
The Journal of Systems & Software 206 (2023) 111829

T

R
R
A
A

p
d
a
t
S
o
o
c
p
d
n
C
s
t

(
(

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Catalog and detection techniques ofmicroservice anti-patterns and
bad smells: A tertiary study✩

omas Cerny a, Amr S. Abdelfattah b, Abdullah Al Maruf b, Andrea Janes c, Davide Taibi d,e,∗
a SIE, University of Arizona, Tucson, AZ, USA
b Baylor University, Waco, TX, USA
c FHV Vorarlberg University of Applied Sciences, Dornbirn, Austria
d Tampere University, Tampere, Finland
e University of Oulu, Oulu, Finland

a r t i c l e i n f o

Article history:
eceived 5 January 2023
eceived in revised form 13 June 2023
ccepted 29 August 2023
vailable online 15 September 2023

Keywords:
Microservices
Anti-patterns
Antipatterns
Anti patterns
Bad smells
Software maintenance

a b s t r a c t

Background: Various works investigated microservice anti-patterns and bad smells in the past few
years. We identified seven secondary publications that summarize these, but they have little overlap
in purpose and often use different terms to describe the identified anti-patterns and smells.
Objective: This work catalogs recurring bad design practices known as anti-patterns and bad smells
for microservice architectures, and provides a classification into categories as well as methods for
detecting these practices.
Method: We conducted a systematic literature review in the form of a tertiary study targeting
secondary studies identifying poor design practices for microservices.
Results: We provide a comprehensive catalog of 58 disjoint anti-patterns, grouped into five categories,
which we derived from 203 originally identified anti-patterns for microservices.
Conclusion: The results provide a reference to microservice developers to design better-quality
systems and researchers who aim to detect system quality based on anti-patterns. It also serves as an
anti-pattern catalog for development-aiding tools, which are not currently available for microservice
system development but could mitigate quality degradation throughout system evolution.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
U
l
t
2

1. Introduction

Microservices have gained significant popularity as an ap-
ealing architectural choice, particularly in situations where in-
ependent scalability and changeability of system components
re desired. They have garnered significant acceptance within
he industry since 2014 (Lewis and Fowler, 2014). The 2022
ervice Mesh Adoption Survey—an annual survey mapping how
rganizations are adopting microservices—determined that 85%
f companies are modernizing their applications with the mi-
roservice architecture (solo.io, 2022), which indicates the im-
ortance of advancing knowledge in microservice system design,
efined microservices as ‘‘the fueling architecture’’ for cloud-
ative systems (Balalaie et al., 2016; Carnell and Sánchez, 2021).
loud-native systems (as opposed to cloud-ready) are designed
pecifically for a cloud computing architecture and are able to
ake advantage of its benefits and services.

✩ Editor: Jacopo Soldani.
∗ Corresponding author at: University of Oulu, Oulu, Finland.

E-mail addresses: tcerny@arizona.edu (T. Cerny), amr_elsayed1@baylor.edu
A.S. Abdelfattah), maruf_maruf1@baylor.edu (A.A. Maruf), andrea.janes@fhv.at
A. Janes), davide.taibi@oulu.fi (D. Taibi).
https://doi.org/10.1016/j.jss.2023.111829
0164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
To facilitate system development, practitioners and researchers
identified various proven solutions to common recurring design
problems. These are typically named and referred to as design
patterns. Furthermore, such design patterns apply to specific
software architectures (Carnell and Sánchez, 2021; Zimmermann,
2022; Zimmermann et al., 2019, 2020c,a,b; Stocker et al., 2018).
nfortunately, not all design patterns identified for a particu-
ar software architecture can be transferred to other architec-
ures. Similarly, Anti-patterns (Brown et al., 1998; Taibi et al.,
020a; Walker et al., 2020) are recurring design practices, choices

or solutions to common problems despite appearing reasonable and
effective, lead to negative consequences and undermine the sys-
tem’s overall quality. Depending on the context (monolith, SOA,
microservices, etc.), a design might be an anti-pattern in one case
and a sound design in another case. Apart from anti-patterns, the
term bad smell describes a design characteristic that indicates
a potential problem or violation of good practices. A smell is
suspicion that something is not right (external observations). It is a
warning sign that suggests potential issues in the design but does
not provide specific solutions. They prompt further analysis and
consideration to identify the underlying problems and propose
appropriate design improvements.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111829
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111829&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tcerny@arizona.edu
mailto:amr_elsayed1@baylor.edu
mailto:maruf_maruf1@baylor.edu
mailto:andrea.janes@fhv.at
mailto:davide.taibi@oulu.fi
https://doi.org/10.1016/j.jss.2023.111829
http://creativecommons.org/licenses/by/4.0/


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

p
a
i
2
m
i
2
2
2

f
m
I
t
f

2
t
s
d
i
i
c
s
r
p
l
t

s
s
t
t

1

r
R

Researchers have been using the smell metaphor to describe
atterns and decisions associated with bad design (van Emden
nd Moonen, 2002) that may lead to difficulties in maintain-
ng, evolving, or scaling the system (Yamashita and Moonen,
013). Various works use anti-pattern and bad smell synony-
ously (Bogner et al., 2019a), for example: ‘‘shotgun surgery’’

s called an ‘‘antipattern’’ by Wikipedia (Wikipedia contributors,
023), but a ‘‘code smell’’ by RefactoringGuru (Refactoring.Guru,
023); others see these terms as distinct concepts (Garcia et al.,
009a).
Anti-patterns should be seen as root causes for smells, there-

ore, in this study, we use the term MS anti-pattern to refer to
icroservice antipattern, ‘‘bad’’ smell, and poor ‘‘design’’ practice.

n addition, literature uses three forms of this term: antipat-
ern, anti pattern and anti-pattern; however, the last term
orm is more commonly used in the scientific literature.

In our previous research (Taibi et al., 2020a; Walker et al.,
020), we encountered various anti-patterns and smells specific
o microservices. While many mapping studies and secondary
tudies (SS) have been performed on this topic, we identified
isjoint and partial overlaps across such works. Anyone interested
n this topic and its relevance to microservices will likely be
nterested in a comprehensive literature study combining the
urrent knowledge on this topic. For this reason, the present
tudy catalogs smells and anti-patterns identified in literature
eviews and combines them to track their origin and source. To
rovide reasonable indexing, we categorize these patterns and
ook into mechanisms that have been mentioned in the literature
o detect them, providing a broad overview to the community.

Our approach to conducting this study is to perform a tertiary
tudy based on best practice guidelines for reporting secondary
tudies by Kitchenham et al. (2022). We also consider existing
ertiary studies as an established practice to perform and report
hese studies.

.1. Objectives

The objective of this tertiary study comprises of four questions
elated to microservice anti-patterns investigating the following
esearch Questions (RQs):

Research Question 1:What secondary studies have been
published about MS anti-patterns?

Rationale: The aim is to identify the list of secondary
studies summarizing, and classifying MS anti-patterns.

Research Question 2: Which distinct MS anti-patterns
have been identified in the secondary studies?

Rationale: This investigation aims to extract the list
of unique MS anti-patterns reported in the secondary
studies.

Research Question 3: How are the MS anti-patterns
classified in the secondary studies?

Rationale: This question aims at extracting information
on how MS anti-patterns were classified in the secondary
studies, so as to understand what problems did they
address and if there are overlaps across existing works
(e.g., performance patterns, organizational patterns, etc.).
2

Research Question 4: How can MS anti-patterns be
detected?

Rationale: This investigation summarizes the detection
method reported in the secondary studies. Moreover,
we propose a comprehensive framework to classify the
detection techniques.

These questions are related and have dependencies among
themselves. They are investigated in the consequential order. The
process to answer the research question is depicted in Fig. 1,
which also illustrates the dependencies within the different steps
in this work.

Other tertiary studies

Other tertiary studies have been conducted in software engi-
neering. Examples are tertiary studies on technical debt manage-
ment (Junior and Travassos, 2022), risk mitigation in global soft-
ware development (Verner et al., 2014), gamification in software
engineering (García-Mireles and Morales-Trujillo, 2020), software
product lines and variability modeling (Raatikainen et al., 2019),
agile software development (Hoda et al., 2017), and test artifact
quality (Tran et al., 2021). However, to the best of our knowledge,
no tertiary study exists on MS anti-patterns.

Contribution

We recognize the importance of this research, given commu-
nity interest in this topic and the current gaps in anti-pattern
detection tools for microservices. Since one has to deal with de-
centralization and possibly heterogeneity, it is more challenging
for detection tools to operate. The connection between microser-
vices is non-obvious from source code analysis, which disables
current tools to detect issues relevant to the more holistic system
perspective. Obviously, ideal detection tools would be capable of
identifying a wide range of anti-patterns; however, at this point,
the knowledge of MS anti-patterns is scattered across multiple
works that have various overlaps, use different terms for the same
anti-patterns or combine anti-patterns with component-based
development or legacy architectures.

The main contribution of this work is twofold:

• A comprehensive catalog of MS anti-patterns, classified into
five categories.

• A framework to classify the different anti-pattern detec-
tion techniques, extending the existing body of knowledge
reported in secondary studies.

The resulting anti-pattern catalog will help train the skilled
workforce in proper practices and avoid outdated design practices
that might be carried out from monolith system development.
This catalog can also help to bridge current gaps in automated
anti-pattern detection when implementing comprehensive qual-
ity assessment software, which is currently missing for microser-
vices (Walker et al., 2020). The anti-pattern detection approaches
are further analyzed, and a classification framework is provided
in this study. Such a framework takes into account established
methods for information extraction, intermediate representation,
and actual detection.

As a result, the progress made in this research contributes to a
deeper comprehension of inadequate design practices
associated with microservices from diverse viewpoints. Further-
more, it demonstrates how these anti-patterns can be automat-
ically detected within the decentralized nature of the system,
even with independent microservice evolution and distributed



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

i
c
a
m

O

i
a
w
a
i
s
c

2

f
S
c
p
u
s

i
p
s
(
s

2

s
v
i

Fig. 1. BPMN diagram illustrating the process we followed to answer the research questions.
nfrastructure. Automating this process would enhance the effi-
iency of addressing system quality degradation, technical debt,
nd suboptimal practices that are often challenging to identify
anually.

rganization of this paper

The remainder of this study is organized as follows: Section 2
ntroduces the tertiary study execution method and details data
nalysis procedures. The results are presented in Section 3, along
ith the answers to the research questions. The proposed MS
nti-pattern classification framework is introduced and reasoned
n Section 4. The discussion about findings and the study re-
ult validity threats are provided in Section 5, followed by a
onclusion.

. Methods

In order to investigate the aforementioned questions, we per-
ormed a tertiary study of the literature classifying the Secondary
tudies (SS) on MS anti-patterns (RQ1), we select (RQ2) and
lassify them (RQ3) and we investigate detection methods pro-
osed by researchers (RQ4). Finally, we derive a framework to
nderstand potential detection strategies. The overall process is
ummarized in Fig. 1.
Tertiary studies aim to synthesize results from secondary stud-

es to provide a comprehensive view of a given topic. To accom-
lish this, we followed the guidelines for carrying out tertiary
tudies in software engineering defined by Kitchenham et al.
2022). The individual method stages are detailed in the following
ubsections.

.1. Search and selection process

The established approach for evidence identification is to con-
truct a search string for scientific indexers that return rele-
ant literature. Furthermore, a follow-up snowballing process can
dentify literature missed in the search.
3

Search string
The specific goal of this work is to analyze and categorize

identified anti-patterns in the domain of microservices. This itself
translates into a basic search string. In addition, the specific
research questions could possibly extend the search string design.
However, most research questions are implied from the study
goal without impact on the search string.

The obvious search terms related to this study’s aims are
‘‘microservice’’ and ‘‘anti-pattern’’ as well as its mutations,
and variants (i.e., ‘‘smell’’). When we consider design patterns
we use the alias of best practices, which in the inverse leads to
poor/bad practice. To broaden the search results we also include
the term ‘‘practice’’, which targets both bad and best prac-
tices. We were also interested in the identification of anti-pattern
detection techniques; however, excluding such a term from the
search string, which would only further restrict the results, enable
us to maintain results relevant to all RQs and apply this aspect in
inclusion criteria.

The result of the search string contained the following search
terms:

((microservice OR micro-service OR " micro service ")
AND

(anti-pattern OR " anti pattern " OR antipattern
OR smell OR practice))

To increase the likelihood of finding publications addressing
MS anti-patterns, we applied the search string to both title and
abstract.

Data sources
We selected the list of relevant bibliographic sources following

the suggestions of Kitchenham and Charters (2007) since these
sources are recognized as the most representative in the software
engineering domain and used in many reviews. The list includes
ACM Digital Library,1 IEEE Xplore Digital Library,2 and Scopus.3

1 https://dl.acm.org
2 https://ieeexplore.ieee.org
3 https://www.scopus.com

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.scopus.com


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 1
Inclusion and exclusion criteria.
Criteria Assessment criteria Step

Inclusion Papers that report Literature Reviews on microservice anti-patterns, bad
smells, and bad practices

All

Papers that report Literature Reviews on microservice {anti-pattern, bad smell,
or bad practice} detection techniques

All

Exclusion

Papers not fully written in English T/Aa

Papers, not peer-reviewed (e.g. surveys, the proposal of patterns, . . . )

Duplicate papers (only consider the most recent version) T/A

Position papers and work plans (i.e., papers that do not report results) T/A

Publications where the full paper cannot be located (i.e., if the database user
does not have access to the full text of the publication)

T/A

Publications that do not mention MS anti-patterns and do not fully or partly
focus on it

All

Paper published before Fowler’s (Lewis and Fowler, 2014) definition (older
than 2014)

All

Only the latest version of the papers (e.g., journal papers that extend
conference papers are excluded if they refer to the same dataset)

All

a Title and Abstract.
While excluding gray literature in research is a common prac-
tice, it is important to note that gray literature holds an impor-
tant value in this field and domain. This work only considered
secondary studies from peer-reviewed sources; however, gray lit-
erature has been already included within the selected secondary
studies. For instance, Neri et al. (2020) performed a systematic
review of the white and gray literature. Ding and Zhang (2022)
performed a comprehensive systematic review of white and gray
literature (DZone, StackOverflow, InfoQ, and TeachBeacon). Fi-
nally, Ponce et al. (2022) conducted a multivocal review of the
existing white and gray literature on the topic. Yet, a comprehen-
sive gray literature review could bring additional anti-patterns
not yet mentioned in peer-reviewed literature.

Inclusion and exclusion criteria
For the literature selection, we defined inclusion and exclusion

criteria based on our RQs and applied them to the title and
abstract (T/A) or to the full text (F), or to both cases (All), as
reported in Table 1. This established a consistent selection for the
next stage among co-authors.

Search process
The search process in this study involved four steps:

• Secondary Study Collection: We run the search string in all
the selected bibliographic sources, and we removed all the
duplications by title.

• Applying inclusion and exclusion criteria to title and abstract:
Two different reviewers read the title and abstract to find if
the publication meets our inclusion and exclusion criteria.
If at least one reviewer was affirmative, we included the
publication for the full read.

• Full read: Full reading was performed on all the papers
included by title and abstract excluding the ones that do not
meet the inclusion and exclusion criteria.

• Snowballing: After a full read, snowballing was performed.
The snowballing process (Wohlin, 2014) considered all the
references presented in the retrieved papers and evaluated
all the papers referencing the retrieved ones as well as
papers recommended by authors as relevant to this topic.

The search and selection process is depicted in Fig. 2. Please
note that the results are discussed and provided in Section 3, this

section describes the process.

4

Fig. 2. The applied search process.

2.2. Quality assessment

We evaluated the quality of each selected secondary study
by means of the DARE method (Anon, 2007). The DARE method
proposes to evaluate the quality based on four quality assessment
(QA) questions:

QA1 Are the review’s inclusion and exclusion criteria described
and appropriate?

QA2 Is the literature search likely to have covered all relevant
studies?

QA3 Did the reviewers assess the quality/validity of the included
studies?

QA4 Were the basic data/studies adequately described?



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

i

i

a
c
c

2

t
t
m
T

a
m
r
t
f
f
w
a

2

t
p
p

Table 2
Results of search and selection and application of quality assessment criteria.
Attribute # Details

Anti-patterns This included the anti-pattern names
This included a search for referenced materials (i.e. GitHub, JSON)

Description This included the anti-pattern descriptions

Aliases Anti-patterns can be known by multiple names

Classification If classification was given we would extract it

Detection methods If detection method was given we would extract them
The DARE quality criteria propose to score the papers accord-
ng to the following scheme:

QA1 Y (yes), the inclusion criteria are explicitly defined in the
study, P (Partly), the inclusion criteria are implicit; N (no),
the inclusion criteria are not defined and cannot be readily
inferred.

QA2 Y, the authors have either searched 4 or more digital li-
braries and included additional search strategies or iden-
tified and referenced all journals and conference proceed-
ings addressing the topic of interest; P, the authors have
searched 3 digital libraries with no extra search strategies,
or searched a defined but restricted set of journals and
conference proceedings; N, the authors have searched up to
2 digital libraries or an extremely restricted set of journals.

QA3 Y, the authors have explicitly defined quality criteria and
extracted them from each primary study; P, the research
question involves quality issues that are addressed by the
study; N, no explicit quality assessment of individual pri-
mary studies has been attempted.

QA4 Y, Information is presented about each study; P, only sum-
mary information about primary studies is presented; N, the
results of the individual primary studies are not specified.

We adopted a scoring value of Y = 1, P = 0.5, N = 0, or unknown
n case the information is not reported.

We conducted the quality assessment in two steps. The quality
ssessment was performed by two researchers independently. In
ase of disagreements, a third author intervened to remove the
onflict.

.3. Data extraction

The data extraction considered the identification and collec-
ion of anti-patterns from each secondary study that we iden-
ified in the selection process and passed our quality assess-
ent criteria. The data extraction included attributes specified in
able 2.
From each included paper, we manually extracted the list of

nti-patterns and the other related attributes (if available). In the
ajority of the cases, the information is available in the section

esults, in a few cases, we looked in the appendix. In case of
he list of anti-patterns is included in an online appendix (e.g. in
orm of a JSON file on GitHub,4) we created a Python script to
etch and parse the data. In case of descriptions, secondary studies
ere often time too brief and we reached to primary studies for
detailed anti-pattern description.

.4. Analysis, synthesis methods, and bias assessment

In this Section, we describe the methods adopted to analyze
he results. RQ1 was analyzed by counting the number of selected
apers published. As for the identification of the unique anti-
atterns (RQ2), the authors of this work collaboratively clustered

4 https://github.com
5

Fig. 3. The applied categorization process.

similar anti-patterns and identified alternative names. They also
assessed their descriptions to determine relevance to microser-
vices and possibly overlap with other identified anti-patterns.
When multiple names were defined for the same pattern, they
selected the most frequently adopted name. The classification of
the patterns (RQ3) was first performed by the authors and then
validated by a set of experts. The classification process which we
detail in the next two subsections is depicted in Fig. 3.

2.4.1. Anti-patterns coding
The first classification step, executed by the authors of this

work, was performed by using open and axial coding methods.
The open coding (Strauss and Corbin, 1998; Kendall, 1999)

process facilitates an exploratory analysis of the anti-patterns
data, allowing for the generation of initial codes pertaining to
anti-patterns and categories. This stage was performed in three
phases. We first performed a pilot study. In this phase, we ran-
domly selected 10% of the anti-patterns extracted from the sec-
ondary studies to establish an initial set of codes (the unique
anti-patterns) using open coding. Then we performed a second

https://github.com


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

p
t
s
c
v
t
i
w
d
f
p
u
a

d
s
o
a
r

a
v
e
u
d
g
a
o
p
g
f
c
t

I
a
s
i
o
o
c

c
f
d
v
b
a

2

v
e
u
t
e
a
h
p
m
t
h
a
S

p
c

p
p

i
a

a
(

ass on the pilot anti-patterns to generate a final list of codes
o minimize inconsistencies during the coding process. In the
econd phase, an initial theory about the relationship between
odes was developed based on a pilot study that utilized a pre-
iously established set of codes. In the last phase, we organized
he anti-patterns into a hierarchical structure based on emerg-
ng relationships between concepts. This structured list of codes
as then used to code the remaining anti-patterns, with three
ifferent coders executing the coding collaboratively during a
ace-to-face session. Each anti-pattern name, description, pro-
osed category, and detection method were analyzed line by line
sing the list of codes, with codes being applied if they reflected
concept in an anti-pattern description or name.
The process of axial coding (Kendall, 1999) is a qualitative

ata analysis technique that focuses on establishing relation-
hips between initial codes and categories identified during the
pen coding process. It involves organizing and structuring the
nti-patterns by identifying core categories and exploring the
elationships and connections between them.

The use of axial coding supports the robust generation of
catalog of anti-patterns for two main reasons. Firstly, it pro-
ides a systematic and structured approach to analyzing the data,
nsuring a comprehensive understanding of the classification
nder study. Identifying relationships and connections between
ifferent anti-patterns enables a more nuanced and holistic cate-
orization. This ensures that the catalog captures the complexity
nd interdependencies within the domain of microservices. Sec-
ndly, axial coding helps in identifying common themes and
atterns within the data, which may reveal higher-level cate-
ories or themes that were not initially apparent. This allows
or the development of a more comprehensive and meaningful
lassification system for anti-patterns in microservices, capturing
he underlying principles and characteristics of these patterns.

The performed axial coding process consists of two phases.
n the first phase, a comparison was made among the classified
nti-patterns to inductively generate relationships between them,
uch as the relationship between intra-service decomposition and
nter-service decomposition. In the second phase, the definitions
f all the coded concepts were compared to identify any aliases
r overlapping concepts, ensuring clarity and consistency in the
atalog.
As a result of this coding process, a proposed comprehensive

ollection of anti-pattern categories and a recommended classi-
ication of the anti-patterns within these chosen categories were
erived. Additionally, axial coding allows for the refinement and
alidation of the categorization through expert input and feed-
ack. By involving external experts in the process, the reliability
nd credibility of the classification can be enhanced.

.4.2. Expert validation and pattern classification
To validate the proposed classification, we conducted a sur-

ey involving ten external participants. The recruitment process
ntailed distributing the questionnaire via email to ten individ-
als from our contact list. All ten practitioners willingly agreed
o participate. These participants have a range of 1–4 years of
xperience in microservices development and research, with an
verage experience of ≈ 2 years. Additionally, all participants
ave indicated that their latest contribution to a microservice
roject was within the past 6 months. Moreover, the number of
icroservices that participants have worked with ranges from 15

o 50, highlighting the diverse experience and exposure they have
ad in the field of microservices development. The information
bout the participants can be found in the dataset5 mentioned in
ection 3.
The survey requested the participants to categorize the anti-

atterns based on the categories obtained from our coding pro-
ess. The questionnaire, distributed via email, consisted of a list
6

Table 3
Results of search and selection.
Activity # Papers

Secondary study collection 109
Remove duplicates 94 (−15)
Inclusion and exclusion criteria to title and abstract 9 (−85)
Full read 5 (−4)
Snowballing 7 (+2)
Quality assessment 7 (0)

Selected secondary studies 7

of anti-patterns, their descriptions, and a dropdown menu al-
lowing participants to classify the anti-patterns into different
categories. Additionally, we provided the participants with de-
scriptions of the categories to aid them in accurately classifying
the anti-patterns.

The study has been designed as a between-subject method,
with each participant randomly assigned a subset of identified
anti-patterns to classify individually. After each round, we col-
lected and analyzed the data to refine the classification process,
identifying possible inconsistencies with our original classifica-
tion.

The study involved two rounds of this survey, during which
the authors gathered input from participants on their classifica-
tion of anti-patterns. After each round, the authors conducted
further open and axial coding (as described in Section 2.4.1) to
refine category definitions and anti-pattern classification. This
iterative process of coding and expert validation (Section 2.4.2)
continued until there were no more disagreements.

2.5. Executing the study

This subsection presents the incremental results of our search
process that followed the previously described methods. It also
elaborates on the data extraction and synthesis.

2.5.1. Search process results
The search process led to reductions or additions in the candi-

date paper set in each considered phase. The results we received
from particular bibliographic sources (IEEE/ACM/Scopus) along
specified phases. Fig. 2 highlighted the search process and it also
contains the particular paper counts throughout the progress of
the process, which we explain here. In addition, the summary of
the search process in Table 3 may help the reader with individual
stages. The complete details of the search process stages and their
outcomes are also available at shared dataset.5

We first executed the search query on the selected bibliographic
sources. This search yielded a total of 109 papers, including 47
papers from Scopus, 13 papers from IEEE, and 49 papers from
ACM. To ensure the integrity of the dataset, we proceeded to
eliminate duplicate papers based on their titles, resulting in a final
selection of 94 unique papers for further processing.

The application of inclusion and exclusion criteria after reading
the abstracts and titles, resulted in a reduction of the selected
papers to 9 secondary studies.

The full read of all filtered papers resulted in a total of only five
apers that met the inclusion criteria. This stage excluded four
ublications by Bogner et al. (2020), Guo and Wu (2021), Osses

et al. (2018), and de de Oliveira Rosa et al. (2020). These stud-
es were excluded because they did not provide a list of MS
nti-patterns as required for our research.
Next, we performed snowballing process (Wohlin, 2014), which

llowed us to add two more secondary studies by Sabir et al.
2019) and Ponce et al. (2022).

5 https://zenodo.org/record/7993516

https://zenodo.org/record/7993516


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

s
s
o

2

e
a
d
a
w

n
2
t
(
p

w
i
r
T

Table 4
Results of extraction and classification process.
Extraction rounds # Anti-patterns

Initially collection 287
Basic name deduplication: 203 - (−84 name duplicates)

Classification rounds
First round (open & axial coding) 77 - (microservice-only & names/alias merge)
Second round (expert validation, open & axial coding) 63 - (merge: 9, delete: 5, misclassified: 32)
Third round (expert validation, open & axial coding) 58 - (merge: 5, delete: 0, misclassified: 0)

Total anti-patterns 58
(
o
p
t
s
a
d
l

s
t
i
w

8
t
i
T

1
p
i
r

3
s

r
i
d
i
5

m
b
f
r
f
o
o

Finally, we applied the quality assessment to the secondary
tudies, which did not exclude any study. As a result, we selected
even secondary studies to perform data extraction and synthesis
n.

.5.2. Data extraction and synthesis results
As for the data extraction and synthesis process, the authors

xtracted the anti-patterns from the seven secondary studies,
s well as their descriptions from the original primary studies
efining them. The extraction and classification process rounds
nd their results are summarized in Table 4 to help the reader
ith individual stages.
Initially, we collected 287 MS anti-patterns, of which 84 were

ame duplicates. After removing the duplicates, we obtained
03 anti-patterns. We made sticky note-style cards and clus-
ered them with information available in the secondary studies
e.g., anti-pattern name, source paper, aliases, and categorization
roposed by the original papers).
The classification of the anti-patterns into categories (RQ3)

as performed in three compound rounds; three open/axial cod-
ng rounds performed by the authors (Section 2.4.1), and two
ounds of experts validation (Section 2.4.2):
he first round started with a collaborative study, wherein the
authors engaged in the open coding process. During this phase,
they analyzed the anti-patterns, addressing any duplicate en-
tries based on descriptions (i.e., name alias) and excluding those
that were not relevant to microservices. The result was an initial
set of 77 anti-patterns, which we used to perform the first
validation with the experts. We randomly distributed ≈ 15
anti-patterns among the ten participants (each pair had the
same assignment), asking them to classify the anti-patterns
based on their descriptions. We ensured that the same subset
of anti-patterns was assigned to participants with varying lev-
els of experience. By doing so, we aimed to gauge the common
understanding of both novice and experienced participants
regarding the classification of anti-patterns.

The second round used the validation feedback from the expert
to conduct a second round of open and axial coding to ad-
just our initial classification and anti-pattern descriptions. It
ended with five deleted, nine merged, and 32 unconsented
and misclassified anti-patterns. We manipulated our classifi-
cations accordingly. Next, we conducted a second round of the
survey with the expert to get validation feedback on the 32
misclassified anti-patterns that do not meet the consensus.

