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Abstract—Response curves exhibit the magnitude of the re-
sponse of a sensitive system to a varying stimulus. However,
response of such systems may be sensitive to multiple stimuli
(i.e., input features) that are not necessarily independent. As
a consequence, the shape of response curves generated for a
selected input feature (referred to as “active feature”) might
depend on the values of the other input features (referred to
as “passive features”). In this work we consider the case of
systems whose response is approximated using regression neural
networks. We propose to use counterfactual explanations (CFEs)
for the identification of the features with the highest relevance
on the shape of response curves generated by neural network
black boxes. CFEs are generated by a genetic algorithm-based
approach that solves a multi-objective optimization problem. In
particular, given a response curve generated for an active feature,
a CFE finds the minimum combination of passive features that
need to be modified to alter the shape of the response curve.
We tested our method on a synthetic dataset with 1-D inputs
and two crop yield prediction datasets with 2-D inputs. The
relevance ranking of features and feature combinations obtained
on the synthetic dataset coincided with the analysis of the
equation that was used to generate the problem. Results obtained
on the yield prediction datasets revealed that the impact on
fertilizer responsivity of passive features depends on the terrain
characteristics of each field.

Index Terms—Counterfactual explanations, response curves,
deep regression, explainable machine learning.

I. INTRODUCTION

Response curves are tools that allow for the analysis of the

responsivity of a sensitive system to a particular stimulus; we

refer to that stimulus as the “active feature”. Specifically, a

response curve is defined as a curve that exhibits the various

values taken by the response of the system to all admissible

values of the active feature.

Typically, analysis of response curves is focused on their

shape rather than on their absolute values. For instance, in

pharmacology, the shape of a drug’s dose–response curve re-

flects the strength of the drug [1], [2]. Likewise, in agriculture,

nitrogen fertilizer-yield response (N-response) curves estimate

the crop yield based on different fertilizer inputs. The shape

of such curves can help determining the economic optimum

nitrogen rate (EONR), defined as the nitrogen rate beyond

which there is no actual profit for the farmers [3].

Motivating the current work, response values displayed by

response curves may depend, not only on the relationship

between the response variable and the active feature, but

also on other stimuli, which we will refer to as “passive

features”. Traditionally, such response curves are fitted using

univariate (non-)linear regression models between the active

feature and the response variable. Such models could be based

on parametric response functions that assume plateau-type,

quadratic, and exponential behavior, in the case of N-response

curves [3], [4], or sigmoidal, U-shape, and hill functions, in

the case of dose-response curves [2], [5].

The traditional approaches assume that, given an active

feature, the shape of its response curves is independent of

other variables that could possibly affect the absolute response

value. In the case of agricultural applications, fitting a single

N-response curve for an entire field implies that the field is

homogeneous and behaves similarly at every location. Never-

theless, recent works suggest that the N-response functional

form varies across the fields given the variability of factors

such as terrain slope and soil composition [6], [7].

In this work, we build upon the conclusion that the shape

of response curves might be dependent not only on the active

feature but also on the interaction of the active feature with

the passive features. We present a method to derive non-

parametric response curves from observed data. That is, we

learn the functional form of the response curves instead of

using parametric curve-fitting approaches. To do this, we

train multivariate regression neural networks (NNs) that act

as mappings from the feature space and the response value

space. Thus, they are used to generate approximated response

curves given an active feature.

The high complexity of the non-linear functions learned by

NNs often prevents humans from explaining their behavior,

which is why they are usually referred to as “black-box

models.” Given that the importance of NNs in inference tasks

has grown rapidly, the area of explainable machine learning

(XML) has gained more interest in recent years. XML aims

to allow humans to identify cause-effect relationships between

inputs and outputs of black-box models [8]. In concordance

with this, we propose a post-hoc explainability method that

allows for understanding the impact that interacting passive

features have on the shape of NN-generated response curves.

Thus, we propose a method that generates counterfactual

explanations (CFEs) for each sample to find the minimum

number of passive features we need to modify for the re-

sponse curve of the counterfactual sample to show a change

in responsivity with respect to the original one. The CFE

generation problem is posed as a multi-objective optimization
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Fig. 1. Overview of counterfactual response curve generation methodology.

