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Abstract

Exponential tilting is a technique commonly used in fields such as statistics, probability,
information theory, and optimization to create parametric distribution shifts. Despite its
prevalence in related fields, tilting has not seen widespread use in machine learning. In
this work, we aim to bridge this gap by exploring the use of tilting in risk minimization.
We study a simple extension to ERM—tilted empirical risk minimization (TERM)—which
uses exponential tilting to flexibly tune the impact of individual losses. The resulting
framework has several useful properties: We show that TERM can increase or decrease the
influence of outliers, respectively, to enable fairness or robustness; has variance-reduction
properties that can benefit generalization; and can be viewed as a smooth approximation
to the tail probability of losses. Our work makes connections between TERM and related
objectives, such as Value-at-Risk, Conditional Value-at-Risk, and distributionally robust
optimization (DRO). We develop batch and stochastic first-order optimization methods for
solving TERM, provide convergence guarantees for the solvers, and show that the framework
can be efficiently solved relative to common alternatives. Finally, we demonstrate that
TERM can be used for a multitude of applications in machine learning, such as enforcing
fairness between subgroups, mitigating the effect of outliers, and handling class imbalance.
Despite the straightforward modification TERM makes to traditional ERM objectives,
we find that the framework can consistently outperform ERM and deliver competitive
performance with state-of-the-art, problem-specific approaches.

Keywords: Exponential tilting, empirical risk minimization, Value-at-Risk, superquantile
optimization, fairness, robustness.
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1. Introduction

Many statistical estimation procedures rely on the concept of empirical risk minimization
(ERM), in which the parameter of interest, fe©@CR?, is estimated by minimizing an average
loss over the data {z1,....zn}:

)= 3 flaish). 1)
i€[N]

Although ERM is widely used in machine learning, it is known to perform poorly in
situations where average performance is not an appropriate surrogate for the problem of
interest. Significant research has thus been devoted to developing alternatives to traditional
ERM for diverse applications, such as learning in the presence of noisy /corrupted data (Khetan
et al., 2018; Jiang et al., 2018), performing classification with imbalanced data (Lin et al.,
2017; Malisiewicz et al., 2011), ensuring that subgroups within a population are treated
fairly (Hashimoto et al., 2018; Samadi et al., 2018), or developing solutions with favorable
out-of-sample performance (Duchi and Namkoong, 2019).

In this paper, we suggest that deficiencies in ERM can be flexibly addressed via a unified
framework, tilted empirical risk minimization (TERM). TERM encompasses a family of
objectives, parameterized by a real-valued hyperparameter, ¢t. For ¢t € R\?, the t-tilted loss
(TERM objective) is given by:

~ 1 1 y
R(t;6) := ~ log <N > etﬂ%@)) : (2)

i€[N]

TERM generalizes ERM as the 0-tilted loss recovers the average loss, i.e., R(0,0)=R(f).:
It also recovers other popular alternatives such as the max-loss (¢—+00) and min-loss (t——0)
(Lemma 4). As we discuss below, although tilted risk minimization is not widely used in
machine learning, variants of tilting have been extensively studied in related fields including
statistics, applied probability, optimization, and information theory.

1.1 Perspectives on Exponential Tilting

We begin by defining exponential tilting and discussing uses of tilting in various fields. Let
P := {py} be a set of parametric distributions. For any z € X, we let f(z;0) be the
information of x under €, which is defined as (Cover and Thomas, 1991):

f(z;0) := —log py(x). (3)

Further assume that X is a random variable drawn from distribution p(-), which is not
necessarily matched to P, i.e., the model family may be misspecified. The cumulant generating
function of the information random variable, f(X;60), can be stated as (Dembo and Zeitouni,
2009, Section 2.2):

Ax(t:0) = log (E [/ |) —log " p(a)po ), (4)

1. R(0;6) is defined in (20) via the continuous extension of R(t;6).
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where in this paper E[-] denotes expectation with respect to the true distribution p unless
otherwise stated. This expectation is commonly referred to as an exponential tilt of the infor-
mation density, and can induce parametric distribution shifts that have varied applications
in probability, statistics, and information theory. In particular, it is noteworthy that if P is
an exponential family of distributions parameterized by 6, then the tilted distribution py(x)
(when normalized by §, po(x)tdz) also belongs to the same exponential family. Further,
given samples {l"i}ie[ N, the empirical cumulant generating function is defined as:

A(t;0) := log % Z {etf(“;e)} . (5)

i€[N]

It is thus evident that TERM (2) can be viewed as an appropriately scaled variant of the
empirical cumulant generating function in (5). Although tilting of this form has been used in
a number of related disciplines, uses of exponential tilting in machine learning are relatively
unexplored. We provide several perspectives on exponential tilting from other fields below.

Statistics. Exponential tilting is well-known as a distribution shifting technique in statis-
tics, where the main idea is to draw samples from an exponentially tilted version of the
original distribution to improve the convergence properties of statistical estimation, especially
when the distribution of interest belongs to an exponential family, such as Gaussian or multi-
nomial. Common use cases include rejection sampling, rare-event simulation, saddle-point
approximation (Butler, 2007, p. 156), and importance sampling (Siegmund, 1976).

Applied probability. In large deviations theory, exponential tilting lies at the heart of
deriving concentration bounds. For example, Chernoff bounds apply Markov’s inequality to
e!X | which results in a parametric set of bounds by using exponential tilts of various orders.
The bound may then be further optimized on the real tilt value to derive the tightest possible
bound (Dembo and Zeitouni, 2009).

Information theory. While source coding limits and channel capacity are characterized
by Shannon entropy and Shannon mutual information (which are simple averages over the
information (3)) (Cover and Thomas, 1991), there are other elements of information theory
that are not characterized by the average, such as error exponents in channel decoding (Gal-
lager, 1968), probability of error in list decoding (Merhav, 2014), and computational cost in
sequential decoding (Massey, 1994; Arikan, 1996). These fundamental elements of information
theory are asymptotically determined by a non-zero tilted cumulant generating function of
the information random variable (3) (see (Beirami et al., 2018) for further discussion).

Optimization. Exponential tilting has also appeared as a minimax smoothing approach
in optimization (Kort and Bertsekas, 1972; Pee and Royset, 2011; Liu and Theodorou,
2019). Such smooth approximations to the max often appear through LogSumExp functions,
with applications in geometric programming (Calafiore and El Ghaoui, 2014, Sec. 9.7), and
boosting (Mason et al., 1999; Shen and Li, 2010). We discuss min-max objectives and the
connections with TERM in several subsequent sections of the paper.

Machine learning. Despite the rich history of tilted objectives in related fields, they have
not seen widespread use in ML beyond limited applications such as robust regression (Wang
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Figure 1: Toy examples illustrating TERM as a function of ¢: (a) finding a point estimate
from a set of 2D samples, (b) linear regression with outliers, and (c) logistic regression with
imbalanced classes. While positive values of ¢ magnify outliers, negative values suppress
them. Setting t=0 recovers the original ERM objective (1).

et al., 2013) and sequential decision making (Howard and Matheson, 1972; Borkar, 2002). In
this work, we argue that tilting is a critical yet undervalued tool in machine learning. We
demonstrate the effectiveness of tilting by (i) rigorously studying properties of the TERM
objective, and (ii) exploring its utility for a wide range of ML applications. Surprisingly, we
find that this simple extension to ERM can match or exceed state-of-the-art performance
from highly tuned, bespoke solutions to common ML problems, from learning with noisy data
to ensuring fair performance between subgroups. We highlight several motivating applications
of TERM below and provide an outline of the remainder of the paper in Section 1.3.

1.2 Motivating Examples

To motivate how the TERM objective (2) may be used in machine learning, we provide
several running examples below, which are illustrated in Figure 1.

(a) Point estimation: As a first example, consider determining a point estimate from a
set of samples that contain some outliers. We plot an example 2D dataset in Figure 1a, with
data centered at (1,1). Using traditional ERM (i.e., TERM with ¢ = 0) recovers the sample
mean, which can be biased towards outlier data. By setting ¢ < 0, TERM can suppress
outliers by reducing the relative impact of the largest losses (i.e., points that are far from the
estimate) in (2). A specific value of ¢ < 0 can in fact approximately recover the geometric
median, as the objective in (2) can be viewed as approximately optimizing specific loss
quantiles (a connection which we make explicit in Section 2). In contrast, if these ‘outlier’
points are important to estimate, setting ¢ > 0 will push the solution towards a point that
aims to minimize variance, as we prove in Section 2, Theorem 3.

(b) Linear regression: A similar interpretation holds for the case of linear regression
(Figure 2b). Ast — —oo, TERM finds a line of best while ignoring outliers. However, this
solution may not be preferred if we have reason to believe that these ‘outliers’ should not
be ignored. As t — +00, TERM recovers the min-max solution, which aims to minimize
the worst loss, thus ensuring the model is a reasonable fit for all samples (at the expense
of possibly being a worse fit for many). Similar criteria have been used, e.g., in defining
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notions of fairness (Hashimoto et al., 2018; Samadi et al., 2018). We explore several use-cases
involving robust regression and fairness in more detail in Section 7.

(¢) Logistic regression: Finally, we consider a binary classification problem using logistic
regression (Figure 2¢). For ¢t € R, the TERM solution varies from the nearest cluster center
(t——00), to the logistic regression classifier (t=0), towards a classifier that magnifies the
misclassified data (t—-+00). We note that it is common to modify logistic regression classifiers
by adjusting the decision threshold from 0.5, which is equivalent to moving the intercept
of the decision boundary. This is fundamentally different than what is offered by TERM
(where the slope is changing). As we show in Section 7, this added flexibility affords TERM
with competitive performance on a number of classification problems, such as those involving
noisy data, class imbalance, or a combination of the two.

1.3 Contributions

In this work, we explore the use of tilting in machine learning through TERM, a simple, unified
framework that can flexibly address various challenges with empirical risk minimization. We
first analyze the objective and its solutions, showcasing the behavior of TERM with varying
tilt parameters ¢ (Section 2). We also establish connections between TERM and related
approaches such as distributionally robust optimization in Section 3.

We rigorously analyze the relations between TERM and other risks (e.g, Value-at-Risk
(VaR), Conditional Value-at-Risk (CVaR), and Entropic Value-at-Risk (EVaR)) in Section 4.
In particular, we introduce a new risk measure based on TERM, called Tilted Value-at-Risk
(TiVaR), to approximate VaR. We show that TiVaR can provide a better approximation of
VaR than CVaR in certain regimes, and improves upon EVaR in all regimes.

We develop efficient first-order batch and stochastic methods for solving TERM, both
for hierarchical and non-hierarchical cases (Section 5 and 6). We provide convergence rates
scaling with the hyperparameter ¢t on both convex and non-convex problems for both batch
and stochastic algorithms. Our solvers run within 2-3x wall-clock time compared with that
of ERM in all explored case studies.

Finally, we show via numerous case studies that TERM is competitive with existing,
problem-specific state-of-the-art solutions (Section 7). We also extend TERM to handle
compound issues, such as the simultaneous existence of noisy samples and imbalanced classes
(Section 6). Our results demonstrate the effectiveness and versatility of tilted objectives in
machine learning.

We note that the material in this paper was presented in part at ICLR 2021 (Li and Beirami
et al., 2021). Compared to this earlier work, the current manuscript provides additional
historical background of tilting (Section 1), establishes stronger and novel relationships
between tilted losses and other risk-averse objectives in the literature (Section 3 and Section 4),
provides convergence guarantees for our stochastic solver of TERM (Section 5), offers
comprehensive details on applications of the framework in practice, and considers new
applications of TERM to meta-learning and heteroskedastic deep learning (Section 7).

Outline. This paper is organized as follows. We discuss general properties and interpreta-
tions of TERM in Section 2. We connect TERM with other prior risk measures in Section 3
and propose a new risk motivated by TERM in Section 4. In Section 5, we develop both batch
and stochastic algorithms for optimizing TERM and provide convergence guarantees for them.
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We extend TERM to hierarchical multi-objective tilting in Section 6 and demonstrate the
flexibility and competitive performance of the TERM framework via real-world applications
in Section 7. We discuss related work in Section 8 and conclude the paper with Section 9.

2. TERM: Properties and Interpretations

To better understand the performance of the ¢-tilted losses in (2), in this section we provide
several interpretations of the TERM solutions, leaving the full proofs to the appendix. We
make no distributional assumptions on the data, and study properties of TERM under the
assumption that the loss function forms a generalized linear model, e.g., Lo loss and logistic
loss. However, we also obtain favorable empirical results using TERM with other objectives
such as PCA and deep neural networks in Section 7, motivating the extension of this part of
our theory beyond GLMs in future work.

2.1 Assumptions

We first provide notation and assumptions that are used throughout our theoretical analyses.
The results in this paper are derived under one of the following three nested assumptions
(the assumptions become progressively more restrictive, i.e., 3 — 2 — 1):

Assumption 1 (Continuous differentiability). For i€ [N], the loss function f(x;;60) belongs
to the differentiability class C' (i.e., continuously differentiable) with respect to 6 € © < R,

Assumption 2 (Smoothness and strong convexity condition). Assume that Assumption 1
is satisfied. In addition, for any i € [N], f(xi;60) belongs to differentiability class C? (i.e.,
twice differentiable with continuous Hessian) with respect to 6. We further assume that there
exist Bmin, Bmax € R7C such that for i € [N] and any 6 € © < RY,

PminI < vgng(l'i; 0) < Bmax], (6)

where I is the identity matriz of appropriate size (in this case d x d), and there does not
exist any 6 € O, such that Vo f(x;;0) =0 for alli e [N].

Assumption 3 (Generalized linear model condition (Wainwright and Jordan, 2008)). Assume
that Assumption 2 is satisfied. Further, assume that the loss function f(x;8) is given by

fa;0) = A(0) = 07T (), (7)
where A(+) is a convex function such that there exists Bmax where for any 6 € © € RY,
/BminI =< vggTA<9> =< BmaXI7 (8)

and

) T(@)T)" > 0. ©)

1€[N]

This set of assumptions become the most restrictive with Assumption 3, which essen-
tially requires that the loss be the negative log-likelihood of an exponential family. While
the assumption is stated using the natural parameter of an exponential family for ease
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of presentation, the results hold for any bijective and smooth reparameterization of the
exponential family. For example, Assumption 3 is satisfied by the commonly used Lo loss
for regression and logistic loss for classification (see toy examples (b) and (c) in Figure 1).
ey ()T (z;)7 > 0 assumes a reasonable regularity on the dataset {zi}ic(n). For in-
stance, in the case of linear regression (T'(x;) = z; € R?), it reduces to the standard regularity
assumption X X7 > 0 (where X := [z1,--- ,zy] € RY). While Assumption 3 is not
satisfied when we use neural network function approximators in Section 7, we observe favor-
able numerical results motivating the extension of these results beyond the cases that are
theoretically studied in this paper.

In the sequel, many of the results are concerned with characterizing the t-tilted solutions
defined as the parametric set of solutions of ¢-tiled losses by sweeping t € R,

0(t) € arg min R(¢; 0), (10)
7EC)

where © € R? is an open subset of R%. Further, let the optimal tilted objective be defined as
F(t) := R(t;0(t)). (11)
We state a final assumption, on 6(¢), below.

Assumption 4 (Strict saddle property (Definition 4 in Ge et al. (2015))). We assume that
the set arg mingeg ﬁ(t; 0) is non-empty for all t € R. Further, we assume that for allt € R,
E(t; 0) is a “strict saddle” as a function of 0, i.e., for all local minima, ngﬁ(t; 0)>0, and
for all other stationary solutions, )\min(vgmﬁ(t; 0)) < 0, where Amin(-) is the minimum
etgenvalue of the matriz.

We use the strict saddle property in order to reason about the properties of the t-tilted
solutions. In particular, since we are solely interested in the local minima of R(¢;6), the
strict saddle property implies that for every 6(t) € arg mingeg R(t;0), for a sufficiently small

r, for all 6 € B(0(t),r),
Vi, R(t:6) > 0, (12)

where B(6(t),r) denotes a d-ball of radius r around 6(t). We will show later in Section 2.2
that the strict saddle property is readily verified for ¢t € R>° under Assumption 2, and we
need Assumption 4 to be able to reason about t € R<C,

2.2 General Properties of TERM

We begin by noting several general properties of the TERM objective (2). In particular: (i)
R(t;0) is L-Lipschitz continuous in 6 if f(z;0) is L-Lipschitz (Lemma 1); (ii) If f(z;0) is
strongly convex, the t-tilted loss is strongly convex for ¢ > 0 (Lemma 2); and (iii) Given a
smooth f(x;#), the t-tilted loss is smooth for all finite ¢ (Lemma 3). We state these properties
more formally below.

Lemma 1 (Lipschitzness of E(t;&)). For anyt € R and 0 € ©, if for i € [N], f(x;;0) is

X

L-Lipschitz conditnuous in 0, then R(t;0) is L-Lipschitz in 6.
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Lemma 2 (Tilted Hessian and strong convexity for t € R>%). Under Assumption 2, for any
teR,

~ t ~ ~ 0 B4
Voor B(1:0) = 5= > (VoS (x:20) = VoR(1:6)) (VoS (2:1:0) — VoR(t:9)) ! )10

1€[N]
(13)
1 o
* oy 2 Vi S0, (14)

In particular, for all @ € © and all t € R0, the t-tilted objective is strongly convex. That is
V2,1 R(t;0) > Buinl. (15)

Lemma 1 and 2 are proved in Appendix A. Lemma 2 also implies that under Assumption 2,
the strict saddle assumption (Assumption 4) is readily verified.