The third round of the open/axial coding resulted in five more
merged anti-patterns; therefore, the final set of classified anti-
patterns contains 58 items, each with a clear description and
assigned category.
The final catalog comprises 58 anti-patterns, which have been

effectively categorized into five distinct categories according to
their relationships and expert validations. These categorized anti-
patterns, along with the outcomes of each phase of the study and
the survey data, have been published and are accessible in the
dataset5.
7

3. Results

In this Section, we answer our research questions.

3.1. RQ1: What secondary studies have been published in the area
of MS anti-patterns?

Seven secondary studies on MS anti-patterns were published
from the introduction of microservices. A total of 340 primary
studies were included in these seven selected secondary studies.
Table 5 reports the list of selected studies. Moreover, they extract
and categorize multiple anti-patterns as detailed in Table 6.

The first two studies were published in 2019 by Sabir et al.
2019) and Bogner et al. (2019b). Sabir et al. listed 49 service-
riented and 56 object-oriented anti-patterns, while Bogner et al.
rovided a list of 23 anti-patterns. In our study, we excluded
he object-oriented anti-patterns and the first-time mentioned
ervice-oriented ones, including only the 16 anti-patterns that
re service-oriented and applicable to microservices. We also
iscarded two unrelated anti-patterns from the business category
isted by Bogner et al.

Neri et al. (2020) and Tighilt et al. (2020) both published their
tudies in 2020, considering 55 and 27 primary studies, respec-
ively. Neri et al. listed seven anti-patterns, all of which were
ncluded in our study. Tighilt et al. identified 16 anti-patterns, and
e discarded one of them in our analysis.
Mumtaz et al. (2021) identified the most primary studies, with

5 studies found and 103 anti-patterns listed. However, 65 of
hese anti-patterns were not identified as service-related, so we
ncluded only 39 of them in our study as microservice-related.
his was the only study that appeared in 2021.
Ding and Zhang (2022) and Ponce et al. (2022) reported 22 and

0 anti-patterns, respectively, in 2022. They extracted the anti-
atterns from 23 and 58 primary sources, respectively, and we
ncluded all of these anti-patterns in our study as microservice-
elated.

.2. RQ2: Which distinct MS anti-patterns have been identified in the
econdary studies?

In our study to create a comprehensive catalog of microservice-
elated anti-patterns, we took steps to ensure accuracy and min-
mize redundancy. This included removing duplicates, consoli-
ating similar anti-patterns, and introducing aliases for those
dentified in the seven secondary studies. In total, we identified
8 distinct anti-patterns related to microservices.
We found that some of these anti-patterns were frequently

entioned in the seven secondary studies we examined. Ta-
le 6 provides details on the number of anti-patterns extracted
rom each study and their respective categories. The results
evealed significant overlap between the selected anti-patterns
rom multiple sources, as shown in Table 7. The highest number
f common anti-patterns between any two sources was 15, which
ccurred between Mumtaz et al. (2021) and both Sabir et al.



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 5
The selected secondary studies.
Ref. Title Year #Primary studies

included

Sabir et al. (2019) A systematic literature review on the detection of smells and their evolution in
object-oriented and service-oriented systems

2019 78

Bogner et al. (2019b) Towards a collaborative repository for the documentation of service-based
antipatterns and bad smells

2019 14

Neri et al. (2020) Design principles, architectural smells and refactorings for microservices: a
multivocal review

2020 55

Tighilt et al. (2020) On the study of microservices antipatterns: A catalog proposal 2020 27

Mumtaz et al. (2021) A systematic mapping study on architectural smells detection 2021 85

Ding and Zhang (2022) How can we cope with the impact of microservice architecture smells? 2022 23

Ponce et al. (2022) Smells and refactorings for microservices security: a multivocal literature review 2022 58
Table 6
The secondary studies categories.
Ref. Categorization technique Categories #Antipatterns

reported
#Antipatterns
includeda

Total

Sabir et al. (2019) Classifying based on two types of smells, namely
object-oriented and service-oriented smells. Furthermore, they
divided the service-oriented smells into two groups based on
whether they were frequently reported in services literature
or whether they were mentioned for the first time.

1- Service-orientedb

2- Object-oriented
49
56

16
0

16

Sabir et al. (2019) Categorizing items based on the effects they have, such as
whether they are related to the design, the way the different
components of the application interact with each other, or
how users interact within the business context.

1- Architecture
2- Application
3- Business

16
4
3

16
4
1

21

Sabir et al. (2019) The classification of the smells is based on how they violate
the principles of microservices architecture.

1- Deployability
2- Scalability
3- Decentralization
4- Isolation of failures

1
2
3
1

1
2
3
1

7

Sabir et al. (2019) Categorizing the smells according to the stages of
development in a system based on microservices.

1- Design
2- Implementation
3- Deployment
4- Monitoring

4
2
7
3

4
2
7
2

15

Sabir et al. (2019) This classification technique involves categorizing the smells
based on the same order they are presented in the primary
papers.

1- Service
2- Performance
3- Dependency
4- Package
5- MVC
6- Component
7- Other smells

38
10
6
8

14
8

19

33
3
1
0
1
0
1

39

Sabir et al. (2019) Categorizing according to various characteristics and attributes
specific to the architecture of microservices considering the
development lifecycle.

1- Design
2- Deployment
3- Monitor & Log
4- Communication
5- Team & Tool

6
3
5
6
3

6
3
4
6
3

22

Sabir et al. (2019) This classification technique groups security smells based on
the security properties they relate to, using the ISO/IEC 25010
standard as a reference. The technique focuses on three
security properties: confidentiality, integrity, and authenticity.

1- Security 10 10 10

a The numbers include merged anti-patterns.
b It consists of 19 repeated anti-patterns and 30 first time mentioned. The process filtered out many of that are mentioned for the first time.
Table 7
Number of anti-patterns in secondary studies that appear in this work and their overlaps.

Sabir et al. (2019)
(16)

Bogner et al.
(2019b) (21)

Neri et al. (2020)
(7)

Tighilt et al.
(2020) (15)

Mumtaz et al.
(2021) (39)

Ding and Zhang
(2022) (22)

Ponce et al. (2022)
(10)

Sabir et al. (2019) (16) – 10 1 3 15 4 0
Bogner et al. (2019b) (21) 10 – 3 7 15 9 0
Neri et al. (2020) (7) 1 3 – 4 5 6 0
Tighilt et al. (2020) (15) 3 7 4 – 8 12 0
Mumtaz et al. (2021) (39) 15 15 5 8 – 12 0
Ding and Zhang (2022) (22)4 9 6 12 12 – 0
Ponce et al. (2022) (10) 0 0 0 0 0 0 –

The numbers in parentheses indicate the total count of anti-patterns for each study that appear in this work.
The numbers in each cell represent the count of anti-patterns that are common between the two studies.
8



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 8
Intra-service design anti-patterns.
SCat Index Anti-pattern name Defined in Referenced by

Granularity

1 Nano-service (AKA, Nano microservice,
Tiny/nano/fine-grained service)

2003, 2009, 2012–2015,
2017, 2020, 2021

Sabir et al. (2019),
Bogner et al. (2019b),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang (2022)

2 Mega service (AKA, Mega microservice,
Blob or god object/component, God object
web service, Multi-service, Bloated service)

2003 −2005, 2010,
2013–2018, 2020

Sabir et al. (2019),
Bogner et al. (2019b),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang (2022)

Service interface

3 CRUDY service (AKA, Crudy interface, Crudy
URI)

2014, 2015, 2017, 2019 Sabir et al. (2019),
Mumtaz et al. (2021)

4 Nobody home (AKA, Unused interface) 2014 Mumtaz et al. (2021)

5 Data service (AKA, Data web service) 2014–2015, 2017 Sabir et al. (2019),
Mumtaz et al. (2021)

6 No API-versioning (AKA, API versioning) 2018, 2020, 2021 Bogner et al. (2019b),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang (2022)

Cohesion

7 Whatever types (AKA, Ignoring MIME types,
Forgetting hypermedia)

2007, 2011, 2013, 2014,
2019

Sabir et al. (2019),
Mumtaz et al. (2021)

8 Low cohesive operation 2007, 2011, 2013–2015,
2017

Sabir et al. (2019),
Bogner et al. (2019b)

9 Ambiguous service (AKA, Ambiguous name,
Ambiguous interface)

2009, 2011, 2013–2015,
2017

Sabir et al. (2019),
Bogner et al. (2019b),
Mumtaz et al. (2021)
(2019) and Bogner et al. (2019b). However, there were no com-
mon anti-patterns mentioned in Ponce et al. (2022) with any of
the other sources.

Moreover, Fig. 4 depicts the intersection of anti-patterns be-
tween the most four sources containing anti-patterns (Sabir et al.,
2019, Bogner et al., 2019b, Mumtaz et al., 2021, and Ding and
Zhang, 2022) out of the seven sources. It shows that these four
sources share three common anti-patterns: Wobbly service in-
teractions, Nano service, and Mega service. Moreover, Sabir et al.
(2019), Bogner et al. (2019b), and Mumtaz et al. (2021) contain
nine common anti-patterns, while Bogner et al. (2019b), Mumtaz
et al. (2021), and Ding and Zhang (2022) contain eight common
anti-patterns. Additionally, it is evident that almost all of the
anti-patterns that were included in Sabir et al. (2019) are al-
ready encompassed in Mumtaz et al. (2021), except for a single
anti-pattern, which is Scattered parasitic functionality.

All of the anti-patterns that were identified can be found in
Table 13, and they are categorized in Tables 8–12.

3.3. RQ3: How are MS anti-patterns classified in the secondary
studies?

The secondary studies consider different techniques for the
categorization of the anti-patterns, as summarized in Table 6.
Sabir et al. (2019) adopted a classification perspective combining
two categories of object-oriented and service-oriented paradigms
to categorize anti-patterns. They classified object-oriented related
anti-patterns into five subcategories: anti-patterns, architectural
smell, code and design, code smell, and design smell. However,
some of these categories were not applicable to the service-
oriented context, such as the code and design category. Service-
related anti-patterns were classified into those first mentioned in
primary studies and those mentioned multiple times.

Bogner et al. (2019b) considered three categories of architec-
ture, application, and business. The architecture category impacts
architecture and design-related aspects of the system. The ap-
plication category impact interactions of application components
9

Fig. 4. Intersection of anti-patterns between sources (a condensed depiction of
the top four sources due to space limitations).

and application-level functionality. Finally, the business category
coped with interactions of users, businesses, and data.

Neri et al. (2020) utilized a 4+1 architectural viewpoint scheme
to identify anti-patterns related to the dynamic aspects of inter-
actions and their violations. Their focus was on four categories:
deployability for ensuring independent deployability of microser-
vices, scalability to address horizontal scalability, decentralization
to overcome bottlenecks, and isolation of failures to monitor
system resilience.



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

g
c
p

r
c

a
g
a
r
g
b
o

p
c
b
d

Fig. 5. The proposed anti-patterns categories.
,

Tighilt et al. (2020) organized anti-patterns into four cate-
ories with regard to the development cycle. Design category
oping with the specification of the architectural design. Im-
lementation category about how the microservices are imple-

mented. Deployment category with packaging and deployment
of micro-service-based systems. Finally, a monitoring category
elated to the monitoring of microservices, their behavior, and
hanges.
Mumtaz et al. (2021) categorized detection approaches and

lso included anti-patterns categories comprised of seven cate-
ories: service, performance, dependency, package, MVC, component
nd other smells. The categorization includes anti-patterns not
elevant to microservices (i.e., package, MVC, component). The
ranularity of the service category is not further divided. It com-
ines single service granularity, communication, architecture, or
rganization.
Ding and Zhang (2022) utilized five categories to classify anti-

atterns. These categories are related to different aspects of mi-
roservice architecture and also include the development cycle
y comparing violated principles. The categories used are design,
eployment, monitor & log, communication, and team & tool.
Ponce et al. (2022) considered the security aspect of microser-

vices, an exclusive theme with respect to other studies. They con-
sidered tagging anti-patterns with confidentiality, integrity, and
authenticity. Confidentiality is the degree to which a system en-
sures that data are accessible to those authorized users. Integrity
is the degree to which a system prevents unauthorized data
modification. Authenticity is the degree to which the identity of
a subject or resource can be proved to be the one claimed.

3.3.1. Classified categories of anti-patterns
After examining the resulting secondary studies, it was found

that each study categorized anti-patterns differently, some from a
development cycle perspective and others from a scalability and
deployability perspective.

We have considered anti-patterns assigned to categories from
the secondary studies when analyzing them. However, it is ob-
vious that they lack greater overlap that could be generalized
across the studies. As a result, it was deemed necessary to adopt
a consistent perspective related to Microservices Architecture.

As described in Section 2.4.1, axial coding resulted in an induc-
tive classification of anti-patterns according to their relationships.
To provide a higher-level categorization, we considered the basic
perspective of software architecture. Software architecture con-
tains software elements of certain properties and relations among
them, again with certain properties. At the same time, archi-
tected systems have certain non-functional aspects. Furthermore,
to build a system with certain architecture, there is a process of
doing so, including development and operations.

The microservice architecture emphasizes the creation of small
independent services that collaborate to create a complete appli-
cation. Thus to apply our anti-pattern categorization perspective
to the microservice context, we must recognize that elements
are services with specific structures (1), the decentralization
perspective allows us to (2) decompose the problem into multiple
microservices, the connection is realized through the service
10
communication (3). The non-functional perspective contains var-
ious quality aspects, such as security (4). Finally, to build and
operate such systems, we need to organize teams (5). Therefore,
we translate these perspectives into the following five categories,
as depicted in Fig. 5 and subsequently we assigned the classes
of anti-patterns identified through axial coding to these five
high-level categories.

- Intra-service design category: The intra-service design cate-
gory considers a single service component and its design. We
have further subdivided the anti-patterns into the service inter-
face, granularity, and functional cohesion perspectives as subcat-
egories. This category has nine items highlighted in Fig. 6 and
detailed in Table 8. This table lists the subcategories followed
by an index that we used to connect anti-patterns and anti-
pattern names; it also gives their aliases (also known as - AKA)
and details when they were defined and which secondary studies
they referenced. The indices connect the anti-patterns with a
comprehensive description provided in Appendix. In addition, the
appendix also provides references to primary studies.

With regard to the sub-categories: the granularity consid-
ers the sizing of services (nano-service, mega service); the inter-
faces point to problems apparent from service interfaces (CRUDY
service, nobody home, data service, no API-versioning), and the
cohesion then considers clarity and comprehensibility of the ser-
vice or service properties (whatever types, low cohesive operation,
ambiguous service).

- Inter-service decomposition category: The inter-service de-
composition considers the system’s structural division involving
two or more microservices. This can consider service integration,
decomposition approaches resulting in improper modularity, and
service relationships. This category has 14 items highlighted in
Fig. 7 and detailed in Table 9 with the structure introduced
previously referencing the appendix for full description.

Besides anti-patterns which we classified generally fitting this
category (transactional integration, co-change coupling, duplicated
service, and microservice greedy), we also considered subcate-
gories. One of the specific aspects we identified across anti-
patterns in this category is a topology, where we consider how
the decomposition predetermines microservice topological con-
nections, which are unintended (service chain, hub-like depen-
dency, cyclic dependency). Topology often time imply communi-
cation as well, but the major perspective is decomposition rather
than communication. Another perspective we clustered in this
category is violated modularity across services (chatty service,
shared persistency, sand pile, shared libraries, wrong cuts, knot
service, scattered parasitic functionality). Modularity can be vio-
lated by various means, including unintended sharing of compo-
nents, coupled services, their improper scope, or too fine-grained
decomposition with remaining dependencies.

- Service interaction category: The service interaction category
looks into how services interact. Often times this might be prede-
termined by the topology given by service decomposition; how-
ever, the violation here involves interaction aspects. We identified
anti-patterns that indicate improper communication routes or
disable system scalability or harm resilience.



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Fig. 6. Intra-service design anti-patterns (9 anti-patterns).
Fig. 7. Inter-service decomposition anti-patterns (14 anti-patterns).
i
a

m
m
r
w
f
p
u
l
o
w
o
s
h

-
o
e
t
d

Fig. 8. Service Interaction anti-patterns (9 anti-patterns).
11
This category has nine items highlighted in Fig. 8 and detailed
n Table 10 with the established structure and references to the
ppendix for full descriptions.
Besides anti-patterns classified at the top category level (ESB

isuse, on-line only, empty messages, use of business logic in com-
unication among services), we also clustered these specific to
esilience. Resilience patterns (Carnell and Sánchez, 2021) deal
ith good citizen services following circuit breaker, bulkhead,

allback, rate limiter, timeouts, etc., which promote resilience. Anti-
atterns typically violate resilience patterns and typically hide
nder wobbly service interaction. Another perspective here is re-
ated to missing communication checkpoints, indirection, or lack
f health checks with timeouts (hardcoded endpoint, no API gate-
ay, wobbly service interactions, timeout, no health check). While
ne may assume health checks might be unrelated, they are
trongly dynamic and drive circuit breaker pattern (i.e., Spring
ystrix Carnell and Sánchez, 2021).

Security category: The security category consists of violations
f three basic security aspects authentication, authorization, and
ncryption. Authentication is a process or action of verifying
he identity of a user or process. Authorization is a process to
etermine whether a given user profile or identity is allowed to



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

r

e
m
i
t
r
i
e
m
i
I
c
t
f
o
t
v
c

Table 9
Inter-services decomposition anti-patterns.
SCat Index Anti-pattern name Defined in Referenced by

10 Transactional integration 2012 Bogner et al. (2019b)

11 Co-change coupling 2018 Mumtaz et al. (2021)

12 Duplicated services (AKA, Nothing new) 2006, 2009, 2012–2015, 2017 Sabir et al. (2019),
Bogner et al. (2019b),
Mumtaz et al. (2021)

13 Microservice greedy 2003, 2018 Mumtaz et al. (2021)

Topology
14 Service chain (AKA, Pipe and filter, Message chain) 2006, 2013, 2014 Sabir et al. (2019),

Bogner et al. (2019b),
Mumtaz et al. (2021)

15 Hub-like dependency 2019 Mumtaz et al. (2021)

16 Cyclic dependency (AKA, Cyclic between namespaces) 2018–2020 Bogner et al. (2019b),
Tighilt et al. (2020),
Ding and Zhang
(2022)

Modularity

17 Chatty service (AKA, Empty semi-trucks, Circuitous treasure hunt) 2013–2017 Sabir et al. (2019),
Bogner et al. (2019b),
Mumtaz et al. (2021)

18 Shared persistency 2014, 2016–2021 Bogner et al. (2019b),
Neri et al. (2020),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

19 Sand pile 2007, 2013–2015 Sabir et al. (2019),
Mumtaz et al. (2021)

20 Shared libraries (AKA, Shared dependencies) 2018–2021 Sabir et al. (2019),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

21 Wrong cuts 2018–2020 Bogner et al. (2019b),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

22 Knot service 2012–2015 Sabir et al. (2019),
Bogner et al. (2019b),
Mumtaz et al. (2021)

23 Scattered parasitic functionality (AKA, Stove pipe service) 2009, 2014 Sabir et al. (2019),
Bogner et al. (2019b)
access a system or perform a specific action. Finally, encryption
is the process of converting human-readable plaintext to incom-
prehensible text, also known as ciphertext. Anti-patterns in this
category violate these processes or make them hard to manage,
weak or vulnerable. This category has ten items highlighted in
Fig. 9 and detailed in Table 11 with the established structure and
eferences to the appendix for full descriptions.

The three sub-categories of authentication, authorization, and
ncryption are rather exclusive. While some security experts
ight see encryption as part of authorization, we clustered them

ndependently. The authentication subcategory (unauthenticated
raffic, multiple user authentication) considered system violations
elated to this aspect and did not consider centered author-
ty which might lead to ambiguities. The authorization subcat-
gory (publicly accessible microservices, unnecessary privileges to
icroservices, insufficient access control, centralized authorization)

s considered granularity or lack of privileges and access control.
t is important to note that microservices should honor bounded
ontext, and they have exclusive knowledge about a part of
he domain, which leads to their responsibility to determine
ine-grained authorization that is decentralized in the system;
therwise, the centralized authorization would violate the decen-
ralized and encapsulated knowledge across individual microser-
ices. The encryption subcategory (non-secured service-to-service
ommunications, non-encrypted data exposure, own crypto code,
12
hardcoded secrets) looked at violations in secure communication,
unintended data exposure, weak cryptography, and secrets in
plain text.

- Team organization category: The team organization category
is different from other categories as it moves away from the
architectural perspective that considers structure and dynamic
system aspects and rather copes with development teams’ deci-
sions for implementation techniques, organization of migration
strategies, and operations, which can further contain monitoring.
This category considers the violation of DevOps practices.

This category is the largest, with 16 items highlighted in
Fig. 10 and detailed in Table 12 with the continued structure and
references to the appendix for full descriptions.

The anti-patterns are classified into development and op-
eration subcategories. The development subcategory considers
practices and standards adopted by development teams (shiny
nickel, golden hammer, lack of communication standards among mi-
croservices, too many standards), or common planning (inadequate
techniques support, no legacy), or organization pitfalls (single-layer
teams). We also considered a sub-category related to system
migration (data-driven migration, big bang).

The operation subcategory considers violations of DevOps
practices related the continuous integration, deployment, and
configuration management in general (multiple service instances



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 10
Service interaction anti-patterns.
SCat Index Anti-pattern name Defined in Referenced by

24 ESB misuse (AKA, ESB usage) 2014, 2016–2018, 2020 Neri et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

25 On-line only (No Batch Systems) 2007 Bogner et al. (2019b)

26 Empty messages 2007, 2011, 2013, 2014 Neri et al. (2020)

27 Use of business logic in communication among services 2021, 2019 Ding and Zhang
(2022)

Resilience

28 Hardcoded endpoint (AKA, Endpoint-based service interactions) 2006, 2018, 2019, 2020, 2021 Bogner et al. (2019b),
Neri et al. (2020),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

29 No API-gateway 2014–2021 Neri et al. (2020),
Tighilt et al. (2020),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

30 Wobbly service interactions (AKA, Bottleneck service, Traffic jam, Ramp) 2014–2019, 2021 Sabir et al. (2019),
Bogner et al. (2019b),
Mumtaz et al. (2021),
Neri et al. (2020),
Ding and Zhang
(2022)

31 Timeout 2021 Tighilt et al. (2020),
Ding and Zhang
(2022)

32 No health check (for automated reasoning) 2013, 2014 Sabir et al. (2019),
Mumtaz et al. (2021)
Fig. 9. Security anti-patterns (10 anti-patterns).
Table 11
Security anti-patterns.
SCat Index Anti-pattern name Defined in Referenced by

Authentication 33 Unauthenticated traffic 2015, 2016, 2018, 2019 Ponce et al. (2022)
34 Multiple user authentication 2016–2020 Ponce et al. (2022)

Authorization

35 Publicly accessible microservices 2017–2021 Ponce et al. (2022)
36 Unnecessary privileges to microservices 2017–2020 Ponce et al. (2022)
37 Insufficient access control 2015–2020 Ponce et al. (2022)
38 Centralized authorization 2015–2021 Ponce et al. (2022)

Encryption

39 Non-secured service-to-service communications 2015–2020 Ponce et al. (2022)
40 Non-encrypted data exposure 2015–2020 Ponce et al. (2022)
41 Own crypto code 2016–2020 Ponce et al. (2022)
42 Hardcoded secrets 2016–2020 Ponce et al. (2022)
13



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

p
o
g
m

3
t

p
o
p
o
s
a
t
c
a

a
a
i
d
s

p
v
h

Fig. 10. Team Organization anti-patterns (16 anti-patterns).
er host, no CI/CD, manual configuration). We also clustered an-
ther subcategory related to monitoring related to tracing, log-
ing, and documentation (insufficient monitoring, dismiss docu-
entation, insufficient message traceability, local logging)

.4. RQ4: How can we automatically detect anti-patterns, and what
echniques could be used?

The next logical question after we catalog microservice anti-
atterns is how we can detect them. The most basic approach
ne could think of is through source code and the development
rocess review. However, it is not very practical given the scale
f microservice systems. We could also involve testing to get an-
wers to some concerns. However, even then, we should look for
more efficient approach. Microservices evolve decentrally, and

o provide robust quality assurance upon each update, we should
heck whether the system did not degrade with an unintentional
nti-pattern.
Sabir et al. (2019) mentioned static and dynamic code analysis

pproaches. However, they did so on the level of object-oriented
nd service-oriented paradigms. They identified 70 primary stud-
es related to static analysis and eight primary studies related to
ynamic analysis. They further divided the static analysis into six
ubcategories.
The behavioral source code analysis (17 studies) examines the

rogram behavior without code execution. This analysis uses
arious source code metrics to check program behavior (i.e., co-
esion, coupling, depth of inheritance, and lines of code). They
14
highlight that smell detection is not possible without a system
intermediary representation. Typically, this analysis is based on
the description of flaws or rules. This is also applicable to version
control histories. The intermediate representation can take the
form of a metamodel or an ontology.

The empirical source code analysis (23 studies) considers fetch-
ing information by using already established tools. This analysis
considers both repository history mining and code parsing.

The algorithm-based source code analysis (16 studies) considers
multiple detection techniques and may involve machine learning,
image processing, or genetic algorithms; it is quite common to
set threshold when smells apply. This approach noted multiple
codebase repository detections.

The methodology-based source code analysis (9 studies) uses an
existing methodology in an alternative manner. It sits between
the previous two approaches with existing tools and algorithms.

Finally, the linguistic source code analysis (5 studies) considers
the linguistic quality assessment of wrong naming conventions
in class names, methods, etc. This direction spans to natural-
language processing discipline.

Sabir et al. (2019) noted that dynamic code analysis consid-
ered execution states under real execution scenarios. It com-
bines domain-specific languages with algorithms to perform over
service interfaces.

In summary, Sabir et al. found out that information extraction
considers two perspectives – static and dynamic – and high-
lighted the need for intermediate representation that can be used



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

t
g
d
s

a
s
t
p
m
c
w

o
t
a
f
t
b
t
a

Table 12
Team organization anti-patterns.
SCat SSCat Index Anti-pattern name Defined in Referenced by

Development

43 Shiny nickel (AKA, Silver bullet, Focus on latest
technologies)

2006. 2018 Bogner et al. (2019b),
Mumtaz et al. (2021)

44 Golden hammer (AKA, Same old way) 2003, 2018 Bogner et al. (2019b),
Mumtaz et al. (2021),
Ding and Zhang
(2022)

45 Lack of communication standards among
microservices

2019, 2021 Ding and Zhang
(2022)

46 Too many standards 2018–2021 Mumtaz et al. (2021),
Ding and Zhang
(2022)

47 Inadequate techniques support 2018, 2020, 2021 Ding and Zhang
(2022)

48 Single layer team 2014, 2016–2018, 2020 Neri et al. (2020),
Ding and Zhang
(2022)

49 No legacy (AKA, Everything must be new) 2007, 2018 Mumtaz et al. (2021)

Migration 50 Data-driven migration 2016 Bogner et al. (2019b)
51 Big bang 2009 Mumtaz et al. (2021)

Operation

52 Multiple service instances per host (AKA, Multiple
services in one container)

2015–2018 Neri et al. (2020),
Tighilt et al. (2020)

53 No CI/CD 2020 Tighilt et al. (2020)
54 Manual configuration 2021 Tighilt et al. (2020),

Ding and Zhang
(2022)

Monitoring

55 Insufficient monitoring 2020–2021 Tighilt et al. (2020)
56 Dismiss documentation 2018 Ding and Zhang

(2022)
57 Insufficient message traceability 2021 Ding and Zhang

(2022)
58 Local logging 2020–2021 Tighilt et al. (2020),

Ding and Zhang
(2022)
e
h
t
w
r
i
c

when applying roles or algorithms to detect anti-patterns. How-
ever, many researchers depend on existing tools which presents
limitations for microservices given their distributed nature.