(MOO) problem and is solved using a genetic algorithm-based

approach. The upper and lower regions of Fig. 1 illustrate the

response curve generation and counterfactual response curve

generation processes, respectively, of a given sample. Here,

the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

represents the selected genetic algorithm. Finally, we repeat

this process for each sample in a dataset to derive global

relevance scores, not only for each passive feature but also

for specific combinations of them. Our specific contributions

are summarized as follows:

1) Our main contribution is a CFE generation method posed

as a MOO problem that, given a sample, finds the passive

features with the greatest impact on the responsivity of

the active feature.

2) Considering a multivariate regression problem, this is the

first work that analyzes the influence of a set of passive

features over the shape of the response curves generated

for the response variable and a selected active feature.

3) We present a method to generate aligned approximate

response curves using regression NNs.

4) We provide global scores that assess the relevance of

individual features and combinations of features.

II. RELATED WORK

Counterfactual explanations are used to identify “actionable

knowledge,” i.e., knowledge about causal dependencies be-

tween inputs and outputs of a system [9]. Such explanations

contribute to understanding what could be changed in the

input to achieve a desired outcome. Most CFE methods focus

on classification problems where the objective is to find

CFEs that produce class labels different from those that were

originally predicted [10]. These methods can be categorized

as model-agnostic or model-specific. The former are based

on general principles that use outputs of already fitted black-

box models [9], [11], [12], where the latter are specific to a

particular class of methods, such as differentiable models [13]

or tree-based ensembles [14].

To date, little attention has been given to counterfactual

methods for regression. Spooner et al. [15] proved that

verifying the existence of counterfactuals is NP-complete.

Regression problems may deal with multiple-dimensional real

outputs and, thus, it is not always possible to have efficient

algorithms for establishing the existence of counterfactuals

with a desired target value. However, it is not always necessary

to find CFEs that lead to specific target values. For example,

Kommiya Mothilal et al. [16] proposed a method that assesses

individual feature relevance from CFEs. They consider that a

feature is more relevant than others for a prediction task if it

is changed more often when generating CFEs.

On the other hand, analyses of systems’ response curves

consider that the shape of the response curve can be described

solely by the relationship between the response variable and

the active feature [3], [4]. This requires the strong assumption

that the explanatory features are mutually independent. If this

held, the set of passive features would only shift the response

curves vertically but would not alter their shape. However,

there is no guarantee for this assumption to always hold, as

seen in some precision agriculture applications [6], [7]. Thus,

we argue that it is essential to acknowledge all possible sources

of variability in analyzing the shape of response curves. To the

best of our knowledge, no work has been published on this

type of analysis.

In this paper, we explore the use of CFEs to analyze

the impact of passive features on the shape of response

curves. It is worth noting that Schwab et al. [17] proposed a

method to learn counterfactual representations for estimating

individual dose-response curves using NNs. They aimed to

estimate what would have happened if a different treatment

(dose) had been given to a patient, hence their objective

was to produce accurate response estimates across the entire

range of all available treatment options. In this context, the

term “counterfactual outcome” simply refers to the estimated

response value obtained for dosages different from the one that

the patient actually received (i.e., estimated response curves).

This differs from our perspective significantly. Unlike previous

counterfactual methods that aim to obtain a different response

value, our objective is to generate counterfactual samples for

a subset of the input features (i.e., passive features) in order

to alter the response curve’s shape. In other words, our CFEs

aim to change the system’s responsivity; that is, the way it

reacts to all admissible values of the active feature.

III. METHODOLOGY

Let f(·) denote the underlying function of a system whose

response y is sensitive to n stimuli (i.e., input features)

x = {x1, . . . , xn}, such that y = f(x) + ε. Here, ε is

a random variable that represents the error term. For con-

venience, we first consider the case where each input and
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output is one-dimensional (xi ∈ R, ∀i ∈ [1, n] and y ∈ R).

Later in Sec. IV-B, we extend this approach to consider two-

dimensional inputs.

Without loss of generality, suppose we select the s-th feature

(s ∈ [1, n]) as the active feature. The set of remaining features

(i.e., passive features) is denoted as p = x \ {xi}. Thus, a

response curve generated for the s-th feature, Rs(x), consists

of the set of values taken by the response y for all admissible

values of xs (bounded by xmin
s ≤ xs ≤ xmax

s ) as follows:

Rs(x) = {f(x|xs = xmin
s ), . . . , f(x|xs = xmax

s )}.