Lemma 3 (Smoothness of R(t;0)). For any t € R, let B(t) be the smoothness parameter of
twice differentiable R(t;0):
B(E) = dmax (V3 (130)) (16)

where ngé(t; 0) is the Hessian of R(t;0) at 6 and Amax(+) denotes the largest eigenvalue.

Under Assumption 2, for any t € R, é(t;@) is a p(t)-smooth function of 6. Further, for
te RSO’Z

B(t) < Bmax, (17)
where Puax s defined in Assumption 2. Fort € R™0,
0 < lim Bl) < 0. (18)
t—too ¢

Lemma 3 (proved in Appendix A.1) indicates that t-tilted losses are [3(¢)-smooth for all ¢.
B(t) is bounded for all negative ¢t and moderately positive ¢, whereas it scales linearly with
t as t — 400, which has been previously studied in the context of exponential smoothing
of the max (Kort and Bertsekas, 1972; Pee and Royset, 2011). This can also be observed
visually via the toy example in Figure 2.

As discussed in Section 1, TERM can recover traditional ERM (¢=0), the max-loss
(t—+00), and the min-loss (t——00). We formally state this in Lemma 4 below.

Lemma 4. Under Assumption 1,

R(—0;0) := im R(t;0) = R(6), (19)
R(0;6) := lim R(t:;0) = R(6), (20)
R(+00;0) := Jim_ R(t;0) = R(6), (21)

2. R<? denotes the set of non-positive real numbers.
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Figure 2: TERM objectives for a squared loss with three samples (N=3). As ¢ moves from
—o0 to +00, t-tilted losses recover min-loss, avg-loss, and max-loss. TERM is smooth for all
finite ¢ and convex for positive t.

((

where R(6) is the maz-loss and R() is the min-loss®:

RWN=gﬁﬂmﬂ% RW%=g%ﬂmﬂ) (22)

Note that Lemma 4 has been studied or observed before in the entropic risk literature (e.g.,
Ahmadi-Javid, 2012), as well as other contexts (Cohen and Shashua, 2014). This lemma
also implies that 6(0) is the ERM solution, #(+c0) is the min-max solution, and §(—o) is
the min-min solution. In other words, a benefit of TERM is that it offers a continuum of
solutions between the min and max losses.

Providing a smooth trade-off between these specific losses can be beneficial for a number
of practical use-cases—both in terms of the resulting solution and the difficulty of solving
the problem itself. We empirically demonstrate the benefits of such a trade-off in Section 7.
We also visualize the solutions to TERM for a toy problem in Figure 2, which allows us to
illustrate several special cases of the general framework. Interestingly, we additionally show
that the TERM solution can be viewed as a smooth approximation to the tail probability of
losses, which effectively minimizes quantiles of losses such as the median loss (Section 4).
In Figure 2, it is clear to see why this may be beneficial, as the median loss (orange) can
be highly non-smooth in practice. In Theorem 1 and 2 below, we formally characterize how
tilted objectives change as a function of values ¢ (proofs provided in Appendix A).

Theorem 1 (Tilted objective is increasing with t). Under Assumption 3, for all t € R, and

all 6 € ©,
2 ~

= 2
= R(t:0) > (23)

3. When the argument of the max-loss or the min-loss is not unique, for the purpose of differentiating the
loss function, we define R(6) as the average of the individual losses that achieve the maximum, and R(6)
as the average of the individual losses that achieve the minimum.
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Theorem 2 (Optimal tilted objective is increasing with t). Under Assumption 3, for all
teR, and all € O,

CFM) = ZR(t:6(t) = 0. (24)

Recall that TERM as t — —o0 and t — o0 corresponds to min-loss and max-loss,
respectively. We discuss in Section 4.2 that solving TERM with any ¢t € R can indeed be
viewed as approximately minimizing the k-th smallest loss (k € [IV]) among all N individual
losses. As we increase k from 1 to N, the corresponding value of ¢t sweeps in (—o0, 00).
Theorem 2 hence roughly states that the optimal k-th smallest loss is non-decreasing with k,
which is intuitively expected.

We next provide two interesting interpretations of the TERM framework to further
understand its behavior.

2.3 Interpretation 1: Re-Weighting Samples to Magnify /Suppress Outliers

point estimation (t = —2) point estimation (¢ = 0) point estimation (¢ = 2)
2.0 2.0 2.0
.
1 e ® & 1 o L5
L[] L L) ™ s
A3 % 2N )
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Figure 3: We visualize the size of the samples using their gradient weights. Negative t’s
(t = —2 on the left) focus on the inlier samples (suppressing outliers), while positive t’s (t = 2
on the right) magnify the outlier samples.

As discussed via the toy examples in Section 1, TERM can be tuned (using t) to magnify
or suppress the influence of outliers. We make this notion rigorous by exploring the gradient
of the t-tilted loss in order to reason about the solutions to the objective defined in (2).

Lemma 5 (Tilted gradient). For a smooth loss function f(z;6),

VoR(t:0)= ' wi(t:0)Vof (z::0), (25)
i€[N]

10
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where tilted weights are given by

etf(m;@) 1 . -
() — — = SUf(zs0)—R(4:6)) 2
wi(t;0) : Zje[N] etf(x;:0) N€ ' (26)
Proof. Under Assumption 1, we have:

Xy 1 1 £ (i)
Vol(0) = Vo { S log | + dle

iepvy Vo (zis 0)etf (xi:6)

[N etf(xz';@)

(27)
i€[N] ZZE[ ]

O

Lemma 5 provides the gradient of the tilted objective, which has been studied previously
in the context of exponential smoothing (see Pee and Royset (2011, Proposition 2.1)). From
this, we can observe that the tilted gradient is a weighted average of the gradients of the
original individual losses, where each data point is weighted exponentially proportional to
the value of its loss. Note that ¢ = 0 recovers the uniform weighting associated with ERM,
i.e., wi(t;0) = 1/N. For positive t, this has the effect of magnifying the outliers—samples
with large losses—by assigning more weight to them, and for negative ¢, it suppresses the
outliers by assigning less weight to them (Figure 3).

Generalizing the notion of tilted gradients (weighted average of individual gradients), we
define tilted empirical mean over any N-vector u € R below, which will be used throughout
the paper.

Definition 1 (Tilted empirical mean and variance). For u € RY, let weighted empirical
mean with weights w € AN (where AN stands for N dimensional simplex) be defined as

Eyw(u) =Y wiu;. (28)
i€[N]
Tilted empirical mean is weighted empirical mean with tilted weights, i.e.,
Ew(t;9)<u) = Z wi(t; G)uz, (29)
i€[N]
By iy (W) = %} wit;00)us, By = B0 (W), (30)
1S

where w;(t;0) is defined in Eq. (26), and 6(t) is defined in Eq. (10). We also refer to E; as
the “t-tilted empirical mean”. Similarly, tilted empirical variance is defined as

~ A~ 2
Valy(16)(0) = Ew(s0()) (uz — Ews00) (u)> : (31)
G i) (W = Br(wi — By (w)?, Vay = a0 (W), (32)

and we refer to var; as the “t-tilted empirical variance”.

As discussed before, the full gradient of TERM is tilted empirical mean of individual
gradients {Vg f(7;0)};e[n] With weights proportional to etf(#i:9) Tn the next section as well
as Appendix A.3, we will prove other properties of TERM using tilted empirical mean and
variance defined here.

11
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2.4 Interpretation 2: Empirical Bias/Variance Trade-off

Another key property of the TERM solutions is that for any ¢ € R, t-tilted empirical variance
of the losses across all samples will decrease if we increase ¢ by a small amount of value. We
formally stated this in Theorem 3.

Theorem 3 (Variance reduction). Let £(0) := (f(x1;6)),..., f(zn;8)). Then, under As-
sumption 3 and Assumption 4, for any t € R,

@i} <o (33)

t=T1

Note that var, is 7-tilted empirical variance defined in Eq. (32). Hence, for any t, the
t-tilted empirical variance among N losses will decrease if we increase ¢ by a small value.
When 7 = 0, var, reduces to standard empirical variance. In particular, Theorem 3 states
that the empirical variance of the loss vector decreases if ¢ is chosen to be a small positive
value. Therefore, it is possible to trade off between optimizing the average loss vs. reducing
variance, allowing the solutions to potentially achieve a better bias-variance trade-off for
generalization (Maurer and Pontil, 2009; Bennett, 1962; Hoeffding, 1994). At a high level, this
property is consistent with and extends the approximation of TERM mentioned by Liu and
Theodorou (2019, Section V.A), which approximates TERM as the empirical risk regularized
with variance of the loss at ¢ = 0. We rely on this property to achieve better generalization
in classification in Section 7.

In addition to empirical variance across all losses, there are other related distribution
uniformity measures. In Theorem 4 below, we also prove that entropy of the weight
distribution at solution #(t) tilted by 7 close to ¢ is increasing with ¢, which indicates that
larger t’s encourages more uniform solutions measured via entropy.

Theorem 4 (Gradient weights become more uniform by increasing t). Under Assumption 3
and Assumption 4, for any t € R>0,

& H(w(r:6(t)

4

T=t%
where H(-) denotes the Shannon entropy function measured in nats,

H(w(t0)) = — > w;(t; 0) logw;(t; 0). (35)
i€[N]

Full proofs of the theorems presented in this section can be found in Appendix A.3. In the
next section, we connect TERM to other objectives. Note that the results in all subsequent
sections do not require the GLMs assumption, unless stated otherwise.

3. Connections to Other Risk Measures

In this section (and subsequently in Section 4) we explore TERM by comparing, contrasting,
and drawing connections between TERM and other common risk measures. To do so, we

12
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first introduce a distributional version of TERM, which is closely related to entropic risk
(measure) in previous literature (Ahmadi-Javid, 2012; Follmer and Schied, 2004). Entropic
risk, denoted as Rx(t;60), can be viewed as the scaled cumulant generating function of
F(X:0), ie.,

Rx(160) := ;Ax(5:0) = 7 log (B[00 ) = 1o Mp@m(@) . (30

We note that entropic risk is usually defined over ¢ € R>? in the literature (Follmer and
Schied, 2004). In Eq. (36) above, we naturally extend its definition to support ¢ € R. The
TERM objective R(t;0) is the empirical version of entropic risk Rx (¢;6) (t € R). One of the
contributions of this work can be viewed as providing an operational meaning to the value of
the (empirical) entropic risk and rigorously investigating its properties for t € R<C. In the
next sections (Section 3.1-Section 3.3), we characterize various relations between tilted risks
(TERM or entropic risk) and other common risk measures, both in terms of the empirical
variants (involving TERM) and distributional forms (involving entropic risk).

3.1 TERM and Rényi Cross Entropy

We begin by demonstrating that TERM can be viewed as form of Rényi cross entropy
minimization, which helps to explain the uniformity properties of TERM discussed in
Section 2.4. Consider the cross entropy between p and py defined by

H(plpa) = BL(X30)] = Sptetog (). (37)

Hence, minimizing E [ f(X; )] is equivalent to minimizing the cross entropy between the
true distribution and the postulated distribution. The empirical variant of (37) would be
empirical risk minimization (1).

For p € R*Y, let Rényi cross entropy of order p between p and g be defined as:*

)(ple) == 7= log (me)q(x)p-l) . (39)

Rényi cross entropy can be viewed as a natural extension of cross entropy, and in fact
it recovers cross entropy for p = 1, i.e., Hi(p|q) = H(p|lq). Rényi cross-entropy can also
be viewed as a natural extension of Rényi entropy, which it recovers when p = g, i.e.,
H,(pllp) = H,(p), where Rényi entropy of order p is defined as

= S log (Z p<x>p> : (39)

It is straightforward to see that the entropic risk can be expressed in terms of Rényi cross
entropy:

Hp<p) =

Rx(t;0) = Hi—(p||ps)- (40)

4. H, is defined via continuous extension.

13
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Equivalently, in the empirical world, TERM can be expressed as:

~

R(t;0) = Hi—(u|w(L;0)), (41)

where u denotes the uniform N-vector and w(1;6) := (wi(1;0),...,w,(1;0)) with w;(1;0)
defined in Eq. (26), and for any two N-vectors p and q,

Hy(pla) := ! log (Z pz’qfl> : (42)

1—P iEN

In other words, if we treat the loss f(x;;60) as log-likelihood of the sample z; under py, this
implies that TERM is the Rényi entropy of order (1 —t) between the uniform vector and the
normalized likelihood vector of all samples, w(1;6). Hence, minimizing over € is encouraging
the uniformity of w(1;6) in the sense of the Rényi cross entropy with the uniform vector.

3.2 TERM as a Regularizer to Empirical Risk

TERM can also be interpreted as a form of regularization in traditional ERM. We first
note that by Taylor series expansion at ¢ = 0, TERM can be approximately decomposed
into empirical risk regularized by t times the empirical variance of the loss, for small ¢ (Liu
and Theodorou, 2019, Section V.A). Here, we provide an exact interpretation of TERM as
regularized ERM for all ¢. We first look at the distributional case, i.e., relating Rx (¢;6) to
cross entropy as follows.

Lemma 6. The entropic risk of order t can be stated as:

Ry (t:6) = H(plpo) + 5 DIT(p. 0, 1)) (13)

where D denotes KL divergence between two distributions and T (p,pg, —t) is a mismatched
tilted distribution defined as (Salamatian et al., 2019, Definition 1)
p(x)pe(x)”"

I WO

(44)

Proof. Consider the following equation:

S p(a) log (T(M):_@p@)bg L g (Zp@)pe(x)—t), (45)

p,pg, —t)() po() ~

which directly implies the desired identity. O

In other words, entropic risk of order t is equivalent to the cross entropy risk regularized
via a tilted mismatched distribution. Let w(¢;0) := (w1 (¢;0), ..., wy(t;0)) denote the tilted
weight vector of the n samples. Our next result is an empirical variant of Lemma 6.

Lemma 7. TERM objective can be restated as follows:

~ —

R(t:6) = R(O) + 7 D(ulw(t:6)), (46)

14
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where R(0) is the empirical risk (1), u denotes the uniform N-vector, i.e., u := (%, e %) ,

and where for N-vectors p and q,
P
Dipla) i~ 3 pilog () | (47)
ie[N] di

Proof. The proof is a consequence of the following identity:

11 N 1 oy ] 1 tf(i36)
N log (wi(t; 9)> + N Z f(zi;0) = " log N Z e . (48)
i€[N] i€[N] i€[N]

Hence, TERM aims to minimize an average loss regularized by the KL divergence between
the weight vector (which exponentially tilts the individual losses) and the uniform vector.

3.3 TERM and Distributionally Robust Risks

Finally, we note that TERM is closely related to distributionally robust optimization (DRO)
objectives (e.g., Namkoong and Duchi, 2017; Duchi and Namkoong, 2019; Chen and Pascha-
lidis, 2020; Giirbiizbalaban et al., 2022; Duchi and Namkoong, 2018). In particular, TERM
with ¢t > 0 is equivalent to a form of DRO with a max-entropy regularizer, i.e., the constraint
set is determined by a KL ball around uniform distribution (Follmer and Knispel, 2011; Qi
et al., 2020b; Shapiro et al., 2014):

~

1 1
R 0) = g 4 Boflost) ~ 7 3 o Ve = g {H<qrw<1, ) - tD(quu>} |

(49)

and the corresponding relations in the distributional form is

Rx(:6) = max { B, FCX:0)] - 1 Dlal) | = ma{ Hlalp) ~ ;Dlal) ). (50)

This relation is also a special case of Donsker-Varadhan Variational Formula (Dupuis
and Ellis, 1997). We note that similar connections between DRO and TERM have also been
explored in concurrent works by Qi et al. (2020a,b) specifically in the limited context of
stochastic optimization methods for solving class imbalance with ¢ > 0.

In the next section, we propose a new risk motivated by TERM, which may be of
independent interest.

4. Tilted Value-at-Risk and Value-at-Risk

In this section we provide connections between TERM and risk measures such as Value-
at-Risk (VAR) that specifically target loss quantiles. In particular, based on TERM, we
propose a new risk— Tilted Value-at-Risk (TiVaR) and discuss its relations with existing
risks (Section 4.2). We find that TiVaR is a computationally efficient alternative to VaR
that provides tighter approximations to VaR than prior risks, which again helps to motivate
the use of TERM.
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4.1 Tail Probabilities of Losses and Value-at-Risk (VaR)

The tail probabilities of losses focus on quantiles of losses that exceed a certain threshold, as
formally defined below.

Definition 2 (Tail probability of losses). For all v € R, let Qx(v;0) denote the probability
of the losses f(X;60) no smaller than v, i.e.,

Qx(7;0) := P[f(X;0) = 1]. (51)

Equivalently, define the empirical variant @(’y; 0) over samples x; for i € [N]:
~ 1
Qv0) =5 D) H{f(@i:0) = 7} (52)
i€[N]

where 1{-} is the indicator function.

Notice that @(7; 0) € {0, %, cees 1} quantifies the fraction of the data for which loss is
at least . For example, optimizing for 90% of the individual losses (ignoring the worst-
performing 10%) could be a more reasonable practical objective than the pessimistic min-max
objective. Another common application of this is to use the median in contrast to the mean
in the presence of noisy outliers.