Mumtaz et al. (2021) proposed a classification of the de-
ection methods for MS anti-patterns. They defined nine cate-
ories: rules-based, graph-based, design structure matrix, model-
riven, code smells analysis, reverse engineering and history-based,
earch-based, visualization, and others.

The rules-based approach uses metrics with thresholds (rules),
nd pre-defined frameworks, heuristics, or guidelines to detect
tructural problems. This approach assesses enforced architec-
ural guidelines, compliance checking, and identification of anti-
atterns. It is often used with modularity metrics to identify
odularity violations or complexity evaluations. They noted a
ommon overlap with other methods in their classification frame-
ork.
The graph-based approach recognizes entities or components

f a system as nodes, and the relationships are represented
hrough edges. It is an intuitive method of representing problem-
tic relationships between the architecture entities in graphical
orm. A dependency graph is often used to represent the system
o assess modularization. Moreover, social network analysis can
e used to predict undesired dependencies. When contrasting
hese findings with Sabir et al. (2019), this approach uses a graph
s an intermediate representation. Mumtaz et al. (2021) mention

that the graph-based approach often combines with the rules-
based approach, which indicates different phases of where these
two detection approaches belong to.

The design structure matrix approach uses a two-dimensional

matrix representing the software’s structural relationships. One

15
side considers components, and the other considers relationships
(i.e., dependency, coupling). However, such a matrix is another
representation of a graph. Similarly, clustering and rules apply to
this, which is similar to the previous.

The model-driven approach considers abstraction and mod-
ling of architectural structures. One common mechanism used
ere is model transformation to generate intermediate represen-
ations which could be rendered in XML. This could also operate
ith metamodel extracted from the system by introspection or
eflection. Similar to the previous two categories, this is another
ntermediate representation of the system. When we put to the
ontext highlighted by Neri et al. (2020) and architecture view-
points, it is obvious that multiple architectural perspectives are
needed to describe the system. In this case, multiple system in-
termediate representations might co-exist, and to integrate these
representations to answer complex questions, it must be possible
to employ model transformations.

The code smells analysis approach involves the detection of
lower-level anti-pattern or code metrics of the object-oriented
paradigm to identify architectural anti-patterns. This approach
involves correlation analysis. For instance, multiple code-level
metrics can be combined to detect performance anti-patterns.

The reverse engineering and history-based approach uses mul-
tiple system versions, possibly mining software repositories, and
could consider involved developers and issue tracking. The us-
age applies to assessing architectural guidelines and compliance
checking to identify clusters with problematic dependencies and
connections.

The search-based approaches identified by Mumtaz et al. were

exclusively used in combination with the rules-based approach



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

a
S

i
m
n
s
s
t

nd aimed at optimizing the search with genetic programming.
imilarly, rules formulate using metrics, thresholds, or patterns.
The visualization approach involves human experts. They aid

n the understanding of complex systems with multivariate and
ultidimensional data. In existing work, the visualization tech-
ique is used in combination with detection rules or to show the
ystem architecture so that practitioners can detect issues them-
elves. It is relevant to enable interactive navigation to explore
he system architecture.

The other approach does not represent commonalities and
relates to rather unique techniques. These would include change
scenarios, correlation analyses, practitioner interviews, architec-
ture description languages, model transformations, profiler test-
ing,

Mumtaz et al. (2021) did not consider the information ex-
traction, which is considered by Sabir et al. (2019). Instead, one
approach is considered for the entire process, which introduces
gaps. For instance, it is not detailed in their classification frame-
work how is the graph or model generated. Similarly, the model-
driven, graph-based, and design structure matrix approaches have
one commonality — they all are intermediate representations of
the system. Furthermore, the search-based approach is a sub-
category of rules-based approach. Finally, the rules-based, code
smells analysis, reverse engineering and history-based, and visual-
ization approaches likely all operate on top of an intermediate
representation of the system.

4. The proposed MS anti-pattern detection classification frame-
work

While the categories proposed by Mumtaz et al. (2021) may
correspond to different keywords in literature, not all the MS
anti-patterns can be mapped to their categories. Similarly, Sabir
et al. (2019) presented another perspective of the classification,
highlighting information extraction and intermediate representa-
tion for the analysis.

Given the gaps introduced in RQ 3.4, a more contextual un-
derstanding is needed if we were to build an analytical tool
for microservices. For instance, given the Mumtaz et al. (2021)
categorization, we may use a model that we reverse engineer
from the source code to search for and to detect smells by using
rules and visualizing the results for the human in the loop. Obvi-
ously, we just combined the majority of the categories suggested
by Mumtaz et al. in order to achieve a single goal. Second of
all, Sabir et al. (2019) add more insight to the detection with more
holistic details. For the above reasons, we propose a different
classification framework that takes into account different phases
of such a process. At the same time, we provide the backward
mapping to the Mumtaz et al. categorization and align with Sabir
et al. in the holistic perspective which we augment.

Suppose we were to develop an automated analysis tool. First,
we need to understand what the input is to extract information
from on an automated basis. Next, we need to specify our focus
and transform the input information into a more abstract model;
we typically call this the intermediate representation. Having
the intermediate representation reduces a lot of complexity, but
it also implies we lose some detail to make the process more
straightforward. The final step is to apply an appropriate strategy
to identify the patterns.

Based on the aforementioned considerations, we based our
classification framework on three phases:

• Phase 1: Information extraction (the input)
• Phase 2: Intermediate representation
• Phase 3: Detection techniques
16
Fig. 11 depicts the proposed process, together with examples
of the generated artifacts derived from the literature. In the
remainder of this Section, we describe these three phases in
detail.

4.1. Phase 1: Information extraction

Literature might lead us to use system documentation
(Rademacher et al., 2020) when extracting system information
to analyze. However, we must be a step ahead. The system
evolution factors easily make the documentation outdated (Cerny
et al., 2022a). We must also recognize that there are always
two perspectives of the system — structural one and behavioral
one Sabir et al. (2019). What remains up to date with no question
is the source code of the system or the runtime of the system
itself. The approaches used for this include static and dynamic
system analysis Sabir et al. (2019) or their hybrid combination.
Our primary categorization thus considers these two approaches
for automated system analysis for anti-patterns. However, there
are even more fine-grained details about how we can execute
these analyses.

Static analysis. This can involve analysis of the source code
(Schiewe et al., 2022), involving code parsers turning the in-
put into an Abstract-Syntax Tree (AST). For instance, Java Parser
(https://javaparser.org) can be used when parsing Java source
code. Similar parsing tools are available for other modern lan-
guages; for example, Python and Golang have a built-in parser
package to obtain AST from the source code.

However, with cloud-native approaches, important descrip-
tors are stripped of the code. Thus, it might be considered to
analyze the entire codebase rather than just source code, includ-
ing build files, deployment descriptors, or other configurations,
unless they are part of the configuration server (which should
also be a subject of interest). For instance, Ibrahim et al. (2019)
used container descriptors to build microservice-based container
networks to analyze plausible attack paths.

Apart from source code, binary code or bytecode might be
available. When vendors wade into the ‘‘no source available’’
pool, there is no other path than this. However, with a bytecode
decompiler, one can create source code from the bytecode. But
there are other avenues for bytecode like using Javassist6 ar ASM7

libraries. Besides, GraalVM8 (Wimmer, 2021) makes it clear that
bytecode is not only the domain of Java but is also applicable
to Python, JavaScript, R, or Ruby. The internal format of the
GraalVM intermediate representation used for control and data
flow analysis can be used to extract information from the system.

When the binary is the only path forward, Low-Level Virtual
Machine (LLVM) (Lattner and Adve, 2004) can be used for con-
trol analysis, but that path is the most challenging given code
structure information is no longer in its raw form but compiled.

Apart from all these perspectives is Mining Software Reposi-
tory (MSR). The major difference is that MSR considers changes
in time, organizational structures, change comments, authors, or
even connected to ticketing systems like Jira.9 Naturally, MSR
would utilize parsers to extract information but then also version
control commands to mine the history or change commits.

All these options, including source code analysis, codebase anal-
ysis, bytecode/binary analyses, or code repository mining could act
as input for static analysis.

Dynamic analysis. This analysis requires the system to oper-
ate in order to collect logs, states, or metrics like CPU, memory,

6 Javassist http://www.javassist.org.
7 ACM https://asm.ow2.io.
8 GraalVM https://www.graalvm.org.
9 Jira https://www.atlassian.com/software/jira.

https://javaparser.org
http://www.javassist.org
https://asm.ow2.io
https://www.graalvm.org
https://www.atlassian.com/software/jira


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

o
t
l
t

t
r
I
t
c
s

Fig. 11. BPMN diagram of the proposed anti-pattern detection process.
r latency between calls. There are multiple granularity levels for
his as well. The first important thing to note is that application
ogs are typically centralized. Thus, we have a single focal point
o observe what is happening.

However, the primary challenge with analyzing the applica-
ion log is that we do not know what the log statements are
elevant to apart from information about the producing source.
n log analysis, we are particularly interested in understanding
he sequence of actions triggered by a user. Given that we have
oncurrent environments, it becomes complex to identify the
equence of logged actions in the log related to one another.
17
There have been scientific attempts (Schipper et al., 2019; Zhao
et al., 2014) to understand log message sequences produced from
concurrent runtime, but it is difficult.

To simplify the process of collecting the sequence of log
statements in a business transaction, the mainstream direction
is to augment log messages with user request-scoped business
transitions. This can be accomplished by what is called tracing
(i.e., OpenTelemetry10). The result of tracing is an event log. The
tracing fabricates a randomly generated tracing identifier (ID) to

10 OpenTelemetry https://opentelemetry.io.

https://opentelemetry.io


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

e
e
w
t

b
p
u
i
c
w

e
h
i
a

l
s
b
l
b
a

p
i
c
s
f
f
L
a

c

ach user’s request, which is added to each logged statement (an
vent) and promoted across the entire system of microservices
hen intermediate calls occur. We need mediation either through
he API gateway or the underlying service mesh.

With tracing ID, one can centralize the events, sort them
y time and cluster them by tracing ID to understand the big
icture in terms of interaction graphs and dependencies since we
nderstand the sequence of events from user actions. In addition,
f we connect the tracing ID with the user browser’s cookies, we
ould understand the entire activity flow of the user’s interaction
ith the system, not just the scope of individual requests.
The most basic tracing perspective is adding a log message for

ach endpoint. This way, we can reconstruct dependency graphs;
owever, it does not say anything about the internal control flow
n the system across internal structures. We can see that dynamic
nalysis tends to be more of a black-box view.
However, the next question to ask is what granularity of

ogging should be maintained by each microservice or what the
tandard format of logging should look like. As a result, we might
e dependent on what developers consider important to log,
ikely lacking consistency. For this reason, a hybrid approach can
e used with instrumentation that generates the log statements
utomatically, which we mention in the next segment.
Apart from centralized logging, cloud systems typically em-

loy health checks for resilience to avoid wobbly services. This
nvolves every microservice to collect statistics on method call
ounts, timing, and success. Such statistics are centralized through
imilar means as tracing or used by service discovery. This allows
or resilience mechanisms to temporarily disconnect services
rom the system to recover, apply rate limits, or auto-scale.
ikely these statistics are great information to be analyzed for
nomalies.
Hybrid approaches. When combined with static and dynamic

analysis, hybrid approaches emerge. For instance, program slicing
connects log statements to the code (Xu et al., 2005) to give more
code insights upon log analysis, pointing log statements to spe-
cific code locations and parameters that cause a given anomaly.
This instrument can be used when combining information from
both approaches.

Code instrumentation is a common technique used to track
application behavior. It refers to the task of including code in
programs to monitor their performance. We can use code instru-
mentation to display messages or write to event logs in case of
a failure during the execution of an application at run time. This
goes hand in hand with tracing to ensure a homogeneous logging
statement. Instrumentation is essential for metric collection in
sufficient detail. Instrumentation involves an automated exten-
sion of source code or binary code. However, it introduces perfor-
mance overhead, and developers might be sensitive to third-party
code manipulation.

Prometheus11 is a popular monitoring tool. It collects metrics
from microservices for analytics. Instrumentation is essential for
it to work. Before any service is monitored, code instrumentation
is performed on their code via one of the Prometheus clients
based on over 20 language-specific libraries.12

Manual approach. Yet, none of the above could inform about
the configuration and process details of the system, and thus
semi-automation could be necessary to add more comprehen-
sive input. Among examples. How to determine that CI/CD is
in place? How can we fetch configuration information from the
configuration server unless available in the code repository of
the configuration server? Besides, a test-based approach could be
added here.

11 Prometheus http://prometheus.io.
12 Prometheus instrumentation http://prometheus.io/docs/instrumenting/
lientlibs.
18
4.2. Phase 2: Intermediate representation

When gathering information about the microservice structure,
its distributed traces, or metrics that are used for consequent
analysis, we typically involve an intermediate representation to
connect individual parts of information together. It can be an
intermediary step for transformation to verification performed at
a particular system perspective.

The intermediate representation could base on established
graphs. The most basic AST can be converted to Control-flow
graphs (CFG), Call graphs (CG), or other dependency graphs. These
graphs consist of nodes and edges. CFG and CG are often misin-
terpreted as the same, but they are not. CFG is intra-procedural,
where nodes represent program statements, including called sub-
routines but also conditionals and loops; the edges represent the
flow of the program. CG is inter-procedural, where nodes rep-
resent subroutines, and edges represent the relationship caller-
called between two subroutines (e.g., the caller subroutine A calls
B subroutine). These two can combine to inter-procedural CFG.
CG can be used in connection with instrumentation and tracing.
However, CFG and AST cannot be determined from dynamic
analysis.

Furthermore, research has been done to perform process min-
ing on event logs produced by tracing. For these approaches, we
typically use Petri-net. These are then used in activity diagrams or
by the business-process model notation (BPMN). As Mumtaz et al.
(2021) highlighted, the graph can be expressed as a matrix, and
thus the intermediate representation can use a design structure
matrix instead of a graph. Moreover, the graphs can represent
something abstract or more detailed, whether temporal transi-
tions across endpoints or the structure of objects or components,
endpoints, or microservices themselves.

Specifically in microservices, we often see the service view
perspective expressed in directed graphs. For instance, a service
dependency graph is commonly used. The domain perspectives
can represent schemas to represent data entities similar to what
is used when modeling systems. Alternative representations can
use component call graphs (Svacina. et al., 2022) spanning from
endpoints, services, and repositories involving remote/messaging
calls, data entities, and transfer objects.

The intermediate representation can also be expressed in the
form of architectural languages (Lelovic et al., 2023) or schemes
(i.e., JSON). When the system changes, and we analyze changes
in time, we may consider a repository of graphs to determine
deltas. This can be generalized to an N-dimensional structure of
intermediate representations to system versions.

Given the common approach of graph representation, it might
be feasible to involve graph databases like Neo4j.13 As a re-
sult of static analysis of each microservices codebase, we get a
forest of intermediate representations. These need to be com-
bined. Bushong et al. (2022) illustrated that combining microser-
vice intermediate representations to a holistic perspective can
identify and map remote calls to the endpoint based on a signa-
ture match or user data similarity matches across microservice-
bounded contexts. With a comprehensive system perspective,
we can address anti-patterns related to service interaction or
inter-service decomposition.

4.3. Phase 3: Detection techniques

When we look at the detection techniques, we are likely
to traverse the intermediate representations and match pat-
terns (i.e., bottleneck service), calculate metrics for nodes
and edges (i.e., structural coupling), search for reachable paths

13 Neo4j https://neo4j.com.

http://prometheus.io
http://prometheus.io/docs/instrumenting/clientlibs
http://prometheus.io/docs/instrumenting/clientlibs
https://neo4j.com


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

(
s
a

l
h
a
o
t
t
t
t

U
w
t
t
a
v
r

4

d
(
p
t
d
u

o
d
T
t
o

t
i
i
c
b
p
t
n
e

(
T
m

i
r
b

b
i
T
s

r
w
t
2

4

p
d
s
f
t

p
E
m
m
t
c

5

a

5

e
t
e
w

i.e., cyclic dependency), perform specific rule checks (i.e.,
hared persistency, no API versioning). These all lead to
utomated technical reasoning.
However, the other perspective is to include humans in the

oop and visualize the intermediate representation suggesting the
uman actor reasons (Cerny et al., 2022a) about the issues of the
nalyzed system. Then it leads to a completely different problem
f which visual system perspective should be used or which sys-
em architectural perspective should be rendered. It is common
o look at this from the software architecture perspective with
he N+1 model to start with Neri et al. (2020), and we could see
his in literature recognizing four common views of

1. Domain View: which covers the domain concerns of the
system and describes the entity objects of the system as
well as the data-source connections of those objects.

2. Technology View: that focuses on the technology aspect
of the system and describes the technologies used for mi-
croservice implementation and operation.

3. Service View focuses on service operators and describes the
service models that specify microservices, interfaces, and
endpoints.

4. Operation View (topology): considering the system opera-
tion concerns and describing the service deployment of the
infrastructure, such as containerization, service discovery,
and monitoring

nfortunately, this is not where it ends. The next question is
hat visualization technique to use to render these views. Other
han conventional models rendered in two-dimensional space,
here are opportunities for three-dimensional graphs. We could
lso consider augmented and virtual reality led by the meta-
erse initiative. We like leaving this as an opportunity for future
esearchers to fill the area with new works.

.4. Sample solutions and tools

Sample solutions and tools are mentioned to provide more
etail to the reader. Using source code analysis, Tighilt et al.
2023) presented a tool MARS to detect 16 microservice anti-
atterns, similarly Walker et al. (2020) built the MSANose tool
o detect 11 microservice anti-patterns. Approaches to these tools
iffer in the way they gather information, but both are performed
sing static analysis.
MARS collects information through search scripts performed

n source files, imports, HTTP requests in the source code,
atabase, and call graph using another tool called Understand!.
hey build a metamodel that serves as an intermediate represen-
ation. Finally, for the detection, they perform rule checks on top
f the metamodel.
On the other hand MSANose approach involves a Java Parser

hat builds AST as the initial intermediate representation. The AST
s, however, only an initial intermediate representation used to
dentify component call graphs. Individual results from each mi-
roservice are then merged based on combination rules described
y Bushong et al. (2022). The limitation of operability on the Java
latform has been addressed by Schiewe et al. (2022), who in-
roduced a language-agnostic approach to detecting components
eeded for converting the code into component call graphs. In the
nd, specific rules are performed to match anti-patterns.
Bytecode analysis was utilized in the RAD tool by Das et al.

2021) to detect authorization inconsistencies in microservices.
his approach used remote calls matched to the endpoint of other
icroservices to operate on the holistic system perspective.
Static analysis can be used to analyze intra-service design,

nter-services decomposition, and service interaction and secu-
ity. Still, some perspectives of development and operation can

e covered. i

19
It was also demonstrated that selected anti-patterns could
e detected on traces (Al Maruf et al., 2022), especially when
t involves inter-services decomposition and service interaction.
his can extend the current tracing tooling with additional per-
pective.
Furthermore, Cerny et al. (2022b) illustrated that intermediate

epresentations of microservices can be visualized in 3D space,
hich rendered beneficial for management and property iden-
ification tasks in large microservice systems (Abdelfattah et al.,
023).

.5. Backwards mapping to Mumptaz et al.

Mumtaz et al. (2021) presented nine categories to detect anti-
atterns: rules-based, graph-based, design structure matrix, model-
riven, code smells analysis, reverse engineering and history-based,
earch-based, visualization, and others. We have proposed another
ramework on how to divide the perspective into three phases of
he process. We map the categories as follows:
• The rules-based category maps to our phase three automated

strategy.
• The graph-based category maps to our phase two, and the

intermediate representation of many options are detailed.
• The design structure matrix is just another representation of

the graph similar to the other category listing architectural
languages.

• The model-driven category maps to our phase two and the
intermediate representation where we apply phase three.

• The code smells analysis category maps to our phase three
automated strategy.

• The reverse engineering and history-based category are two
categories. Reverse engineering is the entire process, and the
history-based also spans across all phases considering MSR
and a repository of graphs. Furthermore, in the techniques,
it would be a repetitive automated detection of deltas and
their dependencies, and for the visual part, we would need
to introduce provenance tracking (Burgess et al., 2022) to
trace changes on the model in time.

• The search-based category maps to our phase three auto-
mated strategy.

• The visualization category maps to our phase three human
in the loop.

• The other category maps to our phase one with manual anal-
ysis, including testing, but some outliers like architectural
languages map to phase two.

This details how the proposed framework addresses the anti-
attern detection categories proposed in Mumtaz et al. (2021).
ach category is mapped to a specific phase of the proposed
ethod, either automated or involving human-in-the-loop, or
anual analysis. This highlights the comprehensive approach of

he proposed framework in addressing various aspects of mi-
roservice architecture from different perspectives.

. Discussion

This section provides a discussion of our findings but also ex-
mines open challenges. It also elaborates on the validity threats.

.1. Main findings

This study included seven secondary studies, which extracted
vidence from 340 primary studies. This represents robust scien-
ific evidence and knowledge. It also plots community scientific
ngagement in this topic. With the identified scientific resources,
e could extract 58 distinct microservice anti-patterns grouped
nto five categories by their addressed-problem nature. While



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

s
e
i
p
t
s
c

i
c
c
f
d
t
b
o
i

s
H
p
c
p
o
F
m
w
t
p

ome general violations apply to internal structures, topologies,
tc., we considered the specifics of microservices when reduc-
ng the anti-patterns. This is often considered the cloud-native
erspective that microservice architecture can offer when sys-
ems are properly designed. In such cases, we cannot consider
tructural or topological bottlenecks or hardcoded decisions and
oncerns.
When we consider system architecture as the main drive, the

ntra-service design, inter-service decomposition, service interaction
ategories are directly implied. From the definition, we could
onsider the design of individual elements (intra-service design)
orming the system structure, which is decomposing the problem
omain (inter-service decomposition) and considering the connec-
ion between elements (service interaction). The constraints can
e of many forms, and security is clearly one of them. On the
ther hand, team organization for development and organization
s more related to the development process.

The largest considered generalized category would thus be
ystem architecture containing four of the introduced categories.
owever, the reduced abstraction to an individual perspective
rovided by the four categories brings the opportunity to fo-
us on specific details (i.e., individual service granularity as op-
osed to system decomposition or security). The categorization
f particular aspects will better serve particular interest groups.
or instance, the intra-service design category directly impacts
icroservice developers who, by various interpretations of Con-
ay’s law, should take care of a single microservice. At the same
ime, architects might pay more attention to inter-service decom-
osition and service interaction categories. Security analysts then

can then emphasize the focus to the security category. DevOps are
essential for the cloud-native system and will likely pay the most
attention to the team organization, which should also draw the
attention of the system architect.

Naturally, we would expect automated tools integrated into
development pipelines or development environments that can
detect the catalog of 58 anti-patterns, but as of now, it is a ques-
tion of tomorrow. There are a few pioneering works (Walker et al.,
2020; Fontana et al., 2017; Al Maruf et al., 2022), but they often
times detect a handful of anti-patterns. Certainly, our catalog will
expedite the production of such tooling, which is urgently needed
to provide feedback to practitioners and mitigate architecture
degradation. To further promote this motion, this study intro-
duced various detection techniques mentioned by the secondary
studies and presented a generalized anti-pattern detection pro-
cess with core phases that involved different techniques to ex-
tract information, form an intermediate representation, and then
detect the particular anti-patterns that can automate processes or
be used to advice human experts.

5.2. Implications

Our findings lead to various implications for microservice
practitioners and researchers, including architects, developers,
security analysts, testers, DevOps, etc. We list the implications
in the following list:

• I1. Considering the existence of 58 MS anti-patterns, it is
hard to expect that practitioners would recognize all of
them. However, different practitioner roles (developers, ar-
chitects, DevOps) can concentrate on particular categories of
their closest interests.

• I2. The anti-pattern catalog can be extended with newly
identified anti-patterns using the proposed categorization
framework. It can be extended with proposed refactoring
solutions to improve the system/process quality.
20
• I3. The proposed categorization framework can use addi-
tional tags to connect perspectives of interest for particular
practitioner roles.

• I4. To properly use the proposed catalog, it is necessary
for the microservice community to establish new detection
tools that would assist them in recognizing poor practices,
and the presented catalog facilitates determining what to
look for.

• I5. While many studies on MS anti-patterns exist, they pay
little attention to how to detect these anti-patterns. Both
these directions need to be further investigated in the con-
text of decentralized systems.

– I5.1. We introduce a framework to detect anti-patterns
given our previous experience with their detection
(Walker et al., 2020; Al Maruf et al., 2022).

– I5.2. The detection framework illustrates how to drive
the means to stage and execute the detection process.

– I5.3. The MS anti-pattern catalog can be extended with
detection mechanisms demonstrated by newly devel-
oped tools.

• I6. Given that microservices can be polyglots and these
anti-patterns are platform-independent, it is obvious that
an intermediate representation is necessary to represent
systems.

– I6.1. The implication of the static analysis is that mul-
tiple language-specific language analyzers might be
needed to cover commonly used language frameworks.

– I6.2. The implication of polyglots can lead to prioritiz-
ing dynamic analysis over static analysis since tracing
ID can be introduced into and instrumented into event
traces.

• I7. If we could detect all 58 MS anti-patterns, the next
question would be how to interact with developers and
architects. Obviously, each pattern has a different critical
aspect, and prioritization is necessary for advancements in
this domain.

• I8. Given the complexity of MS systems, it might be difficult
to detect anti-patterns. Moreover, with the involvement
of many development teams, as suggested by Conway’s
law, it might be even difficult to assign responsibility for
refactoring.

– I8.1. If we had a proper architectural visualization of
the system, we could consider interaction with human
experts and render the detected anti-patterns via such
visualization of the overall holistic system perspective.

• I9. MS anti-patterns play a certain role in system main-
tenance and evolution; however, the role is rather vague.
Despite other studies on architectural degradation and tech-
nical debt, it remains a challenge to quantify anti-patterns
and their impact on system maintenance and evolution.

• I10. The secondary studies considered some common design
quality metrics as MS anti-patterns. For instance, the basic
principles category operated with coupling, cohesion, and
instability. To illustrate, what is the upper boundary when
we call coupling high? It might be relative, but relative
to what value or factors? Assessed studies did not put a
contrast between these metrics and MS anti-patterns. How-
ever, it is necessary to investigate further whether common
metrics could act as indicators for underlying problems, as
they may play a different role when identifying weak spots
in the system design.



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

5

t
o
t
d
c
c
s
v

m
a
o
l
g
r
a

l
b
d
d
p
h
t
e
t
q
n
e
d
c
2
e
a
e

• I11. With well established MS anti-pattern catalog, how can
it be utilized to train the skilled workforce and continuously
engage practitioners with new knowledge?

– I11.1. As suggested in I4. MS anti-pattern detection
tools could provide one trajectory to accomplish this
by teaching practitioners about issues in projects they
are familiar with.

– I11.2. With proper anti-pattern visualization tools for
sample project benchmarks, we could illustrate the
residence of anti-patterns and possibly their impact on
the system.

• I12. Certain challenges related to microservice system evolu-
tion (Bogner et al., 2021) could be considered in connection
to anti-patterns.

– I12.1. The ripple effect is an issue when one change
to the system requires changes in other parts of the
system. Obviously, duplicated services would introduce
inconsistency. Similarly, the co-change coupling would
be impacted, but perhaps some other changes could
follow other dependencies. Shared persistency is an-
other fragile place for this effect. We could also mine
such dependencies from the history of code reposi-
tories and perform a correlation analysis of various
codebases assessing change impacts.

– I12.2. Wrong cuts could resonate with microservice
coupling and cohesion in the system.

– I12.3. Technological heterogeneity could be another
indicator of organizational issues.