A. Response Curve Generation

In many real-life settings, the underlying function f(·)
cannot be retrieved directly; therefore, we need to approximate

it based on observed data. Let X = {x1, . . . , xN} be a data

set with N training samples, where each sample is denoted

as xj = {xj1, . . . , xjn}, and y = {y1, . . . , yN} is the set

of corresponding target observations. We construct a NN

regression model that captures the association between X and

y. Its computed function is denoted as f̂(·), and θ denotes

its weights. Thus, given an input xj , the target estimate is

computed as ŷj = f̂(xj ,θ).
The network f̂ is trained to reduce the mean square error

of the estimations such that the parameters θ are obtained by

the following optimization: θ∗ = argmin
θ

1
N

∑N

j=1(ŷj − yj)
2.

Hence, once the network is trained, and assuming that it cap-

tures the underlying causal structure of the problem sufficiently

well, it can be used to generate an approximate response curve,

R̂s(xj), for a given active feature and input sample xj :

R̂s(xj) = {f̂(xj |xjs = xmin
s ), . . . , f̂(xj |xjs = xmax

s )}. (1)

Note that we are not interested in the absolute estimated

response values when comparing the shape of two or more

curves. Thus, we get rid of any vertical shifts and obtain

the aligned approximate response curve R̃s(xj) by subtracting

from R̂s(xj) its minimum value:

R̃s(xj) = R̂s(xj)−min(R̂s(xj)). (2)

Finally, we create the set Rs that consists of the approx-

imate response curves of all samples in X; that is, Rs =
{R̃s(x0), . . . , R̃s(xN )}.

It is worth mentioning that, previously, we also experi-

mented with other types of classifiers (i.e., support vector

machines and random forests) to use in the response curve

generation process. However, due to the fast convergence rates

and the substantial improvements in performance, we decided

to focus on feedforward NNs (FNNs) and convolutional neural

networks (CNNs) for 1-D and 2-D regression, respectively,

over the other types of models.

B. Functional Principal Component Analysis

The set Rs can be interpreted as a set of functional data

where each of its samples corresponds to an approximated

response curve. Recall that one of our objectives is to gener-

ate counterfactual response curves whose shapes differ with

respect to the original ones. As such, we need to determine a

distance metric that conveys the difference in shape between

two functional data samples.

In that sense, we use functional principal component anal-

ysis (fPCA), which is a tool to extract the dominant modes of

variation of functional data [18]. This approach allows us to

obtain a reduced set of K orthonormal functions {ξ1, . . . ξK}
so that each curve in Rs is approximated as an expansion of

these basis functions as R̃s(xj) ≈
∑K

k=1 v
(s)
k (xj) ξk, where

v
(s)
k (xj) is the value of the k-th principal component corre-

sponding to the response curve generated for xj considering

the s-th feature as the active feature.

A functional principal component (fPC) represents a distinct

curve pattern. Hence, two curves with different shapes will be

encoded using different fPC values. We consider using K = 3
fPCs, as they were sufficient to explain at least 99.5% of the

variance of the datasets used in our experiments. We define our

distance metric ds(xj , xq), calculated between the transformed

response curves generated for xj and xq , as:

ds(xj , xq) =

√

√

√

√

K=3
∑

k=1

(

v
(s)
k (xj)− v

(s)
k (xq)

)2

. (3)

C. Counterfactual Explanations for Response Curves

Given a sample xj , let x′j = {x′
j1, . . . , x

′
jn} denote a

counterfactual explanation and let R̃s(x
′
j) be its corresponding

aligned approximated response curve. More specifically, we

define x′
j as a data point whose response curve R̃s(x

′
j) has

a different shape from that of R̃s(xj) (i.e., it shows different

responsivity), such that ds(xj , x′j) ≥ ǫ, where ǫ is a hyper-

parameter threshold. The CFE x′j is obtained by introducing

perturbations to the set of passive features:

x′
ji =

{

xji +∆ji, if i 6= s

xji, if i = s.

Moreover, we aim to find the minimum subset of passive

features that should be affected by small perturbations so that

the CFE’s responsivity is sufficiently different from that of the

original one. As such, the counterfactual search problem can

be cast as a MOO problem that is solved for each sample xj
as follows:

min
x′
j

g(xj) = min
x′
j

(

g1(xj , x′
j), g2(xj , x′

j), g3(xj , x′
j)
)

, (4)

where g1(xj , x′j), g2(xj , x′j), and g3(xj , x′j) are independent

objective functions whose goals may contradict.