Using tail distribution of losses, Value-at-Risk (VaR) (Jorion, 1996) with confidence «
(0 < a < 1) is defined as

VaRx (1 —a;0) := min{vy: Qx(7;0) < a}, (53)

8!

and the empirical variant for « € {%} ke[N] 18
VaR(1 — ;6) := min {7 - Q(7;0) < a} . (54)

8!

Notice that when we view the loss as log-likelihood of a parametric probability distribution
function, Qx (; @) (Definition 2) can be viewed as the complementary cumulative distribution
function (CDF) of the information random variable f(X;#). Given the definition of VaR,
Qx (7;0) can also be viewed as ‘inverted’ VaR, as we formalize and prove in Lemma 8 and 9
below. Let

Qx(7) 1= minQx(1:6), 0k (7) €argmin Qx(v;0), (55)

Q°(7) == minQ(1:6), 6°(y) eargmin Q(:9). (56)

where Qx and @ is defined in Definition 2. Optimizing @(’y; 0) is equivalent to optimizing
VaR. Formally, we have the following lemmas.

Lemma 8. Assume ming Qx (7;0) is strictly decreasing with v. We note

min { VaRx (1 - Qx(7);0)} =7, argmin {VaRx(1 - Q%(7):0)} 3 Ox (7). (57)
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Note that ming @ x (7; ) is non-increasing as «y increases by definition. The additional
strict monotonic assumption on 7y — ming Qx(7;0) can be easily satisfied if f(X;0) is a
continuous random variable and -y is in the range of f. Lemma 8 is proved as follows.

Proof. First, we note for any 6 and 7o such that Qx(y0;60) < Q%(7), we have vo > 7.
Otherwise, there exist 6,7 < v and Qx(v;¢") < Q% (7), which in turn implies that

min P[f(X;0) > 7] < P[F(X:0') = 7] < Q% (7), (58)

contradicting Q% (7') > Q% (7). The proof completes combining with the fact that the
function value of VaRx (1 — Q% (v);6) can achieve ~ at any 6% (7). O

Lemma 9 below describes the empirical variant, which does not require the strict monotonic
assumption.

Lemma 9. For any y € (F(—), F(+00)) where F(t) is defined as the optimal tilted objective
as in Eq. (11), let 4 = min {’y’@o(’y’) = @0(7)}. Then

min { VaR(1 = Q°(°):0)} =°,  argmin {VaR(1 = Q°(*):0)} 2 6°(,°).  (59)

Both tail distribution of losses and VaR are usually non-smooth and non-convex, and
solving them to global optimality is very challenging. In the next section, we show that TiVaR
(an objective based on TERM) provides a good upper bound on VaR, and is computationally
more efficient, as VaR is not even continuous. In parallel, in Appendix B, we prove that
TERM also provides a reasonable approximate solution to the minimizer of tail probability
of losses (i.e., inverted VaR).

The proof of one of the main theorems of this section (Theorem 16) relies on a new
variant of Chernoff bound for non-negative random variables, which may be of independent
interest.

Theorem 5 (Chernoff bound for non-negative random variables). Let X be a non-negative
random variable. Further assume that E [etX] < o for all t e R. Then for v > 0,

P[X>'y]<inf{E[etX]_1}< inf {E[em]} (60)

teR ety — 1 teR+ ety

where the latter term is the generic Chernoff bound with ~v > 0.

Proof. The theorem holds by applying Markov’s inequality twice on X — 1 (¢ = 0) and
1 — e (t < 0), and noting that

. Ele®] -1 . 1—E[eM] B[] -1
P[X >4] <min{ inf { ————— % inf { —————= =inf{ ——— .
teR>0 e —1 teR— 1—etr teR e —1
(61)

O
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Theorem 5 presents a tighter Chernoff bound for non-negative random variables. To the
best of our knowledge, despite the fact that this bound is a simple extension of the generic
Chernoff bound, and the existing variants of Chernoff bounds in prior works (Boucheron
et al., 2013; Yang and Rosenthal, 2017), we have not seen the result we have here appear
elsewhere in this form. In particular, notice that the search for an optimal value of ¢ has
been extended from non-negative values to all real numbers. This can result in significantly
tighter bounds, especially in small deviations regime, as visualized empirically on two simple
distributions in Figure 15, Appendix B. We will see how this leads to significantly better
bounds in robustness applications.

4.2 TiVaR: Tilted Value-at-Risk

In this section, we introduce a new risk measure, called Tilted Value-at-Risk (TiVaR). To
put TiVaR in perspective, we briefly state other existing risks first. Conditional Value-
at-Risk (CVaR) minimizes the average risk of tail events where the risk is above some
threshold (Rockafellar et al., 2000; Rockafellar and Uryasev, 2002). One form of CVaR is

CVaRx(1 — a;0) := myin {’y—i—iE[f(X;@)—’y]Jr}. (62)

It is worth noting that CVaRx (1 —a; 0) is a dual formulation of DRO with an uncertainty set

that perturbs arbitrary parts of the data by an amount up to é (Rockafellar et al., 2000; Curi

et al., 2020). Formally, the dual of DRO max . (i (13 Eg[f(X;6)] is CVaRx (1 — a;6) =
NdPSa

min, {7y + éE[ f(X;6) —~]+}. Some previous works implicitly minimize CVaR by only
training on samples with top-k losses (e.g., Fan et al., 2017). Entropic Value-at-Risk (EVaR)
is proposed as an upper bound of CVaR and VaR that could be more computationally
efficient (Ahmadi-Javid, 2012). EVaR with a confidence level o (0 < a < 1) is defined as:

1 EJet/ (X;0) 1
EVaRx (1 — a;6) := min {thg <[€]> } = min {Rx(t; 0) — tloga} . (63)

teR>0 « teR>0

Similarly, for a € {%}ke[N]v the empirical variants of CVaR and EVaR are

— ) 11
CVaR(1 — ;) := min ’Y+EN,2 f(@i;0) =]+ ¢,
i€[N]
1 tf(xi;0)
— 1 ieINT € o (~ 1
EVaR(1 — «;0) := min { log (N Lief ) } = min {R(t; ) — loga} .
teR>0 | ¢ o teR>0 t

Notice that TERM objective appears as part of the objective in EV/\aP/{, and particularly
optimizing EVaR with respect to § would be equivalent to solving TERM for some value of ¢
implicitly defined through « (see Lemma 25 and Lemma 26 in the appendix).

It is known that VaRx (1 — a;0) < CVaRx (1 — a;0) < EVaRx (1 — «;0) (Ahmadi-Javid,
2012) which directly yields VaR(1 — a; ) < CVaR(1 — o;0) < EVaR(1 — ; 6). Meanwhile,
to the best of our knowledge, it is not clear from existing works how entropic risk (or TERM)
is related to VaR or EVaR. Next, based on TERM, we propose a new risk-averse objective
Tilted Value-at-Risk, showing that it upper bounds VaR and lower bounds EVaR.
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Definition 3 (Tilted Value-at-Risk (TiVaR)). Let TiVaR for o € (0,1] be defined as

(Rx (6:0)~Fx (~0))t _ (] _
TiVaRx(1 — a;0) := %%{FX(—OO)—i-ilog [6 C O‘)] } (64)
+

} . (65)

We note that TiVaR is not a coherent risk measure (see the work of Artzner (1997);
Artzner et al. (1999) for definition of coherent risks), despite that it can be tighter than
CVaR in some cases, as discussed in detail later. We next present our main result on relations

between TiVaR, VaR, and EVaR.

Similarly, empirical TiVaR is defined for o € (0,1),

e ~ (R(t:0)—F (=)t _ (1 —
TiVaR (1 — a;0) := min{F(_oo)+1log [6 (1-a)

teR [e%

Theorem 6. For o€ (0,1] and any 6,
VaRx (1 — a;0) < TiVaRx (1 — a;0) < EVaRx (1 — a3 0). (66)

Similarly, for a € {%}ke[]v] and any 0,
VaR (1 — a;0) < TiVaR (1 — a;0) < EVaR (1 — a;6). (67)

We defer the proof to Appendix B, where the main steps _include applying the new
Chernoff bound variant (Theorem 5). Theorem 6 indicates that TiVaR (1 — «; ) is a tighter
approximation to VaR (1 — «; 6) than EVaR (1 — a; 0).

Comparing TiVaR and CVaR. In general, TiVaR and CVaR are not directly comparable,
as both of them can be viewed as approximations to VaR and neither dominates the other,
i.e., one risk can be tighter than the other depending on the quantile value, 1-a. In the
regimes where « is a large value between some intermediate constant and 1, TiVaR provides
a tighter approximation to VaR than CVaR. For instance, in the extreme case when av — 1,
VaR will be close to the min-loss (minge(n f(w4;6)), while the value of CVaR is the mean of

the losses (3 2y @iz 0)). TiVaR reduces to the min-loss in this case. In other words,

both VaR and TiVaR sweep the values between the min-loss and max-loss; whereas CVaR
sweeps the values between the avg-loss and max-loss. We compare TiVaR with CVaR and
other risks in Figure 4 on mean estimation and linear regression problems, and demonstrate
that TiVaR is tighter than CVaR especially when « is close 1 (corresponding to robustness
applications).”

We also note that there exist other risk-averse or risk-seeking formulations that focus on
the upper or lower tail of losses, such as the mean-semideviation framework (Kalogerias and
Powell, 2018). Mean-semideviation recovers a set of risk measures including mean-upper-
semideviations and entropic mean-semideviation. Nevertheless, these risks usually cannot
handle both fairness and robustness in a single formulation, and can incur more per-iteration
gradient evaluations or worse convergence rates compared to vanilla ERM (Kalogerias and
Powell, 2018; Giirbiizbalaban et al., 2022; Zhu et al., 2023).

5. While CVaR focuses on upper quantiles, one may explore ‘inverse’ CVaR to better approximate the lower
quantiles. However, inverse CVaR, ranging from avg-loss to min-loss, is not a valid upper bound of VaR.
Despite this, we empirically explore this approximation to solving VaR, among others, in Appendix B.
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Figure 4: Comparing values of VaR, TiVaR, CVaR, and EVaR. \’/gf{(l — ) := ming \75?{(1 —
a; ), and rﬁ%ﬁ(l — ), é\/\af{(l — ), and E\/\aﬁ(l — «v) are defined in a similar way. From
Theorem 6, we know VaR(1 — a;60) < TiVaR(1 — a;0) < EVaR(1 — «;6), which is also
visualized here. Both CVaR and TiVaR values are between VaR and EVaR. TiVaR provides
a tighter approximation to VaR than CVaR when « is closer to 1.

Finally, we draw connections between the above results and the k-loss, defined as the
k-th smallest loss of N (i.e., 1-loss is the min-loss, N-loss is the max-loss, (IN—1)/2-loss is
the median-loss). Formally, let R (¢) be the k-th order statistic of the loss vector. Hence,
R (1) is the k-th smallest loss, and particularly

Ruy(0) = R(6), Run)(0) = R(O). (68)

Thus, for any k € [N], we define

R, = nbin Ray(0), 6%(k) := arg nbin Ry (0). (69)
Note that
Rfy = F(=0), Riy) = F(+). (70)

While minimizing the k-loss is more desirable than ERM in many applications, the
k-loss is non-smooth (and generally non-convex), and is challenging to solve for large-scale
problems (Jin et al., 2020; Nouiehed et al., 2019). TERM offers a good approximation to
k-loss as well. Note that if we fix a =1 — %, minimizing k-loss is equivalent to minimizing -y

where @(’y; 0) = a. Based on the bound of {/ER/, we obtain a bound on k-loss:

Corollary 7. For allke{2,...,N — 1}, and allt e R :

~ 1 k
+} S fereo {R(t’g) L8 (1 N)}

~

L [elfwo-Font _ k
R(k)(e) < Hltin F(—OO) + E log N

k
=%
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Proof. Note that
—~(k
Ry (0) = VaR | —;0 ). 72
(k) (0) = Va < N ) (72)
The proof completes by setting o = 1 — % in Eq. (65) and noting 1757?,(1 —a;0) <
TiVaR(1 — a;0) < EVaR(1 — «;0) . O

Corollary 7 optimizes over all t € R over the upper bound of R (), which can be relaxed
to searching over positive t’s, as stated in Corollary 8 below.

Corollary 8. For allke {2,...,N — 1}, and all t e R>? :

2|

. | [ B0t _
R(k) (0) < F(—OO) + ; log 1 % . (73)
- N

5. Solving TERM

In this section, we develop first-order batch (Section 5.1) and stochastic (Section 5.2)
optimization methods for solving TERM, and rigorously analyze the effects that ¢ has on the
convergence of these methods.

Recall that in Section 2.2, we discuss the Lipschitzness, convexity, and smoothness
properties of TERM. t-tilted loss remains strongly convex for ¢t > 0, so long as the original
loss function is strongly convex. On the other hand, for sufficiently large negative t, the
t-tilted loss becomes non-convex. Hence, while the ¢-tilted solutions for positive ¢ are unique,
the objective may have multiple (spurious) local minima for negative ¢ even if the original
loss function is strongly convex. For negative t, we seek the solution for which the parametric
set of t-tilted solutions obtained by sweeping ¢ € R (i.e., 6(t) defined in Eq. (10)) remains
continuous (as in Figure la-c and Figure 2). To this end, for negative ¢, we solve TERM by
smoothly decreasing ¢ from 0 observing that the solutions form a continuum in R¢ empirically.
Despite the non-convexity of TERM with ¢ < 0, we find that this approach produces effective
solutions to multiple real-world problems in Section 7. Additionally, as the objective remains
smooth, it is still relatively efficient to solve. On the toy problem studied in Figure 2, we
plot the convergence with ¢ in Figure 5 below.

5.1 First-Order Batch Methods

TERM solver in the batch setting is summarized in Algorithm 1. The main steps include
running gradient descent on }N{(t; ), which involve computing the tilted gradients (i.e., a
weighted aggregation of individual gradients (Lemma 5)) of the objective. We also provide
convergence results in Theorem 9-11 below for Algorithm 1.

Theorem 9 (Convergence of Algorithm 1 for strongly-convex problems). Under Assump-
tion 2, there exist Pmax < C1 < o0 and Cy < o0 that do not depend on t such that for any
t e R™0, setting the step size o = C1+C2t’ after k iterations:

6min

k
R(t,0,) — R(1,6(1)) < <1 G @t) (ﬁ(t, 6o) — E(t,é(t))) . (74)
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convergence with ¢

[R(t.0) — R(t,0(t))

t<0 t=01t>0

0 20 40 60 80
# iters
Figure 5: As t — +00, the objective becomes less smooth in the vicinity of the final solution
where smoothness can be measured by the upper bound of Hessian (see Lemma 3), hence
suffering from slower convergence. For negative values of ¢, TERM converges fast due to the
smoothness in the vicinity of solutions despite its non-convexity.

Algorithm 1: Batch (Non-Hierarchical) TERM
Input: ¢, a,60
while stopping criteria not reached do
compute the loss f(x;;60) and gradient Vo f(z;;0) for all i € [N]

~

)
R(t;0) < t-tilted loss (2) on all i € [N]
R(t:0)

0
0 — 60— % 2iepv wi(t;0)Vof(xi;0)
end

Proof. First note that by Lemma 2, ]-Ni(t, 0) is Bmin-strongly convex for all ¢ € R>Y. Next, by
Lemma 3, there exist Cq,Cy < oo such that R(t;6) has (Cy + Cat)-Lipschitz gradients for all
t € R*0. The result follows directly from Karimi et al. (2016, Theorem 1). O

Note that under additional assumptions on L-Lipschitzness of f(x;#), we can plug in the
explicit smoothness constants established by Lowy and Razaviyayn (2021, Lemma 5.3) to
obtain explicit constants in the convergence rate, i.e., C1 = Bmax and Cy = L2. Theorem 9
indicates that solving TERM to a local optimum using gradient-based methods tends to be
as efficient as traditional ERM for small-to-moderate values of ¢ (Jin et al., 2017), which
we corroborate via experiments on multiple real-world datasets in Section 7. This is in
contrast to solving for the min-max solution, which would be similar to solving TERM as
t — 4+ (Kort and Bertsekas, 1972; Pee and Royset, 2011; Ostrovskii et al., 2020).

Theorem 10 (Convergence of Algorithm 1 for smooth problems satisfying PL conditions).
Assume f(x;0) is Bmax-smooth and (possibly) non-convex. Further assume 3 ;c(npif(wi;6)
is 5-PL for any p € Ay where p := (p1,...,pn). There exist fnax < C1 < © and Cy < 0
that do not depend on t such that for any t € R>0, setting the step size o = m, after k
wterations:

k
R(t,0,) — R(1,6(1)) < <1 _ lecﬂ) (ﬁ(t, 6o) — Rl(t, é(t))) , (75)
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Proof. If Z i f(24;0) is p-PL for any p € Ay, then E(t; 0) is u-PL (Qi et al., 2020a).
R(t, 0) is ﬁmax smooth for ¢t < 0 and its smoothness parameter scales linearly with ¢ for ¢ > 0,
following the same proof as Lemma 3. O

Theorem 10 applies to both convex and non-convex smooth functions satisfying PL
conditions. Again, here we can plug in explicit smoothness parameter (Lowy and Razaviyayn,
2021, Lemma 5.3) if f(x;0) is Lipschitz. We next state results without the PL condition
assumption for completeness.