– I12.4. While researchers like to consider the ideal case
of cloud-native systems, we must accept that microser-
vice are often strangled from legacy monoliths (Stran-
gler pattern (Carnell and Sánchez, 2021)) and the sys-
tem integration perspective might consider a different
measure on parts that we actively develop and parts
meant for legacy support.

• I13. Can there be anti-patterns found in a way that develop-
ers interact with particular microservice code-bases to en-
rich the organizational/operational category? For instance,
does microservice development in a given organization con-
form to Conway’s law (‘‘organizations should design systems
that mirror their own communication structure’’), or does it
depend on a single principle?

.3. Threats to validity

Every similar type of work to ours has validity threats. Given
his is a tertiary study, we carry the validity threats to the sec-
ndary studies we identified. To address these threats, this sec-
ion elaborates on how we addressed them in this study and
iscusses limitations. Similar to other tertiary studies, we use the
lassification scheme proposed by Ampatzoglou et al. (2019). This
lassification considers the validity of the study selection (search
trategy, selection criteria, extraction), data validity, and research
alidity.
Study selection validity The objectives relate to the risks of

issing relevant studies, using relevant sources identification,
nd study inclusion and exclusion use. Initially, we were aware
f multiple studies, which we used as the control sample for the
ater formed search string to evaluate its suitability for this study
oal. We searched multiple peer-reviewed literature sources to
educe the threat of missing relevant secondary studies. Since this
pproach may still have missed relevant studies available in other
21
iterature sources, we also applied backward and forward snow-
alling. At the same time, it is important to acknowledge that we
id not conduct a grey literature review. Therefore, any recently
iscussed anti-patterns that have not yet been documented in
eer-reviewed literature or included in secondary studies might
ave been overlooked. Moreover, our protocol, research ques-
ions, and extraction attributes were defined before the study
xecution to limit bias. Three researchers assessed the protocol
o ensure inclusion and exclusion criteria appropriateness. The
uality assessment process is also subject to threats. We did
ot exclude any study, since they all passed the criteria. How-
ver, the DARE-4 framework adopted in the quality assessment
oes not cover all quality aspects (Costal et al., 2021). This is a
ommon threat of quality assessment frameworks (Costal et al.,
021). For this reason, we selected DARE-4, which we consid-
red the most appropriate framework for our evaluation, and is
lso the most frequently adopted in tertiary studies in Software
ngineering (Costal et al., 2021).
Data validity Identified secondary studies were only consid-

ered from peer-reviewed sources of accepted/published materi-
als. Two co-authors independently analyzed titles and abstracts
of identified studies towards the inclusion and exclusion criteria.
All points of disagreement, including the third author, to resolve
the disagreement. Our quality assessment process used a com-
mon framework for tertiary studies. The information extraction
was consistent with the defined research questions. Given our
data extraction process, two secondary studies did not provide
anti-patterns which led to their exclusion from the study.

Some anti-patterns identified in our catalog may ultimately
lead to disagreements between practitioners. Some instances
could be more of a philosophical question, as a community will
not settle on a single consensus. One such example could be
CRUDy service on data-oriented services, which might be un-
avoidable, even desired, depending on the business scenario and
project requirements (i.e., management of a big data Kubernetes
cluster). A similar is the case with shared persistency or shared
libraries; some experts exclude it, and others are fine with it. It
was not our intention to invent new anti-patterns but to identify
and report them in the search process according to the secondary
studies. Specific contexts may imply particular needs and general
guidelines may not apply. The potential exclusion of an anti-
pattern based on one example could mean that practitioners
would interpret it as a good design in general practice. Similarly,
it was our intention to preserve identified anti-pattern names.

Another data validity threat arises from the definition of
the categories of the anti-patterns classification scheme (Fig. 5).
Specifically, the different categories of microservices anti-patterns
might be broader or more fine-grained. We decided to use these
categories because we considered that they would complement
the results with additional useful information. Moreover, we
applied an iterative coding process, followed by a validation
step performed by experts. To this end, all anti-patterns were
successfully assigned to a category.

Research validity Partial objective concerns the extent to
which the results of our review can be generalized. Our study re-
lies on previously identified and defined anti-patterns referenced
by primary studies. Each anti-pattern was extracted with addi-
tional information, including categorization. All these attributes
were used when collectively in person (three authors), determin-
ing the same anti-patterns with multiple alias names or when
determining anti-pattern categories. Any conflict was resolved by
the fourth author.

However, we acknowledge that qualitative analysis proce-
dures are very subjective and, therefore, difficult to be repro-
duced identically by different researchers. One such perspective is

anti-pattern categorization. The other is our detection framework.



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

f
c

t
c
p
v
a
b
f
t
p
d
a
m

6

w
p
m
o
i
t
r

d
t
W
t
s
m
i
p

e
d
l
a

t
t
h

m
r
t
f
a
d
s

g
c
H
u
a
c
i
o

e

.

s
d
R
A
s
o
–

D

c
t

D

A

It must be considered that other categorizations reflecting dif-
erent perspectives could co-exist. In addition, some anti-patterns
ould occur in multiple categories.
Our MS anti-pattern detection classification framework has

he base in the existing secondary study but considers the pro-
ess behind tools performing such a detection. Our perspective
ossibly influences this framework. However, the main moti-
ation for such a framework is to influence the audience to
ctively detect anti-patterns rather than defend them. Still, we
elieve that our anti-pattern catalog and detection classification
ramework presented in multiple categories can promote fur-
her empirical studies and find usefulness for a broad range of
ractitioners (i.e., system architects, developers, DevOps). In ad-
ition, we expect it to extend and evolve. Furthermore, we expect
n evaluation of its relevance to microservice system evolution
anagement.

. Conclusion

Anti-patterns, a concept well-established in the field of soft-
are engineering, are common design solutions that, regrettably,
rove to be ineffective or counterproductive. They have a detri-
ental impact on the system architecture, causing degradation
ver time. However, due to the market’s emphasis on prioritiz-
ng the development of new functionality over quality design,
hese anti-patterns often remain unnoticed for extended periods,
esulting in increased costs and maintenance complexity.

To promote high-quality system design and mitigate degra-
ation, it is essential to detect anti-patterns early in their in-
roduction to the codebase and undertake necessary refactoring.
hile anti-patterns are prevalent in various types of systems,

he automated detection of anti-patterns in microservice (MS)
ystems is a relatively new domain. By employing automated
eans, it becomes possible to identify and address anti-patterns

n MS systems, contributing to improved system quality and
reventing long-term negative consequences.
In this work, we perform a tertiary study summarizing the

vidence on MS anti-patterns, classifying them, and identifying
etection methods. We considered seven secondary studies pub-
ished between 2019 and 2022, listing a total of 58 different MS
nti-patterns.
The catalog of MS anti-patterns we provide in this study has

he potential to serve as a single focal point reference to prac-
itioners active in this discipline. The provided classification can
elp readers to route through a large number of anti-patterns.
The proposed detection framework aims to engage the com-

unity in automated detection means. It also promotes sepa-
ation of duty. Static or dynamic analysis experts can design
ools that can extract the system’s intermediate representation
rom a holistic perspective. There are two major perspectives to
pproach detection. The first involves automation and the other
epends on human experts who could use the abstraction of the
ystem model to more easily detect weak spots
To enable automation through technical reasoning, various

raph representations of the system dependencies or structures
an be used to detect a subset of anti-patterns from our catalog.
owever, the effectiveness of the reasoning process is contingent
pon the quality and accuracy of the analyzed data, making it an
pproximation rather than an exact science. Therefore, although a
ombination of static and dynamic analysis offers greater reliabil-
ty, it is still insufficient in addressing organizational perspectives
r DevOps considerations.
Another detection technique might solely provide systemmod-

ls for human experts to do reasoning themselves. Yet these
22
models are limited these days. We can find service dependency
graphs as a product of dynamic tracing and monitoring, yet other
models are necessary to provide a comprehensive perspective to
such experts.

Yet with the identified catalog of anti-patterns along with de-
tection techniques, there is a great opportunity for the scientific
and practitioner community to develop tools to aid with anti-
pattern detection to mitigate architectural degradation sourcing
poor design practices that are left unseen to developers. We look
forward to scientific peers using and extending this catalog. For
instance, there is an opportunity for a grey literature review to
augment this catalog. We also look forward to works analyzing
the reasons behind the introduction of anti-patterns to the system
design and a better understanding of the role of requirements for
the design mismatch in the field.

In future work, we anticipate extending this catalog and im-
plementing our detection framework, which will serve as a cru-
cial contribution to the community and us as members within it.
Additionally, we expect that new shifts may occur in the realm of
microservices, potentially leading to the obsolescence of some of
these anti-patterns. Future work will need to further investigate
the complexity of understanding if an anti-pattern is present
in the system as well as how useful it is to discuss about a
given anti-pattern. Moreover, new contexts may give rise to the
emergence of new anti-patterns.

Funding

This material is based upon work supported by the National
Science Foundation, United States under Grant No. 1854049 and
Grant No. 2245287, a grant from Red Hat Research https://research
redhat.com, a grant from the Ulla Tuominen Foundation (Finland),
and a grant from the Academy of Finland (grant n. 349488 -
MuFAno).

CRediT authorship contribution statement

Tomas Cerny: Conceptualization, Methodology, Validation, In-
vestigation, Resources, Data curation, Writing – original draft,
Visualization, Supervision, Project administration, Funding acqui-
sition. Amr S. Abdelfattah: Conceptualization, Perform study, Re-
ources, Data curation, Writing – original draft, Visualization. Ab-
ullah Al Maruf: Conceptualization, Methodology, Investigation,
esources, Data curation, Writing – original draft, Visualization.
ndrea Janes: Conceptualization, Methodology, Data curation, Vi-
ualization, Validation. Davide Taibi: Conceptualization, Method-
logy, Validation, Investigation, Resources, Data curation, Writing
original draft, Visualization, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix

See Table 13.

https://research.redhat.com
https://research.redhat.com
https://research.redhat.com


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13
The identified anti-patterns description.
Index Anti-pattern name Description Example

Intra-service design

1 Nano-service
(Rotem-Gal-Oz et al.,
2012; Dudney et al.,
2003; Palma et al.,
2014b; Král and
Ž.emlicka, 2009; Ouni
et al., 2015, 2017;
Nayrolles et al., 2013;
Palma and Mohay,
2015; de Toledo
et al., 2021; Taibi
et al., 2020b; Schirgi,
2021) (AKA, Nano
micro-service,
tiny/fine-grained
service)

The service is too fine-grained and only has a few
operations. Its overhead (communications, maintenance,
and so on) outweighs its utility. Nanoservices cause
fragmented logic and performance issues due to
communication overhead (i.e., finite bandwidth and
transport costs). This pattern is related to migration
anti-patterns like ‘‘big bang’’ or ‘‘data-driven migration’’.

Suppose we have a simple desk calculator with
operations like add, subtract, multiply, and divide,
where each operation is implemented as a separate
microservice.

2 Mega service (Taibi
and Lenarduzzi, 2018;
Dudney et al., 2003;
Ouni et al., 2017;
Palma et al., 2014b;
Ouni et al., 2015;
Nayrolles et al., 2013;
Palma and Mohay,
2015; Azadi et al.,
2019; Carrasco et al.,
2018a; Taibi et al.,
2020b; Moha et al.,
2010; Palma et al.,
2013, 2014a;
Marinescu, 2005,
2004; Marinescu and
Rajiu, 2004; Palma
et al., 2019;
Ordiales Coscia et al.,
2014) (AKA, Mega
microservice, Blob or
god
object/component,
God object web
service, Multi-service,
Bloated Service)

Microservices should be small, independent,
independently deployable units and serve a single
purpose. A mega service has a high number of lines of
code, modules, or files, as well as a high fan-in. Mega
service could be a result of poor system decomposition
when the microservice combines multiple functionalities
that should be handled by multiple services. Having a
mega microservice creates maintenance issues, reduced
performance, and difficult testing, in addition to the
complexity of the microservices infrastructure.

An extreme example is a large monolithic service that
tries to handle all functionality and business logic
within a single codebase.

3 CRUDY service (Ouni
et al., 2017; Palma
and Mohay, 2015;
Palma et al., 2019,
2014b) (AKA, Crudy
interface, Crudy URI)

The design encourages services the RPC-like behavior by
declaring create, read, update, and delete (CRUD)
operations, e.g., createX(), readY(), etc. Interfaces
designed in that way might be ‘‘chatty’’ and ‘‘nano’’
because multiple operations need to be invoked to
achieve one goal. In general, CRUD operations should
not be exposed via interfaces. This anti-pattern occurs
when services declare CRUD-like verbs (e.g., create,
read, update, or delete) are used in the APIs.

Consider an e-commerce application. In a well-designed
microservice architecture, we might have services such
as ‘‘User Management,’’ ‘‘Inventory Management,’’ and
‘‘Order Processing,’’ each responsible for their respective
functionalities. However, in the case of the nano service
anti-pattern, the application may be decomposed into
numerous excessively small services, such as
‘‘CreateUser,’’ ‘‘UpdateUser,’’ ‘‘DeleteUser,’’
‘‘GetUserDetails,’’ ‘‘SearchUser,’’ and so on. Each of these
services would handle only a single CRUD (Create, Read,
Update, Delete) operation related to user management.

4 Nobody Home (Palma
et al., 2013, 2014b;
Nayrolles et al., 2013;
Vidal et al., 2016,
2019; Oizumi et al.,
2015; Le et al.,
2018a) (AKA, Unused
interface)

Nobody Home corresponds to a functioning service that
is defined but is actually never used by clients. In other
words, it is not performing any useful work or
providing any value. The methods from this service are
never invoked, even though they may be coupled to
other services. Yet, it still requires deployment and
management, despite its non-usage. It hinders
maintenance.

Consider a web app designed to collect user feedback
and suggestions. Users can submit feedback through a
form on the website, and the application is supposed to
process and store that feedback for analysis by the
development team.
When a user submits their feedback, they receive a
success message indicating that their feedback has been
successfully submitted. However, behind the scenes, the
feedback is essentially lost and not stored or processed
in any way.

(continued on next page)
23



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

5 Data service (Palma
et al., 2014b; Ouni
et al., 2015, 2017;
Palma and Mohay,
2015; Palma et al.,
2013, 2014a;
Nayrolles et al., 2013)
(AKA, Data web
service)

Data services usually contain accessor methods (i.e.,
getters and setters) with small parameters of primitive
types. They may hold application state for other
interacting services. Other, typically ‘‘nano,’’
microservices may perform simple operations on data
services like information retrieval or data access. On top
can exist a ‘‘sand pile’’ service that performs a more
complex task.

Assume a business process that involves multiple
services in the pipeline, and each service retrieves and
stores the computation state into a data service. Such
data service lacks business logic and only serves other
services to accomplish the business process.

6 No API-versioning
(Taibi and Lenarduzzi,
2018; Taibi et al.,
2020b; Schirgi, 2021)
(AKA, API versioning)
not semantically
versioned. In the case
of new versions of
non-semantically-
versioned APIs, API
consumers may face
connection issues. For
example, the
returning data might
be different or might
need to be called
differently.

A bank system has multiple dependent clients (branch
offices). The bank system upgrades one of the services
with more advanced functionality which changes the
semantics of certain endpoints. However, clients were
not informed of the change and their system fails upon
the rollout. If the system kept the original endpoint as
version 1 and rolled out version 2 of the same service,
the new clients could utilize new advancements while
others would not experience disruptions.

7 Whatever types
(Palma et al., 2019;
Mateos et al., 2015;
Ordiales Coscia et al.,
2013; Kitchenham
and Charters, 2007;
Coscia et al., 2012;
Ordiales Coscia et al.,
2014) (AKA, Ignoring
MIME types,
Forgetting
hypermedia)

Service message exchange without paying attention to
return types. A special data type is used for
representing any object of the problem domain.

Service endpoint is returning different outcomes based
on the context and input parameters, the return type is
a generic class or object assuming the clients know all
the underlying logic of the service endpoint to
implement proper handling. It can lead to security
vulnerabilities and unexpected behavior. For instance,
when uploading images and checking file suffixes rather
than MIME, we might accept executable files with
fabricated suffixes (i.e., jpg). When we process the
image, it could inadvertently execute the malicious code
within the disguised executable file, potentially
compromising the server or user’s data.

8 Low cohesive
operation (Palma and
Mohay, 2015; Taibi
and Lenarduzzi, 2018;
Palma et al., 2014b;
Mateos et al., 2015;
Ordiales Coscia et al.,
2013; Kitchenham
and Charters, 2007;
Coscia et al., 2012;
Ouni et al., 2017;
Ordiales Coscia et al.,
2014)

It occurs when developers place very low cohesive
operations (not semantically related) in a single
microservice. A service that provides many low cohesive
operations that are not related to each other. This can
lead to a lack of clarity, maintainability issues, and
difficulty in understanding and modifying the code.

A ‘‘DataProcessor’’ service can be responsible for
processing different types of data, such as parsing CSV
files, generating PDF reports, sending emails, and
performing statistical calculations. The DataProcessor
service is burdened with a variety of unrelated
operations combined that do not belong together.

(continued on next page)
24



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

9 Ambiguous service
(AKA, Ambiguous
name, Ambiguous
interface) (Garcia
et al., 2009b; de
Andrade et al., 2014a;
Palma et al., 2014c;
Palma and Mohay,
2015; Ouni et al.,
2015)

For a service with unclear responsibilities, the service’s
responsibilities are not well-defined, leading to
confusion and overlapping functionality. Developers may
use ambiguous or meaningless names for denoting the
main elements of interface elements (e.g., operations,
messages). Ambiguous names are not semantically and
syntactically sound and affect the discoverability and
reusability of web services.

A company is developing a customer management
system and decides to break down the system into
several microservices for scalability and maintainability.
One of the microservices they create is called
‘‘CustomerProfileService.’’ However, during the
development process, the team fails to clearly define
the responsibilities of the CustomerProfileService. As a
result, the service ends up having ambiguous
functionality, making it difficult for other services and
developers to understand its exact purpose and scope.
For instance, the CustomerProfileService initially handles
basic customer information, such as name, address, and
contact details. But over time, developers start adding
additional features to it, such as order history, payment
preferences, and loyalty program details, without
properly documenting or communicating these changes.
As a consequence, other services in the system become
uncertain about which functionalities they should
handle themselves and which ones they can rely on the
CustomerProfileService to provide. This ambiguity leads
to duplicated efforts, inconsistent data, and potential
bugs throughout the system.

Inter-services Decomposition
10 Transactional

integration
(Rotem-Gal-Oz et al.,
2012)

Transactions extend across service boundaries instead of
being isolated inside services. Transactions involve two
or more separate services in a transaction assuming
ACIDity, short time span, and pessimistic or optimistic
locking for dual writes (i.e., data source write and
logging). Rollback becomes distributed and difficult, the
hold of resources becomes overhead, and state
coordination is hard. We must ensure consistency that
needs synchronization; however, holding locks for a
long time can cause partial failures. Since services
evolve independently, it is easy to expand the
transaction beyond the controlled span.

Suppose a customer places an order, and the system
needs to perform various tasks such as inventory
management, payment processing, and notification
sending. In a well-designed system, these tasks would
typically be handled by separate services or components,
each responsible for its own domain. However, in the
case of this anti-pattern, a single transaction is initiated
to encapsulate all of these operations. This means that
if any part of the transaction fails, the entire transaction
is rolled back, potentially undoing successful operations
and causing inconsistencies.

11 Co-change coupling
(Le et al., 2018b)
logical coupling that
occurs when changes
to a service also
require changes to
another service.

An e-commerce application that consists of multiple
microservices, including a Product Service, Order
Service, and Payment Service. These microservices are
responsible for handling product management, order
processing, and payment transactions, respectively.
In the current implementation, there is a high degree of
co-change coupling between the Order Service and the
Payment Service. Whenever there is a change in the
Order Service, such as modifying the order data model
or adding a new feature, it directly impacts the
Payment Service. This is because the Payment Service
heavily relies on the order information provided by the
Order Service to process payments accurately.
Now, suppose a new requirement arises to introduce a
loyalty program for customers. This requires adding a
loyalty point system to the Order Service, where
customers can earn and redeem points. However,
implementing this change would not only require
modifications in the Order Service but also in the
Payment Service.
The development team has to coordinate their efforts
between the two services, slowing down the
implementation process.

(continued on next page)
25



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

12 Duplicated services
(Palma et al., 2014b;
Palma and Mohay,
2015; Jones, 2006;
Král and Ž.emlicka,
2009; Rotem-Gal-Oz
et al., 2012; Palma
et al., 2013, 2014a;
Ouni et al., 2017;
Nayrolles et al., 2013;
Ouni et al., 2015)
(AKA, Nothing new)

A set of highly similar services, dynamically or
syntactically. These services perform similar or identical
functions (semantic duplication), leading to redundancy
and increased complexity. Services might be
implemented multiple times with common or identical
methods with similar names and/or parameters
(syntactic duplication). It goes against the principles of
modularity, reusability, and maintainability.

An e-commerce application that consists of several
microservices. One of these microservices is responsible
for handling user authentication and authorization,
named ‘‘Auth-Service.’’ Another microservice, named
‘‘User-Service,’’ is responsible for managing user profiles
and personal information.
However, due to poor communication and coordination
among the development teams, the User-Service team
decides to include authentication and authorization
functionality within their microservice. As a result, both
the Auth-Service and User-Service end up providing
similar authentication and authorization capabilities.

13 Microservice greedy
(Dudney et al., 2003;
Taibi and Lenarduzzi,
2018)

When in doubt, make it a service. Despite the absence
of any measurable advantages, a system provides its
functions as services. The result is the explosion in the
number of services that makes the system hard to
understand.

Instead of analyzing existing services to find which of
them are related to a desired new functionality and
selecting a candidate for extension, a new microservice
is introduced possibly adding broad interaction with
established services.

14 Service chain
(Nayrolles et al.,
2013; Jones, 2006;
Palma et al., 2013,
2014a;
Ordiales Coscia et al.,
2014; Cortellessa
et al., 2014) (AKA,
Pipe and filter,
Message Chain)

A chain of service calls that fulfills common
functionalities resembling a transitive manner. It
appears when clients request consecutive service
invocations to fulfill their goals.

An e-commerce application consists of several
microservices: Order Management, Inventory
Management, Payment Processing, and Shipping. In a
‘‘tightly coupled’’ service chain, the flow of actions
would be as follows: The Order Management service
receives an order request from a customer and invokes
the Inventory Management service to check product
availability. If the product is available, the Order
Management service calls the Payment Processing
service to process the payment. Once the payment is
successful, the Order Management service requests the
Shipping service to ship the order. Each service depends
on the successful completion of the previous service to
proceed. If any service fails or experiences delays, the
entire chain may break down, leading to a poor user
experience and system instability.

15 Hub-like dependency
(Azadi et al., 2019)

A service has (outgoing and ingoing) dependencies with
a large number of other services. The service becomes a
central point of dependency for many other services.

A system provides various functionalities, such as user
management, content management, and analytics. In
this system, we have a central ‘‘Application’’ class that
handles all the core logic and acts as a hub for other
services.

16 Cyclic dependency
(Taibi and Lenarduzzi,
2018; Azadi et al.,
2019; Pigazzini et al.,
2020; Taibi et al.,
2020b; Bogner et al.,
2019c) (AKA, Cyclic
between namespaces)

A cyclic chain of calls between services exists. When
two or more services depend on each other directly or
indirectly. The services involved in a dependency cycle
can be hard to release and maintain. This dependency
implies that there are two pieces of code that are
highly coupled to each other in a direct or indirect way.
This situation might suggest that the responsibilities are
not separated correctly across services. Various cyclic
dependency shapes can be recognized. This leads to
problems with deployment, scalability, and co-change
coupling.

In an e-commerce system: Order Service and Customer
Service. The Order Service is responsible for handling
order processing and relies on the Customer Service to
retrieve customer information. On the other hand, the
Customer Service is responsible for managing customer
data and relies on the Order Service to retrieve order
history.

17 Chatty service (Palma
et al., 2014b; Ouni
et al., 2015, 2017;
Nayrolles et al., 2013;
Palma and Mohay,
2015; Palma et al.,
2013, 2014a;
Cortellessa et al.,
2014) (AKA, Empty
semi-trucks) (AKA,
Circuitous treasure
hunt)

One service excessively communicates with other
microservices. Service may need to perform multiple
fine-grained operations or look at several places to find
the information that it needs. As a result, it degrades
the overall performance with a higher response time.
Batching or transfer-objects that combine items into
messages can address the problem.

An e-commerce system has inventory management and
order processing. Whenever a customer places an order,
the Order service needs to check the availability of
items in the Inventory service before proceeding with
the order. The communication flow might look
something like this: The Order service sends a request
to the Inventory, requesting item availability. The
Inventory processes the request and sends a response
back to the Order with the availability status. Based on
the availability status, the Order decides whether to
proceed with the order or not. Now, imagine that the
Order frequently sends requests to the Inventory for
every single item in the customer’s order, one by one.
This means that for an order with multiple items, there
will be multiple round trips between the two
microservices.

(continued on next page)
26



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

18 Shared persistency
(Bhojwani, 2018;
Carnell, 2017;
Carrasco et al.,
2018b; Furda et al.,
2018; Golden B.,
2018; Indrasiri, 2017;
Indrasiri and
Siriwardena, 2018a;
Kalske et al., 2018;
Knoche and
Hasselbring, 2018;
Nadareishvili et al.,
2016; Richards, 2016;
Richardson, 2014,
2018; Saleh, 2016;
Soldani et al., 2018;
Taibi and Lenarduzzi,
2018; Taibi et al.,
2017, 2018; Wolff,
2016; de Toledo
et al., 2021; Taibi
et al., 2020b; Toledo
et al., 2020)

Different microservices are accessing the same database.
In the worst kind, different services use the same
entities of a service. This approach couples the
microservices connected to the same data and reduces
the service independence. As a result, it introduces tight
coupling requiring service coordination upon
deployment, data inconsistency with concurrent
updates, and performance bottlenecks limiting
scalability and limited flexibility when modifying the
data model (Schirgi, 2021; Taibi and Lenarduzzi, 2018;
Tighilt et al. (2020)).

An e-commerce system composed of two microservices:
‘‘Order Service’’ responsible for managing customer
orders and ‘‘Inventory Service’’ responsible for managing
product inventory. Initially, both microservices have
their separate databases, ensuring independent data
management.
However, as the system evolves, the development team
decides to implement a new feature that requires
real-time synchronization between the Order Service
and Inventory Service. Specifically, they want to prevent
customers from placing orders for products that are out
of stock.
To achieve this, the team decides to introduce a shared
database table named ‘‘ProductStock’’ accessible by both
microservices. Whenever an order is placed, the Order
Service updates the stock quantity in the ProductStock
table, and the Inventory Service reads from this table
before approving an order.

19 Sand pile (Kral and
Zemlicka, 2007;
Palma and Mohay,
2015; Palma et al.,
2013, 2014a;
Ordiales Coscia et al.,
2014)

It appears when a service is composed of multiple
‘‘nano services’’ sharing common data and facing
‘‘shared persistency’’ or ‘‘data service’’ anti-patterns. The
anti-pattern blocks many good practices like
information hiding (what is well known) but also the
agility of business processes, well-usable logging, etc.

An e-commerce platform consisting of several
microservices: Product Catalog, Inventory Management,
Order Processing, Payment Gateway, and Shipping
Logistics.
Initially, the microservices are designed to be loosely
coupled and have minimal dependencies. Each
microservice has its own database and communicates
with others through well-defined APIs. The system
operates smoothly, and new features are developed and
deployed rapidly.
Over time, new requirements and business needs arise.
Each change or new feature introduces more complexity
and interdependencies between the microservices. For
example, a new customer loyalty program requires the
Order Processing service to access the customer’s
purchase history from the Product Catalog and
Inventory Management services. Additionally, the
Payment Gateway needs to validate loyalty program
discounts, and the Shipping Logistics service requires
additional information from the Order Processing
service to determine shipping priorities.
As more requirements pile up, the microservices start to
become tightly coupled, and multiple services need to
be updated simultaneously to introduce new features.
The team faces challenges in coordinating these
changes, and the system becomes brittle. Any small
change in one service can inadvertently impact other
services, leading to unforeseen issues, such as cascading
failures or unintended side effects.