The first objective maximizes the distance between the

transformed response curves using Eq. 3:

g1(xj , x′j) =

{

−ds(xj , x′j), if ds(xj , x′j) < ǫ

−ǫ, if ds(xj , x′j) ≥ ǫ.
(5)

The second objective function is used to minimize the number

of features that are modified, which are calculated using the
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L0 norm of (xj − x′j) so that:

g2(xj , x′j) = ||xj − x′
j ||0 =

n
∑

i=1

Ixji 6=x′

ji
. (6)

Finally, the third objective function minimizes the distance

between xj and x′j :

g3(xj , x′
j) =

1

n

n
∑

i=1

δG(xji, x′ji), (7)

where δG represents the Gower distance, which takes into

account that passive features can be numerical or categorical:

δG(xji, x′ji) =

{

1
rj
(|xj − x′

j |), if numerical

−ǫ, if categorical,
(8)

and ri indicates the range of values of the i-th feature. All of

the datasets used in this work consist of numerical features

only (i.e., integer and real-valued); however, the use of the

Gower distance in Eq. 7 allows us to consider more general

cases.

Note that calculating g1(xj), g2(xj), and g3(xj) involves

generating the aligned approximated response curves R̃s(xj)
and R̃s(x

′
j). Some approaches optimize the CFE objective

functions as part of a differentiable loss function [13]; how-

ever, those approaches cannot be applied in our case given

that generating an aligned approximated response curve is not

a differentiable process (see Eq. 1 and 2).

Similar to the work proposed by Dandl et al. [11], we

use the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) [19] to solve the mixed-variable optimization problem given

in Eq. 4. NSGA-II is an elitist genetic algorithm that finds

Pareto non-dominated solutions to MOO problems and uses

a crowding distance measure to maintain diversity in subse-

quent generations. NSGA-II was preferred over the follow-

on NSGA-III since it has shown superior performance on

optimization problems with three objectives [20]. Note that

even though we use a similar optimization framework to that of

Dandl et al. [11], our objectives are designed to alter the shape

of the response curve of a given sample (Fig. 1), while theirs

are designed to alter a single response value in the context of

classification or regression problems.

Let us consider a population size of T0 CFE candidates,

from which NSGA-II may select T non-dominated solutions

(T ≤ T0) denoted as {x′
(1)
j , . . . , x′(T )

j }. For each solution, we

calculate its performance zt = {g1(x
′(t)
j ), g2(x

′(t)
j ), g3(x

′(t)
j )}.

The objective space is defined as the set of T three-

dimensional points Z = {z1, . . . , zT }. A solution zt is said

to dominate another solution zq (zt � zq) if it is no worse

than zq (i.e., g1(x
′(t)
j ) ≤ g1(x

′(q)
j ), g2(x

′(t)
j ) ≤ g2(x

′(q)
j ), and

g3(x
′(t)
j ) ≤ g3(x

′(q)
j )) and it is strictly better than zq in at

least one objective. By definition, the set of non-dominated

solutions Z constitutes a Pareto set on the Pareto front.

The remaining question is how to select the best solution

from Z. Recall that we are mainly interested in minimizing

the number of modified features that are sufficient to alter the

responsivity of xj such that ds(xj , x′j) ≥ ǫ. Thus, from the

subset of solutions in the Pareto set that produces the lowest

g1 value, we select the solution that yields the lowest g2 value.

Note that, according to this criterion, we could reconfigure our

MOO problem to optimize g1 and g2 only, or g1 and g3 only

(selecting the solution with the fewest changes). Nevertheless,

in practice, we noticed substantially faster convergence rates

by optimizing the three functions simultaneously, as they were

shown to guide the search more effectively.

D. Local and Global Explanations

Two types of explanation are sought: local and global. Local

explanations convey which passive features have the greatest

impact on the responsivity of a given sample, while global

explanations allow for the identification of the passive features

with the highest impact on the shape of the response curves

generated for a sensitive system in general.