Theorem 11 (Convergence of Algorithm 1 for non-convex smooth problems). Assume
f(x;0) is Bmax-smooth and (possibly) non-convex. Setting the step size o = %7 after K
iterations, we have:

~

KZ IV 02 < 22 E ) — R(t,6(1)))

- , (76)

N \

where for t € R>0, B(t) = C1 + Ct where C1,Cy are independent of t and Bmax < C1 <
0, Co < 0, and for t e R™, B(t) = Pmax-

Theorem 11 also covers the case of convex f(z;6) with ¢ < 0. We note that for non-convex
problems, when ¢ < 0, the convergence rate is independent of ¢ under our assumptions. We
also observe this on a toy problem in Figure 5. In all applications we studied in Section 7
with negative t’s, TERM runs the same number iterations as those of ERM.

5.2 First-Order Stochastic Methods

To obtain unbiased stochastic gradients, we need to have access to the normalization weights
for each sample (i.e., % Zie[N] etf (x“a)), which is often intractable to compute for large-scale

problems. Hence, we use fzt, a term that incorporates stochastic dynamics, to estimate
the tilted objective R, = ]?2(75; 6), which is used for normalizing the weights as in (25). In
particular, we do not use a trivial linear averaging of the current estimate and the history to
update ﬁt. Instead, we use a tilted averaging to ensure an unbiased estimator (if 6 is not
being updated).

On the other hand, the TERM objective can be viewed as a composition of functions
~ Z etf(#i9) and %log(-), and could be optimized based on previous stochastic composi-
tional optlmlzatlon techniques (e.g., Wang et al., 2017; Qi et al., 2020b,a; Wang et al., 2016a;
Ghadimi et al., 2020). Similar to Wang et al. (2017), we maintain two sequences (in our

context, the model # and the objective estimate ﬁit) throughout the optimization process.
This (non-hierarchical) stochastic algorithm is summarized in Algorithm 2 below.

For the purpose of analysis, we sample two independent mini-batches to obtain the
gradient of the original loss functions Vg f(z;6) and update ]3%, respectively (described in
Algorithm 5 for completeness). As we will see in Theorem 12, the additional randomness
allows us to achieve better convergence rates compared with the algorithm proposed in Wang
et al. (2017) instantiated to our objective. Our rate of this simple algorithm matches the rate
of more complicated ones (Qi et al., 2020a), and developing optimal optimization procedures
is out of the scope of this work. Empirically, we observe that sampling two mini-batches
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yield similar performance as using the same mini-batch to query the individual losses and
the weights (Figure 17 in Appendix C.2). Therefore, we employ the cheaper variant of just
involving one mini-batch (Algorithm 2) in the corresponding experiments.

Algorithm 2: Stochastic (Non-Hierarchical) TERM

Initialize: 6, R, = » log (% I etf(wi;9)>
Input: ¢, a, A
while stopping criteria not reached do

sample a minibatch B uniformly at random from [N]
compute the loss f(z;0) and gradient Vg f(x;0) for all z € B

]N?B,t « t-tilted loss (2) on minibatch B
Ry« Llog ((1 — Nethe 1 )\etﬁBat>

Wy etf(a:;G)—tIN%t

0 «— 60— ‘%‘ Dven WeaVof(z;0)
end

The stochastic algorithm developed here requires roughly the same time/space complexity
as mini-batch SGD, and thus scales similarly for large-scale problems. It can also help mitigate
the potential numerical issues in implementation caused by the exponential tilting operator.
We find that these methods perform well empirically on a variety of tasks (Section 7).

Theorem 12 (Convergence of Algorithm 5 for strongly-convex problems). Assume f :
X x0 — [ﬁ’mm,FmaX] is L-Lipschitz in 0, i.e., me < f(z;0) < ﬁ’max, and |f(x;6;) —

f(x;05)| < L|0; — 0j| for x € X and 6;,0; € © Q RZ. Assume E(t; 0) has compact domain
0. Assume é(t; 0) is p-strongly convex (Assumption 2) with uniformly bounded stochastic

gradient, i.e., R T;; = |l (x4;0 or 0 e and 1 € . enote
d VR(z:;6 e VI < B for 6 € R and i € [N]. D
ki := arg max;, (k < % 4 etlBe (F;ax me)). Assume the batch size is 1. For k > ky,
Vi
_ p*I12] < t
B0 — 0% < -5, (77)
where
. 4 B2 2+2t(Fnax—Fmin)
0% :=6(t), V;=max {ktIE[HHkt —0*|?], 2 , (78)
and
B2e2t(Fnax—Fimin)+1
E[|6x, — 0*[°] < max { E[|61 — 6*|°], = : (79)
p(1 + tLBet(Fmax—Fmin))

6. For notation consistency between the max-loss and min-loss for any sample and any iteration, we use
me to denote the lower bound of f(z;;0x). We note that me = F( o0) defined in Definition 11.
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Our assumptions are standard compared with those in related literature (Wang et al.,
2017; Qi et al., 2020b). The uniformly bounded stochastic gradient of ﬁ(t; ) assumption can
be satisfied by the bounded gradient of f(x;;6), which can be a limiting condition but has
appeared in previous works on stochastic compositional optimization (Qi et al., 2020b; Wang
et al., 2016a). If the objectives are coercive, which typically holds in practice (Bertsekas,
1997), Algorithm 2 will have bounded iterates and thus the compact domain assumption
would hold. We defer full proofs to Appendix C.2. The main steps involve bounding the

expected estimation error E[et(ék*m)] conditioning on the previous iterates {61,...,0}.

Discussions. The theorem indicates that Algorithm 2 starts to make progress after k;
iterations, with convergence rate O(e?!/k). Both k; and V}, could scale exponentially with ¢
in the worst-case analysis, but it does not completely reflect the dependence of Algorithm 2
on t for modest values of t. Empirically, we observe that the stochastic TERM solver with
moderate values of ¢ can converge faster compared with stochastic min-max solvers, which
has a rate of 1/v/k for strongly convex problems (Levy et al., 2020). This leaves open for
future work understanding the exact scaling of the convergence rate of stochastic TERM as
t — 0.

Next, we present convergence results on non-convex smooth problems, without and with
the assumptions of PL-conditions. We defer all proofs to Appendix C.2.

Theorem 13 (Convergence of Algorithm 5 for non-convex smooth problems). Assume
[+ X x O — [Fuin, Fimax| ts L-Lipschitz in 0, i.e., Fiin < f(x;0)§ Frax, and | f(x;6;) —
f(x;0;)] < L|0; — 0;| for x € X and 0;,0; € © < RY. Assume R(t;0) is B-smooth with
uniformly bounded stochastic gradient, i.e., |V R(z;;0)|| < B for 0 € R? and i € [N]. Assume
the batch size is 1. Denote k; := [Q(Fma"_Fg“i“)tQLQ], then for k = ki,

Be
B(Finax— Finin)

K
1 D [ — o
= 2 Bl VRE0)|] < VB Bel P o)1 =

k=k¢

(80)

Theorem 14 (Convergence of Algorithm 5 for non-convex smooth problems with PL
conditions). Let the assumptions in Theorem 13 hold. Further assume that Y;cinipif(2i;0)
satisfies §-PL conditions for any pe An where p:=(p1,...,pn). Assume the batch size is 1.

t(ﬁm X_ﬁmin)
Denote k;:=argmaxy, (k:<%+4etLBE uka ), then for teR>" and k>ky,

B (t001) - Red(0)] < (51)

where

~ ~ o 2 2t(ﬁmax_ﬁmin)+2
Vt—max{ktE[R(t;th)—R(t;ﬁ(t))],853 ¢ }

112

6. TERM Extended: Hierarchical Multi-Objective Tilting

We consider an extension of TERM that can be used to address practical applications
requiring multiple objectives, e.g., simultaneously achieving robustness to noisy data and
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ensuring fair performance across subgroups. Existing approaches typically aim to address
such problems in isolation. To handle multiple objectives with TERM, let each sample = be
associated with a group ge[G], i.e., xzeg. These groups could be related to the labels (e.g.,
classes in a classification task), or may depend only on features. For any t,7€R, we define
multi-objective TERM as:

~ 1
J(t,7;0):==log Z \g|etR9(T ) | whereR o (730): log ZeTf (:0) (83)
t N & 915

and |g| is the size of group g. We evaluate the gradient of the hierarchical multi-objective
tilt objective in Lemma 10 below.

Lemma 10 (Hierarchical multi-objective tilted gradient). Under Assumption 1,

Vol (t1:0)= > Y weu(t.7:0) Vo f(2:0) (84)

ge[G]reg
where
A\ G
(\,%Zyegeﬁ(y’e’)

- eTf(z;@). (85)
2gefcld'] (ﬁzyegleﬁ(yﬂ))

Wy o (t,730):=

Similar to the tilted gradient (25), Lemma 10 indicates that the multi-objective tilted
gradient is a weighted sum of the gradients, making TERM similarly efficient to solve.
Multi-objective TERM recovers sample-level TERM as a special case for 7=t (Lemma 11),
and reduces to group-level TERM with 7—0.

Lemma 11 (Sample-level TERM is a special case of hierarchical multi-objective TERM).
Under Assumption 1, hierarchical multi-objective TERM recovers TERM as a special case for
t=1. That is

J(t,t:0)=R(t:0). (86)

Proof. The proof is completed by noticing that setting t=7 in (85) recovers the original
sample-level tilted gradient. O

Note that all properties discussed in Section 2 carry over to group-level TERM. We
validate the effectiveness of hierarchical tilting empirically in Section 7.3, where we show
that TERM can significantly outperform baselines to handle class imbalance and noisy
outliers simultaneously, while underperforming a much more complicated method in their
setup. Note that hierarchical tilting could be extended to hierarchies of greater depths
(than two) to simultaneously handle more than two objectives at the cost of one extra
tilting hyperparameter per each additional optimization objective. For instance, we state the
multi-objective tilting for a hierarchy of depth three in Appendix C.1.
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6.1 Solving Hierarchical TERM

To solve hierarchical TERM in the batch setting, we can directly use gradient-based methods
with tilted gradients defined for the hierarchical objective in Lemma 10. Note that Batch
hierarchical TERM with t=7 reduces to solving the sample-level tilted objective (2). We
summarize this method in Algorithm 3.

Algorithm 3: Batch Hierarchical TERM
Input: t,7,«
while stopping criteria not reached do
for ¢ge[G] do
compute the loss f(z;0) and gradient Vyf(x;0) for all zeg

]§97T<—T—tilted loss (83) on group g
Vo Ry, o ey @00V f (2:6)
end

Jt,‘r‘_%log (%ZQE[G] ‘g|etR9 (7;9))
tRrg—tJi -

xege

wt,’r,g‘_’g’e

N ~
§—0— Wde[G] Wi,rgVoly s
end

We next discuss stochastic solvers for hierarchical multi-objective tilting. We extend
Algorithm 2 to the multi-objective setting, presented in Algorithm 4. At a high level, at
each iteration, group-level tilting is addressed by choosing a group based on the tilted weight
vector. Sample-level tilting is then incorporated by re-weighting the samples in a uniformly
drawn mini-batch. Similarly, we estimate the tilted objective Egﬁ for each group ¢ via a
tilted average of the current estimate and the history. While we sample the group from which
we draw the minibatch, for small number of groups, one might want to draw one minibatch
per each group and weight the resulting gradients accordingly.

Algorithm 4: Stochastic Hierarchical TERM

Initialize: R, , =0 Yge[G]
Input: t,7,a,A
while stopping criteria not reached do

sample g on [G] from a Gumbel-Softmax distribution with logits ]§977+%10g| q|

and temperature %

sample minibatch B uniformly at random within group g¢
compute the loss f(z;0) and gradient Vy f(x;0) for all xeB

§8,7-<—7'—tﬂted loss (2) on minibatch B
§97T<— %log ((1 _)\)efrﬁg,T —}—)\eTEB,T)
Wy l,<—eTf(w;0)—T§g’T

0—0— |%|Z%Bwr,mvbvf(.15;9)
end
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Group-level tilting can be recovered from Algorithm 3 and 4 by setting the inner-level tilt
parameter 7=0. We apply TERM to a variety of machine learning problems; for clarity, we
summarize the applications and their corresponding algorithms in Table 10 in the appendix.

7. TERM in Practice: Use Cases

We now showcase the flexibility, wide applicability, and competitive performance of the TERM
framework through empirical results on a variety of real-world problems such as handling
outliers (Section 7.1), ensuring fairness and improving generalization (Section 7.2), and
addressing compound issues (Section 7.3). Despite the relatively straightforward modification
TERM makes to traditional ERM, we show that ¢-tilted losses not only outperform ERM, but
either outperform or are competitive with state-of-the-art, problem-specific tailored baselines
on a wide range of applications. We provide implementation details in Appendix D.2. All
code, datasets, and experiments are publicly available at github.com/1itian96/TERM. The
applications explored are summarized in Table 1 below.

Table 1: Summary of TERM applications.

Applications Sections
Robust regression Sec. 7.1.1
Mitigating noisy outliers (t<0) Robust classification Sec. 7.1.2
Low-quality annotators Sec. 7.1.3
Fair PCA Sec. 7.2.1
Fair federated learning Sec. 7.2.2
Fairness and generalization (¢>0)  Fair meta-learning Sec. 7.2.3
Handling class imbalance Sec. 7.2.4
Improving generalization via variance reduction Sec. 7.2.5
. . e e e Class imbalance and random noise Sec. 7.3.1
Hierarchical multi-objective tilting Class imbalance and adversarial noise Sec. 7.3.2

Choosing ¢t. In applications when we consider tradeoffs between different objectives (e.g.,
fair meta-learning and federated learning), we perform a grid search over ¢ from {0.1, 1, 2, 5,
10, 50, 100, 200} on the validation set and pick the one with the best fairness performance
while not degrading mean performance. When there is not a single t dominating other values
(e.g., fair PCA), we report results under different values of ¢. In our initial robust regression
experiments, we find that the performance is robust to various t’s, and we thus use a fixed
t=—2 for all experiments involving negative ¢ (Section 7.1 and Section 7.3). For all values
of ¢ tested, the number of iterations required to solve TERM is within 2x that of standard
ERM, with the same per-iteration complexity.

7.1 Mitigating Noisy Outliers (t<0)

We begin by investigating TERM’s ability to find robust solutions that reduce the effect of
noisy outliers. We note that we specifically focus on the setting of ‘robustness’ involving
random additive noise; the applicability of TERM to more adversarial forms of robustness
would be an interesting direction of future work. We do not compare with approaches that
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require additional clean validation data (e.g., Roh et al., 2020; Veit et al., 2017; Hendrycks
et al., 2018; Ren et al., 2018), as such data can be costly to obtain in practice.

7.1.1 RoOBUST REGRESSION

Label noise. We first consider a regression task with noise corrupted targets, where we
aim to minimize the root mean square error (RMSE) on samples from the Drug Discovery
dataset (Olier et al., 2018; Diakonikolas et al., 2019). The task is to predict the bioactivities
given a set of chemical compounds. We compare against linear regression with an Lo loss,
which we view as the ‘standard’” ERM solution for regression, as well as with losses commonly
used to mitigate outliers—the L; loss and Huber loss (Huber, 1964). We also compare with
consistent robust regression (CRR) (Bhatia et al., 2017) and STIR (Mukhoty et al., 2019),
recent state-of-the-art methods specifically designed for label noise in robust regression. In
this particular problem, TERM is equivalent to exponential squared loss, studied in (Wang
et al., 2013). We apply TERM at the sample level with an Lo loss, and generate noisy
outliers by assigning random targets drawn from N(5,5) on a fraction of the samples.

In Table 2, we report RMSE on clean test data for each objective and under different
noise levels. We also present the performance of an oracle method (Genie ERM) which has
access to all of the clean data samples with the noisy samples removed. Note that Genie
ERM is not a practical algorithm and is solely presented to set the expected performance limit
i the noisy setting. The results indicate that TERM is competitive with baselines on the
20% noise level, and achieves better robustness with moderate-to-extreme noise. We observe
similar trends in scenarios involving both noisy features and targets (Appendix D.1). CRR
tends to run slowly as it scales cubicly with the number of dimensions (Bhatia et al., 2017),
while solving TERM is roughly as efficient as ERM.