20 Shared libraries (Taibi
and Lenarduzzi, 2018;
Pigazzini et al., 2020;
de Toledo et al.,
2019; Taibi et al.,
2020b; Bogner et al.,
2019c; Schirgi, 2021)
(AKA, Shared
Dependencies)

Microservices should not share runtime libraries and
source code directly. This somehow breaks the
boundaries between microservices, which then cannot
be seen as independent and independently deployable.
Runtime assets should not be shared even at the cost of
the DRY principle.

Imagine a microservice system where multiple services
depend heavily on a shared library that contains
business logic and utility functions. Over time, this
shared library grows in size and complexity as different
services contribute to its codebase. These challenges
emerge: there is a coupling between the shared library
and services (library API changes force changes in
multiple services); versioning issues when managing
dependencies to ensure compatibility, increased
complexity as the shared library grows, deployment
coordination, performance bottlenecks, and finally, not
all library functionality is needed by a service which
results in draining its resources.

(continued on next page)
27



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

21 Wrong cuts (Taibi
and Lenarduzzi, 2018;
Taibi et al., 2020b;
Bogner et al., 2019c)

The system is decomposed into microservices following
technical aspects, such as the presentation layer,
business layer, and data access layer. Microservice
should encapsulate functionalities fulfilling a single
purpose.

An e-commerce application that consists of several
microservices. One of the microservices is responsible
for handling product inventory management, and
another microservice handles customer orders and
payments.
Now, imagine that during the initial design phase, the
development team decides to divide the services based
solely on the UI components of the application. They
create separate microservices for the product listing
page, product details page, shopping cart, and checkout
process. Each microservice is developed and deployed
independently.

22 Knot service
(Rotem-Gal-Oz et al.,
2012; Nayrolles et al.,
2013; Palma and
Mohay, 2015; Palma
et al., 2013, 2014a;
Ordiales Coscia et al.,
2014)

Where the services are tightly coupled by hardcoded
point-to-point integration and context-specific
interfaces. The first service is designed well. Then you
design the second service, and the two services talk to
each other. Then comes a third service, and it has to
talk to the other two. The fourth service only talks to
some of the previous ones. The twelfth talks to nine of
the others, and the fourteenth has to contact them
all—yep, your services are tangling up together in an
inflexible, rigid knot.

A large e-commerce platform consisting of various
microservices such as User Management, Product
Catalog, Order Processing, and Payment Gateway.
Initially, these microservices were designed to be
loosely coupled and communicate through well-defined
APIs. However, over time, the developers notice that a
central service called ‘‘Inventory Management’’ is
essential for multiple microservices.
Initially, the Inventory Management service was
responsible for keeping track of product availability and
stock levels. However, due to increasing business
requirements, other microservices also started relying
heavily on this service. The User Management service
needs to check product availability before displaying
items to users, the Order Processing service needs to
reserve inventory when an order is placed, and the
Payment Gateway service needs to verify stock levels
before processing payments.
As a result, the microservices become tightly coupled
with the Inventory Management service. Any changes or
issues with the Inventory Management service have a
cascading effect on other microservices.

23 Scattered parasitic
functionality (Garcia
et al., 2009c; de
Andrade et al.,
2014b; Ouni et al.,
2015; Dudney et al.,
2003; Palma and
Mohay, 2015; Palma
et al., 2013, 2014a;
Ordiales Coscia et al.,
2014; Garcia et al.,
2009c) (AKA, Stove
pipe service)

Multiple services are responsible for realizing the same
high-level concern and, additionally, some of those
components are responsible for orthogonal concerns.
Additionally, at least one service addresses multiple
concerns, which creates a bottleneck for modifiability.
Services realizing scattered concerns are dependent on
each other, thus having their reusability and modularity
reduced.

An e-commerce application that consists of several
microservices: User Management, Product Catalog, Order
Management, and Payment Processing. Each
microservice is responsible for its specific domain.
However, due to evolving requirements, the
development team decides to introduce a new feature
that involves sending email notifications to users for
various events, such as order confirmation, shipment
updates, and promotional offers. Instead of creating a
dedicated Email Notification microservice to handle this
functionality, they decide to scatter the email-related
code across the existing microservices.
In this scenario, each microservice starts to include its
own code for sending emails. For example, the Order
Management microservice adds email-sending logic to
handle order confirmation emails, the Product Catalog
microservice includes code for sending promotional
emails, and so on. Over time, the code for sending
emails becomes duplicated across multiple
microservices.

(continued on next page)
28



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

Service Interaction
24 ESB misuse (Bonér,

2016; Indrasiri, 2017;
Indrasiri and
Siriwardena, 2018a;
Lewis and Fowled,
2014; Taibi and
Lenarduzzi, 2018;
Zimmermann, 2017;
Taibi et al., 2020b)
(AKA, ESB usage)

ESB (enterprise service bus) is positioned as a single
central ‘‘hub-like dependency’’, with microservices as
spokes. When combined with the ‘‘use of business logic
in communication among services’’ the hub becomes a
bottleneck both architecturally and organizationally. In a
properly designed microservices architecture, each
microservice should be autonomous and responsible for
its own functionality and data. They communicate with
each other through lightweight protocols, such as HTTP
or messaging systems like RabbitMQ or Apache Kafka.
However, in the ESB misuse functionality anti-pattern,
the ESB is used as a heavyweight intermediary for all
communication between microservices.

Suppose we have a microservices architecture consisting
of three services: User Service, Order Service, and Email
Service. The User Service is responsible for managing
user information, the Order Service handles order
processing, and the Email Service sends notifications to
users.
In the ESB misuse functionality anti-pattern, instead of
allowing direct communication between microservices,
all communication is routed through the ESB. So, when
the Order Service needs to send an email notification to
a user after processing an order, it sends a request to
the ESB. The ESB then receives the request, processes it,
and forwards it to the Email Service.

25 On-line only (No
Batch Systems) (Kral
and Zemlicka, 2007)

Microservices are designed with independent services,
but the communication between them relies heavily on
synchronous calls. Batch mode application parts are
actively avoided in the system, even though parts of the
system, like long-running tasks, would be primed for a
batch system. Some example batch candidates are:
legacy systems, activities that require a lot of time to
process or need additional user responses, or other
performance reasons. The integration can be via
message queues or data stores.

Two services interact where the producer takes time to
respond, making the consumer wait an extended time.
A message queue would be a better form of
communication in this format. Another example is
when a feed service parses a Twitter feed and contacts
three consumers about the most recent information it
gathered.

26 Empty messages
(Ordiales Coscia et al.,
2013; Coscia et al.,
2012; Ordiales Coscia
et al., 2014)

Service message exchange with empty messages that
act like signals. Empty messages are used in operations
that do not produce outputs nor receive inputs.

We have two microservices in a system: ‘‘OrderService’’
and ‘‘PaymentService.’’ The OrderService is responsible
for handling customer orders, and the PaymentService
handles payment processing. When a customer places
an order, the OrderService needs to communicate with
the PaymentService to process the payment.
In the empty messages anti-pattern, the OrderService
might send an empty message to the PaymentService
simply to trigger the payment processing, without
including any relevant order information. The
PaymentService would then need to retrieve the order
details from its own database or another service, which
introduces unnecessary overhead and increases the
complexity of the system.

27 Use of business logic
in communication
among services (de
Toledo et al., 2021,
2019)

Service communication contains business logic in the
communication layer. Microservices should employ
what is called a dump pipe or a communication layer
without business logic. However, the data transported
can change within the communication channel itself.
The changes are made by the services communication
channel using business logic. Maintaining additional
business logic apart from the services is costly, as any
changes to the services may also require changes to the
communication layer where the business logic is
located. Besides, ‘‘each time a new system is
on-boarded, you need to set up the communication
flow, requiring the communication channel team to
provide the flow and possibly set up some business
logic’’. In other words, an external team—the
communication channel maintainers—must understand
details about how the related services work to
implement the business logic.

A communication that concerns the transfer of data
(e.g., messages, computational results, etc.) between
services; coordination that concerns the transfer of
control (e.g., the passing of thread execution) between
services; conversion concerned with the translation of
different interactions between services (e.g., conversion
of data formats, types, protocols, etc.); and facilitation
that describes the mediation, optimization, and
streamlining of interaction (e.g., load balancing,
monitoring, and fault tolerance).

(continued on next page)
29



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

28 Hardcoded endpoint
(Taibi and Lenarduzzi,
2018; Jones, 2006;
Pigazzini et al., 2020;
Taibi et al., 2020b;
Schirgi, 2021; Brogi
et al., 2019;
Alshuqayran et al.,
2016; Balalaie et al.,
2016, 2018;
Bhojwani, 2018;
Bonér, 2016;
Francesco et al., 2019,
2017; Indrasiri, 2017;
Indrasiri and
Siriwardena, 2018a;
Krause; Lewis and
Fowled, 2014; Long J.,
2015; Nadareishvili
et al., 2016; Newman,
2015; Nygard, 2018;
Richardson, 2014;
Saleh, 2016; Wolff,
2016) (AKA,
Endpoint-based
service interactions)

Microservice IP addresses, ports, and endpoints are
explicitly/directly specified in the source code,
configuration files, or environment variables. Running
multiple instances of a microservice with a load
balancer becomes impossible. Changing the IP address
or port number of a microservice requires changing and
redeploying other microservices.

When a developer directly embeds a specific API
endpoint URL within the source code of an application
instead of using a service registry (i.e., HashiCorp Consul
or Netflix Eureka, where microservices can register their
endpoints dynamically).

29 No API-gateway
(Alagarasan V., 2015;
Balalaie et al., 2018;
Bhojwani, 2018;
Bonér, 2016; Carnell,
2017; Francesco
et al., 2019, 2017;
Indrasiri and
Siriwardena, 2018a;
Krause; Nadareishvili
et al., 2016; Nygard,
2018; Richardson,
2014, 2018; Soldani
et al., 2018; Taibi and
Lenarduzzi, 2018; de
Toledo et al., 2019;
Taibi et al., 2020b;
Bogner et al., 2019c;
Schirgi, 2021; Brogi
et al., 2019)

When a microservice-based system lacks an API
gateway, the clients of the application necessarily have
to invoke its microservices directly. By not having an
API gateway, the system lacks a unified entry point that
can provide centralized security, routing, protocol
translation, and other cross-cutting functionalities. It
becomes harder to enforce consistent policies across
microservices and complicates the overall management
and evolution of the system.

A e-commerce application consists of Product Catalog,
Order Management, and User Authentication
microservices. Each microservice directly exposes its API
to external clients without a centralized API gateway.
Product Catalog has:
• GET /products: Retrieves a list of products.
• POST /products: Creates a new product.
Order Management has:
• GET /orders: Retrieves a list of orders.
• POST /orders: Creates a new order.
User Authentication has:
• POST /login: Authenticates a user and returns a token.
A client application wants to display a product catalog
and allow users to add products to their shopping cart.
Without an API gateway, the client application needs to
make separate API calls to each microservice. The client
application sends a request to the Product Catalog
microservice to retrieve the list of products. When a
user adds a product to their cart, the client application
needs to send a request to the Order Management
microservice to create a new order. If the user is not
authenticated, the client application needs to send a
request to the User Authentication microservice to
authenticate the user. With this approach, the client
application has to handle multiple API calls, manage
authentication tokens separately, and deal with
potential inconsistencies and complexities arising from
direct communication with individual microservices.
There is no centralized mechanism to handle
cross-cutting concerns like authentication, request
validation, logging, and rate limiting.

(continued on next page)
30



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

30 Wobbly service
interactions
(Alshuqayran et al.,
2016; Balalaie et al.,
2016, 2018;
Bhojwani, 2018;
Bonér, 2016; Carnell,
2017; Dall, 2016;
Francesco et al., 2019,
2017; Golden B.,
2017; Indrasiri, 2017;
Indrasiri and
Siriwardena, 2018a;
Jamshidi et al., 2018;
Kalske et al., 2018;
Knoche and
Hasselbring, 2018;
Krause; Lewis and
Fowled, 2014; Long J.,
2015; Nadareishvili
et al., 2016; Newman,
2015; Nygard, 2018;
Richards, 2016;
Richardson, 2018;
Ruecker, 2019; Saleh,
2016; Soldani et al.,
2018; Wolff, 2016; de
Toledo et al., 2021;
Brogi et al., 2019;
Cortellessa et al.,
2014; Nayrolles et al.,
2013; Palma and
Mohay, 2015; Palma
et al., 2013, 2014a;
Ordiales Coscia et al.,
2014) (AKA,
Bottleneck service,
Traffic jam, Ramp)

Occur when a service interacts with another service or
with a message router, not including support for
tolerating failures; that is, there is a lack of resilience.
Various known resiliency patterns support tolerating
failures and aim to prevent their cascading, avoid data
consistency errors, or mitigate partial service failure. To
preserve functionality in the event of service failure, we
use various best practice resilience solutions recognized
in the form of design patterns (i.e., Resilience4j) like:
Client-side load balancing - (tolerant of failure) - having
the client look up all of a service’s individual instances
from a service discovery agent and then cache their
physical location.
Rate Limiter - (reduce traffic) - reduces the number of
records sent to a service over a given period of time
(throttle based on different metrics over time).
Bulkhead - (tolerant of failure) elements of an
application are isolated into pools so that if one fails,
the others will continue to function.
Circuit Breaker - (preventing a service failure from
long-lasting requests) - counts the number of recent
failures that have occurred and uses that to decide
whether to allow the operation to continue or return an
exception immediately.
Retry - (handle transient failures) - tries to connect to a
service or network resource by transparently retrying a
failed operation (can combine with client-side load
balancing).
Timeout - (limits delay propagation) - to consider this
service unavailability issue while designing service
dependencies and accounting network issues delaying
responses.

An e-commerce system composed of multiple
microservices, including a product catalog service, an
inventory service, and a payment service. The product
catalog service is responsible for managing product
information, the inventory service handles stock
availability, and the payment service processes payment
transactions.
However, due to the Wobbly service interactions, the
communication between these services becomes
unstable, leading to issues.
Cascading failures: The product catalog service
experiences intermittent connectivity issues with the
inventory service. As a result, when a user tries to view
a product, sometimes the inventory service fails to
respond, causing a timeout in the product catalog
service. This timeout then cascades to the user
interface, resulting in slow or unresponsive pages.
Inconsistent data: The inventory service occasionally
fails to update its stock availability in real-time. When a
user adds a product to the shopping cart, the inventory
service may not immediately reflect the decrement in
available stock. Consequently, the user might be able to
purchase a product that is actually out of stock, leading
to order cancellations and dissatisfied customers.
Partial failures: The payment service encounters
intermittent issues while communicating with external
payment gateways. As a result, some payment
transactions fail, while others succeed. This
inconsistency creates confusion for both customers and
the order management system, leading to delayed order
processing and potential financial discrepancies.
Performance degradation: The wobbly service
interactions cause increased latency and decreased
overall system performance. The frequent timeouts,
retries, and partial failures result in slower response
times, reducing the application’s usability and
potentially driving away customers.

31 Timeout (Schirgi,
2021; Taibi and
Lenarduzzi, 2018)

The service consumer cannot connect to the
microservice. Mark Richards (Richards, 2016)
recommends using a time-out value for service
responsiveness or sharing the availability and the
unavailability of each service through a message bus so
as to avoid useless calls and potential time-outs due to
service unresponsiveness. Request retrial and timeout
values are good signs of the presence of this
anti-pattern.

A system has three services: Service A, Service B, and
Service C. Service A needs to make a request to Service
B, which in turn depends on Service C to complete the
operation.
To handle the communication between services, Service
A sets a fixed timeout of 1 s for the request to Service
B. However, due to various factors such as network
latency, increased load on Service B, or complex data
processing in Service C, the response from Service B
may take longer than the specified timeout.
The timeout anti-pattern occurs in this scenario because
Service A does not account for the potential delays and
assumes that if the response does not arrive within 1 s,
there must be an error. As a result, it either cancels the
operation prematurely or returns an error to the client,
even though the operation might still be in progress
and could eventually succeed.

(continued on next page)
31



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

32 No health check
(Palma et al., 2013,
2014a;
Ordiales Coscia et al.,
2014)

A microservice can be deployed anywhere and can
become unavailable for a particular amount in a
particular context. Consumers of a given microservice
may experience timeouts and long waiting times
without getting a response in case the microservice is
down. No periodic HTTP request, no API gateway, or no
service discovery can be hinted about the service being
down unless endpoints are exposed to check the health
of the given microservice.

E-commerce system consists of several services, such as
product catalog, user authentication, order processing,
and payment gateway. In this architecture, the ‘‘No
health check’’ anti-pattern occurs when none of the
microservices implement health checks.
In this scenario, suppose the payment gateway service
encounters a critical issue that prevents it from
connecting to the payment provider. Without a health
check, the other services in the system will continue to
send requests to the payment gateway service assuming
it is operational. As a result, the entire system will
experience degraded performance or even fail to
process orders and payments.
Furthermore, since there are no health checks
implemented, there will not be any monitoring or
alerting mechanisms in place to notify the operations
team or developers about the issue. As a result, the
problem might go unnoticed until users start reporting
errors or failures, causing a negative impact on the user
experience and the business.

Security
33 Unauthenticated

traffic (Sahni, 2020;
Boersma, 2019;
Chandramouli, 2019;
Hofmann et al., 2017;
McLarty et al., 2018;
Abasi, 2019; Doerfeld,
2015; Budko, 2018;
Anon, 2019c; Smith,
2019; Gebel and
Brossard, 2018; Lea,
2015; Nkomo and
Coetzee, 2019;
Nehme et al., 2019a)

When unauthenticated API requests come from external
systems or when there are unauthenticated requests
between the microservices of the application themselves

One of the microservices, called the ‘‘Order Service,’’ is
responsible for managing customer orders. The Order
Service exposes an endpoint, such as ‘‘/createOrder,’’
that does not require any authentication. Any individual
or malicious actor could send requests to the
‘‘/createOrder’’ endpoint and create orders on behalf of
customers without going through the proper
authentication process.

34 Multiple user
authentication
(Mannino, 2017;
Gardner, 2017;
Chandramouli, 2019;
Anon, 2019b;
Hofmann et al., 2017;
Pacheco, 2018; da
Silva, 2017; Kanjilal,
2020; Dias and
Siriwardena, 2020;
Douglas, 2018;
Behrens and Payne,
2016; Smith, 2019;
Gebel and Brossard,
2018; Smith, 2017;
Nehme et al., 2019b;
Indrasiri and
Siriwardena, 2018b;
Jackson, 2017; Nkomo
and Coetzee, 2019;
Nehme et al., 2019a;
Mateus-Coelho et al.,
2020)

The Multiple User Authentication occurs when a
microservice-based application provides multiple access
points to handle user authentication. Each access point
constitutes a potential attack vector that an intruder
can exploit to authenticate as an end-user, and having
multiple access points hence results in increasing the
attack surface to violate authenticity in a
microservice-based application. The use of multiple
access points for user authentication also results in
maintainability and usability issues since user login is to
be developed, maintained, and used in multiple parts of
the application.

In this anti-pattern, each microservice manages its own
authentication logic and maintains its own user
database or identity provider. When a user tries to
access a service, they are required to provide their
credentials, and the service validates those credentials
independently.

(continued on next page)
32



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

35 Publicly accessible
microservices (Troisi,
2017; Mannino, 2017;
Gardner, 2017; Anon,
2019a;
Krishnamurthy, 2018;
Carnell, 2017;
Siriwardena, 2019;
Pacheco, 2018; Khan,
2018; Kanjilal, 2020;
Matteson, 2017b;
Dias and Siriwardena,
2020; McLarty et al.,
2018; Abasi, 2019;
Douglas, 2018; Gebel
and Brossard, 2018;
Smith, 2017; Nehme
et al., 2019b; Indrasiri
and Siriwardena,
2018b; Jackson, 2017;
Bogner et al., 2019d;
Nehme et al., 2019a;
O’Neill, 2020;
Kamaruzzaman, 2020;
Rajasekharaiah, 2020)

The publicly accessible microservices occurs whenever
the microservices forming an application are directly
accessible by external clients. It is essential to carefully
audit all externally-accessible APIs to determine the
information they can reveal and the internal systems
they touch.

Consider a microservice responsible for an
organization’s social media message updates. This
microservice has low resource demands and likely does
not need to scale. Upon system deployment,
administrators took a shortcut and enabled interaction
with all clients. Thus the service API became public to
post social media messages by external users.
To address the issue, they could limit accepted IP
addresses to the organization only (i.e., nginx, firewall
rules, docker networking, Kubernetes network policies,
etc.). However, they should also ensure a single sign-on
integration (i.e., Keycloak) to authorize authenticated
clients to interact with the service API. This way, the
administrators ensure access control and management
over the service access. If the service needs to scale up,
apply global organizational policies, or interact with
many other services, it should also integrate an API
gateway. However, the API gateway itself does not
prevent the service API from being publicly accessible.

36 Unnecessary
privileges to
microservices
(Boersma, 2019;
Carnell, 2017; Jain,
2018; da Silva, 2017;
Matteson, 2017a;
Kanjilal, 2020;
Matteson, 2017b;
Abasi, 2019; Behrens
and Payne, 2016;
Mody, 2020; Jackson,
2017; Lea, 2015)

Microservices pose unrequired privilege, granting
unnecessary access levels, permissions, or functionalities
that are actually not needed by such microservices to
deliver their business functions.

An e-commerce application that consists of several
microservices, including a Product Catalog service, a
User Authentication service, and an Order Management
service. Each microservice has its own specific
responsibilities and access requirements.
In this scenario, the Product Catalog service is
responsible for managing the product information, such
as adding new products, updating their details, and
retrieving product data. The User Authentication service
handles user registration, login, and authentication
processes. Lastly, the Order Management service deals
with processing customer orders and managing the
order fulfillment workflow.
However, due to an oversight or a lack of proper access
control mechanisms, the Order Management service is
granted unnecessary privileges. Specifically, it is given
read access to the entire database of the Product
Catalog service, including sensitive data like product
pricing, supplier details, and internal notes.
This granting of excessive privileges can pose several
problems: Increased attack surface, data privacy
concerns, and compliance issues (i.e., GDPR).

(continued on next page)
33



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

37 Insufficient access
control (Troisi, 2017;
Anon, 2019a;
Krishnamurthy, 2018;
Carnell, 2017; Anon,
2019b; Newman,
2016; Hofmann et al.,
2017; Khan, 2018;
Matteson, 2017b;
Dias and Siriwardena,
2020; McLarty et al.,
2018; Abasi, 2019;
Doerfeld, 2015;
Parecki, 2019; Smith,
2019; Gebel and
Brossard, 2018;
Nehme et al., 2019b;
Indrasiri and
Siriwardena, 2018b;
Sharma, 2016; Wolff,
2016; Ziade, 2017;
Lea, 2015; Nehme
et al., 2019a; O’Neill,
2020; Raible, 2020)

The insufficient access control occurs whenever a
microservice-based application does not enact access
control in one or more of its microservices, hence
potentially violating the confidentiality of the data and
business functions of the microservices where access
control is lacking.

A microservices architecture consisting of several
services, including a user service and a financial service.
The user service is responsible for managing user
accounts and authentication, while the financial service
handles financial transactions.
In this scenario, the insufficient access control
anti-pattern occurs when the financial service does not
properly authenticate and authorize requests coming
from the user service or any other services.

ithout proper access control mechanisms in place, any
service could potentially access and manipulate financial
data without appropriate authorization. This lack of
control opens up security vulnerabilities and increases
the risk of unauthorized access or malicious activities.

38 Centralized
authorization
(Mannino, 2017;
Anon, 2019a;
Hofmann et al., 2017;
Khan, 2018; Dias and
Siriwardena, 2020;
McLarty et al., 2018;
Douglas, 2018;
Perera, 2016; Nehme
et al., 2019b;
Yarygina and Bagge,
2018; Indrasiri and
Siriwardena, 2018b;
Jackson, 2017;
Newman, 2015;
Ziade, 2017; Richter
et al., 2018; Nkomo
and Coetzee, 2019;
Nehme et al., 2019a;
Siriwardena, 2020;
Rajasekharaiah, 2020)

Service and authorization management is centralized,
without implementing fine-grained authorization control
at the level of individual microservices.

When all the authorization logic and decision-making
are handled by a single central service or component.
Such a service becomes a bottleneck. Also, it needs to
have detailed knowledge about details normally
encapsulated in decentralized microservices.

(continued on next page)
34



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

39 Non-secured
service-to-service
communications
(Boersma, 2019;
Carnell, 2017;
Chandramouli, 2019;
Anon, 2019b;
Newman, 2016; Jain,
2018; Siriwardena,
2019; Pacheco, 2018;
da Silva, 2017;
Matteson, 2017a;
Anon, 2020; Kanjilal,
2020; Matteson,
2017b; Dias and
Siriwardena, 2020;
McLarty et al., 2018;
Gupta, 2018; Douglas,
2018; Sass, 2017;
Mody, 2020; Smith,
2019; Lemos, 2019;
Yarygina and Bagge,
2018; Esposito et al.,
2016; Indrasiri and
Siriwardena, 2018b;
Sharma, 2016;
Jackson, 2017; Wolff,
2016; Lea, 2015;
Nkomo and Coetzee,
2019; Raible, 2020;
Rajasekharaiah, 2020;
Mateus-Coelho et al.,
2020)

Service-to-service communication between two peers is
not secured and encrypted. The transferred data can be
exposed to man-in-the-middle, eavesdropping, and
tampering attacks. Intruders could intercept the
communication between two microservices and change
the data in transit to their advantage. Secure channel
such as Transport Layer Security (TLS) protocol should
be in place to ensure peer authentication, data
confidentiality, and integrity. The challenge is at the
transport level.

Use of plain HTTP for inter-service communication
without any encryption or authentication mechanisms
in place.

40 Non-encrypted data
exposure
(Krishnamurthy,
2018; Boersma, 2019;
Newman, 2016; Jain,
2018; Hofmann et al.,
2017; da Silva, 2017;
Dias and Siriwardena,
2020; Gupta, 2018;
Smith, 2019; Jackson,
2017; Newman,
2015; Mateus-Coelho
et al., 2020)

Service exposes plain data that is not encrypted,
exposing sensitive information, e.g., because it was
stored without any encryption in the data storage, or
because the employed protection mechanisms are
affected by security vulnerabilities or flaws. Unlike
non-secured service-to-service communications with is at
the transport level, this anti-pattern manifests at the
message level.

A microservice-based e-commerce application handles
customer orders. The application includes a payment
microservice responsible for processing payment
transactions. The payment microservice communicates
with an external payment gateway to complete the
payment process.
In this example, the non-encrypted data exposure
anti-pattern could occur if the communication between
the payment microservice and the external payment
gateway is not properly encrypted. The sensitive
payment information, such as credit card details or
bank account numbers, is transmitted in plain text over
the network.
Another example could be a user password persistently
stored in plain text, which all administrators can access
and see. Similarly, when the password is part of the
user details entity, it might be loaded in plain text and
exposed to other microservice middleware of the user
interface.

41 Own crypto code
(Troisi, 2017;
Gardner, 2017; Sahni,
2020; Hofmann et al.,
2017; Khan, 2018; da
Silva, 2017; Lemos,
2019; Newman,
2015; O’Neill, 2020)

Custom encryption methods can expose to
confidentiality, integrity, and authenticity of data in
microservices, unless they have been heavily tested. The
usage of standard and well-known crypto algorithms is
always recommended.

Consider a system composed of multiple microservices
that exchange sensitive information using encryption. In
this scenario, each microservice decides to implement
its own cryptographic code instead of utilizing a shared
encryption library or service. Each microservice has its
own implementation of encryption and decryption
functions. This approach leads to the following
consequences: Lack of standardization, increased
vulnerability, maintenance overhead: complexity and
duplication.