Given an input xj , its local explanation αj is the set of

passive features that were modified during the generation of

the counterfactual sample x′j :

αj = {i | (xji ∈ xj) ∧ (x′
ji ∈ x′

j) ∧ (xji 6= x′
ji)}. (9)

On the other hand, the global explanation of a sensitive system

is twofold. First, we assess individual feature relevance ri by

providing the ratio of times that a feature was modified during

the CFE generation process of all samples in X:

ri =
1

N

N
∑

j=1

Ii∈αj
. (10)

We acknowledge that passive features are not necessarily inde-

pendent and thus individual relevance scores are not enough to

understand how they interact. For that reason, we also report

the five most repeated feature combinations. By doing so,

we identify which features react together and which feature

combinations are the most effective. We restrict the number

of reported feature combinations to five for conciseness, as

explanations becomes more manageable for humans when

smaller result sets are provided [8]. However, note that more

feature combinations might need to be provided when dealing

with problems with several passive features (the datasets used

in this work require less than eight).

IV. EXPERIMENTAL RESULTS

For our experiments, we evaluated our approach on a

synthetic dataset with 1-D inputs and two real-world crop yield

prediction datasets with 2-D outputs. As stated previously, no

other works have been published on the analysis of the impact

that a set of passive features have on the shape of response

curves generated for an active feature. Therefore, we were

unable to include other methods for comparison.

We also note that the described approach should not be

confused with a sensitivity analysis, which is used to study

how the different values of a set of independent variables

affect the response variable. In contrast, we study how the

different values of a subset of the input features (i.e., the
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passive features) affect how the response variable reacts to the

entire range of admissible values of a selected feature (i.e., the

active feature). Furthermore, we do not assume independence

among features; thus, we report the feature combinations with

the greatest responsivity impact in addition to the estimated

individual feature relevance values.

A 10-fold cross-validation (CV) design was used with all

datasets. Having selected an active feature, the trained network

was used to generate the response curves for all samples in

the dataset along with their corresponding CFEs. We argue

that including samples from the training set in this process

does not lead to biased results. The reason is that, when

generating a response curve, we synthesize samples that were

not observed either in the training set or in the validation set.

We considered that the resulting global explanations would

be more consistent if they were calculated using as many

approximated response curves as possible. Thus, these curves

were used to produce local and global explanations, and we

produced an independent set of explanations for each of the

ten folds, given each fold could yield different curves since

we have no ground truth for the curves themselves. Even

so, if the data available is sufficiently large and diverse, it

is reasonable to expect similar curves and explanation results

from the ten models. The implementation code is available at

https://github.com/GiorgioMorales/ResponsivityAnalysis.

A. Synthetic Dataset

Validation of the analysis proposed in this work is challeng-

ing if the target response curves are unknown, which is the

case when working with our real-world agricultural applica-

tions. For this reason, we created a synthetic dataset consisting

of 10,000 samples derived from the following multiple non-

linear regression problem with five input features:

y = sigmoid((10x1 − 5) + x2)x
2
3x4 + 10x5, (11)

where x1∼U(0, 1), x2∼U(−3, 3), x3∼U(1, 2), x4∼U(1, 2),
and x5∼U(0, 2). We used x1 as the active feature (s = 1).

For these experiments, we trained a feed-forward neural

network with two hidden layers, each with 100 nodes. We

calculated the mean square error (MSE) on the validation sets

after CV to analyze regression performance. The resulting

average MSE and standard deviation were 6.78 × 10−3 ±
1.32 × 10−4. Fig. 2 shows the aligned ground-truth response

curves (generated from Eq. 11) and the aligned approximated

response curves using the NN trained during the first CV

iteration, for 100 random samples.

For the CFE generation process, we used a population size

of T = 50 samples for NSGA-II and 100 iterations. Eq. 5

specifies that two response curves show different responsivity

if their distance in the transformed space (after using fPCA) is

greater than a threshold ǫ. Since selecting ǫ is subjective, we

considered using multiple threshold values and evaluating the

consistency of the results. Intuitively, higher ǫ leads to bigger

differences between the shapes of two response curves; thus,

the number of modified passive features might increase. In

the future, we plan to replace this threshold with tests that

Fig. 2. Response curve generation from the synthetic dataset. (a) Ground-
truth response curves. (b) NN-generated response curves.

Fig. 3. Example of the counterfactual response curves generated using ǫ =

0.4, 0.6, and 0.8 for a sample of the synthetic dataset.

Fig. 4. Individual relevance of passive features (in %) of the synthetic dataset.

determine if the responsivity of two or more response curves

is statistically significant. For this dataset, we considered three

thresholds: ǫ ∈ {0.4, 0.6, 0.8}. These values were chosen

because they allowed us to see how the feature relevance

values change as the ǫ values increase.