Table 2: TERM is competitive with robust regression baselines, particularly in high noise
regimes.

test RMSE (Drug Discovery)

objectives

20% noise  40% noise  80% noise
ERM 1.87 (.05)  2.83 (.06) 4.74 (.06)
L 1.15 (.07) 1.70 (12) 4.78 (.08)
Huber (Huber 1964) 1.16 (.07) 1.78 (.11) 4.74 (.07)
STIR (Mukhoty et al. 2019) 1.16 (.07) 1.75 (.12) 4.74 (.06)
CRR (Bhatia et al. 2017)  1.10 (.07) 1.51 (.08) 4.07 (.06)
TERM 1.08 (.05) 1.10 (.04) 1.68 (.03)
Genie ERM 1.02 (04) 1.07 (.04) 1.04 (.03)

Label and feature noise. Here, we present results involving both feature noise and target
noise. We investigate the performance of TERM on two datasets (cal-housing (Pace and
Barry, 1997) and abalone (Dua and Graff, 2019)) used in Yu et al. (2012). Both datasets
have features with 8 dimensions. We generate noisy samples following the setup in Yu et al.
(2012)—sampling 100 training samples, and randomly corrupting 5% of them by multiplying
their features by 100 and multiply their targets by 10,000. From Table 3 below, we see that
TERM significantly outperforms the baseline objectives in the noisy regime on both datasets.
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Table 3: An alternative noise setup involving both feature and label noise. Similarly, TERM
with t=—2 significantly outperforms several baseline objectives for noisy outlier mitigation.

test RMSE (cal-housing) test RMSE (abalone)

objectives

clean noisy clean noisy
ERM 0.766 (0.023) 239 (o) 2.444 ©.10s5) 1013 (72
14 0.759 0.0199 139 (11) 2.435 (0.021) 1008 (117
Huber (Huber 1964) 0.762 (0.0009) 163 (7) 2.449 0.018) 922 (45)
CRR (Bhatia et al. 2017) 0.766 (0.024) 245 (s) 2.444 (0.021) 986 (146)
TERM 0.745 (0.007)y 0.753 (0.016) 2.477 0.041) 2.449 (0.028)
Genie ERM 0.766 (0.023y 0.766 (0.028) 2.444 0105y 2.450 (0.109)

Unstructured random v.s. adversarial noise. As a word of caution, we note that the
experiments thus far have focused on random noise. This makes it possible for the methods
to find the underlying structure of clean data even if the majority of the samples are noisy
outliers. To gain more intuition on these cases, we generate synthetic two-dimensional data
points and test the performance of TERM under 0%, 20%, 40%, and 80% noise for linear
regression. TERM with t=—2 performs well in all noise levels (Figure 6 and 7). However, as
one might expect, TERM with negative t’s could potentially overfit to outliers if they are
constructed in an adversarial way. In the examples shown in Figure 8, under 40% noise and
80% noise, TERM has a high error measured on the clean data (green dots).

linear regression, 0% noise linear regression, 20% noise linear regression, 40% noise linear regression, 80% noise

Figure 6: Robxust regression on synt}lletic data with randomf noise where the meanlof the noisy
samples is different from that of clean ones. TERM with negative t’s (blue, t=—2) can fit
structured clean data at all noise levels, while ERM (purple) and TERM with positive ¢’s (red)
overfit to corrupted data. We color inliers in green and outliers in brown for visualization.

linear regression, 0% noise . linear regression, 20% noise o linear regression, 40% noise . linear regression, 80% noise

15 -10 -05 00 05 10 15 L5 -0 -05 00 05 10 L5 15 -10 -05 00 05 10 15 L5 -0 -05 00 05 10 L5

Figure 7: In the presence of random noise with the same mean as that of clean data, TERM
with negative t’s (blue) can still surpass outliers in all cases, while ERM (purple) and TERM
with positive t’s (red) overfit to corrupted data. While the performance drops for 80% noise,
TERM can still learn useful information, and achieves much lower error than ERM.
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linear regression, 40% noise linear regression, 40% noise linear regression, 80% noise v linear regression, 80% noise
2.0 L5 .

0.0

—05

-1.0 -1.0

- 5 5 -15
15 -10 05 00 05 10 L5 2 —15 -10 -05 00 05 10 15 20 —15 -10 -05 00 05 10 15 2 —1.0 -05 00 05 10 15 20 25

Figure 8: TERM with negative ¢’s (blue) cannot fit clean data if the noisy samples (brown)
are adversarial or structured in a manner that differs substantially from the underlying true
distribution.

7.1.2 RoBUST CLASSIFICATION

Deep neural networks can easily overfit to corrupted labels (e.g., Zhang et al., 2017). While
the theoretical properties we study for TERM (Section 2) do not directly cover objectives
with neural network function approximations, we show that TERM can be applied empirically
to DNNs to achieve robustness to noisy training labels. MentorNet (Jiang et al., 2018) is a
popular method in this setting, which learns to assign weights to samples based on feedback
from a student net. Following the setup in Jiang et al. (2018), we explore classification on
CIFARI10 (Krizhevsky et al., 2009) when a fraction of the training labels are corrupted with
uniform noise—comparing TERM with ERM and several state-of-the-art approaches (Kumar
et al., 2010; Ren et al., 2018; Zhang and Sabuncu, 2018; Krizhevsky et al., 2009). As shown
in Table 4, TERM performs competitively with 20% noise, and outperforms all baselines in
the high noise regimes. We use MentorNet-PD as a baseline since it does not require clean
validation data. In Appendix D.1, we show that TERM also matches the performance of
MentorNet-DD, which requires clean validation data. To help reason about the performance
of TERM, we also explore a simpler, two-dimensional logistic regression problem in Figure 19,
Appendix D.1, finding that TERM with t=—2 is similarly robust across the considered noise
regimes.

Table 4: TERM is competitive with robust classification baselines, and is superior in high
noise regimes.

test accuracy (CIFAR10, Inception)

objectives
20% noise 40% noise 80% noise

ERM 0.775 (.004)  0.719 (.004)  0.284 (.004)
RandomRect (Ren et al. 2018) 0.744 (.004)  0.699 (.005)  0.384 (.005)
SelfPaced (Kumar et al. 2010) 0.784 (.004)  0.733 (.004) 0.272 (.004)
MentorNet-PD (Jiang et al., 2018) 0.798 (.004)  0.731 (.004) 0.312 (.005)
GCE (Zhang and Sabuncu. 2018)  0.805 (.004) 0.750 (.004) 0.433 (.005)
TERM 0.795 (.004)  0.768 (.004) 0.455 (.005)
Genie ERM 0.828 (.004)  0.820 (.004) 0.792 (.004)
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7.1.3 LOW-QUALITY ANNOTATORS

It is not uncommon for practitioners to obtain human-labeled data for their learning tasks
from crowd-sourcing platforms. However, these labels are usually noisy in part due to
the varying quality of the human annotators. Given a collection of labeled samples from
crowd-workers, we aim to learn statistical models that are robust to the potentially low-
quality annotators. As a case study, following the setup of (Khetan et al., 2018), we take
the CIFAR-10 dataset and simulate 100 annotators where 20 of them are hammers (i.e.,
always correct) and 80 of them are spammers (i.e., assigning labels uniformly at random).
We apply TERM at the annotator group level in (83), which is equivalent to assigning
annotator-level weights based on the aggregate value of their loss. As shown in Figure 9,
TERM is able to achieve the test accuracy limit set by Genie ERM, i.e., the ideal performance
obtained by completely removing the known outliers. We note in particular that the accuracy
reported by (Khetan et al., 2018) (0.777) is lower than TERM (0.825) in the same setup,
even though their approach is a two-pass algorithm requiring at least to double the training
time. We provide full empirical details and investigate additional noisy annotator scenarios
in Appendix D.1.

CIFAR10
80
>
3
é 60 / s_;‘ EEY ¥
s I —— full clean data
B0 | Lo —-= TERM, 80% noise
] o
* '/ """" ERM, 80% noise
./ Genie ERM
20 + MBEM (Khetan et al.)
0 10 20 30 40 50 60
# epochs

Figure 9: TERM (t=—2) completely removes the impact of noisy annotators, reaching the
performance limit set by Genie ERM.

7.2 Fairness and Generalization (¢t>0)

In this section, we show that positive values of ¢ in TERM can help promote fairness via
learning fair representations and enforcing fairness during optimization, and offer variance
reduction for better generalization.

7.2.1 FAIR PRINCIPAL COMPONENT ANALYSIS (PCA)

We explore the flexibility of TERM in learning fair representations using PCA. In fair PCA,
the goal is to learn low-dimensional representations which are fair to all considered subgroups
(e.g., yielding similar reconstruction errors) (Samadi et al., 2018; Tantipongpipat et al.,
2019; Kamani et al., 2019). Despite the non-convexity of the fair PCA problem, we apply
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TERM to this task, referring to the resulting objective as TERM-PCA. We tilt the same
loss function as in Samadi et al. (2018): f(X;U):‘Tll<HX—XUUTH%—HX—XH%>, where

XeR™ is a subset (group) of data, UeR¥*" is the current projection, and XeR"d is the
optimal rank-r approximation of X. Instead of solving a more complex min-max problem
using semi-definite programming as in Samadi et al. (2018), which scales poorly with problem
dimension, we apply gradient-based methods, re-weighting the gradients at each iteration
based on the loss on each group. In Figure 10, we plot the aggregate loss for two groups
(high vs. low education) in the Default Credit dataset (Yeh and Lien, 2009) for different
target dimensions r. By varying ¢, we achieve varying degrees of performance improvement
on different groups—TERM (¢t=200) recovers the min-max results of (Samadi et al., 2018)
by forcing the losses on both groups to be (almost) identical, while TERM (t=10) offers the
flexibility of reducing the performance gap less aggressively. We also provide convergence
plots for different values of ¢ in this application (Figure 11), and observe slower convergence
for larger values of ¢, which is consistent with our analyses in Section 2 and 5. However, we
do not observe exponential dependence on t from the convergence curves, which suggest that
the theoretical dependence on t in convergence proofs for the solvers may be an artifact of
our proof techniques, and might possibly be further improved by other analysis techniques
for typical practical use cases.

convergence with ¢
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Figure 11: Convergence of TERM with
respect to t in fair PCA (target dimen-

Figure 10: TERM-PCA flexibly trades the sion—7). We tune optimal learning rates
performance on the high (H) edu group for the separately for each t. As t increases, the

performance on the low (L) edu group. convergence becomes slower, which vali-
dates our analyses in Section 2 and 5.

7.2.2 FAIR FEDERATED LEARNING

Federated learning involves learning statistical models across massively distributed networks
of remote devices or isolated organizations (McMahan et al., 2017; Li et al., 2020a). Ensuring
fair (i.e., uniform) performance distribution across the devices is a major concern in federated
settings (Mohri et al., 2019; Li et al., 2020b), as using current approaches for federated
learning (FedAvg (McMahan et al., 2017)) may result in highly variable performance across
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the network. Li et al. (2020b) consider solving an alternate objective for federated learning,
called ¢-FFL, to dynamically emphasize the worst-performing devices, which is conceptually
similar to the goal of TERM, though it is applied specifically to the problem of federated
learning and limited to the case of positive t. Here, we compare TERM with ¢-FFL in their
setup on the vehicle dataset (Duarte and Hu, 2004) consisting of data collected from 23
distributed sensors (hence 23 devices). We tilt the Lo regularized linear SVM objective at
the device level. At each communication round, we re-weight the accumulated local model
updates from each selected device based on the weights estimated via Algorithm 4. From
Figure 12, we see that similar to ¢-FFL, TERM (¢=0.1) can also significantly promote the
accuracy on the worst device while maintaining the overall performance. The statistics of
the accuracy distribution are reported in Table 5 below.

vehicle
7, WEE FedAvg (McMahan et al.) Table 5: Both ¢-FFL and TERM can encourage
B g-FFL (Lietal.) . . . .

[ p——— more uniform accuracy distributions across the
85 devices in federated networks while maintaining
E 4 similar average performance. Numbers in the
43 parentheses correspond to the standard error of

2 each metric across 5 runs.

1

0 L - s e test accuracy

0.0 0.2 0.4 0.6 0.8 10 objectives
test accuracy average worst 10%  stdev

FedAvg 0.853 (o7s) 0.421 (oory 0.173 (001)
Figure 12: TERM FL (tZO.l) signiﬁ— ¢-FFL (q=5) 0.862 (0200 0.704 (.033) 0.064 (.005)
. TERM (t=0.1) 0.853 (02r) 0.707 (o09) 0.061 (.003)
cantly increases the accuracy on the worst-
performing device (similar to ¢-FFL) while
obtaining a similar average accuracy.

7.2.3 FAIR META-LEARNING

Meta-learning aims to learn a shared initialization across all tasks such that the initialization
can quickly adapt to unseen tasks (i.e., meta-testing tasks) using a few samples. In practice,
the resulting performance across meta-testing tasks can vary due to different data distributions
associated with these tasks. One of the popular meta-learning methods is MAML (Finn
et al., 2017), whose objective is to minimize the sum of empirical losses across tasks {7;}
generated from p(7) after one step of adaptation, i.e., mingZTiwp(T)f(ﬂ;H—anf(’E;H)).
Previous works have proposed a min-max variant of MAML to encourage a more fair
(uniform) performance distribution by optimizing the worst meta-training task called TR~
MAML (Collins et al., 2020). We apply TERM to MAML by replacing the ERM formulation
with tilted losses. Following the setup in Collins et al. (2020), we evaluate TERM on the
popular sin wave regression problem. For a fair comparison, we perform task-level tilting for
TERM, and operates on task-level reweighting for TR-MAML. From Table 6, we see that
TERM with t=2 not only decreases the standard deviation of test errors, but also achieves
lower mean errors than MAML. As the number of tasks is large (5,000), solving the min-max
variant (TR-MAML) is challenging, and results in slightly worse performance than TERM.
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sin wave regression Table 6: TERM (t=2) results in fairer and
400 TR-MAML (Collins et al.) lower test errors across meta-test tasks after
= TERM (=2) adaptation compared with MAML (Finn et al.,

300

2017). TERM also outperforms a recently pro-
posed min-max task-robust MAML method (TR-
MAML) (Collins et al., 2020).

# devices
Do
(=1
(=}

0 et methods mean std max worst 10%
losses MAML 1.23 1.63 19.1 5.16

TR-MAML 1.25 1.51 14.31 4.85

TERM (¢=2) 1.14 1.33 13.59 4.29

Figure 13: Loss distribution of TERM
compared with the TR-MAML baseline.

7.2.4 HANDLING CLASS IMBALANCE

Next, we show that TERM can reduce the performance variance across classes with extremely
imbalanced data when training deep neural networks. We compare TERM with several
baselines which re-weight samples during training, including assigning weights inversely pro-
portional to the class size (InverseRatio), focal loss (Lin et al., 2017), HardMine (Malisiewicz
et al., 2011), and LearnReweight (Ren et al., 2018). Following the setting of Ren et al. (2018),
the datasets are composed of imbalanced 4 and 9 digits from MNIST (LeCun et al., 1998).
In Figure 14, we see that TERM obtains similar (or higher) final accuracy on the clean test
data as the state-of-the-art methods. We note that compared with LearnReweight, which
optimizes the model over an additional balanced validation set and requires three gradient
calculations for each update, TERM neither requires such balanced validation data nor does
it increase the per-iteration complexity.

MNIST 4 and 9 digits

1.00
0.95
>
2 .
5 e TERM (t=100) R
3 0.90 _ ¢
o ® LearnReweight (Ren et al.)
2 ® InverseRatio
8085 o  HardMine (Malisiewicz et al.)
® Focalloss (Lin et al.)
0.80 ERM
98.0 99.0 99.5

common class (%)

Figure 14: TERM (¢t=100) is competitive with state-of-the-art methods for classification
with imbalanced classes.
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7.2.5 IMPROVING GENERALIZATION VIA VARIANCE REDUCTION

A common alternative to ERM is to consider a distributionally robust objective, which
optimizes for the worst-case training loss over a set of distributions, and has been shown to
offer variance-reduction properties that benefit generalization (e.g., Duchi and Namkoong,
2019; Sinha et al., 2018; Chen and Paschalidis, 2020; Duchi and Namkoong, 2018). While
not directly developed for distributional robustness, TERM also enables variance reduction
for positive values of ¢ (Theorem 3), which can be used to strike a better bias-variance
trade-off for generalization. We compare TERM with several baselines including robustly
regularized risk (RobustRegRisk) (Duchi and Namkoong, 2019), linear SVM (Ren et al.,
2018), Conditional Value-at-Risk (CVaR) (Rockafellar et al., 2000; Soma and Yoshida, 2020),
LearnRewight (Ren et al., 2018), FocalLoss (Lin et al., 2017), and HRM (Leqi et al., 2019)
on the HIV-1 dataset (Rognvaldsson, 2013; Dua and Graff, 2019) originally investigated
by Duchi and Namkoong (2019). We examine the accuracy on the rare class (Y'=0), the
common class (Y'=1), and overall accuracy.

The mean and standard error of accuracies are reported in Table 7. RobustRegRisk and
TERM offer similar performance improvements compared with other baselines, such as linear
SVM, CVaR, LearnRewight, Focall.oss, and HRM. Note that here RobustRegRisk (Duchi
and Namkoong, 2019) and CVaR (Rockafellar et al., 2000) can both be viewed as specific
instances of the distributionally robust optimization framework, with different uncertainty
sets. For larger t, TERM achieves similar accuracy in both classes, while RobustRegRisk
does not show similar trends by sweeping its hyperparameters. It is common to adjust
the decision threshold to boost the accuracy on the rare class. We do this for ERM and
RobustRegRisk and optimize the threshold so that ERM, and RobustRegRisk result in
the same validation accuracy on the rare class as TERM (¢=50). TERM achieves similar
performance to RobustRegRisk, , without the need for an extra tuned hyperparameter.