(continued on next page)
35



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

42 Hardcoded secrets
(Mannino, 2017;
Sahni, 2020; Jain,
2018; Hofmann et al.,
2017; Khan, 2018;
Sass, 2017; Parecki,
2019; Raible, 2020)

Configuration secrets are hardcoded in its source code,
or in the deployment scripts for a microservice-based
application, e.g., as environment variables passing
secrets in a Dockerfile or a Docker Compose file, use
technologies like HashiCorp Vault.

Embedding sensitive information, such as passwords,
API keys, or database credentials, directly into the
source code or configuration files of microservices. It is
recommended to use secure and centralized methods
for managing secrets, such as environment variables,
configuration files, or secret management tools like
HashiCorp Vault or AWS Secrets Manager.

Team organization
43 Shiny nickel (Jones,

2006; Taibi and
Lenarduzzi, 2018;
Dudney et al., 2003;
Taibi et al., 2020b)
(AKA, Silver bullet,
Focus on latest
technologies)

The newest technological craze is put into the system
purely for publicity purposes. The latest technology buzz
is incorporated into your system for the sake of telling
people about it. It is often caused by soft procurement
rules and a lack of a common IT strategy and vision.
Often, product procurement takes place independently
from projects, which leads to technology decisions on
projects being driven by a desire to minimize shelfware.

A team must implement simple system analytics and
adopt the current hype library (e.g., Tensor flow). They
adopt it without considering the same feature might be
implemented by standard libraries (e.g., Java.Math).

44 Golden hammer
(Dudney et al., 2003;
Rotem-Gal-Oz et al.,
2012) (AKA, Same
Old Way)

This anti-pattern occurs when familiar technologies are
used as solutions to every problem. Many times this
anti-pattern is perpetrated by individuals who have had
past successes with a given technology, but are trying
to use that technology to solve a problem that does not
require the technology’s existence.

A company decides to adopt microservices architecture
for their application. They start by selecting a popular
message broker, let us call it ‘‘XMQ,’’ which is known
for its scalability and performance in handling
messaging between services. The development team
becomes highly proficient in using XMQ and starts using
it extensively for communication between microservices.
However, as the application grows and evolves, they
encounter new requirements that demand real-time
streaming capabilities. They explore various options and
find that ‘‘YStreamer’’ is a widely adopted and powerful
streaming platform. But due to their heavy reliance on
XMQ, they try to fit real-time streaming functionality
into XMQ, even though it was not designed for that
purpose.

45 Lack of
communication
standards among
microservices (de
Toledo et al., 2021,
2019)

When autonomous teams do not adopt common
guidelines for communication among microservices,
including the creation of APIs or message formats. Many
APIs or message formats emerge from the various teams
because each message producer of messages is left to
define the format of the data themselves. This can lead
to multiple issues, such as inconsistent data formats
non-standardized communication protocols, increased
complexity and maintenance, and reduced
interoperability.

An e-commerce system with multiple microservices,
such as a product catalog service, a shopping cart
service, and an order processing service. In this
scenario, the lack of communication standards can lead
to various issues:
Inconsistent data formats: Each microservice may use a
different data format to represent similar information.
For instance, the product catalog service might use JSON
to describe products, while the shopping cart service
might use XML. This inconsistency makes it difficult to
share and process data seamlessly between
microservices.
Non-standardized communication protocols:
Microservices may communicate with each other using
different protocols, such as REST, gRPC, or messaging
queues. Without a standardized protocol, integrating
new microservices or changing existing ones becomes
challenging. It requires additional effort to handle
different communication mechanisms and understand
how to interact with each service.
Increased complexity and maintenance: When
microservices lack communication standards, each
service needs to implement custom logic to translate
and adapt data between different formats and protocols.
This additional complexity can lead to increased
development effort, higher chances of introducing bugs,
and more challenging maintenance tasks.
Reduced interoperability: Without standardized
communication, it becomes challenging to replace or
upgrade individual microservices. If a service needs to
be replaced or updated, the other services depending on
it may need significant modifications to adapt to the
new communication requirements.

(continued on next page)
36



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

46 Too many standards
(de Toledo et al.,
2021; Taibi and
Lenarduzzi, 2018; de
Toledo et al., 2019;
Taibi et al., 2020b;
Bogner et al., 2019c;
Schirgi, 2021)

Multiple development languages, protocols, and
frameworks are used. Although microservices allow the
use of different technologies, adopting too many
different ones can be a problem in organizations,
especially in the event of developer turnover. This
requires carefully considering any adoption of new
technology, assuming different microservices already
introduce broad heterogeneity. This term is used in the
literature, but more often the term ‘‘standards’’ is also
used (inaccurately) instead of ‘‘technologies’’, e.g. when
REST, SOAP and GraphQL are used together). As the
next antipattern,

A large e-commerce platform has adopted a
microservices architecture. The platform consists of
several microservices responsible for different
functionalities like product catalog, user management,
order processing, and inventory management. However,
due to various factors like different development teams,
evolving technology landscape, and changing
requirements, each microservice has ended up adopting
its own set of standards and technologies.
In this scenario, you might observe the following
manifestations of the ‘‘Too many standards among
microservices’’ anti-pattern:
Inconsistent communication protocols, diverse data
storage mechanisms, varied authentication and
authorization mechanisms, heterogeneous deployment
strategies, incompatible development frameworks and
languages (i.e., Java with Spring Boot, Python with
Django, or Node.js with Express) that introduces
additional complexity for developers who need to
switch between various technologies and maintain
expertise in multiple languages.

47 Inadequate
techniques support
(de Toledo et al.,
2021; Carrasco et al.,
2018a; Taibi et al.,
2020b; Schirgi, 2021)

Use of inadequate techniques, which will not support
the development of microservices. It refers to a
situation where the development team lacks the
necessary tools, processes, or skills to manage and
operate microservices-based systems effectively. The
term ‘‘inadequate’’ describes a situation where
somebody wants to implement a certain requirement,
there are different ways to do it, but the developer
chooses (for various reasons) a method that is
associated with disadvantages. This term is used in the
literature, but unfortunately, it is imprecise and cannot
be identified automatically (if the underlying
requirement is unknown).

Poor choice of communication, such as message queues
versus streaming, may lead to considerable latency for
transferring messages among services impacting system
responsiveness. Similarly, a poor integration choice can
lead to consequent costs requiring a team to maintain a
third-party solution and adjust it to a particular cloud
environment instead of working on other priorities (i.e.,
adopting a content management system not originally
meant for cloud deployment)

48 Single layer team
(Carrasco et al.,
2018b; Gehani, 2018;
Golden B., 2018;
Kalske et al., 2018;
Lewis and Fowled,
2014; Nadareishvili
et al., 2016; Taibi
et al., 2017; Wolff,
2016; Carrasco et al.,
2018a; Taibi et al.,
2020b)

Division of teams by layer (e.g. Presentation, Business
Layer, Persistence ses, etc.). This adds time and effort
for approval whenever a change is needed. This leads to
a ripple effect. Violates microservices principles, the
independence of each service where teams are cross. To
maximize the autonomy that microservices make
possible, the governance of microservices should be
decentralized and delegated to the teams that own the
microservices themselves rather than specializing teams
to particular layers.

Single team is responsible for developing, deploying,
and maintaining all the microservices in a system. It
goes against the principles of microservices architecture,
which advocates for decentralized teams and autonomy.

49 No legacy (Kral and
Zemlicka, 2007; Taibi
and Lenarduzzi, 2018)
(AKA, Everything
Must Be New)

It might be a vision that the newly developed system
does not contain any ’’obsolete’’ parts (legacy systems).
In the service-oriented setting, this can become a costly
anti-pattern. The main advantage of service-oriented
systems is the enabled integration of autonomous
systems, especially legacy systems. Getting rid of legacy
systems causes superfluous immense additional
investments into the development and implementation
of new systems. It is good to leave selected older parts
(legacy systems) in a new system as the old parts have
useful capabilities and can be very stable (time-proven).
One should choose the candidates for integration.

Consider an e-commerce company that decides to
transition from a monolithic architecture to
microservices to improve scalability and maintainability.
They push for a complete system rewrite into
microservices which is expensive. Instead of fully
decomposing all parts of a monolithic system into
independent and autonomous microservices, they
should create selected microservices that integrate with
the legacy system providing autonomy to all parts.

(continued on next page)
37



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829
Table 13 (continued).
Index Anti-pattern name Description Example

50 Data-driven migration
(Richards, 2016)

The data-driven migration anti-pattern occurs when
migrating from a monolithic application to a
microservices architecture. It seems like a good idea at
the start to migrate both the service functionality and
the corresponding data together when creating
microservices, but it leads down a bad path that can
result in high-risk, excess cost, and additional migration
effort. We will rarely get the granularity of each service
right the first time, and it needs to further be split or
consolidated produced microservices. In either case, we
are faced with two migration efforts, one for the service
functionality and another for the database. However,
data is a corporate asset, not an application asset; data
migrations are complex and error-prone—much more so
than source code migrations. Optimally you want to
migrate the data for each service only once. Instead,
migrate the functionality of the service first, and worry
about the bounded context between the service and the
data later.

A company is migrating its monolith with a single,
shared database to microservices. The company decides
to split the database into multiple smaller databases,
each dedicated to a specific microservice. The company
schedules a maintenance window and performs the
migration of all the data from the monolithic database
to the new smaller databases in one go. During this
migration, the entire system is unavailable.
To avoid this data-driven migration anti-pattern, a more
recommended approach is to adopt a phased or
incremental migration strategy. This involves migrating
services and their associated data incrementally,
validating each step and ensuring that the system
remains functional and available throughout the process.

51 Big bang (Král and
Ž.emlicka, 2009)

An entire system is built ‘‘at once’’. It is often combined
with the anti-pattern ’’No Legacy’’ where everything
must be new or newly customized. It is the strategy
preferred by large vendors, and it implies a strong
dependency on the vendors (Vendor Lock-In). It can
cause the services not to be independent enough and
fine-grained. The (hidden) dependency further reduces
the possibility of incremental development. Refactoring
of Big Bang must include the use of coarse-grained
user-oriented interfaces. To obtain highly autonomous
services, the main tool is a proper decomposition of
required capabilities.

E-commerce monolithic system consists of a single
codebase and a tightly coupled database. The
development team decides to refactor the system into a
microservices architecture to achieve greater scalability,
flexibility, and independent deployment.
In the Big Bang anti-pattern scenario, the team decides
to rewrite the entire application from scratch, breaking
it down into separate microservices, all in one go. They
stop all development and release activities for an
extended period while the rewrite is in progress. Once
the new microservices architecture is complete, they
deploy it as a whole.

52 Multiple service
instances per host
(Balalaie et al., 2016,
2018; Carnell, 2017;
Carrasco et al.,
2018b; Dragoni et al.,
2017; Indrasiri, 2017;
Indrasiri and
Siriwardena, 2018a;
Jamshidi et al., 2018;
Krause; C., 2018;
Newman, 2015;
Nygard, 2018;
Savchenko et al.,
2015; Soldani et al.,
2018; Taibi et al.,
2018; Zimmermann,
2017) (AKA, Multiple
services in one
container)

A single host contains multiple microservices instances
deployed to the same host. The hints of the presence of
this anti-pattern could be: (1) a single deployment
platform; (2) a single version control repository; or (3)
a global deployment script. Microservices have to share
the same resources that are available inside the host.
Moreover, scaling up or down a given host involves
scaling all the instances that are inside this host. Finally,
possible technology-related conflicts may happen
between the microservices instances that share the
same host.

An e-commerce application that consists of three
microservices: Order Management, Inventory
Management, and Payment Processing. Initially, the
development team decides to deploy each microservice
on separate hosts to ensure isolation and scalability.
However, as the application grows, they start facing
increased traffic and performance challenges.
To address these challenges, the team decides to deploy
multiple instances of each microservice on a single host.
For instance, they run two instances of Order
Management, three instances of Inventory Management,
and four instances of Payment Processing on a single
physical machine. This approach appears to utilize the
available resources more efficiently, as multiple services
can share the same hardware.
However, over time, following issues are found:
Resource contention as all instances experience a spike
in traffic simultaneously and they will compete for CPU,
memory, etc. Lack of isolation and fault tolerance.
Monitoring and troubleshooting becomes challenging to
isolate and diagnose issues.

53 No CI/CD
(Bucchiarone et al.,
2020)

The company does not employ CD/CI tools and
developers need to manually test and deploy the
system.

Instead of continuously integrating and deploying
individual microservices, all the services are bundled
together into a monolithic release and deployed as a
single unit.

54 Manual configuration
(de Toledo et al.,
2021; Schirgi, 2021;
Carnell and Sánchez,
2021)

Configuration of instances, services, and hosts is done
manually. Microservices should separate the core
codebase from the configuration management to enable
automation.

If we had 1000 Microservice instances deployed and
had to manually update a port for the database, it
would be difficult to update in production manually.
Therefore a configuration file for each Microservice is
not the best solution. Instead, a configuration server
should be used, which automates the configuration
process. A possible solution is to completely separate
the configuration of an application from the actual code
being deployed, build immutable application images
that never change as these are promoted through
environments, and finally inject any application
configuration information at server startup through
either environment variables or a centralized repository
that the microservices read on startup.

(continued on next page)
38



T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

A

A

A

B

B

B

B

B

Table 13 (continued).
Index Anti-pattern name Description Example

55 Insufficient
monitoring (Schirgi,
2021; Bucchiarone
et al., 2020)

Performance and failure of the microservices are not
tracked. Failures become more difficult to catch and
tracking performance issues become more tedious. A
solution is to adopt a global monitoring tool.

An e-commerce application consists of multiple
microservices, including a product catalog service, a
shopping cart service, and a payment service. The
services communicate with each other to fulfill
customer orders.
In this case, the development team has implemented
the microservices architecture without giving much
thought to monitoring and observability. They rely on
simple logging statements within each service but lack
a centralized monitoring system. As a result, they
encounter several issues: lack of service health insights,
difficulty in identifying root causes, inability to scale
effectively, and reactive approach to issue resolution.

56 Dismiss
documentation
(Carrasco et al.,
2018a)

In case of a lack of documentation of the exposed APIs,
the overview of the system can be easily lost. When
implementing microservices with multiple teams,
cooperation could be hindered without proper
documentation.

A company is transitioning from a monolithic
architecture to a microservices architecture. The
development team is excited about the flexibility and
scalability benefits of microservices and starts building
services independently. However, they underestimate
the significance of documentation.
In this case, the team fails to create comprehensive and
up-to-date documentation for their microservices. They
consider it a low-priority task and believe that the code
itself should be self-explanatory. As a result: lack of
dependency and purpose visibility of each microservice,
onboarding difficulties, maintenance challenges, and
reduced scalability (hard to identify the performance
bottlenecks or understand the implications of scaling a
particular service).

57 Insufficient message
traceability (de
Toledo et al., 2021;
Schirgi, 2021)

When messages contain insufficient metadata,
developers might find it difficult to track the messages’
source. As an example, if Service A delivers messages
through a message bus and no traceability metadata is
available; Service B consumes a message from the
message bus without knowing which service produced
the message.

An e-commerce platform consisting of multiple
microservices, such as a product catalog service, an
inventory management service, and an order processing
service. The communication between these services is
done through message-based interactions.
In this system, there is insufficient message traceability,
which means that the flow of messages is not
adequately tracked and monitored

58 Local logging (Taibi
et al., 2020b; Schirgi,
2021; Bucchiarone
et al., 2020)

Each microservice writes its logs to local storage,
instead of using a distributed centralized logging system.
Local logs can be very difficult to aggregate and analyze.
This slows down the monitoring process proportionally
to the number of microservices and log size.

When each microservice independently manages its
own logging system without any centralized log
aggregation or monitoring.
B

C

C

C

C

D

d

F

References

Abdelfattah, A.S., Cerný, T., Taibi, D., Vegas, S., 2023. Comparing 2D and
augmented reality visualizations for microservice system understandability:
A controlled experiment. ArXiv arXiv:2303.02268.

l Maruf, A., Bakhtin, A., Cerny, T., Taibi, D., 2022. Using microservice telemetry
data for system dynamic analysis. In: 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE). IEEE, pp. 29–38.

mpatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A., 2019.
Identifying, categorizing and mitigating threats to validity in software en-
gineering secondary studies. Inf. Softw. Technol. (ISSN: 0950-5849) 106,
201–230.

non, 2007. Centre for Reviews and Dissemination, What are the criteria for the
inclusion of reviews on DARE?.

ogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner, S., Zimmermann, A.,
2019a. Towards a collaborative repository for the documentation of service-
based antipatterns and bad smells. In: 2019 IEEE International Conference
on Software Architecture Companion. (ICSA-C), IEEE, pp. 95–101.

ogner, J., Fritzsch, J., Wagner, S., Zimmermann, A., 2021. Industry practices and
challenges for the evolvability assurance of microservices. Empir. Softw. Eng.
26 (5), 1–39.

ogner, J., Weller, A., Wagner, S., Zimmermann, A., 2020. Exploring main-
tainability assurance research for service and micro-service-based systems:
Directions and differences. In: Joint Post-Proceedings of the First and Sec-
ond International Conference on Microservices (Microservices 2017/2019).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

rown, W., Brown, W., Malveau, R., McCormick, H., Mowbray, T., 1998. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. In: ITPro
collection, Wiley.

urgess, K., Hart, D., Elsayed, A., Cerny, T., Bures, M., Tisnovsky, P., 2022.
Visualizing architectural evolution via provenance tracking: A systematic
review. In: Proceedings of the Conference on Research in Adaptive and
Convergent Systems. RACS ’22, Association for Computing Machinery, New
39
York, NY, USA, ISBN: 9781450393980, pp. 83–91. http://dx.doi.org/10.1145/
3538641.3561493.

ushong, V., Das, D., Cerny, T., 2022. Reconstructing the holistic architec-
ture of microservice systems using static analysis. In: Proceedings of the
12th International Conference on Cloud Computing and Services Science -
CLOSER. SciTePress, INSTICC, (ISSN: 2184-5042) ISBN: 978-989-758-570-8,
pp. 149–157. http://dx.doi.org/10.5220/0011032100003200.

arnell, J., Sánchez, I.H., 2021. Spring Microservices in Action. Simon and
Schuster.

erny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D., 2022a. Microser-
vice architecture reconstruction and visualization techniques: A review. In:
2022 IEEE International Conference on Service-Oriented System Engineering.
(SOSE), pp. 39–48. http://dx.doi.org/10.1109/SOSE55356.2022.00011.

erny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D., 2022b. Mi-
crovision: Static analysis-based approach to visualizing microservices in
augmented reality. In: 2022 IEEE International Conference on Service-
Oriented System Engineering (SOSE). pp. 49–58. http://dx.doi.org/10.1109/
SOSE55356.2022.00012.

ostal, D., Farr’e, C., Franch, X., Quer, C., 2021. How tertiary studies perform qual-
ity assessment of secondary studies in software engineering. In: Conferencia
Iberoamericana de Software Engineering.

as, D., Walker, A., Bushong, V., Svacina, J., Cerny, T., Matyas, V., 2021. On
automated RBAC assessment by constructing a centralized perspective for
microservice mesh. PeerJ Comput. Sci. 7, e376.

e Andrade, H.S., Almeida, E., Crnkovic, I., 2014a. Architectural bad smells
in software product lines: An exploratory study. In: Proceedings of the
WICSA 2014 Companion Volume. In: WICSA ’14 Companion, Association
for Computing Machinery, New York, NY, USA, ISBN: 9781450325233, http:
//dx.doi.org/10.1145/2578128.2578237.

ontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M., Di Nitto, E., 2017.
Arcan: A tool for architectural smells detection. In: 2017 IEEE International
Conference on Software Architecture Workshops. (ICSAW), pp. 282–285.
http://dx.doi.org/10.1109/ICSAW.2017.16.

http://arxiv.org/abs/2303.02268
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb8
http://dx.doi.org/10.1145/3538641.3561493
http://dx.doi.org/10.1145/3538641.3561493
http://dx.doi.org/10.1145/3538641.3561493
http://dx.doi.org/10.5220/0011032100003200
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb11
http://dx.doi.org/10.1109/SOSE55356.2022.00011
http://dx.doi.org/10.1109/SOSE55356.2022.00012
http://dx.doi.org/10.1109/SOSE55356.2022.00012
http://dx.doi.org/10.1109/SOSE55356.2022.00012
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb15
http://dx.doi.org/10.1145/2578128.2578237
http://dx.doi.org/10.1145/2578128.2578237
http://dx.doi.org/10.1145/2578128.2578237
http://dx.doi.org/10.1109/ICSAW.2017.16


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

G

G

G

H

I

J

K

K

L

L

L

d

O

R

R

R

S

S

Z

Z

Z

Z

Z

Z

S

B

D

M

arcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009a. Identifying ar-
chitectural bad smells. In: 2009 13th European Conference on Software
Maintenance and Reengineering. pp. 255–258. http://dx.doi.org/10.1109/
CSMR.2009.59.

arcía-Mireles, G.A., Morales-Trujillo, M.E., 2020. Gamification in Software
Engineering: A Tertiary Study. In: Mejia, J., Muñoz, M., Rocha, A., A. Calvo-
Manzano, J. (Eds.), Trends and Applications in Software Engineering. Springer
International Publishing, Cham, pp. 116–128.

uo, D., Wu, H., 2021. A review of bad smells in cloud-based applications and
microservices. In: 2021 International Conference on Intelligent Computing,
Automation and Systems. (ICICAS), IEEE, pp. 255–259.

oda, R., Salleh, N., Grundy, J., Tee, H.M., 2017. Systematic literature reviews
in agile software development: A tertiary study. Inf. Softw. Technol. (ISSN:
0950-5849) 85, 60–70.

brahim, A., Bozhinoski, S., Pretschner, A., 2019. Attack graph generation for mi-
croservice architecture. In: Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing. SAC ’19, Association for Computing Machinery, New
York, NY, USA, ISBN: 9781450359337, pp. 1235–1242. http://dx.doi.org/10.
1145/3297280.3297401.

unior, H.J., Travassos, G.H., 2022. Consolidating a common perspective on
Technical Debt and its Management through a Tertiary Study. Inf. Softw.
Technol. (ISSN: 0950-5849) 149, 106964.

endall, J., 1999. Axial coding and the grounded theory controversy. West. J.
Nurs. Res. 21 (6), 743–757.

itchenham, B.A., Madeyski, L., Budgen, D., 2022. SEGRESS: Software Engineering
Guidelines for Reporting Secondary Studies. IEEE Trans. Softw. Eng. 1.

attner, C., Adve, V., 2004. LLVM: A compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. IEEE, pp. 75–86.

elovic, L., Mathews, M., Abdelfattah, A., Cerny, T., 2023. Microservices ar-
chitecture language for describing service view. In: Proceedings of the
13th International Conference on Cloud Computing and Services Science -
CLOSER. SciTePress, INSTICC, (ISSN: 2184-5042) ISBN: 978-989-758-650-7,
pp. 220–227. http://dx.doi.org/10.5220/0011850200003488.

ewis, J., Fowler, M., 2014. Microservices. www.martinfowler.com/articles/
microservices.html, Accessed: January 2023.

e Oliveira Rosa, T., Daniel, J.F.L., Guerra, E.M., Goldman, A., 2020. A method for
architectural trade-off analysis based on patterns: Evaluating microservices
structural attributes. In: Proceedings of the European Conference on Pattern
Languages of Programs 2020. EuroPLoP ’20, Association for Computing
Machinery, New York, NY, USA, http://dx.doi.org/10.1145/3424771.3424809.

sses, F., Márquez, G., Astudillo, H., 2018. Exploration of academic and indus-
trial evidence about architectural tactics and patterns in microservices. In:
Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. ICSE ’18, Association for Computing Machin-
ery, New York, NY, USA, pp. 256–257. http://dx.doi.org/10.1145/3183440.
3194958.

aatikainen, M., Tiihonen, J., Männistö, T., 2019. Software product lines and
variability modeling: A tertiary study. J. Syst. Softw. (ISSN: 0164-1212) 149,
485–510.

ademacher, F., Sachweh, S., Zündorf, A., 2020. A modeling method for system-
atic architecture reconstruction of microservice-based software systems. In:
Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (Eds.), Enterprise,
Business-Process and Information Systems Modeling. Springer International
Publishing, Cham, pp. 311–326.

efactoring.Guru, 2023. Shotgun surgery. https://refactoring.guru/smells/
shotgun-surgery, [Online; accessed 9-June-2023].

chiewe, M., Curtis, J., Bushong, V., Cerny, T., 2022. Advancing static code
analysis with language-agnostic component identification. IEEE Access 10,
30743–30761. http://dx.doi.org/10.1109/ACCESS.2022.3160485.

chipper, D., Aniche, M., van Deursen, A., 2019. Tracing back log data to its log
statement: From research to practice. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories. (MSR), pp. 545–549. http:
//dx.doi.org/10.1109/MSR.2019.00081.

solo.io, 2022. 2022 Service Mesh Adoption Survey. https://lp.solo.io/service-
mesh-adoption-survey.

Stocker, M., Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C., 2018. Interface
Quality Patterns – Communicating and Improving the Quality of Microser-
vices APIs. In: 23rd European Conference on Pattern Languages of Programs
2018.

Strauss, A., Corbin, J., 1998. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. SAGE Publications, ISBN:
9780803959408, URL https://books.google.fi/books?id=wTwYUnHYsmMC.

Svacina., J., Bushong., V., Das., D., Cerny., T., 2022. Semantic code clone detection
method for distributed enterprise systems. In: Proceedings of the 12th
International Conference on Cloud Computing and Services Science - CLOSER.
SciTePress, INSTICC, (ISSN: 2184-5042) ISBN: 978-989-758-570-8, pp. 27–37.
http://dx.doi.org/10.5220/0011032200003200.
40
Taibi, D., Lenarduzzi, V., Pahl, C., 2020a. Microservices Anti-patterns: A Taxon-
omy. In: Bucchiarone, A., Dragoni, N., Dustdar, S., Lago, P., Mazzara, M.,
Rivera, V., Sadovykh, A. (Eds.), Microservices: Science and Engineering.
Springer International Publishing, Cham, pp. 111–128.

Tighilt, R., Abdellatif, M., Trabelsi, I., Madern, L., Moha, N., Guéhéneuc, Y.-G., 2023.
On the maintenance support for microservice-based systems through the
specification and the detection of microservice antipatterns. J. Syst. Softw.
(ISSN: 0164-1212) 111755. http://dx.doi.org/10.1016/j.jss.2023.111755, URL
https://www.sciencedirect.com/science/article/pii/S0164121223001504.

Tran, H.K.V., Unterkalmsteiner, M., Börstler, J., bin Ali, N., 2021. Assessing test
artifact quality—A tertiary study. Inf. Softw. Technol. (ISSN: 0950-5849) 139,
106620.

van Emden, E., Moonen, L., 2002. Java quality assurance by detecting code smells.
In: Ninth Working Conference on Reverse Engineering, 2002. Proceedings. pp.
97–106. http://dx.doi.org/10.1109/WCRE.2002.1173068.

Verner, J., Brereton, O., Kitchenham, B., Turner, M., Niazi, M., 2014. Risks and
risk mitigation in global software development: A tertiary study. Inf. Softw.
Technol. (ISSN: 0950-5849) 56 (1), 54–78, Special sections on International
Conference on Global Software Engineering – August 2011 and Evaluation
and Assessment in Software Engineering – April 2012.

Vidal, S., Oizumi, W., Garcia, A., Díaz Pace, A., Marcos, C., 2019. Ranking
architecturally critical agglomerations of code smells. Sci. Comput. Program.
(ISSN: 0167-6423) 182, 64–85. http://dx.doi.org/10.1016/j.scico.2019.07.003,
URL https://www.sciencedirect.com/science/article/pii/S0167642318303514.