For example, Fig. 3 shows the counterfactual response

curves generated for the first sample of the dataset (j = 1)

using the network trained during the first CV iteration. Given

this input, the local explanation is given by α1 = {2, 3} for

the three selected thresholds. In other words, it was sufficient

to modify the second and third features, x2 and x3 to alter the

responsivity of the selected sample, regardless of the threshold.

We repeated this process for all the samples to obtain global

explanations. Fig. 4 shows the individual feature relevance val-

ues achieved for all CV iterations and ǫ values. The remaining

global explanations are given by the most frequent feature

combinations, which are reported in Table I. Specifically, we

counted the combination of features that were most repeated

across all the CV iterations and selected the top five. For

each selected combination, we calculated the ratio of times

it appeared in each CV iteration and reported the mean ratio

Authorized licensed use limited to: Montana State University Library. Downloaded on March 03,2024 at 02:06:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TOP-FIVE FEATURE COMBINATIONS – SYNTHETIC DATASET

ǫ 0.4 0.6 0.8

# Comb. % Rep. Comb. % Rep. Comb. % Rep.

1 [x2, x3] 10.9± 0.6 [x2, x3] 27.2± 1.2 [x2, x3] 36.6± 1.2

2 [x3, x4] 2.7± 0.7 [x3, x4] 8.3± 0.9 [x3, x4] 15.5± 1.0

3 [x3, x5] 0.2± 0.1 [x2, x3, x4] 0.6± 0.4 [x2, x3, x4] 6.4± 0.8

4 [x2, x5] 0.1± 0.1 [x2, x4] 0.4± 0.2 [x2, x4] 2.2± 0.5

5 — — [x3, x5] 0.3± 0.2 [x3, x4, x5] 0.4± 0.2

along with its corresponding standard deviation.

B. Yield Prediction Dataset

To consider the usefulness of our approach in a real-

world setting, we analyzed data collected on a crop yield

prediction problem, which is one of the main tasks of pre-

cision agriculture. Accurate and reliable crop yield prediction

provides farmers with tools to make informed decisions, such

as determining the nitrogen fertilizer rates needed in specific

regions of their fields to maximize their profits [6].

We used an early-yield prediction dataset of winter wheat

we curated and presented in previous work [21]. The early-

yield prediction is posed as a regression problem where the

explanatory variables are represented by a set of features

obtained during the growing season (March):

1) N : Nitrogen rate applied previously (lb/ac).

2) A: Topographic aspect (radians).

3) S: Topographic slope (degrees).

4) TPI: Topographic position index.

5) P : Prior year precipitation (mm).

6) V H and V V : Backscattering coefficients obtained from

synthetic aperture radar (SAR) images from Sentinel-I.

The response variable corresponds to the yield value in bushels

per acre (bu/ac), measured during the harvest season (August).

Hence, the data acquired in March is used to predict crop yield

values in August of the same year.

Each sample xj = {xj1, . . . xjn} is represented as a spatial

data cube of 5 × 5 pixels with seven features or channels

(n = 7); that is, xji ∈ R
5×5, ∀i ∈ [1, n]. Each pixel

represents a region of 10 × 10m of the field. The output

represents the yield value corresponding to the central pixel of

the input sample (yj ∈ R). To tackle this regression problem,

we trained a convolutional neural network. In particular, we

use the Hyper3DNetReg network architecture we proposed in

[21]. It is a 3D–2D CNN specifically designed to predict the

yield values of small spatial neighborhoods of a field. For our

experiments, we used data collected from two winter wheat

fields, which we refer to as “Field A” and ”Field B”. Data from

three growing seasons were collected for each field (2016,

2018, and 2020).

The selected active feature of this problem was N (i.e.,

fertilizer input, s = 1), as we are interested in the analysis of

the N-response curves. The remaining six features constituted

the set of passive features. Important factors such as EONR

depend directly on the shape of these curves. For instance,

EONR is traditionally found as the fertilizer rate at which the

Fig. 5. N-response curve generation using 100 random samples from the
two yield prediction datasets. (a) Field A. (b) Field B.

Fig. 6. Example of the counterfactual N-response curves generated using
ǫ = 0.6, 0.8, and 1.0 for a sample of field A.