Table 7: TERM (¢t=0.1) is competitive with strong baselines in generalization. TERM
(t=>50) outperforms ERM_  (with decision threshold changed for providing fairness) and is
competitive with RobustRegRisk; with no need for extra hyperparameter tuning.

objectives accuracy (Y=0) accuracy (Y=1) overall accuracy (%)
train test train test train test
ERM 0.841 (oos5) 0.822 (oo9) 0.971 (000y 0.966 002y 0.944 000y 0.934 (.003)
Linear SVM 0.873 (o03) 0.838 (.013) 0.965 (.000) 0.964 (oo2) 0.951 (oo1) 0.937 (.004)
CVaR (Rockafellar et al. 2000) 0.877 (ooa)y 0.844 (013) 0.972 (000) 0.964 (003) 0.952 (001) 0.937 (.003)
LearnReweight (Ren et al. 2018) 0.860 (.00a)y 0.841 (014) 0.960 (002) 0.961 (00sy 0.940 (001) 0.934 (.004)
FocalLoss (Lin et al.. 2017) 0.871 (oo3) 0.834 013y 0.970 (000) 0.966 (003) 0.949 (001) 0.937 (.004)
HRM (Leqi et al.. 2019) 0.875 (003) 0.839 (o12) 0.972 000y 0.965 003y 0.952 (oo1) 0.937 (.003)
RobustRegRisk (Duchi et al., 2019) 0.875 (o03) 0.844 (o10) 0.971 (000) 0.966 (.003) 0.951 (001) 0.939 (.004)
TERM (t:().l) 0.864 (.003) 0.840 (o11) 0.970 (oooy 0.964 (003) 0.949 (o01) 0.937 (.004)
ERM (thresh = 0.26) 0.943 (oo1y 0.916 (oos)y 0.919 ooy 0.917 (oo3) 0.924 (001) 0.917 (002)
RobustRegRisk, (thresh=0.49) 0.943 (o0o0y 0.917 (oos)y 0.928 (001) 0.928 (.002) 0.931 (001) 0.924 (001)
TERM (t=50) 0.942 (oo1y 0.917 (oos) 0.926 (oo1) 0.925 (002) 0.929 (001) 0.924 (.001)
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7.3 Solving Compound Issues: Hierarchical Multi-Objective Tilting

Finally, in this section, we focus on settings where multiple issues, e.g., class imbalance and
label noise, exist in the data simultaneously. We discuss two possible instances of hierarchical
multi-objective TERM to tackle such problems. One can think of other variants in this
hierarchical tilting space which could be useful depending on applications at hand.

7.3.1 CLASS IMBALANCE AND RANDOM NOISE

We explore the HIV-1 dataset (Régnvaldsson, 2013), as in Section 7.2. We report both
overall accuracy and accuracy on the rare class in four scenarios: (a) clean and 1:4, the
original dataset that is naturally slightly imbalanced with rare samples represented 1:4 with
respect to the common class; (b) clean and 1:20, where we subsample to introduce a 1:20
imbalance ratio; (c) noisy and 1:4, which is the original dataset with labels associated
with 30% of the samples randomly reshuffled; and (d) noisy and 1:20, where 30% of the
labels of the 1:20 imbalanced dataset are reshuffled.

Table 8: Hierarchical TERM can address both class imbalance and noisy samples.

test accuracy (HIV-1)

objectives

clean data 30% noise
1:4 1:20 1:4 1:20
Y=0 overall Y=0 overall Y=0 overall Y=0 overall
ERM 0.822 (009) 0.934 (003) | 0.503 013y 0.888 (.006) | 0.656 (o14) 0.911 (oo6) | 0.240 (o18) 0.831 (o1
CVaR (Rockafellar et al.. 2000 0.844 (.013) 0.937 (003)| 0.621 (o11y 0.906 (00s) | 0.651 (o1s) 0.909 (o06y| 0.252 (.01a) 0.834 (010

GCE (Zhang and Sabunou 2018) 0.822 (.009) 0.934 (.003) 0.503 (.013) 0.888 (.006) 0.732 (.021) 0.925 (.005) 0.324 (.017) 0.849 (.008)
LearnReweight (Ren et al. 2018) 0.841 (014) 0.934 (00a) | 0.800 (022) 0.904 003y | 0.721 034y 0.856 (008) | 0.532 054y 0.856 (.013)
RobustRegRisk (Duchi et al., 2019) 0.844 (o10) 0.939 (.004)| 0.622 (011) 0.906 (.005) | 0.634 (o19) 0.907 (00s) | 0.051 019y 0.792 (o012)

FocalLoss (Lin et al. 2017} 0.834 (.013) 0.937 (.004) 0.806 (.020) 0.918 (.003) 0.638 (.008) 0.908 (.005) 0.565 (.027) 0.890 (.009)
HAR (Cao et al. 2021) 0.842 (011) 0.936 (004) | 0.817 (013) 0.926 (.004) | 0.870 010y 0.915 (.004) | 0.800 (016) 0.867 (.012)
TERMg. 0.840 (.010) 0.937 (004)|0.836 (018) 0.921 (.002) | 0.852 (.010) 0.924 (.004)| 0.778 (008) 0.900 (.005)
TERM¢q 0.844 (014) 0.938 (.004) | 0.834 (.021) 0.918 (.003)| 0.846 (015 0.933 (.003)| 0.806 (0200 0.901 (.010)

In Table 8, hierarchical TERM is applied at the sample level and class level (TERMj,),
where we use the sample-level tilt of 7=—2 for noisy data. We use class-level tilt of ¢=0.1 for
the 1:4 case and t=>50 for the 1:20 case. We compare against baselines for robust classification
and class imbalance (discussed previously in Sections 7.1 and 7.2), where we tune them
for best performance (Appendix D.2). Similar to the experiments in Section 7.1, we avoid
using baselines that require clean validation data (e.g., Roh et al., 2020). We compare
TERM with an additional baseline of HAR (Cao et al., 2021), a recent work addressing
the issues of noisy and rare samples simultaneously with adaptive Lipschitz regularization.
While different baselines (except HAR) perform well in their respective problem settings,
TERM and HAR are far superior to all baselines when considering noisy samples and class
imbalance simultaneously (rightmost column in Table 8). Finally, in the last row of Table 8,
we simulate the noisy annotator setting of Section 7.1.3 assuming that the data is coming
from 10 annotators, i.e., in the 30% noise case we have 7 hammers and 3 spammers. In this
case, we apply hierarchical TERM at both class and annotator levels (TERM,,), where we
perform the higher level tilt at the annotator (group) level and the lower level tilt at the class
level (with no sample-level tilting). We show that this approach can benefit noisy /imbalanced
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data even further (far right, Table 8), while suffering only a small performance drop on the
clean and noiseless data (far left, Table 8).

7.3.2 CLASS IMBALANCE AND ADVERSARIAL NOISE

We evaluate hierarchical tilting on a more difficult task involving more adversarial noise
with deep neural network models. We take the setup studied in Cao et al. (2021). The
noise is created by exchanging labels of 40% samples which come from similar classes (‘cat’
and ‘dog’, ‘vehicle’ and ‘automobile’) in the CIFAR10 dataset. To simulate class imbalance,
only 10% of the training data from these four noisy classes are subsampled. For TERM, we
apply group-level positive tilting by linearly scaling ¢ from 0 to 3, and perform sample-level
negative tilting within each class with 7 scaling from 0 to -2. Table 9 reports the results of
hierarchical TERM (TERMj,.) compared with HAR (Cao et al., 2021) and other baselines.
We see that TERM underperforms HAR, and outperforms all other approaches. Note that
HAR is a more complicated method which requires to perform end-to-end training for two
times with higher per-iteration complexity (involving second-order information), while TERM
is a simple method and enjoys the same training time as that of ERM on this problem.

Table 9: TERM outperforms most baselines addressing the co-existence of noisy samples
and class imbalance by a large margin, and is worse than a more complicated method HAR.

test accuracy (CIFAR10, ResNet32)

objectives
noisy, rare class clean, common class

ERM 0.529 (.012) 0.944 (.001)
GCE (Zhang and Sabuncu 2018)  0.482 (.006) 0.916 (.003)
MentorNet (Jiang et al., 2018) 0.541 (.010) 0.903 (.005)
MW-Net (Shu et al. 2019b) 0.554 (.011) 0.917 (.005)
HAR (Cao et al., 2021) 0.635 (.008) 0.943 (.002)
TERM,. 0.585 (.014) 0.913 (.003)

8. Related Approaches in Machine Learning

Here we discuss related problem-specific works in machine learning addressing deficiencies of
ERM. We roughly group them into alternate aggregation schemes, alternate loss functions,
and sample re-weighting schemes.

Alternate aggregation schemes. A common alternative to the standard average loss
in empirical risk minimization is to consider a min-max objective, which aims to minimize
the max-loss. Min-max objectives are commonplace in machine learning, and have been
used for a wide range of applications, such as ensuring fairness across subgroups (Hashimoto
et al., 2018; Mohri et al., 2019; Stelmakh et al., 2019; Samadi et al., 2018; Tantipongpipat
et al., 2019; Lahoti et al., 2020), enabling robustness under small perturbations (Sinha et al.,
2018), or generalizing to unseen domains (Volpi et al., 2018). As discussed in Section 2, the
TERM objective can be viewed as a minimax smoothing (Kort and Bertsekas, 1972; Pee
and Royset, 2011) with the added flexibility of a tunable ¢ to allow the user to optimize
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utility for different quantiles of loss similar to superquantile approaches (Rockafellar et al.,
2000; Laguel et al., 2021), directly trading off between robustness/fairness and utility for
positive and negative values of ¢ (see Section 2 for these connections). However, the TERM
objective remains smooth (and efficiently solvable) for moderate values of ¢, resulting in
faster convergence even when the resulting solutions are effectively the same as the min-max
solution or other desired quantiles of the loss (as we demonstrate in the experiments of
Section 7). Interestingly, Cohen et al. introduce Simnets (Cohen and Shashua, 2014; Cohen
et al., 2016), with a similar exponential smoothing operator, though for a differing purpose
of achieving layer-wise operations between sum and max in deep neural networks.

Alternate loss functions. Rather than modifying the way the losses are aggregated, as in
(smoothed) min-max or superquantile methods, it is also quite common to modify the losses
themselves. For example, in robust regression, it is common to consider losses such as the L
loss, Huber loss, or general M-estimators (Holland and ITkeda, 2019) as a way to mitigate the
effect of outliers (Bhatia et al., 2015). Wang et al. (2013) study a similar exponentially tilted
loss for robust regression and characterize the break down point, though it is limited to the
squared loss and only corresponds to t<0. Losses can also be modified to address outliers by
favoring small losses (Yu et al., 2012; Zhang and Sabuncu, 2018) or gradient clipping (Menon
et al., 2020). Some works mitigate label noise by explicitly modeling noise distributions into
end-to-end training combined with an additional noise model regularizer (Jindal et al., 2016,
2019). On the other extreme, the largest losses can be magnified to encourage focus on hard
samples (Lin et al., 2017; Wang et al., 2016b; Li et al., 2020b), which is a popular approach
for curriculum learning. Constraints could also be imposed to promote fairness during the
optimization procedure (Hardt et al., 2016; Donini et al., 2018; Rezaei et al., 2020; Zafar
et al., 2017; Baharlouei et al., 2020; Cotter et al., 2019; Lowy et al., 2021; Alghamdi et al.,
2020; Zafar et al., 2019; Prost et al., 2019). A line of work proposes a-loss, which is able
to promote fairness or robustness for classification tasks (Sypherd et al., 2019). Ignoring
the log portion of the objective in (2), TERM can be viewed as an alternate loss function
exponentially shaping the loss to achieve both of these goals with a single objective, i.e.,
magnifying hard examples with t>0 and suppressing outliers with ¢<0. In addition, we show
that TERM can even achieve both goals simultaneously with hierarchical multi-objective
optimization (Section 7.3).

Sample re-weighting schemes. There exist approaches that implicitly modify the un-
derlying ERM objective by re-weighting the influence of the samples themselves. These
re-weighting schemes can be enforced in many ways. A simple and widely used example is
to subsample training points in different classes. Alternatively, one can re-weight examples
according to their loss function when using a stochastic optimizer, which can be used to put
more emphasis on “hard” or “unfair” examples (Shrivastava et al., 2016; Jiang et al., 2019;
Katharopoulos and Fleuret, 2017; Leqi et al., 2019; Abernethy et al., 2022). Re-weighting
can also be implicitly enforced via the inclusion of a regularization parameter (Abdelkarim
et al., 2020), loss clipping (Yang et al., 2010), or modelling crowd-worker qualities (Khetan
et al., 2018). Such an explicit re-weighting has been explored for other applications (e.g., Lin
et al., 2017; Jiang et al., 2018; Shu et al., 2019a; Chang et al., 2017; Gao et al., 2015; Ren
et al., 2018), though in contrast to these methods, TERM is applicable to a general class of
loss functions, with theoretical guarantees. TERM is equivalent to a dynamic re-weighting
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of the samples based on the values of the objectives (Lemma 5), which could be viewed as
a convexified version of loss clipping. We note that such view holds more generally for all
distributionally robust objectives (Stowik and Bottou, 2022). We compare to several sample
re-weighting schemes empirically in Section 7.

9. Discussion and Conclusion

In this manuscript, we have explored the use of exponential tilting in risk minimization,
examining tilted empirical risk minimization (TERM) as a flexible extension to the ERM
framework. We rigorously established connections between TERM and related objectives
including VaR, CVaR, and DRO. We explored, both theoretically and empirically, TERM’s
ability to handle various known issues with ERM, such as robustness to noise, class imbalance,
fairness, and generalization, as well as more complex issues like the simultaneous existence of
class imbalance and noisy outliers. Despite the straightforward modification TERM makes
to traditional ERM objectives, the framework consistently outperforms ERM and delivers
competitive performance with state-of-the-art, problem-specific methods on a wide range of
applications.

Our work highlights the effectiveness and versatility of tilted objectives in machine
learning. As such, our framework (TERM) could be widely used for applications both
positive and negative. However, our hope is that the TERM framework will allow machine
learning practitioners to easily modify the ERM objective to handle practical concerns such
as enforcing fairness amongst subgroups, mitigating the effect of outliers, and ensuring robust
performance on new, unseen data. One potential downside of the TERM objective is that if
the underlying dataset is not well-understood, incorrectly tuning ¢ could have the unintended
consequence of magnifying the impact of biased /corrupted data in comparison to traditional
ERM. Indeed, critical to the success of such a framework is understanding the implications of
the modified objective, both theoretically and empirically. The goal of this work is therefore
to explore these implications so that it is clear when such a modified objective would be
appropriate.

In terms of the use-cases explored with the TERM framework, we relied on benchmark
datasets that have been commonly explored in prior work (e.g., Yang et al., 2010; Samadi
et al., 2018; Tantipongpipat et al., 2019; Yu et al., 2012). However, we note that some of
these common benchmarks, such as cal-housing (Pace and Barry, 1997) and Credit (Yeh and
Lien, 2009), contain potentially sensitive information. While the goal of our experiments was
to showcase that the TERM framework could be useful in learning fair representations that
suppress membership bias and hence promote fairer performance, developing an understanding
for—and removing—such membership biases requires a more comprehensive treatment of
the problem that is outside the scope of this work.

In the future, in addition to generalization bounds of TERM, it would be interesting to
further explore applications of tilted losses in machine learning. We note that since the early
TERM work (Li et al., 2021) was made public, there are several subsequent works applying
(variants of) TERM to handle other real-world ML applications (Szabo et al., 2021; Zhou
et al., 2021), or exploring risk bounds on differential private TERM (Lowy and Razaviyayn,
2021), which suggest rich implications and wide applicability of TERM, beyond what is
studied in this work.
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Appendix

In this appendix, we provide full statements and proofs of the analyses presented in Section 2-
Section 4 (Appendix A and B); details and convergence proof on the methods we propose for
solving TERM (Appendix C), and complete empirical results and details of our empirical
setup (Appendix D). We provide a table of contents below for easier navigation.
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Appendix A. Properties and Interpretations (Proofs and Additional
Results)

In this section, we provide the proofs of the main results in the paper, along with additional
results on the properties of TERM objective, its solution, as well as the corresponding solvers.

A.1 Proofs of Basic Properties of the TERM Objective
We first provide proofs for the basic properties of the TERM objective.

Proof of Lemma 1. The conclusion follows by noting that for any 6,,02€0,

B(t+0:)— R(+ _|L 1 tf (z301) _1 1 tf(zi302)
R(t;01) R(tﬁg)’— tlog N'e%lv]e tlog N'E%lv]e (87)
tf(x;;0
R Siepe /) (88)
t ZzE[N] etf(@i;02)
et (@is02)
Lo [ m1on 021 Zielni®
< tlog( S e ]etf(x“@) (89)
— L||6y — 652 (90)
]

Proof of Lemma 2. Recall that
Zie[N]VOf($i;9)etf($i§9)

Voh(t:0)= NIEICE) (91)
1 2:8)— Bt
=% ;]vef(xi;e)@t(f( 50)—R(t:0)) (92)
€[N

The proof of the first part is completed by differentiating again with respect to 6, followed
by algebraic manipulation. To prove the second part, notice that the term in (13) is positive
semi-definite, whereas the term in (14) is positive definite and lower bounded by SBpminI (see
Assumption 2, Eq. (6)). O]

Proof of Lemma 3. Let us first provide a proof for teR™. Invoking Lemma 2 and Weyl’s
inequality (Weyl, 1912), we have

/\max v§9 R(t;

Amax (N Z (Vof(zi;0)— VQR(t ) (Vof(zi;0)— V@R(t 9)) t(f(zi:0)— R(:0)) (93)
[N]

Amax (N Z VHGTf i ) t(f(z4;0)—R(t;0)) (94)
[N]

<6maX7 (95)
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where we have used the fact that the term in (13) is negative semi-definite for <0, and that
the term in (14) is positive definite for all £ with smoothness bounded by Spax (which would
hold from smoothness of f(z;;0); see Assumption 2, Eq. (6)).

