES-E S-OAM ES-S

DTLZ5
5 0.005 0.0151 0.006 0.003 0.001
10 0.006 0.034 0.007 0.004 0.000

DTLZ6
5 0.058 0.117 0.019 0.058 0.014
10 0.049 0.048 0.009 0.048 0.002

WFG3
5 0.011 0.006 0.007 0.006 0.000
10 0.006 0.270 0.190 0.006 0.001

WFG7
5 0.047 0.346 0.212 0.046 0.001
10 0.077 0.623 0.450 0.077 0.002

the number of the selected solutions to be the same as the

number created by the OAM overlap. This means the number

of solutions selected from the OA was the same as the number

of solutions generated by the E-OAM overlap, and the number

of solutions selected from NSGA-II’s solution set was the

same as those from S-OAM. Therefore, we denote the two

different ES-based selections as ES-E and ES-S respectively.

The choice of parameters k and ℓ can be found in Table III. We

report HV and S for the original non-dominated solution set

from NSGA-II as well as for the different implementations

of OAM and ES. We compare the quality of the selected

solutions through HV (Table V), S (Table VI), and solution

visualization through radar plots. 2

E-OAM not only reduces the solution set to a more man-

ageable size but improves HV and S for most problems as

compared to NSGA-II’s non-dominated solution set. Consid-

ering classic NSGA-II does not use any archive management

strategy, this makes sense since we are keeping track of

all non-dominated solutions found when using the E-OAM

approach. The interesting part is that the reduced solution

sets still have an improved HV and S for most problems,

compared to NSGA-II, which only has significantly better

results for spread on the 5-objective WFG3. When comparing
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TABLE VII: AC and size for NSGA-III and E-OAM-NSGA-

II.

NSGA-III E-OAM

M AC Size AC Size

DTLZ5
5 60.80% 25 39.20% 38

10 77% 266 23% 90

DTLZ6
5 85.50% 70 14.50% 130

10 83% 714 17% 160

WFG3
5 100% 80 0% 34

10 99% 188 1% 48

WFG7
5 100% 70 0% 64

10 100% 715 0% 400

ES to OAM, we see that for both single and external use,

OAM has better performance than ES on all problems.

C. NSGA-III Results

The reduced solution sets created when using NSGA-II are

still considered large sets (> 26). Therefore, we investigated

the effect of applying OAM to NSGA-III, an algorithm ad-

justed to improve performance on MaOO problems. Our final

experiments considered two different aspects of the algorithm

as compared to and applied to NSGA-III:

1) We compared the final results from NSGA-III to the

final archive found by E-OAM with NSGA-II.

2) We applied S-OAM to the final results set found by

NSGA-III.

Since NSGA-III relies on reference vectors to guide the

algorithm through the search space, we ran experiments with

different numbers of partitions using the Das-Dennis approach

to generate different-sized sets of reference vectors [37]. We

tested 3, 4, 6, and 9 reference vectors. 2 Based on these results,

we use four partitions to generate the reference vectors.

1) External Archive Solutions: This section compares the

non-dominated solution set found through overlap from OAM-

NSGA-II to the non-dominated solutions found by NSGA-

III. In addition to HV and spread (Table VIII), we calculated

adjusted coverage (AC), which combines the solutions from

NSGA-III and E-OAM-NSGA-II into a new non-dominated

front, and calculated how many solutions from each solution

set remain in the new front [38]. As mentioned previously,

OAM does not influence algorithm performance. Given that

NSGA-III has been shown to improve performance for MaOO,

it came as no surprise that NSGA-III covered most or all of the

non-dominated solutions found by NSGA-II (Table VII) or that

NSGA-III had significantly better spread for all problems [19].

However, given this information, it is interesting to note that

E-OAM-NSGA-II performed reasonably well on the DTLZ

problems. According to Huband et al., DTLZ5 and DTLZ6

represent degenerate Pareto fronts [31], but this attribute no

longer holds true when M > 4. This could explain why a

more complex algorithm no longer has as much benefit.

2) Direct Solution Set Reduction: In addition to the com-

parative analysis, we applied S-OAM to the results found

by NSGA-III to show its general applicability and to further

investigate the type of results that are selected when applying

S-OAM. We investigated the influence of the k, l, and oc

TABLE VIII: HV and S for NSGA-III and S-OAM NSGA-

III. We found no statistical significance with α = 0.05.

NSGA-III S-OAM

M HV S HV S

DTLZ5
5 0.999 0.025 0.999 0.016
10 0.999 0.056 0.999 0.040

DTLZ6
5 0.999 0.143 0.999 0.142
10 0.999 0.231 0.999 0.224

WFG3
5 0.871 0.522 0.871 0.219
10 0.188 0.888 0.187 0.390

WFG7
5 0.613 1.861 0.512 1.844
10 0.468 3.847 0.322 3.355

parameters on the solution set size. 2 As expected, the number

of chosen solutions gradually decreased with smaller k and l
parameters, with bigger jumps occurring when the k parameter

changed. Based on our results, we set parameters k = 0.4,

ℓ = 0.5, and oc = 60% for 5 objectives, selecting 15−20% of

the total solutions, and k = 0.4, ℓ = 0.4, and , and oc = 80%
for 10 objectives, selecting 7− 15% of the total solutions.