Fig. 7. Rounded individual relevance of passive features (in %) of field A.

first derivative of the N-response curve is equal to a common

yield-nitrogen price ratio [3].

After CV, the average validation MSE and standard devia-

tion were 147.25±8.17 and 50.02±4.29 for fields A and B, re-

spectively. Fig. 5.a and Fig. 5.b show the aligned approximated

response curves generated for 100 random samples of field A

and B, respectively, using the Hyper3DNetReg network. For

these datasets, we experimented with ǫ ∈ {0.4, 0.6, 0.8}. Fig.6

shows an example of the response curves generated for the first

sample of field A (j = 1) using the network from the first CV

iteration. Here, the local explanation is given by α1 = {6},

for the three selected thresholds. That is, we only needed

to decrease the value of the sixth feature, V H , to alter the

responsivity of the selected sample. Counterfactual response

curves and local explanations generated for samples of field

B were similar but were omitted due to space limitations.

Figs. 7 and 8 show the individual feature relevance values

achieved for all CV iterations and ǫ values for fields A and B,

respectively. Tables II and III show the mean percent of time
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Fig. 8. Rounded individual relevance of passive features (in %) of field B.

TABLE II
TOP-FIVE FEATURE COMBINATIONS – FIELD A DATASET

ǫ 0.6 0.8 1.0

# Comb. % Rep. Comb. % Rep. Comb. % Rep.

1 [A, V V ] 0.6± 0.5 [A, V V ] 1.8± 0.8 [A, V V ] 4.3± 1.2

2 [A, V H] 0.6± 0.3 [A, V H] 1.8± 0.7 [A, S] 3.9± 1.1

3 [TPI, V V ] 0.5± 0.3 [S, V H] 1.6± 0.5 [A, V H] 3.3± 0.4

4 [TPI, V H] 0.5± 0.3 [A, TPI] 1.6± 0.9 [S, V H] 3.2± 0.7

5 [S, TPI] 0.5± 0.3 [TPI, V H] 1.5± 0.7 [A, TPI] 3.0± 1.4

TABLE III
TOP-FIVE FEATURE COMBINATIONS – FIELD B DATASET

ǫ 0.6 0.8 1.0

# Comb. % Rep. Comb. % Rep. Comb. % Rep.

1 [TPI, S] 4.4± 1.8 [TPI, S] 7.2± 2.7 [TPI, S] 9.7± 3.7

2 [TPI, V V ] 2.1± 1.2 [TPI, V V ] 5.0± 1.3 [TPI, V V ] 6.5± 2.2

3 [TPI, P ] 1.9± 1.5 [TPI, P ] 3.9± 1.7 [TPI, P ] 5.5± 2.0

4 [TPI,A] 1.0± 0.8 [TPI,A] 1.4± 0.5 [S, P ] 2.3± 1.2

5 [S, V V ] 0.6± 0.5 [S, P ] 1.2± 0.8 [TPI,A] 1.7± 0.7

that a top-five feature combinations appeared across CV for

fields A and B, respectively.

V. DISCUSSION

Although often unobservable, response curves of a system

can be approximated using NNs. Fig. 2 suggests that the

NN trained on the synthetic dataset learned to generate ap-

proximate response curves that were similar in shape to the

ground-truth response curves. Even though ground-truth N-

response curves are unobservable, we argue that the curves

shown in Fig. 5 are sound. For example, previous works

have described N-response curves as sigmoid-like curves [4],

similar to most of the curves of Fig. 5.b. Other works have

also considered quadratic functions [3] that account for the

apparent decrease in yield response after reaching a certain

saturation point, which can be seen in most of the curves of

Fig. 5.a. Note that our analysis, as any other explainability

method, allows for the explanation of the function approx-

imated by the model. Specifically, we aim to identify the

features (and feature combinations) that the model considers

having the most responsivity impact.

The regression problem introduced in Eq. 11 consists of four

passive features. x2 alters the shape of the response curves

by stretching them horizontally. x3 multiplies the sigmoid

function, as well as x4; however, since it is squared, it is

expected to have more impact on the shape of the response

curves. In addition, a small change in x3 produces a vertical

stretching so that the resulting distance between the modified

and original response curve is greater than the one produced

by x2 when modified by the same amount. From Fig. 4, we

verified that x3 has greater responsivity impact than x4 and x2,

as it was more often modified by our CFE generation process.