For teR>?, following Lemma 2 and Weyl’s inequality (Weyl, 1912), we have

1 ~
(JAmax(vng(t;e))
1 ~ ~ LOV—R(t:
Smax | 1 D, (Vo (@i:8) = VoR(1:0)) (Vo f (2::6)~ Vo R(1:0)) TV 5O =HED) | (96)
i€[N]

Due to Weyl’s inequality, the smoothness of f(z;;0), and the fact that %ZiE[N]et(f(’“”“g)*é(t?a)) =
1, ZZE ngf(xl g)etlf (@is0)— R(t:9)) is hounded. Consequently,

: 1 2 D4
tEI-FOO<t> )\max <v€9TR(t,9)> <—+0. (98)
On the other hand, following Weyl’s inequality (Weyl, 1912),

Amax (Vg(ﬂf{(t;@))

1

>t Amax N Z (Vef(xi;a)—Vgﬁi(t;@))(vef@;i;@)_Veﬁ(t;@)Tet(f(zi;H)—R(t;O)) ,
i€[N]
(99)
and hence,
lim <1>>\ <v2 E(t-@))>o (100)
t>too\ ¢ max 00T ) )

where we have used the fact that no solution 6 exists that would make all f;’s vanish
(Assumption 2). O

Under the strict saddle property (Assumption 4), it is known that gradient-based methods
would converge to a local minimum (Ge et al., 2015), i.e., é(t) would be obtained using
gradient descent (GD). The rate of convergence of GD scales linearly with the smoothness
parameter of the optimization landscape, which is characterized by Lemma 3.

Proof of Lemma 4. For t—0,

LSt (@i0)
}E%R(t 9)—hm log NZ e
i€[N]

Z’L’E[N]f(xi;e)etf(xi;g)

=li 101
B0 N e @0 (101)
1

= 2 f(@iih), (102)

€[N
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where (101) is due to L’Hépital’s rule applied to ¢ as the denominator and log <%Zie[N] etf(x“e))
as the numerator.
For t——o0, we proceed as follows:

i B0 = lim L 1 tf (zi;0)
tl}r_nooR(tﬁ)ftEr_nootlog N &€

i€[N]
< lim -log i etminje[N]f(fL”j?@) (103)
t——0o0 N
i€[N]
o ). 104
min f () (104)

On the other hand,

- o Nie[N]
> lim llog ietminje[w]f(zjﬂ) (105)
e N
1
:g}\%f(a:i;ﬂ)—tli}_noo{tlogN} (106)
min f(zi:0) (107)

Hence, the proof follows by putting together (104) and (107).
The proof proceeds similarly to t——oo for t—+o00 and is omitted for brevity. O

A.2 General Properties of the Objective for GLMs

In this section, even if not explicitly stated, all results are derived under Assumption 3 with
a generalized linear model and loss function of the form (7), effectively assuming that the
loss function is the negative log-likelihood of an exponential family (Wainwright and Jordan,
2008).

Definition 4 (Empirical cumulant generating function). Let
A(t:0):=tR(t:). (108)

Definition 5 (Empirical log-partition function (Wainwright et al., 2005)). Let I'(¢;6) be

. «— 1 —tGTT Z;
I(t:0):=log NZ e (@) ], (109)
1€[N]
Thus, we have
~ 1 1 0T T () 1
R(t:0)=A(0)+log [ — > e ) |=A(0)+ =T (:6). (110)
t Nz‘e[N] t
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Definition 6 (Tilted empirical mean and empirical variance of the sufficient statistic). Let
M and V denote the mean and the variance of the sufficient statistic, and be given by

M(t8):= - 3 Tlaye T, (111)
i€[N]
1 )
V()= > (T(25) — M) (T () —M(t;0)) Te 10T Tle) T (50) (112)
i€[N]

We notice that M (t;6) and V(¢;0) defined here are equivalent to tilted empirical mean /variance
in the main text (Eq. (29) and Eq. (31)) over sufficient statistic, i.e.,

M(t:0)= > wi(t;0)T (), (113)
i€[N]

V(t:0)= > wi(t:0)(T ()= M(0)) (T (i)~ M(£:0)) T (114)
i€[N]

Similarly, as a special case of t-tilted empirical mean/variance (Eq. (30) and Eq. (32)), t-tilted
empirical mean/variance over sufficient statistic are defined as

9

Mp=M(t:;0(t)), (115)
Vi=V(t:0(t)). (116)

The quantities M(;0),V(t;0),M;, and V; will be used for proving general properties of TERM
solutions in this section.

Lemma 12. For all teR, we have V(t;0)>0.

Next we state a few key relationships that we will use in our characterizations. The
proofs are straightforward and omitted for brevity.

Lemma 13 (Partial derivatives of I'). For all teR and all 0€0O,
0

ar(t;e):—aTM(t;e), (117)

VoI'(t;0)=—tM(t;0). (118)
Lemma 14 (Partial derivatives of M). For all teR and all 00O,

%M(t;0)=—]}(t;9)9, (119)

VoM (t;0)=—tV(t;0). (120)

The next few lemmas characterize the partial derivatives of the cumulant generating
function.

Lemma 15. (Derivative of A with t) For all teR and all <0,

%K(t;@):A(G)—HTM(t;H). (121)
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Proof. The proof is carried out by
0~

ot i€[N]

Lemma 16 (Second derivative of A with t). For all teR and all 0O,
52
S A(t:0)=0"V(1:0)0.
R0 =0TV (t:)
Lemma 17 (Gradient of A with 0). For all teR and all 00,
Vol (t:0)=tVA(0) —tM(t:6).
Lemma 18 (Hessian of A with ). For all teR and all €0,

V2,1 A(t:0)=tV2,: A(0) +12V(t:0).

Lemma 19 (Gradient of A with respect to ¢ and 6). For all teR and all 0®,

%VQA(t 0)=VoA(0)—M(:0)+tV(t:0)0.

Proof of Theorem 1. Followmg (110),
1
L Ro)- {r }
t
1 T
= (t;0)— 9 M(t;0),

=:9(t:0),
where (128) follows from Lemma 13, and (129) defines g(¢;0).
Let g(0;0):=lim;_,0g(t;0) Notice that

g(o;e)zym{—;r(t;e)—19%4(:5;9)}

—0
, { LP(t:0)+6T M(t;0) }
=—lim
t—0 t
=0"V(0;0)0,

where (132) is due to L’H@pital’s rule and Lemma 16. Now consider
{t2 :0)}= —{ I(t:0)—t0 " M(t;0)}
=0T M(t;0)
—0T M(t;0)+t0TV(t:0)0
—t0TV(t;6)6,

SAE0)=A0)-07 ) T(w;)e ™ T@TE) = A(0)— T M(1:0).

(122)

(123)

(124)

(125)

(126)

(127)

(128)
(129)

(130)

(131)

(132)

(133)
(134)
(135)
(136)

where g(t;é?):%l?{(tﬂ)7 (134) follows from Lemma 13, (135) follows from the chain rule and
Lemma 14. Hence, t2g(t;0) is an increasing function of ¢ for teR>Y and a decreasing function
of t for teR™, taking its minimum at t=0. Hence, t?¢(¢;0)>0 for all teR. This implies that
g(t;0)=0 for all teR, which in conjunction with (129) implies the statement of the theorem.
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A.3 General Properties of TERM Solutions for GLMs

Next, we characterize some of the general properties of the solutions of TERM objectives.
Note that these properties are established under Assumptions 3 and 4.

Lemma 20. For all teR,

VoA(t:0(t))=0. (137)
Proof. The proof follows from definition and the assumption that © is an open set. O
Lemma 21. For all teR,
Vo A1) = M(EA(D)): (138)
Proof. The proof is completed by noting Lemma 20 and Lemma 17. O
Lemma 22 (Derivative of the solution with respect to tilt). Under Assumption 4, for all
teRR,
a 2 s 4 -1 5 9
00 = (V3 AG) + V(A0 VEID)D), (139)
where
V2ot AO()+tV(1:0(t)) >0 (140)

18 a symmetric positive definite matriz.

Proof. By noting Lemma 20, and further differentiating with respect to ¢, we have

0= 2 VR (11 (141
- a‘iveﬂ(f;é(t)) T:t+V§9T7\(t;§(t)) <§t§(t)> (142)
=tV(t:0(1))0(t) + (tV2r A(0) +t2V(8:0)) <;§(t)>, (143)

where (142) follows from the chain rule, (143) follows from Lemmas 19 and 21 and 18. The
proof is completed by noting that VQGTA(t;Q(t)) is symmetric positive definite for all teR
under Assumption 4. O

Finally, we state an auxiliary lemma that will be used in the proof of the main theorem.

Lemma 23. For all t,7eR and all 0€0O,

M(7:0)— M(t:0) —— ( L Tw;mdu)e. (144)

Proof. The proof is completed by noting that
M(1;0)—M(t;0) J —M(v;0)d <J V(v;0) du> (145)
O
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Proof of Theorem 2. Notice that for all #, and all eeR>Y,
R(t+€0)=>R(t:0) (146)
>R(t:0(t)), (147)
where (146) follows from Theorem 1 and (147) follows from the definition of 6(¢). Hence,

R(t+e0(t+€)= min R(t+60)=R(t:0(t)), (148)
9eB(O(t),r)

which completes the proof. O
Proof of Theorem 3. Recall that f(x;;0)=A(0)—60"T(z;). Thus,
Ey(£(0)= . wi(t:0(t)) f(2::0)=A0)—0" > wi(t:0(t)T (2:)=A(0) -0 M,,  (149)
i€[N] i€[N]

where M is defined in (115). Consequently,

i, (£(0)) =By (F(6) - Bi(£(6)) (150)
— By (07T (2:)—0" M,)” (151)
=0T By (T () = M) (T ()~ M) ") (152)
—0TV0, (153)
where V; is defined in (116). Hence,

2 (@@ |- a‘ié<7>)Tve{@t<f<é<T>»} (154)

o N\ s
=2<579(T) Vib(7) (155)

and in turn

<0, (157)

v

-1
where we have used the fact that V, (VZOA(Q(T))-FTVT) V; is a symmetric positive semidef-

inite matrix (due to Lemma 12), hence completing the proof. O

Proof of Theorem 4. Notice that

H(w(t:0))=— ) w;(t;0)logw; (t;6) (158)
i€[N]

=—}V‘Z (1 (2330) R (1:0) /(=0 A00) (159

=A(t:0) t— Z F(zs:0)etf @i0)-A:0) (160)

:K(t;e)—tA( )+t9TM(t;9). (161)
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Thus,
VoH (w(t:0))=V, (K(t;e)—tA<9>+wTM(t;9)) (162)
— 1V A(0) —t M(:0)—tV A(0) +EM(£:0) — 2V (£:0)0 (163)
=—12V(1:0)6. (164)
Hence,
-
a‘iﬂ(w(t;é(T)D:(aié(T)) VgH(w(t;é(T))> (165)
T
:<;Té(¢)> Vg</~\(t;9)—tA(9)+t9TM(t;0)> (166)
o o o o -1 o o
—247 (r)V(rs0(n) (V3 A0(r) +7V(r6(r)) ) V(E(n)(r)  (167)
and
= H(w(td(r) =0 (168)
completing the proof. O

There are different ways to define performance uniformity. In Theorem 15, we further
prove that the tilted cosine similarity between the scaled loss vector and the all-ones vector
increases as t decreases by a small amount, which shows that larger ¢ promotes a more uniform
performance across all losses and can have implications for fairness defined as representation
disparity (Hashimoto et al., 2018) (Section 7.2).

Definition 7 (t-tilted cosine similarity). For u,veRY let cosine similarity be defined as

u'v
s(u,v)i=—m——. (169)
[all2][v2
For a weight vector w, let the weighted cosine similarity be defined as
sw(u,v):zs(qu,\/Wv), (170)

where W:=diag(w). In particular, we call Sw(t-é(t))("') the t-tilted cosine similarity.

Theorem 15 (t-tilted cosine similarity of the scaled loss vector and the all-ones vector
increases with t¢). Let

£ (0):={ f(wis0)-F(-0)} (171)

1€[N]

where ﬁ(—oo) is defined in Eq. (10), and let 1 denote the all-one N-vector. Then, under
Assumption 8 and Assumption 4, for any teR,

0 e

&{sw(ﬂém) (f (9(75)),1N) }' =0, (172)

T=t

where w(t:;0(t)) is the tilted weight vector defined in Eq. (26).
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Proof. Notice that
Etf($z ) ﬁ( )

wtdy (£ (0),1n)= \/Et Fond) B . (173)
Hence,
By (2i:0) = F(~0) = A(0)~0T My~ F(~0), (174)
Ey(f (::0) ~ F(=00))*=(A(6)~0T My~ F(~0))*+6T V16, (175)
where My and V; are defined in (115) and (116), respectively. Notice that
Vo{s2 gy 7 (0)10) } (176)

{ (Buf(aat)~F (o))’ }
=V _ (177)

Ey(f(zi;0)—F(—0))?

v (A(0)—0T M;—F(—0))?
T A0 T M- F(—0)2+0T V8

(178)

2(A(0) 0T My—F(—0)) (Vo A(0)—M)0TV0—2(A(0)—0T My —F(—o0))2V,0 (179)
- 2

((A(G)—QTMt—ﬁ(—oo))2+0TVt0>

2(A(0)—07 My~ F(=0)) (67 (Vo A(0) - M)~ A(0) +0T Mu+ F(—0) ) V16 .
! ((A@) 07 My~ F(-o0)2407Vi0)”

2(A(9)—0T/\/lt—ﬁ‘(—oo))(OTVQA(O)—A(Q)Jr}NW(—oo))VtH
= - . . (181)
((A(G)—QTMt—F(—oo))QJrHTVtG)

Hence,
%{Si@;é(m(ﬁ(é( D) | (182)
:<aaré<7)) Vg{ (te(t))(ﬁ(é(”)?lm} (183)

=BT (V) (V3 AG () V(7))

L 2AB(1) =0(r) T My~ F(—00))(A(6()) ~b(r )TM(T;é(TQ)—ﬁ(_oo))Vté(T)‘
(A ~b(r) T Mu=F(—20))?+6(7)TVi0)

(184)
Note that 2(A(é(7))—é(T)TMt—F(—oo))(A(ém)—é(T)TM(T;é(T>)—ﬁ(—oo))>o by defini-

tion, and V, (VgaA(é(T))-FTVT) Visa symmetric positive semi-definite matrix. Therefore,
The proof is completed following that the quantity in Eq. (184) is non-negative for t=7. [
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Appendix B. Connections to Other Objectives (Proofs and Additional
Results)

bounds on CCDF for Uniform|[0,2] bounds on CCDF for |N(0,7/2)|
1.0

< original —— true CCDF
Chernoff bound

v f 08 original
Y improved e Chernoff bound
A A
g 04 - g 0.4 improved

t<0 t>0
0.2 02
» —— true CCDF o t<0
0.0 0.5 1.0 L5 2.0 0 1 2 3 4 5

Figure 15: Comparing the new Chernoff bound on complementary CDF (CCDF) (i.e.,
P[X >7]) proposed in Theorem 5 (denoted as ‘improved’) with the original Chernoff bound
in two cases: X ~Uniform[0,2] and X ~|N(0,7/2)|. We see that by sweeping ¢ from all real
numbers, our bound is significantly tighter than the generic Chernoff bound which optimizes
over teR™, especially in the small deviations regime.

Lemma 24. If a<F(—0) then Q°(y)=1. Further, if v>F(+00) then Q°(y)=0, where F(-)
is defined in Definition 11, and is reproduced here:

F(~o0)= lim ﬁ(t;é<t>>=m@inn5vn]f<xi;e>, (185)
F(+o)= lim R(t:6(1))= —minmax (i50). (186)

Next, we present our main result on the connection between tail distribution of losses
and TERM, using Theorem 5.

Theorem 16. For all teR, and all 0, and all ve(F(—w0),F(+x)),”

R0t _ F(—o0)t

(187)

Q(~:0)<Q(:t,0):=

et — eF(—o)t
Proof. The proof is a direct application of Theorem 5 to the non-negative random variable
(f(X;0)—F(—)), where X is distributed according to the empirical distribution. O

Recall that optimizing VaR is equivalent to optimizing Q Next we show how TERM is
related to optimizing Q Recall that QO( ) denotes the optimal value of Q(’y 0) optimized

over 6. Let N .
Q' (n:=int{ Q1) }. (188)

which denotes the value at risk optimized over the t-tilted solutions.

7. We define the RHS at t=0 via continuous extension.
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Theorem 17. For all ye(F(—ow),F(+0)), we have

QP M<Q'M<QM=<Q’(M=f{Q(1)}, (189)
where
o Pt _ gF(—o0)t
(v,t):zm, (190)
P(y):=arginf{Q(v.1)}, (191)
Q*(7):=Q(r:0(F (7)), (192)
Q3(7):=Q(, (7). (193)

Proof. The only non-trivial step is to show that Q*(v)<Q3(v). Following Theorem 16,
Q*(1)=Q(r0(i(7)) <t Q(:t.0(1)=Q° (), (194)
which completes the proof. O

Theorem 17 motivates us with the following approximation on the solutions of the
minimizing the tail distribution of losses (Definition 2).

Approximation 1. For all ve(F(—),F(+0)),

~

Q(3:0°(1)=Q°(M~Q*(M=Q(r:0(t(1))), (195)

and hence, é(?(v)) is an approximate solution to the tail probability optimization problem.

~

While we have not characterized how tight this approximation is for ve (ﬁ(—oo),F (4+00)),
we believe that Approximation 1 provides a reasonable solution to the tail distribution
optimization problem in general. This is evidenced empirically when the approximation is
evaluated on the toy examples of Figure 1, and compared with the global solutions of the
tail distribution optimization method, as shown in Figure 16. As can be seen, QO(V)QQZ(V)
as suggested by Approximation 1. Also, we can see that while the bound in Theorem 17
(Q3(7)) is not tight, the solution that is obtained from solving it (Q2(7)) results in a good
approximation to the tail distribution minimization (Q°(v)).