The generally similar HV scores for NSGA-III and S-

OAM-NSGA-III (Table VIII) indicate that the found solution

sets are similar in quality i.e., E-OAM-NSGA-II finds a subset

of the solutions found by NSGA-III, which we assessed visu-

ally as well. 2 In other words, even though NSGA-III resulted

in more diversity, this is likely because NSGA-III was keeping

solutions with a relatively large increase in one objective score

to gain a small decrease in another objective score. When

applying S-OAM, it removes many of these solutions while

maintaining the increased diversity in the NSGA-III solution

set. This indicates that if the original algorithm generates a

diverse set of solutions, OAM can reduce this solution set

successfully to a smaller size, mitigating the choice overload

problem, while maintaining diversity.

V. CONCLUSION AND FUTURE WORK

As the number of objectives of a problem increases, the

number of non-dominated solutions often does as well. This

could lead to a phenomenon known as choice overload [24].

We introduced the Objective Archive Management (OAM)

strategy to reduce the final non-dominated solution set size for

MaOO to address the choice overload problem. The presented

approach has several benefits compared to existing approaches:

it requires no pre-defined reference vectors, it can be applied to

any algorithm or any solution set, the end-user does not need

MOEA-specific knowledge, and it is easy for a user to choose

a preference for edge solutions or balanced solutions. Through

empirical analysis, we found that the OAM approach selects

diverse solutions with good overall fitness. Furthermore, we

were able to reduce the solution sets to contain 5−25 solutions,

which are considered “small”, and a small solution set reduces

the chance of choice overload occurring [25]. Overall, we

conclude that using OAM for solution set size reduction

performs well regardless of which algorithm is used to create

a non-dominated solution set.

In this paper we only applied the external OAM strategy

to improve the quality of the reduced solution set; we believe
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the external OAM could also be used to re-inject solutions

into the MOEA’s optimization process to help guide the search

and to increase diversity. For example, the reduced set of non-

dominated solutions could replace solutions that are similar to

other solutions in the population. As previously mentioned,

it is possible an empty solution set is returned. We aim to

address this issue by including an archive weighting technique

and returning the solutions with the highest weight if no

solutions are selected through overlap. This strategy could also

be adapted to allow the end-user to select a specific number

of solutions from the archive by selecting the k solutions

with the highest overall weight. Furthermore, it also allows

for the introduction of user preference through weight vectors

if desired.
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[25] A. Chernev, U. Böckenholt, and J. Goodman, “Choice overload: A
conceptual review and meta-analysis,” Journal of Consumer Psychology,
vol. 25, no. 2, pp. 333–358, 2015.

[26] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, sep 2015.

[27] L. Li, H. Chen, J. Li, N. Jing, and M. Emmerich, “Preference-based
evolutionary many-objective optimization for agile satellite mission
planning,” IEEE Access, vol. 6, pp. 40 963–40 978, 2018.

[28] K. Shang, H. Ishibuchi, L. M. Pang, and Y. Nan, “Reference point speci-
fication for greedy hypervolume subset selection,” in IEEE International

Conference on Systems, Man, and Cybernetics, 2021, pp. 168–175.
[29] T. Takagi, K. Takadama, and H. Sato, “Non-dominated solution sampling

using environmental selection in emo algorithms,” in IEEE Congress on

Evolutionary Computation, 2020, pp. 1–9.
[30] D. H. Wolpert and W. G. Macready, “No free lunch theorems for

optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, April 1997.

[31] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE

Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506,
2006.

[32] C. Xu, “A big-data oriented recommendation method based on multi-
objective optimization,” Knowledge-Based Systems, vol. 177, pp. 11–21,
2019.

[33] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in IEEE Congress on Evolutionary

Computation, vol. 1, 2002, pp. 825–830.
[34] W. Chen and K. Tang, “Impact of problem decomposition on cooperative

coevolution,” in IEEE Congress on Evolutionary Computation, 2013, pp.
733–740.

[35] L. While, L. Bradstreet, and L. Barone, “A fast way of calculating
exact hypervolumes,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 1, pp. 86–95, 2012.

[36] S. F. Adra and P. J. Fleming, “A diversity management operator
for evolutionary many-objective optimisation,” in Evolutionary Multi-

Criterion Optimization. Springer, 2009, p. 81–94.
[37] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method

for generating the pareto surface in nonlinear multicriteria optimization
problems,” Journal on Optimization, vol. 8, no. 3, pp. 631–657, 1998.

[38] A. Peerlinck and J. Sheppard, “Multi-objective factored evolutionary op-
timization and the multi-objective knapsack problem,” in IEEE Congress

on Evolutionary Computation, 2022, pp. 1–8.

1496

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 02:00:59 UTC from IEEE Xplore.  Restrictions apply. 