Walker, A., Das, D., Cerny, T., 2020. Automated Code-Smell Detection in Microser-
vices Through Static Analysis: A Case Study. Appl. Sci. (ISSN: 2076-3417) 10
(21).

Wikipedia contributors, 2023. Shotgun surgery — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Shotgun_surgery&
oldid=1159278192, [Online; accessed 9-June-2023].

Wimmer, C., 2021. Graalvm native image: Large-scale static analysis for java
(keynote). In: Proceedings of the 13th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages. In: VMIL 2021, Association
for Computing Machinery, New York, NY, USA, ISBN: 9781450391092, p. 3.
http://dx.doi.org/10.1145/3486606.3488075.

Wohlin, C., 2014. Guidelines for Snowballing in Systematic Literature Studies and
a Replication in Software Engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering.
EASE ’14, Association for Computing Machinery, New York, NY, USA.

Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L., 2005. A brief survey of program
slicing. SIGSOFT Softw. Eng. Notes (ISSN: 0163-5948) 30 (2), 1–36. http:
//dx.doi.org/10.1145/1050849.1050865.

Yamashita, A., Moonen, L., 2013. Do developers care about code smells? An ex-
ploratory survey. In: 2013 20th Working Conference on Reverse Engineering.
(WCRE), pp. 242–251. http://dx.doi.org/10.1109/WCRE.2013.6671299.

hao, X., Zhang, Y., Lion, D., Ullah, M.F., Luo, Y., Yuan, D., Stumm, M., 2014.
Lprof: A non-intrusive request flow profiler for distributed systems. In: Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation. OSDI ’14, USENIX Association, USA, ISBN: 9781931971164,
pp. 629–644.

immermann, O., 2022. Microservice API patterns. https://www.microservice-
api-patterns.org/, Accessed: 2022-02-04.

immermann, O., Lübke, D., Zdun, U., Pautasso, C., Stocker, M., 2020a. Interface
Responsibility Patterns: Processing Resources and Operation Responsibilities.
In: European Conference on Pattern Languages of Programs 2020. EuroPLoP
’20.

immermann, O., Pautasso, C., Lübke, D., Zdun, U., Stocker, M., 2020b. Data-
Oriented Interface Responsibility Patterns: Types of Information Holder
Resources. In: EuroPLoP ’20.

immermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U., 2019. Introduc-
tion to Microservice API Patterns (MAP). In: International Conference on
Microservices (Microservices 2019).

immermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U., 2020c. Introduc-
tion to Microservice API Patterns (MAP). In: Joint Post-Proceedings of the
First and Second International Conference on Microservices (Microservices
2017/2019). pp. 4:1–4:17.

econdary studies

ogner, Justus, Boceck, Tobias, Popp, Matthias, Tschechlov, Dennis, Wagner, Ste-
fan, Zimmermann, Alfred, 2019b. Toward a collaborative repository for
the documentation of service-based antipatterns and bad smells. In: 2019
IEEE International Conference on Software Architecture Companion. (ICSA-C),
IEEE, pp. 95–101.

ing, Xiang, Zhang, Cheng, 2022. How Can We Cope with the Impact of
Microservice Architecture Smells? In: 2022 11th International Conference
on Software and Computer Applications. pp. 8–14.

umtaz, Haris, Singh, Paramvir, Blincoe, Kelly, 2021. A systematic mapping
study on architectural smells detection. J. Syst. Softw. 173, 110885.

http://dx.doi.org/10.1109/CSMR.2009.59
http://dx.doi.org/10.1109/CSMR.2009.59
http://dx.doi.org/10.1109/CSMR.2009.59
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb21
http://dx.doi.org/10.1145/3297280.3297401
http://dx.doi.org/10.1145/3297280.3297401
http://dx.doi.org/10.1145/3297280.3297401
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb26
http://dx.doi.org/10.5220/0011850200003488
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb28
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb28
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb28
http://dx.doi.org/10.1145/3424771.3424809
http://dx.doi.org/10.1145/3183440.3194958
http://dx.doi.org/10.1145/3183440.3194958
http://dx.doi.org/10.1145/3183440.3194958
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb32
https://refactoring.guru/smells/shotgun-surgery
https://refactoring.guru/smells/shotgun-surgery
https://refactoring.guru/smells/shotgun-surgery
http://dx.doi.org/10.1109/ACCESS.2022.3160485
http://dx.doi.org/10.1109/MSR.2019.00081
http://dx.doi.org/10.1109/MSR.2019.00081
http://dx.doi.org/10.1109/MSR.2019.00081
https://lp.solo.io/service-mesh-adoption-survey
https://lp.solo.io/service-mesh-adoption-survey
https://lp.solo.io/service-mesh-adoption-survey
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb37
https://books.google.fi/books?id=wTwYUnHYsmMC
http://dx.doi.org/10.5220/0011032200003200
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb40
http://dx.doi.org/10.1016/j.jss.2023.111755
https://www.sciencedirect.com/science/article/pii/S0164121223001504
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb42
http://dx.doi.org/10.1109/WCRE.2002.1173068
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb44
http://dx.doi.org/10.1016/j.scico.2019.07.003
https://www.sciencedirect.com/science/article/pii/S0167642318303514
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb46
https://en.wikipedia.org/w/index.php?title=Shotgun_surgery&oldid=1159278192
https://en.wikipedia.org/w/index.php?title=Shotgun_surgery&oldid=1159278192
https://en.wikipedia.org/w/index.php?title=Shotgun_surgery&oldid=1159278192
http://dx.doi.org/10.1145/3486606.3488075
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb49
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1109/WCRE.2013.6671299
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb52
https://www.microservice-api-patterns.org/
https://www.microservice-api-patterns.org/
https://www.microservice-api-patterns.org/
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb59
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb59
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb59
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb59
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb59
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb60


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

N

P

S

T

P

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

d

D

d

d

d

D

D

D

D

D

E

F

F

F

G

G

G

G

G

eri, Davide, Soldani, Jacopo, Zimmermann, Olaf, Brogi, Antonio, 2020. De-
sign principles, architectural smells and refactorings for microservices: A
multivocal review. SICS Softw.-Intensive Cyber-Phys. Syst. 35 (1), 3–15.

once, Francisco, Soldani, Jacopo, Astudillo, Hernán, Brogi, Antonio, 2022. Smells
and refactorings for microservices security: A multivocal literature review.
J. Syst. Softw. 111393.

abir, Fatima, Palma, Francis, Rasool, Ghulam, Guéhéneuc, Yann-Gaël,
Moha, Naouel, 2019. A systematic literature review on the detection
of smells and their evolution in object-oriented and service-oriented
systems. Softw. - Pract. Exp. 49 (1), 3–39.

ighilt, Rafik, Abdellatif, Manel, Moha, Naouel, Mili, Hafedh, Boussaidi, Ghi-
zlane El, Privat, Jean, Guéhéneuc, Yann-Gaël, 2020. On the study of
microservices antipatterns: A catalog proposal. In: Proceedings of the
European Conference on Pattern Languages of Programs 2020. pp. 1–13.

rimary studies

basi, Farshad, 2019. Securing modern API- and microservices-based apps
by design. URL https://developer.ibm.com/articles/securing-modern-api-and-
microservices-apps-1/.

lagarasan V., 2015. Seven microservices anti-patterns. InfoQ. URL https://www.
infoq.com/articles/seven-uservices-antipatterns.

lshuqayran, Nuha, Ali, Nour, Evans, Roger, 2016. A systematic mapping study
in microservice architecture. In: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications. (SOCA), IEEE, pp. 44–51.

non, 2019a. Improving security in your microservices architecture. URL https:
//www.sumologic.com/insight/microservices-architecture-security/.

non, 2019b. Microservices security: Best practices to secure microser-
vicess. URL https://hindi.ava360.com/microservices-security-best-practices-
to-secure-microservices-edureka_e39d9d108.html.

non, 2019c. Shift to microservices: Evolve your security practices & con-
tainer security. URL https://lab.wallarm.com/shift-to-microservices-evolve-
your-security-practices-container-security/.

non, 2020. Microservice architectures challenge traditional security practices.
URL https://blog.radware.com/security/2020/01/microservice-architectures-
challenge-traditional-security-practices/.

zadi, U., Fontana, F.A., Taibi, D., 2019. Architectural smells detected by tools: A
catalog proposal. In: Proceedings - 2019 IEEE/ACM International Conference
on Technical Debt, TechDebt 2019. pp. 88–97. http://dx.doi.org/10.1109/
TechDebt.2019.00027.

alalaie, A., Heydarnoori, A., Jamshidi, P., 2016. Microservices architecture
enables devops: migration to a cloud-native architecture. IEEE Softw. 33,
http://dx.doi.org/10.1109/MS.2016.64.

alalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T., 2018. Microser-
vices migration patterns. Softw. Pract. Exp. 48, http://dx.doi.org/10.1002/spe.
2608.

ehrens, Scott, Payne, Bryan, 2016. Starting the avalanche: Application ddos
in microservice architectures. URL https://netflixtechblog.com/starting-the-
avalanche-640e69b14a06?gi=51345aa9d068.

hojwani, R., 2018. Design patterns for microservices. URL https://dzone.com/
articles/design-patterns-for-microservices.

oersma, Eric, 2019. Top 10 security traps to avoid when migrating from
a monolith to microservices. URL https://blog.sqreen.com/top-10-security-
traps-to-avoid-when-migrating-from-a-monolith-to-microservices/.

ogner, Justus, Fritzsch, Jonas, Wagner, Stefan, Zimmermann, Alfred, 2019c. As-
suring the evolvability of microservices: insights into industry practices and
challenges. In: 2019 IEEE International Conference on Software Maintenance
and Evolution. (ICSME), IEEE, pp. 546–556.

ogner, J., Fritzsch, J., Wagner, S., Zimmermann, A., 2019d. Microservices in
industry: Insights into technologies, characteristics, and software quality. In:
Proceedings - 2019 IEEE International Conference on Software Architecture
- Companion. ICSA-C 2019, pp. 187–195. http://dx.doi.org/10.1109/ICSA-C.
2019.00041.

onér, J., 2016. Reactive Microservice Architecture: Design Principles for
Distributed Systems. O’Reilly, Newton.

rogi, Antonio, Neri, Davide, Soldani, Jacopo, 2019. Freshening the air in mi-
croservices: resolving architectural smells via refactoring. In: International
Conference on Service-Oriented Computing. Springer, pp. 17–29.

ucchiarone, Antonio, Dragoni, Nicola, Dustdar, Schahram, Lago, Patricia, Maz-
zara, Manuel, Rivera, Victor, Sadovykh, Andrey, 2020. Microservices. Sci. Eng.
Springer.

udko, Renata, 2018. Five things you need to know about API security. URL
https://thenewstack.io/5-things-you-need-to-know-about-api-security/.

., Meléndez, 2018. 7 container design patterns you need to know. TechBea-
con. URL https://techbeacon.com/enterprise-it/7-container-design-patterns-
you-need-know.

arnell, J., 2017. Spring Microservices in Action. Manning Publications Co., New
York.
41
arrasco, Andrés, Bladel, Brent van, Demeyer, Serge, 2018a. Migrating toward
microservices: migration and architecture smells. In: Proceedings of the 2nd
International Workshop on Refactoring. pp. 1–6.

arrasco, Andrés, Bladel, Brent van, Demeyer, Serge, 2018b. Migrating toward
microservices: migration and architecture smells. In: Proceedings of the 2nd
International Workshop on Refactoring. pp. 1–6.

handramouli, R., 2019. Security strategies for microservices-based application
systems. https://csrc.nist.gov/publications/detail/sp/800-204/final.

ortellessa, V., Di Marco, A., Trubiani, C., 2014. An approach for modeling
and detecting software performance antipatterns based on first-order logics.
Softw. Syst. Model. 13 (1), 391–432. http://dx.doi.org/10.1007/s10270-012-
0246-z.

oscia, Jos’e, Mateos, Cristian, Crasso, Marco, Zunino, Alejandro, 2012. Avoiding
WSDL bad practices in code-first web services. SADIO Electron. J. Inform.
Oper. Res. 11.

a Silva, Rodrigo Candido, 2017. Best practices to protect your microser-
vices architecture. URL https://medium.com/@rcandidosilva/best-practices-
to-protect-your-microservices-architecture-541e7cf7637f.

all, R., 2016. Performance patterns in microservices-based integrations. URL
https://dzone.com/articles/performance-patterns-in-microservices-based-
integr-1.

e Andrade, Hugo Sica, Almeida, Eduardo, Crnkovic, Ivica, 2014b. Architectural
bad smells in Software Product Lines: An exploratory study. In: ACM
International Conference Proceeding Series. p. 12.

e Toledo, Saulo Soares, Martini, Antonio, Przybyszewska, Agata, Sjøberg, Dag IK,
2019. Architectural technical debt in microservices: A case study in a large
company. In: 2019 IEEE/ACM International Conference on Technical Debt.
(TechDebt), IEEE, pp. 78–87.

e Toledo, Saulo S., Martini, Antonio, Sjøberg, Dag I.K., 2021. Identifying architec-
tural technical debt, principal, and interest in microservices: A multiple-case
study. J. Syst. Softw. 177, 110968.

ias, Wajjakkara Kankanamge Anthony Nuwan, Siriwardena, Prabath, 2020.
Microservices Security in Action. Simon and Schuster.

oerfeld, Bill, 2015. How to control user identity within microservices. URL
https://nordicapis.com/how-to-control-user-identity-within-microservices/.

ouglas, Michael, 2018. Microservices authentication & authorization
best practice. URL https://codeburst.io/i-believe-it-reallydepends-on-
your-environment-and-how-well-protected-the-different-piecesare-
7919bfa6bc86.

ragoni, Nicola, Giallorenzo, Saverio, Lafuente, Alberto Lluch, Mazzara, Manuel,
Montesi, Fabrizio, Mustafin, Ruslan, Safina, Larisa, 2017. Microservices: Yes-
terday, today, and tomorrow. In: Mazzara, Manuel, Meyer, Bertrand (Eds.),
Present and Ulterior Software Engineering. Springer International Publishing,
Cham, ISBN: 978-3-319-67425-4, pp. 195–216. http://dx.doi.org/10.1007/
978-3-319-67425-4_12.

udney, Bill, Asbury, Stephen, Krozak, Joseph K, Wittkopf, Kevin, 2003. J2EE
Antipatterns. John Wiley & Sons.

sposito, C., Castiglione, A., Choo, K.-K.R., 2016. Challenges in delivering software
in the cloud as microservices. IEEE Cloud Comput. 3 (5), 10–14. http://dx.
doi.org/10.1109/MCC.2016.105.

rancesco, P., Lago, P., Malavolta, I., 2019. Architecting with microservices: A
systematic mapping study. J. Syst. Softw. 150, http://dx.doi.org/10.1016/j.jss.
2019.01.001.

rancesco, Paolo Di, Malavolta, Ivano, Lago, Patricia, 2017. Research on archi-
tecting microservices: Trends, focus, and potential for industrial adoption.
In: 2017 IEEE International Conference on Software Architecture. (ICSA), pp.
21–30. http://dx.doi.org/10.1109/ICSA.2017.24.

urda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A., 2018. Migrating
enterprise legacy source code to microservices: on multitenancy, stateful-
ness, and data consistency. IEEE Softw. 35, http://dx.doi.org/10.1109/MS.
2017.440134612.

arcia, Joshua, Popescu, Daniel, Edwards, George, Medvidovic, Nenad, 2009b.
Toward a catalog of architectural bad smells. In: Mirandola, Raf-
faela, Gorton, Ian, Hofmeister, Christine (Eds.), Architectures for Adaptive
Software Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN:
978-3-642-02351-4, pp. 146–162.

arcia, Joshua, Popescu, Daniel, Edwards, George, Medvidovic, Nenad, 2009c.
Toward a Catalog of Architectural Bad Smells. In: Proceedings of the 5th
International Conference on the Quality of Software Architectures: Archi-
tectures for Adaptive Software Systems. QoSA ’09, Springer-Verlag, East
Stroudsburg, PA, USA, pp. 146–162.

ardner, Z., 2017. Security in the microservices paradigm. URL https://
keyholesoftware.com/2017/03/13/security-in-the-microservices-paradigm/.

ebel, Gerry, Brossard, David, 2018. Securing APIs and microservices with oauth,
openid connect, and ABAC. URL https://curity.io/resources/videos/securing-
apis-and-microservices-with-oauth-and-openid-connect/.

ehani, Neil, 2018. Want to develop great microservices? Reorganize
your team. TechBeacon. URL https://techbeacon.com/app-dev-testing/want-
develop-great-microservices-reorganize-your-team, Accessed 5 June 2019.

http://refhub.elsevier.com/S0164-1212(23)00224-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb64
https://developer.ibm.com/articles/securing-modern-api-and-microservices-apps-1/
https://developer.ibm.com/articles/securing-modern-api-and-microservices-apps-1/
https://developer.ibm.com/articles/securing-modern-api-and-microservices-apps-1/
https://www.infoq.com/articles/seven-uservices-antipatterns
https://www.infoq.com/articles/seven-uservices-antipatterns
https://www.infoq.com/articles/seven-uservices-antipatterns
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb67
https://www.sumologic.com/insight/microservices-architecture-security/
https://www.sumologic.com/insight/microservices-architecture-security/
https://www.sumologic.com/insight/microservices-architecture-security/
https://hindi.ava360.com/microservices-security-best-practices-to-secure-microservices-edureka_e39d9d108.html
https://hindi.ava360.com/microservices-security-best-practices-to-secure-microservices-edureka_e39d9d108.html
https://hindi.ava360.com/microservices-security-best-practices-to-secure-microservices-edureka_e39d9d108.html
https://lab.wallarm.com/shift-to-microservices-evolve-your-security-practices-container-security/
https://lab.wallarm.com/shift-to-microservices-evolve-your-security-practices-container-security/
https://lab.wallarm.com/shift-to-microservices-evolve-your-security-practices-container-security/
https://blog.radware.com/security/2020/01/microservice-architectures-challenge-traditional-security-practices/
https://blog.radware.com/security/2020/01/microservice-architectures-challenge-traditional-security-practices/
https://blog.radware.com/security/2020/01/microservice-architectures-challenge-traditional-security-practices/
http://dx.doi.org/10.1109/TechDebt.2019.00027
http://dx.doi.org/10.1109/TechDebt.2019.00027
http://dx.doi.org/10.1109/TechDebt.2019.00027
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1002/spe.2608
http://dx.doi.org/10.1002/spe.2608
http://dx.doi.org/10.1002/spe.2608
https://netflixtechblog.com/starting-the-avalanche-640e69b14a06?gi=51345aa9d068
https://netflixtechblog.com/starting-the-avalanche-640e69b14a06?gi=51345aa9d068
https://netflixtechblog.com/starting-the-avalanche-640e69b14a06?gi=51345aa9d068
https://dzone.com/articles/design-patterns-for-microservices
https://dzone.com/articles/design-patterns-for-microservices
https://dzone.com/articles/design-patterns-for-microservices
https://blog.sqreen.com/top-10-security-traps-to-avoid-when-migrating-from-a-monolith-to-microservices/
https://blog.sqreen.com/top-10-security-traps-to-avoid-when-migrating-from-a-monolith-to-microservices/
https://blog.sqreen.com/top-10-security-traps-to-avoid-when-migrating-from-a-monolith-to-microservices/
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb78
http://dx.doi.org/10.1109/ICSA-C.2019.00041
http://dx.doi.org/10.1109/ICSA-C.2019.00041
http://dx.doi.org/10.1109/ICSA-C.2019.00041
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb82
https://thenewstack.io/5-things-you-need-to-know-about-api-security/
https://techbeacon.com/enterprise-it/7-container-design-patterns-you-need-know
https://techbeacon.com/enterprise-it/7-container-design-patterns-you-need-know
https://techbeacon.com/enterprise-it/7-container-design-patterns-you-need-know
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb87
https://csrc.nist.gov/publications/detail/sp/800-204/final
http://dx.doi.org/10.1007/s10270-012-0246-z
http://dx.doi.org/10.1007/s10270-012-0246-z
http://dx.doi.org/10.1007/s10270-012-0246-z
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb90
https://medium.com/@rcandidosilva/best-practices-to-protect-your-microservices-architecture-541e7cf7637f
https://medium.com/@rcandidosilva/best-practices-to-protect-your-microservices-architecture-541e7cf7637f
https://medium.com/@rcandidosilva/best-practices-to-protect-your-microservices-architecture-541e7cf7637f
https://dzone.com/articles/performance-patterns-in-microservices-based-integr-1
https://dzone.com/articles/performance-patterns-in-microservices-based-integr-1
https://dzone.com/articles/performance-patterns-in-microservices-based-integr-1
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb96
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb96
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb96
https://nordicapis.com/how-to-control-user-identity-within-microservices/
https://codeburst.io/i-believe-it-reallydepends-on-your-environment-and-how-well-protected-the-different-piecesare-7919bfa6bc86
https://codeburst.io/i-believe-it-reallydepends-on-your-environment-and-how-well-protected-the-different-piecesare-7919bfa6bc86
https://codeburst.io/i-believe-it-reallydepends-on-your-environment-and-how-well-protected-the-different-piecesare-7919bfa6bc86
https://codeburst.io/i-believe-it-reallydepends-on-your-environment-and-how-well-protected-the-different-piecesare-7919bfa6bc86
https://codeburst.io/i-believe-it-reallydepends-on-your-environment-and-how-well-protected-the-different-piecesare-7919bfa6bc86
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb100
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb100
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb100
http://dx.doi.org/10.1109/MCC.2016.105
http://dx.doi.org/10.1109/MCC.2016.105
http://dx.doi.org/10.1109/MCC.2016.105
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1109/ICSA.2017.24
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb105
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb106
https://keyholesoftware.com/2017/03/13/security-in-the-microservices-paradigm/
https://keyholesoftware.com/2017/03/13/security-in-the-microservices-paradigm/
https://keyholesoftware.com/2017/03/13/security-in-the-microservices-paradigm/
https://curity.io/resources/videos/securing-apis-and-microservices-with-oauth-and-openid-connect/
https://curity.io/resources/videos/securing-apis-and-microservices-with-oauth-and-openid-connect/
https://curity.io/resources/videos/securing-apis-and-microservices-with-oauth-and-openid-connect/
https://techbeacon.com/app-dev-testing/want-develop-great-microservices-reorganize-your-team
https://techbeacon.com/app-dev-testing/want-develop-great-microservices-reorganize-your-team
https://techbeacon.com/app-dev-testing/want-develop-great-microservices-reorganize-your-team


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

G

I

J
J

J

J
K

K

K

K

K

K

M

M

M

M

M

M

N

N

N

N

N
N

N

N

O

O

O

O

O

O

P

P

P

P

P

olden B., 2017. 5 fundamentals to a successful microservice design.
TechBeacon. URL https://techbeacon.com/app-dev-testing/5-fundamentals-
successful-microservice-design.

Golden B., 2018. Creating a microservice: design first, code later. Tech-
Beacon. URL https://techbeacon.com/app-dev-testing/creating-microservice-
design-first-code-later.

Gupta, Natasha, 2018. Security strategies for devops, apis, containers and
microservices. URL https://cyware.com/news/security-strategies-for-devops-
apis-containers-and-microservices-blog-imperva-b68775a4.

Hofmann, Michael, Schnabel, Erin, Stanley, Katherine, et al., 2017. Microservices
Best Practices for Java. IBM Redbooks.

Indrasiri, K., 2017. Microservices in practice: from architecture to deployment.
URL https://dzone.com/articles/microservices-in-practice-1.

Indrasiri, K., Siriwardena, P., 2018a. Microservices for the Enterprise: Designing,
Developing, and Deploying. A Press, Berkeley, http://dx.doi.org/10.1007/978-
1-4842-3858-5.

ndrasiri, Kasun, Siriwardena, Prabath, 2018b. Microservices security fundamen-
tals. In: Microservices for the Enterprise. Springer, pp. 313–345.

ackson, Nic, 2017. Building Microservices with Go.
ain, Chintan, 2018. URL https://appsecusa2017.sched.com/event/B2Xh/top-10-

security-best-practices-to-secure-your-microservices.
amshidi, P., Pahl, C., Mendonca, N., Lewis, J., Tilkov, S., 2018. Microservices:

the journey so far and challenges ahead. IEEE Softw. 35, http://dx.doi.org/
10.1109/MS.2018.2141039.

ones, Steve, 2006. SOA Anti-Patterns.
alske, M., Mäkitalo, N., Mikkonen, T., 2018. Challenges when moving from

monolith to microservice architecture. In: Garrigós, I., Wimmer, M. (Eds.),
Current Trends in Web Engineering. Springer, Berlin, http://dx.doi.org/10.
1007/978-3-319-74433-9_3.

amaruzzaman, M., 2020. Microservice architecture and its 10 most im-
portant design patterns. URL https://towardsdatascience.com/microservice-
architecture-and-its-10-most-important-design-patterns-824952d7fa41.

anjilal, Joydip, 2020. 4 fundamental microservices security best practices.
URL https://www.techtarget.com/searchapparchitecture/tip/4-fundamental-
microservices-security-best-practices.

han, Arif, 2018. How to secure your microservices: Shopify case study.
URL https://dzone.com/articles/bountytutorial-microservices-security-how-
to-secur.

itchenham, B., Charters, S., 2007. Guidelines for performing systematic litera-
ture reviews in software engineering. Guidel. Perform. Syst. Lit. Rev. Softw.
Eng..

noche, H., Hasselbring, W., 2018. Using microservices for legacy software
modernization. IEEE Softw. 35, http://dx.doi.org/10.1109/MS.2018.2141035.

Král, Jaroslav, Ž.emlicka, Michal, 2009. Popular SOA Antipatterns. In: 2009
Computation World: Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns. pp. 271–276.

Kral, Jaroslav, Zemlicka, Michal, 2007. The Most Important Service-Oriented
Antipatterns. In: International Conference on Software Engineering Advances.
ICSEA 2007, pp. 29–29.

Krause, L., Microservices: Patterns and applications: Designing fine-grained
services by applying patterns, Lucas Krause, 2015.

Krishnamurthy, Thribhuvan, 2018. Transition to microservice architecture -
challenges. Transition Microservice Architecture - Chall..

Le, Duc Minh, Link, Daniel, Shahbazian, Arman, Medvidovic, Nenad, 2018a. An
empirical study of architectural decay in open-source software. In: 2018 IEEE
International Conference on Software Architecture. (ICSA), pp. 176–17609.
http://dx.doi.org/10.1109/ICSA.2018.00027.

Le, D.M., Link, D., Shahbazian, A., Medvidovic, N., 2018b. An empirical study of
architectural decay in open-source software. In: Proceedings - 2018 IEEE
15th International Conference on Software Architecture. ICSA 2018, pp.
176–185. http://dx.doi.org/10.1109/ICSA.2018.00027.

Lea, G., 2015. Microservices security: all the questions you should be asking. URL
https://www.grahamlea.com/2015/07/microservices-security-questions/.

Lemos, Robert, 2019. App security in the microservices age: 4 best practices.
URL https://techbeacon.com/app-dev-testing/app-security-microservices-
age-4-best-practices.

Lewis, J., Fowled, M., 2014. Microservices: A definition of this new architectural
term. ThoughtWorks. https://www.martinfowler.com/articles/microservices.
html, Accessed 5 June 2019.

Long J., 2015. The power, patterns, and pains of microservices. DZone. URL
https://dzone.com/articles/the-power-patterns-and-pains-of-microservices.

Mannino, Jack, 2017. Security in the land of microservices. URL https://www.
youtube.com/watch?v=JRmWlLY8MGE.

Marinescu, R., 2004. Detection strategies: Metrics-based rules for detecting
design flaws. In: IEEE International Conference on Software Maintenance.
ICSM, pp. 350–359. http://dx.doi.org/10.1109/ICSM.2004.1357820.