Finally, x5 is independent of the rest of the features, which

implies that it only shifts the response curves vertically but

does not alter their shape. Again from Fig. 4, we verified that

x5 was assigned relevance values near 0%. Hence, our method

found that the feature with the greatest responsivity impact is

x3, followed in relevance by x2 and x4. We conclude that the

results obtained by our method coincide with those obtained

by the analysis the equation used to generate the dataset. Also,

Table I shows that the most effective feature combination is

x2 and x3, followed by x3 and x4.

It is important to point out that we observed that the

relevance ranking of features remained constant for different

values of ǫ. For instance, Fig. 4 shows the ranking of features

(from the most relevant to the least relevant) is: [x3, x2, x4, x5]
for the three tested ǫ values. Similarly, Fig. 7 shows that, for

the three tested ǫ values in field A, A is the most relevant

feature while the relevance scores of S, TPI , V H , and V V

are comparable, and P is the least relevant feature. A similar

behavior is observed in Fig. 8. This is meaningful because it

suggests that the selection of ǫ is not crucial when finding the

passive features with greater global relevance.

Note in Fig. 4 that the resulting relevance scores are similar

for all CV iterations. This indicates that the NN model learns

similar functions across different iterations. This is also the

case for Fig. 7 and 8, although they show greater variation

due to overfitting issues caused by limited data set sizes and

lack of data variability in some of the training folds.

Furthermore, we found that the relevance values increase

as ǫ increases. This is because, given a sample, if there is an

increment in the desired distance threshold, it is likely that the

number of modified passive features will grow. For example,

Table I shows that the most repeated feature combination,

(x2, x3), occurs 10.9% of the time when ǫ = 0.4 but 36.6%

when ǫ = 0.8. This also happens for fields A and B, as

seen in Tables II and III. However, the most repeated feature

combination for field A, (A, V V ), occurs only 0.6% of the

time when ǫ = 0.6 and 4.3% when ǫ = 1. This means

that changes in individual features have greater impact on the

models trained for field A. For instance, in Fig. 6, it was

enough to reduce the V H value to alter the shape of the

response curve. This is because V H is related to the moisture

content, meaning by lower V H values indicate less moisture

in the soil. Thus it is reasonable to expect the soil to be less

responsive to higher amounts of nitrogen.

From Figs. 7 and 8, we see that feature relevance values

are different for both fields. The main reason is that field A

is located on steep abrupt terrain while field B is not. As

a consequence, the model trained for field A learned that

the aspect A (i.e., the slope orientation) is the most relevant

feature. Interestingly, in terrain with varying elevations located

in the Northern Hemisphere, regions that are facing north
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and east have limited sunlight during the day and are more

prone to snow retention. These are factors that may affect

the responsiveness of the fertilizer. On the other hand, field

B has an almost constant elevation, so A is not an important

factor. The model trained for this field learned that the TPI ,

which is related to the ruggedness of the terrain, is the

most relevant feature. The slope S, which influences fertilizer

runoff, which in turn affects the responsiveness of the fertilizer,

is the second most important factor for this field. Finally,

P was assigned a low responsivity impact on both fields.

This seems counterintuitive considering that precipitation is

a critical factor for crop production. This would suggest that

P is independent of the other features and, as in x5 from the

synthetic problem, only shifts the response curves vertically

but does not affect their shape.

VI. CONCLUSION

The analysis of feature response curves often ignores other

explanatory variables as a source of variability in the shape of

the curves. Acknowledging all relevant variables, quantifying

their responsivity impact, and understanding how they interact,

may improve the accuracy of important applications such as

drug dose optimization and N-fertilizer optimization.

We presented a method that generates approximate response

curves for a selected active feature using neural networks.

Our approach then estimates the impact that a set of passive

features have on the shape of the response curves by gen-

erating counterfactual explanations. Experimental results on

a synthetic dataset coincide with expectations following the

analysis of the equation that was used to generate the training

data. Experiments on two crop yield prediction datasets found

that the factor with the greatest responsivity impact on N-

response curves was the terrain aspect, for one of the studied

winter wheat fields, and the topographic position index, for

the other field. While perhaps already understood by farmers

and agronomists, this analysis confirms that the models are

reflecting what science would expect in crop production.

Future work will focus on designing tests that will determine if

the responsivity of two or more response curves is statistically

significant. We also plan to use equation discovery approaches

to approximate parametric equations for crop production.
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