Marinescu, R., 2005. Measurement and quality in object-oriented design. In:
IEEE International Conference on Software Maintenance, ICSM, Vol. 2005.
pp. 701–704. http://dx.doi.org/10.1109/ICSM.2005.63.
42
Marinescu, R., Rajiu, D., 2004. Quantifying the quality of object-oriented design:
The factor-strategy model. In: Proceedings - Working Conference on Reverse
Engineering. WCRE, pp. 192–201. http://dx.doi.org/10.1109/WCRE.2004.31.

Mateos, C., Rodriguez, J.M., Zunino, A., 2015. A tool to improve code-first web
services discoverability through text mining techniques. Softw. - Pract. Exp.
45 (7), 925–948. http://dx.doi.org/10.1002/spe.2268.

ateus-Coelho, Nuno, Cruz-Cunha, Manuela, Ferreira, Luis Gonzaga, 2020.
Security in microservices architectures. In: CENTRIS Conference. pp. 1–12.

atteson, S., 2017a. 10 Tips for securing microservice architecture. URL
https://www.techrepublic.com/article/10-tips-for-securing-microservice-
architecture/.

atteson, S., 2017b. How to establish strong microservices security using SSL,
TLS, and API gateways. URL https://www.techrepublic.com/article/how-to-
establish-strong-microservice-security-using-ssl-tls-and-api-gateways/.

cLarty, Matt, Wilson, Rob, Morrison, Scott, 2018. Securing Microservices APIs.
OReilly.

ody, Virag, 2020. From zero to zero trust. URL https://www.forescout.com/
blog/from-zero-to-zero-trust-five-tips-to-simplify-your-journey/.

oha, N., Guéhéneuc, Y.-G., Duchien, L., Le Meur, A.-F., 2010. DECOR: A method
for the specification and detection of code and design smells. IEEE Trans.
Softw. Eng. 36 (1), 20–36. http://dx.doi.org/10.1109/TSE.2009.50.

adareishvili, I., Mitra, R., McLarty, M., Amundsen, M., 2016. Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly, Newton.

ayrolles, Mathieu, Moha, Naouel, Valtchev, Petko, 2013. Improving SOA an-
tipatterns detection in Service Based Systems by mining execution traces.
In: Reverse Engineering (WCRE), 2013 20th Working Conference on. pp.
321–330.

ehme, A., Jesus, V., Mahbub, K., Abdallah, A., 2019a. Fine-Grained Access Control
for Microservices. In: Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 11358 LNCS, pp. 285–300. http://dx.doi.org/10.1007/978-3-030-18419-
3_19.

ehme, A., Jesus, V., Mahbub, K., Abdallah, A., 2019b. Securing microservices. IT
Prof. 21 (1), 42–49. http://dx.doi.org/10.1109/MITP.2018.2876987.

ewman, S., 2015. Building Microservices. O’Reilly, Newton.
ewman, Sam, 2016. Security and microservices. URL https://samnewman.io/

talks/appsec-and-microservices/.
komo, P., Coetzee, M., 2019. Software Development Activities for Secure

Microservices. In: Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 11623 LNCS, pp. 573–585. http://dx.doi.org/10.1007/978-3-030-24308-
1_46.

ygard, Michael, 2018. Release it!: design and deploy production-ready software.
Release It! 1–376.

izumi, Willian N., Garcia, Alessandro F., Colanzi, Thelma E., Ferreira, Manuele,
Staa, Arndt V., 2015. On the relationship of code-anomaly agglomerations
and architectural problems. J. Softw. Eng. Res. Dev. 3 (1), 11. http://dx.doi.
org/10.1186/s40411-015-0025-y.

’Neill, Leon, 2020. Microservice security - what you need to know. URL https:
//crashtest-security.com/microservice-security-what-you-need-to-know/.

rdiales Coscia, J.L., Mateos, C., Crasso, M., Zunino, A., 2013. Anti-pattern free
code-first web services for state-of-the-art java WSDL generation tools. Int. J.
Web Grid Serv. 9 (2), 107–126. http://dx.doi.org/10.1504/IJWGS.2013.054108.

rdiales Coscia, J.L., Mateos, C., Crasso, M., Zunino, A., 2014. Refactoring code-
first web services for early avoiding WSDL anti-patterns: Approach and
comprehensive assessment. Sci. Comput. Program. 89 (PART C), 374–407.
http://dx.doi.org/10.1016/j.scico.2014.03.015.

uni, Ali, Gaikovina Kula, Raula, Kessentini, Marouane, Inoue, Katsuro, 2015. Web
Service Antipatterns Detection Using Genetic Programming. In: Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation.
GECCO ’15, ACM, Madrid, Spain, pp. 1351–1358.

uni, A., Kessentini, M., Inoue, K., Cinnéide, M.Ó., 2017. Search-Based Web
Service Antipatterns Detection. IEEE Trans. Serv. Comput. 10 (4), 603–617.

acheco, Vinicius Feitosa, 2018. Microservice Patterns and Best Practices: Explore
Patterns Like CQRS and Event Sourcing To Create Scalable, Maintainable, and
Testable Microservices. Packt Publishing Ltd.

alma, F., An, L., Khomh, F., Moha, N., Gueheneuc, Y.-G., 2014a. Investigating
the change-proneness of service patterns and antipatterns. In: Proceedings
- IEEE 7th International Conference on Service-Oriented Computing and
Applications. SOCA 2014, pp. 1–8. http://dx.doi.org/10.1109/SOCA.2014.43.

alma, F., Moha, N., Gueheneuc, Y.-G., 2019. UniDoSA: The unified specification
and detection of service antipatterns. IEEE Trans. Softw. Eng. 45 (10),
1024–1053. http://dx.doi.org/10.1109/TSE.2018.2819180.

alma, Francis, Moha, Naouel, Tremblay, Guy, Guéhéneuc, Yann-Gaël, 2014b.
Specification and detection of SOA antipatterns in web services. In: Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 8627 LNCS, pp. 58–73.

alma, Francis, Moha, Naouel, Tremblay, Guy, Guéhéneuc, Yann-Gaël, 2014c.
Specification and detection of SOA antipatterns in web services. In: Avge-
riou, Paris, Zdun, Uwe (Eds.), Software Architecture. Springer International
Publishing, Cham, ISBN: 978-3-319-09970-5, pp. 58–73.

https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
https://techbeacon.com/app-dev-testing/creating-microservice-design-first-code-later
https://techbeacon.com/app-dev-testing/creating-microservice-design-first-code-later
https://techbeacon.com/app-dev-testing/creating-microservice-design-first-code-later
https://cyware.com/news/security-strategies-for-devops-apis-containers-and-microservices-blog-imperva-b68775a4
https://cyware.com/news/security-strategies-for-devops-apis-containers-and-microservices-blog-imperva-b68775a4
https://cyware.com/news/security-strategies-for-devops-apis-containers-and-microservices-blog-imperva-b68775a4
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb113
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb113
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb113
https://dzone.com/articles/microservices-in-practice-1
http://dx.doi.org/10.1007/978-1-4842-3858-5
http://dx.doi.org/10.1007/978-1-4842-3858-5
http://dx.doi.org/10.1007/978-1-4842-3858-5
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb116
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb116
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb116
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb117
https://appsecusa2017.sched.com/event/B2Xh/top-10-security-best-practices-to-secure-your-microservices
https://appsecusa2017.sched.com/event/B2Xh/top-10-security-best-practices-to-secure-your-microservices
https://appsecusa2017.sched.com/event/B2Xh/top-10-security-best-practices-to-secure-your-microservices
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/MS.2018.2141039
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb120
http://dx.doi.org/10.1007/978-3-319-74433-9_3
http://dx.doi.org/10.1007/978-3-319-74433-9_3
http://dx.doi.org/10.1007/978-3-319-74433-9_3
https://towardsdatascience.com/microservice-architecture-and-its-10-most-important-design-patterns-824952d7fa41
https://towardsdatascience.com/microservice-architecture-and-its-10-most-important-design-patterns-824952d7fa41
https://towardsdatascience.com/microservice-architecture-and-its-10-most-important-design-patterns-824952d7fa41
https://www.techtarget.com/searchapparchitecture/tip/4-fundamental-microservices-security-best-practices
https://www.techtarget.com/searchapparchitecture/tip/4-fundamental-microservices-security-best-practices
https://www.techtarget.com/searchapparchitecture/tip/4-fundamental-microservices-security-best-practices
https://dzone.com/articles/bountytutorial-microservices-security-how-to-secur
https://dzone.com/articles/bountytutorial-microservices-security-how-to-secur
https://dzone.com/articles/bountytutorial-microservices-security-how-to-secur
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb125
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb125
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb125
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb125
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb125
http://dx.doi.org/10.1109/MS.2018.2141035
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb127
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb127
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb127
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb127
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb127
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb128
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb128
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb128
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb128
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb128
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb130
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb130
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb130
http://dx.doi.org/10.1109/ICSA.2018.00027
http://dx.doi.org/10.1109/ICSA.2018.00027
https://www.grahamlea.com/2015/07/microservices-security-questions/
https://techbeacon.com/app-dev-testing/app-security-microservices-age-4-best-practices
https://techbeacon.com/app-dev-testing/app-security-microservices-age-4-best-practices
https://techbeacon.com/app-dev-testing/app-security-microservices-age-4-best-practices
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://dzone.com/articles/the-power-patterns-and-pains-of-microservices
https://www.youtube.com/watch?v=JRmWlLY8MGE
https://www.youtube.com/watch?v=JRmWlLY8MGE
https://www.youtube.com/watch?v=JRmWlLY8MGE
http://dx.doi.org/10.1109/ICSM.2004.1357820
http://dx.doi.org/10.1109/ICSM.2005.63
http://dx.doi.org/10.1109/WCRE.2004.31
http://dx.doi.org/10.1002/spe.2268
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb142
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb142
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb142
https://www.techrepublic.com/article/10-tips-for-securing-microservice-architecture/
https://www.techrepublic.com/article/10-tips-for-securing-microservice-architecture/
https://www.techrepublic.com/article/10-tips-for-securing-microservice-architecture/
https://www.techrepublic.com/article/how-to-establish-strong-microservice-security-using-ssl-tls-and-api-gateways/
https://www.techrepublic.com/article/how-to-establish-strong-microservice-security-using-ssl-tls-and-api-gateways/
https://www.techrepublic.com/article/how-to-establish-strong-microservice-security-using-ssl-tls-and-api-gateways/
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb145
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb145
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb145
https://www.forescout.com/blog/from-zero-to-zero-trust-five-tips-to-simplify-your-journey/
https://www.forescout.com/blog/from-zero-to-zero-trust-five-tips-to-simplify-your-journey/
https://www.forescout.com/blog/from-zero-to-zero-trust-five-tips-to-simplify-your-journey/
http://dx.doi.org/10.1109/TSE.2009.50
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb148
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb148
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb148
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb149
http://dx.doi.org/10.1007/978-3-030-18419-3_19
http://dx.doi.org/10.1007/978-3-030-18419-3_19
http://dx.doi.org/10.1007/978-3-030-18419-3_19
http://dx.doi.org/10.1109/MITP.2018.2876987
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb152
https://samnewman.io/talks/appsec-and-microservices/
https://samnewman.io/talks/appsec-and-microservices/
https://samnewman.io/talks/appsec-and-microservices/
http://dx.doi.org/10.1007/978-3-030-24308-1_46
http://dx.doi.org/10.1007/978-3-030-24308-1_46
http://dx.doi.org/10.1007/978-3-030-24308-1_46
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb155
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb155
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb155
http://dx.doi.org/10.1186/s40411-015-0025-y
http://dx.doi.org/10.1186/s40411-015-0025-y
http://dx.doi.org/10.1186/s40411-015-0025-y
https://crashtest-security.com/microservice-security-what-you-need-to-know/
https://crashtest-security.com/microservice-security-what-you-need-to-know/
https://crashtest-security.com/microservice-security-what-you-need-to-know/
http://dx.doi.org/10.1504/IJWGS.2013.054108
http://dx.doi.org/10.1016/j.scico.2014.03.015
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb160
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb161
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb161
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb161
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb162
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb162
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb162
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb162
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb162
http://dx.doi.org/10.1109/SOCA.2014.43
http://dx.doi.org/10.1109/TSE.2018.2819180
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb165
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb166


T. Cerny, A.S. Abdelfattah, A.A. Maruf et al. The Journal of Systems & Software 206 (2023) 111829

P

P

P

P

R

R

R
R

R
R

R
R

S

S

S

S

S

S
S

S

S

S

S

T

T

T

T

T

T

V

W

Y

Z

Z

T
r
h
C

F
1
C
t
M
S
O
c
A

A
(
a
p
d
o
s
f
s
v
U
B
i
(
b
c
S
H
a
t
t

D
h
p
f
i
i
t
m
o
U
E
(

alma, Francis, Mohay, Naouel, 2015. A study on the taxonomy of service
antipatterns. In: Patterns Promotion and Anti-Patterns Prevention (PPAP),
2015 IEEE 2nd Workshop on. pp. 5–8.

alma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y.-G., Baudry, B., Jézéquel, J.-M.,
2013. SOA antipatterns: An approach for their specification and detection.
Int. J. Coop. Inf. Syst. 22 (4), http://dx.doi.org/10.1142/S0218843013410049.

Parecki, A., 2019. Oauth: When things go wrong. URL https://www.okta.com/
blog/2019/04/oauth-when-things-go-wrong/.

erera, Srinath, 2016. Walking the wire: Mastering the four decisions in
microservices architecture. URL https://softwareengineeringdaily.com/2018/
12/17/walking-the-wire-mastering-the-four-decisions-in-microservices-
architecture/.

igazzini, Ilaria, Fontana, Francesca Arcelli, Lenarduzzi, Valentina, Taibi, Davide,
2020. Toward microservice smells detection. In: Proceedings of the 3rd
International Conference on Technical Debt. pp. 92–97.

aible, Matt, 2020. Security patterns for microservice architectures. https://
springone.io/2020/sessions/security-patterns-for-microservice-architectures.

ajasekharaiah, Chandra, 2020. Cloud-Based Microservices: Techniques, Chal-
lenges, and Solutions. Springer.

ichards, Mark, 2016. Microservices AntiPatterns and Pitfalls. p. 66.
ichardson, Chris, 2014. Microservices: Decomposing applications for deploya-

bility and scalability. InfoQ 25, 15–16.
ichardson, C., 2018. Microservices Patterns. Manning Publications, New York.
ichter, D., Neumann, T., Polze, A., 2018. Security considerations for microser-

vice architectures. In: CLOSER 2018 - Proceedings of the 8th International
Conference on Cloud Computing and Services Science, Vol. 2018-January. pp.
608–615. http://dx.doi.org/10.5220/0006791006080615.

otem-Gal-Oz, Arnon, Bruno, Eric, Dahan, Udi, 2012. SOA Patterns. Manning.
uecker, B., 2019. 3 common pitfalls of microservices integration and how to

avoid them. InfoWorld. URL https://www.infoworld.com/article/3254777/3-
common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html.

ahni, V., 2020. Best practices for building a microservice architecture. URL
https://www.vinaysahni.com/best-practices-for-building-a-microservice-
architecture.

aleh, T., 2016. Microservices antipatterns. URL https://www.infoq.com/
presentations/cloud-anti-patterns.

ass, R., 2017. Security in the world of microservices. URL https:
//www.itpro.com/technology/artificial-intelligence-ai/368107/what-good-ai-
cyber-security-software-looks-like/.

avchenko, Dmitry I., Radchenko, Gleb I., Taipale, Ossi, 2015. Microservices
validation: Mjolnirr platform case study. In: 2015 38th International Con-
vention on Information and Communication Technology, Electronics and
Microelectronics. (MIPRO), IEEE, pp. 235–240.

chirgi, Thomas, 2021. Architectural quality attributes for the microservices
of care. URL https://courses.isds.tugraz.at/rkern/courses/sa/supplemental/
microservices-of-care.pdf.

harma, Sourabh, 2016. Mastering Microservices with Java. Packt Publishing Ltd.
iriwardena, P., 2019. Microservices security landscape. URL https://medium.

facilelogin.com/microservices-security-landscape-7b396b3b03ea.
iriwardena, Prabath, 2020. Challenges of securing microservices. URL https:

//www.styra.com/blog/security-challenges-in-microservices/.
mith, Tom, 2017. How do you secure microservices?. URL https://dzone.com/

articles/how-do-you-secure-microservices.
mith, Tom, 2019. How to secure APIs. URL https://dzone.com/articles/how-to-

secure-apis.
oldani, J., Tamburri, D.A., Heuvel, W.J., 2018. The pains and gains of mi-

croservices: A systematic gray literature review. J. Syst. Softw. 146, http:
//dx.doi.org/10.1016/j.jss.2018.09.082.

aibi, Davide, Lenarduzzi, Valentina, 2018. On the Definition of Microservice Bad
Smells. IEEE Softw. 35 (3), 56–62.

aibi, D., Lenarduzzi, V., Pahl, C., 2017. Processes, motivations, and issues for
migrating to microservices architectures: an empirical investigation. IEEE
Cloud Comput. 4, http://dx.doi.org/10.1109/MCC.2017.4250931.

aibi, Davide, Lenarduzzi, Valentina, Pahl, Claus, 2018. Architectural patterns for
microservices: A systematic mapping study. In: CLOSER 2018: Proceedings of
the 8th International Conference on Cloud Computing and Services Science;
Funchal, Madeira, Portugal, 19-21 March 2018. SciTePress.

aibi, Davide, Lenarduzzi, Valentina, Pahl, Claus, 2020b. Microservices anti-
patterns: A taxonomy. In: Microservices. Springer, pp. 111–128.

oledo, Saulo S. de, Martini, Antonio, Sjøberg, Dag I.K., 2020. Improving agility
by managing shared libraries in microservices. In: International Conference
on Agile Software Development. Springer, pp. 195–202.
43
roisi, Marco, 2017. 8 best practices for microservices app sec. URL https:
//techbeacon.com/app-dev-testing/8-best-practices-microservices-app-sec.

idal, Santiago, Guimaraes, Everton, Oizumi, Willian, Garcia, Alessandro,
Pace, Andrés Díaz, Marcos, Claudia, 2016. Identifying architectural problems
through prioritization of code smells. In: 2016 X Brazilian Symposium on
Software Components, Architectures and Reuse. (SBCARS), pp. 41–50. http:
//dx.doi.org/10.1109/SBCARS.2016.11.

olff, E., 2016. Microservices: Flexible Software Architecture. Addison-Wesley,
Reading.

arygina, T., Bagge, A.H., 2018. Overcoming security challenges in microser-
vice architectures. In: Proceedings - 12th IEEE International Symposium
on Service-Oriented System Engineering, SOSE 2018 and 9th International
Workshop on Joint Cloud Computing. JCC 2018, pp. 11–20. http://dx.doi.org/
10.1109/SOSE.2018.00011.

iade, Tarek, 2017. Python Microservices Development: Build, Test, Deploy, and
Scale Microservices in Python. Packt Publishing Ltd.

immermann, O., 2017. Microservices tenets. Comput. Sci. Res. Dev. 32, http:
//dx.doi.org/10.1007/s00450-016-0337-0.

omas Cerny is a Professor of Computer Science at Baylor University. His area of
esearch is software engineering, cloud systems, and code analysis. He received
is Master’s, and Ph.D. degrees from the Faculty of Electrical Engineering at the
zech Technical University in Prague, and an M.S. degree from Baylor University.

He started his academic career in 2009 at the Czech Technical University,
EE, from where he transferred to Baylor University in 2017. Dr. Cerny served
0+ years as the lead developer of the International Collegiate Programming
ontest Management System. He authored over 100 publications, mostly related
o code analysis and enterprise systems. Among his awards are best papers at
icroservices 2022, IEEE SOSE 2022, Closer 2022, LXNLP 2022, the Outstanding
ervice Award ACM SIGAPP 2018 and 2015, or the 2011 ICPC Joseph S. DeBlasi
utstanding Contribution Award. He served on the committee of multiple
onferences in the past few years, including program or conference chairs at
CM SAC, ACM RACS, and ICITCS.

ndrea Janes senior lecturer at FHV Vorarlberg University of Applied Sciences
Austria) and adjunct professor at University of Oulu (Finland). His research
ctivity is related to the area of software maintenance and development. In
articular, his research involves the identification of cost-efficient software pro-
uction techniques, quality assurance methodologies, as well as the application
f foundational aspects of software engineering methods such as testing and
oftware process improvement. He received the master’s in computer science
rom the Technical University of Vienna, Austria and the doctorate in computer
cience (with distinction) from the University of Klagenfurt (Austria). He was a
isiting researcher at the Research Center Hagenberg (Austria) and the Tampere
niversity (Finland). He was an assistant professor at the Free University of
olzano-Bozen (Italy). He served as a program committee member of various
nternational conferences and as a reviewer for various international journals
e.g., TSE, EMSE, JSS, and IST) in the field of software engineering. He has
een Doctoral Symposium co-chair of PROFES 2022, short papers and poster
o-chair of EASE 2023, program co-chair of PROFES 2023, Journal First and
pecial Issue chair of QUATIC2023, and industrial papers co-chair of SANER 2024.
e organized several workshops and events for practitioners focused on the
pplication of research in industry. Since 2017, he is also involved in technology
ransfer within Smart Data Factory, a group within the NOI technology park with
he goal of technology transfer within the local industry.

avide Taibi is full Professor at the University of Oulu (Finland) where he
ead the M3S Cloud research group. His research is mainly focused on Em-
irical Software Engineering applied to cloud-native systems, with a special
ocus on the migration from monolithic to cloud-native applications. He is
nvestigating processes, and techniques for developing Cloud Native applications,
dentifying cloud-native specific patterns and anti-patterns. He is member of
he International Software Engineering Network (ISERN) from 2018. Before
oving to Finland, he has been Assistant Professor at the Free University
f Bozen/Bolzano (2015–2017), post-doctoral research fellow at the Technical
niversity of Kaiserslautern and Fraunhofer Institute for Experimental Software
ngineering - IESE (2013–2014) and research fellow at the University of Insubria
2007–2011).

http://refhub.elsevier.com/S0164-1212(23)00224-8/sb167
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb167
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb167
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb167
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb167
http://dx.doi.org/10.1142/S0218843013410049
https://www.okta.com/blog/2019/04/oauth-when-things-go-wrong/
https://www.okta.com/blog/2019/04/oauth-when-things-go-wrong/
https://www.okta.com/blog/2019/04/oauth-when-things-go-wrong/
https://softwareengineeringdaily.com/2018/12/17/walking-the-wire-mastering-the-four-decisions-in-microservices-architecture/
https://softwareengineeringdaily.com/2018/12/17/walking-the-wire-mastering-the-four-decisions-in-microservices-architecture/
https://softwareengineeringdaily.com/2018/12/17/walking-the-wire-mastering-the-four-decisions-in-microservices-architecture/
https://softwareengineeringdaily.com/2018/12/17/walking-the-wire-mastering-the-four-decisions-in-microservices-architecture/
https://softwareengineeringdaily.com/2018/12/17/walking-the-wire-mastering-the-four-decisions-in-microservices-architecture/
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb171
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb171
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb171
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb171
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb171
https://springone.io/2020/sessions/security-patterns-for-microservice-architectures
https://springone.io/2020/sessions/security-patterns-for-microservice-architectures
https://springone.io/2020/sessions/security-patterns-for-microservice-architectures
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb173
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb173
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb173
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb174
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb175
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb175
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb175
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb176
http://dx.doi.org/10.5220/0006791006080615
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb178
https://www.infoworld.com/article/3254777/3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html
https://www.infoworld.com/article/3254777/3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html
https://www.infoworld.com/article/3254777/3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html
https://www.vinaysahni.com/best-practices-for-building-a-microservice-architecture
https://www.vinaysahni.com/best-practices-for-building-a-microservice-architecture
https://www.vinaysahni.com/best-practices-for-building-a-microservice-architecture
https://www.infoq.com/presentations/cloud-anti-patterns
https://www.infoq.com/presentations/cloud-anti-patterns
https://www.infoq.com/presentations/cloud-anti-patterns
https://www.itpro.com/technology/artificial-intelligence-ai/368107/what-good-ai-cyber-security-software-looks-like/
https://www.itpro.com/technology/artificial-intelligence-ai/368107/what-good-ai-cyber-security-software-looks-like/
https://www.itpro.com/technology/artificial-intelligence-ai/368107/what-good-ai-cyber-security-software-looks-like/
https://www.itpro.com/technology/artificial-intelligence-ai/368107/what-good-ai-cyber-security-software-looks-like/
https://www.itpro.com/technology/artificial-intelligence-ai/368107/what-good-ai-cyber-security-software-looks-like/
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb183
https://courses.isds.tugraz.at/rkern/courses/sa/supplemental/microservices-of-care.pdf
https://courses.isds.tugraz.at/rkern/courses/sa/supplemental/microservices-of-care.pdf
https://courses.isds.tugraz.at/rkern/courses/sa/supplemental/microservices-of-care.pdf
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb185
https://medium.facilelogin.com/microservices-security-landscape-7b396b3b03ea
https://medium.facilelogin.com/microservices-security-landscape-7b396b3b03ea
https://medium.facilelogin.com/microservices-security-landscape-7b396b3b03ea
https://www.styra.com/blog/security-challenges-in-microservices/
https://www.styra.com/blog/security-challenges-in-microservices/
https://www.styra.com/blog/security-challenges-in-microservices/
https://dzone.com/articles/how-do-you-secure-microservices
https://dzone.com/articles/how-do-you-secure-microservices
https://dzone.com/articles/how-do-you-secure-microservices
https://dzone.com/articles/how-to-secure-apis
https://dzone.com/articles/how-to-secure-apis
https://dzone.com/articles/how-to-secure-apis
http://dx.doi.org/10.1016/j.jss.2018.09.082
http://dx.doi.org/10.1016/j.jss.2018.09.082
http://dx.doi.org/10.1016/j.jss.2018.09.082
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb191
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb191
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb191
http://dx.doi.org/10.1109/MCC.2017.4250931
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb193
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb194
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb194
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb194
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb195
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb195
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb195
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb195
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb195
https://techbeacon.com/app-dev-testing/8-best-practices-microservices-app-sec
https://techbeacon.com/app-dev-testing/8-best-practices-microservices-app-sec
https://techbeacon.com/app-dev-testing/8-best-practices-microservices-app-sec
http://dx.doi.org/10.1109/SBCARS.2016.11
http://dx.doi.org/10.1109/SBCARS.2016.11
http://dx.doi.org/10.1109/SBCARS.2016.11
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb198
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb198
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb198
http://dx.doi.org/10.1109/SOSE.2018.00011
http://dx.doi.org/10.1109/SOSE.2018.00011
http://dx.doi.org/10.1109/SOSE.2018.00011
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb200
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb200
http://refhub.elsevier.com/S0164-1212(23)00224-8/sb200
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1007/s00450-016-0337-0

	Catalog and detection techniques of microservice anti-patterns and bad smells: A tertiary study
	Introduction
	Objectives
	Other tertiary studies
	Contribution
	Organization of this paper

	Methods
	Search and Selection Process
	Search String
	Data Sources
	Inclusion and Exclusion Criteria
	Search Process

	Quality Assessment
	Data Extraction
	Analysis, Synthesis Methods, and Bias Assessment
	Anti-patterns Coding
	Expert Validation and Pattern Classification

	Executing the study
	Search process results
	Data extraction and synthesis results


	Results
	RQ1: What secondary studies have been published in the area of MS anti-patterns?
	RQ2: Which distinct MS anti-patterns have been identified in the secondary studies?
	RQ3: How are MS anti-patterns classified in the secondary studies?
	Classified categories of anti-patterns

	RQ4: How can we automatically detect anti-patterns, and what techniques could be used?

	The Proposed MS Anti-pattern Detection Classification Framework
	Phase 1: Information extraction
	Phase 2: Intermediate representation
	Phase 3: Detection techniques
	Sample solutions and tools
	Backwards mapping to Mumptaz 

	Discussion
	Main Findings
	Implications
	Threats to Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	References