Inverse CVaR. We note that while the most popular form of CVaR focuses on upper
quantiles (as discussed in the main text), one may explore ‘inverse’ CVaR that can focus on
lower quantiles, with its empirical form CVaRipy(1—a;0) for ae[0,1) defined as

— . 1 1
CVaRinv(l—oz,G).:—len 7+HNie%]v][—f(xi,9)—7]+ . (196)

As a ranges from 0 to 1, optimizing minv(l—a;e) transitions from solving avg-loss to
min-loss. However, different from TiVaR or CVaR, CVaRy,y is not a valid upper bound of
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point estimation linear regression
1.2
0
o VaR'(1 - a) Var" "1 - a)
’ Tt —— EVa
-1 VaR (1-a) var”" R(l —a)
& $ o8 VmRz(l —a) —— CVaRin,
=) ) =) a o — VaR (1—a)
g S o6
e e
(92 (92
= -3 ‘T 0.4
. 0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0
o o

Figure 16: Comparing the solutions of different risks in terms of how well they solve VaR. For
i€{0,1,2}, v;ﬁl(l—a)::min,y{’ﬂ@i(’y)<a}. vgﬁo(l—a):zminy{'ﬂ@o('y)éa} is the optimal
— 2 —

VaR(1—a;0). By definition, VaR (1—«) is the risk value of VaR(1—«;f#) with 6 being the

—_— ——CVaR ol
solutions of TiVaR(1—a;f). VaR (1—a) denotes the value of VaR(1—q;f) evaluated at
— ——CVaRiny —~—=EVaR . .
argmingCVaR(1—a;0), and VaR (1—a) and VaR (1—a) are defined in the similar

—1 —2 —0
way. We see that VaR (1—a«) and VaR (1—a) are close to VaR (1—«), which indicates VaR
with the solutions obtained from solving M(l—aﬂ) (which is {/51_:/{2(1—@)) is a tight

2 —2
upper bound of the globally optimal VaR(1—«;f). VaR (1—«) is also tighter than VaR
under EVaR solutions when « is not small.

VaR. Despite this, we optimize mingéﬁf/{inv(l—aﬁ), plug in the optimal model parameters
to evaluate VaR values, and compare with the approximate VaR values under the solutions of
other risks including TiVaR. From Figure 16, we see that VaR values under TiVaR solutions
can be smaller than those under CVaRj,, solutions on linear regression. Given any «, our
proposed TiVaR objective approximates VaR, ranging from min-loss to max-loss smoothly
i a single formulation, which can be more desirable than optimizing two objectives.

Proof of Theorem 6. We first prove Wzﬂ{(l—aﬁ)glﬁ/)\/\af/{(l—aﬁ).

. - i ) etf(xi;e) ~
EVaR(1—a:)— F(—o0) = min ~log ( N 2] —F(~w) (197)
teR>0 1 «o
R o8
Tiemot 8 a (198)
(R(5:0)—F(=o0))t _(1_
> min —log [ ¢ (1=a) ] (199)
teR>0 ¢ « .
(R(t:0)—F(=o0))t _(1_
2minllog [e C a)] (200)
teR ¢ o} N
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We next prove ﬁ(l—a;@)é’m(l—a;ﬁ). From Theorem 16, we know that for any ¢,6,

N eﬁ(t;e)t_e—ﬁ(—oo)t
Q(7;0)<min (201)

teR evt_eﬁ(—oo)t

Let @(v;e)za, and 'y*z\f/;f{(l—a;ﬁ). We have minteR{%}>a. We also note

oR(:0)t _ —F(—o0)t
min{d —— = =a. (202)
teR | oTiVaR(1—a;0)t _ o F'(—00)t

Hence,

TiVaR(1—0)>~*=VaR(1—a:). (203)
TERM and Entropic Value-at-Risk. Let x(¢) be the minimizer of entropic risk
Rx (t;0):

v

Ox (t):=argminRx (t;0). (204)
0O
Further, let Fx(t) be the optimum value of entropic risk, i.e.,
Fx(t):=Rx(t:0x(t)). (205)
Our next result will relate EVaR to entropic risk.

Lemma 25 (Relations between entropic risk and EVaR). Assume that for teR>°, Fx(t) is
a strongly convex function of% . Further, let

fX(a)eargtglRillo{FX (t)—}jloga}, (206)

then
argmin{ EVaRx (1-0;0)}=argmin{ R (ix (a)0) }:=0x (x (a), (207)
Ry (fX(a);éX(fx(a))) —Fx(Ix(a))<EVaRx (1—a;5X(£X<a))) . (208)

Proof. Consider the any minimizer of Ry (fx(c),0), i.e.,

v

fx (i (@) argmin R (ix (0):6). (209)
we next prove
Ox (fx(r))eargmin | min 1logIE[EU(X”Q)]—lloga . (210)
6 \t>0 \ 't t

Denote mingq (+logE[e!/(X9]—1loga) as h(6;a). Let

9;“eargnbinh(0;a), (211)
1 . 1
tv(ﬁj)eargrgél(tlogE[etf(X’ei)]—tloga). (212)
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By the definition of £x () and fx(t), we have

0 JogE[elx (@ (Xifx (Ex(@)]___2_oeq
ix () [ ]tx(a)

1 * .0 *
loaR[etv (03 F(X0x (to(0¥)_ L
5 (07)% e ]

v

1
ty(607)

v

<

logE[etv(Gﬁ)f(X;Of)]_t @

By the definition of 6%, h(6%;a)<h(0x (fx(a)):a), ie.,

t>0
‘We have
L ogR[er @t L0,
ty(03) to(03)
(1 tF(Xibx (ix (@) L
<min ( . logE[e ] . loga
1 ; i 1
<- logE[etX(a)f(X;gx (tx (Oé)))] — loga,
tx(a) tx(a)

Hence, Ox (fx (a))€argming (ming=o (%log]E [etf (X:0)] — %loga) ).

For the other direction, consider any minimizer of EVaRx (1—a«;0), i.e.,

Ojeargmeinh(ﬁ;a)

1 . 1
t,(0))eargmin <logIE[ef(X’9§)] - loga> .
t>0 \ t

1 . 1 1 (i 1
min (tlogIE[etf(X’e;i< - tlogoz) <1}1in <log]E[etf(X’9X (Ex ()] — loga> .
>0\ t

(213)
(214)

(215)

(216)

(217)
(218)

(219)

(220)

(221)

We next prove 9;‘}‘eargming#logE[e{X(“)ﬂX;e)]. By the definition of Ox (¢) and x(c),

tx(a)

logE[etv(09)/(X307)] — loga

ty(607)

v

to(05)

> L Jog[ete (01 (X (1 (03)]

to(07) to(607)

_ logE[efx(a)f(X;éx(fx(a))]_V 1 logar.

>tx(a) tX(a)

On the other hand, by the definition of 6} and ¢,(6}),

1 to (03) F(X507)7 (1 tH(X:0x (Fx (@)
(67 0eEle 1= gy ososmin{ 7logEle ]

v

<

%

tx(a)
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logE[ex (@) (Xix (Fx (e)))]

(222)
(223)

(224)

(225)

loga.

(226)
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Therefore,
! logE [t (#2)F (X305)] — ! logo (227)
to(05) to ()
1 * -0 % 1
U le ] 1. (07) 8% (228)
= 1 1OgE[efx(Oé)f(X;éX(fX(a)))]_ _ logor. (229)
tx (a> tx (a)
If
: H(Xfx ()] 1
s(t):zzlogE[e X ]—;loga (230)
has a unique minimizer,
x(a)=t.(62), (231)
and
1 y .
0 eargmin logE[e!x () (X:0)], (232)
0 ix(a)
Hence, we have proved
argn%inEVaRX(1—a;9)=argmginRX(fX(a);0), (233)
and
Rx (fx(a)0x (Ix(2)))<EVaRx(1—a:fx (ix(a))). (234)
O

The lemma relates the solution and the optimal value of EVaR with those of entropic
risk. We can extend Lemma 25 to the empirical version below.

Lemma 26 (Relations between empirical entropic risk and empirical EVaR). Assume that
F(t) is a strongly convex function of % For ae{%}ke[m, let

f(a)eargrgg{ﬁ(t)—iloga}, (235)

then
argm@in%(l—a;@)zargmeinl:?(f(a);ﬁ), (236)
F(#(a))<EVaR(1—a;0(i(a))). (237)
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Appendix C. Solving TERM (Proofs and Details)
C.1 Hierarchical Multi-Objective Tilting

We state the hierarchical multi-objective tilting for a hierarchy of depth 3. While we don’t
directly use this form, it is stated to clarify the experiments in Section 7 where tilting is done
at class level and annotator level, and the sample-level tilt value could be understood to be 0.

~ 1 1 ol
J(m,t,T;H):zglog N Z Z lg| |em7a(T:0) (238)
Ge[GG] \ ge[G]
Ta(tr0)=tlog [ o 37 |gleto(ri) (239)
t 2gefc 9]

Ry(730):= log<| |Z Tf@”’) (240)

TEY

Proof of Lemma 10. We proceed as follows. First notice that by invoking Lemma 5,

Vo (t,7:0)= > wy(t,;0)VoRy(1:0) (241)
9€[G]

where R
tRy(T;0)

N p—L

Syeialglette 70
where ﬁg (7;0) is defined in (83), and is reproduced here:

R o (7:0): log< ZeTf xe)) (243)

acey

(242)

On the other hand, by invoking Lemma 5,

Vo Ry(1:0) = 1wy (1:0) Vo (2:6) (244)
TEY
where
e7f (@:0)
wng(Tﬂe)‘: Zyeg€7—f(y;9) . (245)
Hence, combining (241) and (244),
Vol (t,7:0)= Y > wy(t,7:0)wg.o (T:0) Vo f (2:0). (246)
ge[G|reg

The proof is completed by algebraic manipulations to show that

Wy o (t,730)=wq(t,7:0)wy 2 (7;0). (247)
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C.2 Proofs of Convergence for TERM Solvers

Algorithm 5: Stochastic Non-Hierarchical TERM with two mini-batches
Initialize : 0, Fy—og (% e/ )
Input: t,a,A
while stopping criteria not reached do

sample two independent minibatches Bj,Bs uniformly at random from [N]
compute the loss f(x;0) and gradient Vg f(z;0) for all zeB;

I§B7t<—t—tilted loss (2) on minibatch By
ﬁy—%bg((l—/\)etét+/\et§3’t>

wt’$<—etf(“?9)7t§t
00 181 w12 V0 (50)
end

To prove our convergence results in Theorem 12, we first prove a lemma below.

Lemma 27. Denote k;:=argmax;, <k<2f+etLBet(me_ mi“)). Let Azl—%e, and

uk
_ 1 if k<
o= tLBet(Fmax—Fmin) 41’ if k<ky (248)
2—2, otherwise,
I
then for any k,
E[e! =0, .. 0,]<2e, (249)

where Ek::,é(t;ek):%10g<%ZiE[N]etf(fbi;9k)> .
Proof. We have the updating rule
et = )t (€n08) 1 (1 \)et P (250)

Taking conditional expectation E[-]01,...,0k+1] on both sides of (250) gives

E[e! 1= |9, 0,11] (251)
“A\E[e!FE00=R0) g, 01 ]+ (1-NE[ =)0, . 0) 1] (252)
A+ (1= NE[e!Ee=F0jg, 0,1, (253)

For any k, we have

tﬁik

gaket(ﬁmafomin)B‘ (254)

10k+1—0k| = V Ry,

etk
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Therefore,
ﬁmaxfﬁmin
| f(2i300—1) — f (24:01) | <L|0—1— 01| <cp LBe'l ),
and
. ) o ' tf (zi;0k) > »
e_takLBet(Fmax_ min) <et(Rk_Rk+1): ze[N]e <etoszBet(Fmax— min)
t 1;0
2ie[N]¢ Jwith)
e_takLBet(ﬁmax*FN'min)E[et(}?ki»l_ékle) ‘61 7-"70k+1]
gE[et(Rk+1*Rk) 101,....0k41]
<etakLBet(ﬁmax_ ~miﬂ)IE"[elf(lewl*Rkﬂ) |91,--~70k+1]-
Hence,
e_takLBet(ﬁmax*FN'min)E[et(}?ki»l_ékle) ’61 7-"70k+1]
<A+(1-NE[e P Fi)|g, . 6,]
<etakLBet(ﬁmax_ ~miﬂ)IE"[elf(lewl*Rkﬂ) |91,--~70k+1]-

(i) When k<k;, under the learning rate oy set as in Eq. (248), we have
akLBet(ﬁmaX*ﬁm‘“) <l1.
Hence,

E[e! )|y 0] <e(A+(1-NE[e P -Fenjgy g, 1))

1 x ~
<e+ QE[et(R’“*I_R’“’l) 101,....0k-1]

1 1 Bi—D
g.”<8<2_2k—2>+ E[et(R1fR1)’91]<2 .

2k—1

(11) When k>Fk;,
2e k

=—< = = .
/Lk: k+tLBet(F1nax_Fmirl)

093

Similarly, we have

]E[et(ékfék)‘91,“.76]6]getakLBet(ﬁ‘max7ﬁ'min> <)\+(1—A)E[€t(§klékl)|91,,0k1]>

<"‘<267

which completes the proof.
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Proof of Theorem 12 Denote the empirical optimal solution 8(t) as 8*. Denote the tilted
stochastic gradient on data (i as gi, where

ot (Cri6r) et Br ot f(Crifk) otBr
gh=————Vf(G;0k)=—=5 —=—V [ (GiOk) =—= VRr(). (269)

etRk etRk etRk etRk

Therefore, for any k=1,

E[{0k—0%,9x )] =E[E[{0x— 0" ,g1)[01-...0k]] (270)
=E[(0k—0" E[gk|01.....0k])] (271)
—E[(f— 0" E[! P00, 0L 1E[V Ri(Co) 01, 00])] (272)
> o B[00 VRG] (B0, )= 1/E PRl _6,))
(273)
Z%E[Hﬁk—ﬁ*w] (p-strong convexity of R), (274)

where (272) follows from the fact that et(Fi=Rk) and V Ry(Cy) are independent given {6,...,0;}.
For k>=k; with akzﬁ,

E|0h+1-0* )= E[ |6 —cuxgi—6"]?] (275)
— [0~ 6" |*) ~ 20 [0~ 6" gi)] + o v 2] (276)

o 5% ~
<(1-"B)EN0~0" 2+ afEl | B RIVR(GIP] (277)

2 #12 462B262t(ﬁmax_ Nmin)
<<1 k)E[HGk 0* %]+ e : (278)

When k<k; with o= 1 ~
=M kT L BetPrmax—Frnin)

M B2e2t(ﬁmax*ﬁmin)
E[6,—6**]<| 1- = E[ 61 —0%|*]+ .
e(tLBet(Fmax_Fmin) _|_1) (]_ +tLBet(Fmax_Fmin))2
(279)
(280)
We can thus prove
B2 2t(ﬁ‘max_ﬁmin)+1
E[[| 05, —0* |*] <max{ B[ —0%|2],—— — (281)
p(14+tLBet(Fmax—Fmin))
Let
4Bzez+2t(ﬁmax_ Nmin)
Vt:max{ktE[Hth—Q*P], 2 : (282)
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We next prove for k=k;,

Eljo—0* 7)<

Suppose ]E[\|0k—9*||2]<%. From (278), we have

42 B2 2t (Finax—Fnin)
k2.2

2
Ellonn-6° 1< (1-F ) Bllo-0" 1+

e+\/e2+,utLBet(ﬁmax— Nmin).l,_l
"

where k=k,= [ } This completes the proof.

Proof of Theorem 13. Assume é(t;@) is non-convex and S-smooth, we have
§k+1—§k—<V§k,9k+1—9k><§\|9k+1—9k||2,

where Rk:zﬁ(t;ﬂk)z%log(%zie[]v]etf(miﬁk)). Plugging in the updating rule

£(Ci0k) < ox
‘ V£ (Cribk) = —apet BT Ry (¢4

Ory1—Opr=—

etRk
gives

2

Rt —§k+ak<V§k,€t(§’“_é’“)Vﬁk(fk)>< g aket(ék_ﬁk)VRk(Ck)

First, we note

2

a2t B R, ()| <aetUmax—Fmn) |G Ry (¢)]2.

Take expectation on both sides of (289),

22(/'(ﬁ'maxfﬁvmin)B2

2

X~ x - 2
Bl 1]~ B[R]+ 0k ECY By e P R0 Ry ()] < 2

Let

ktlz

2(ﬁ‘max_ﬁ’min)t2L2
Be? '
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For any k>k;, let

2(ﬁmax_ﬁ1min)

et(ﬁmax*ﬁmin),‘ /5B2K '

Q=

For k<k;, let
1
tLBet(ﬁmax_ﬁmin) + 1 ’

o=
We have for any k>1,
aptL Be! Fnax—Fuin) <
Therefore, for any k>1,
E[e!(Re=Fi)g, . 6,]<2e.

Thus, for any k>1,

E[(V By PRV Ry ()] = E[E[<Vﬁk,e“ vm(ck»wl,...,ek]]
=E[(VRy.E[e! (R VRk(Ck)Wla---ﬁkm
—E[(V Ry E[e' 06, 6,E[V Ry ()| 01.---.0])]
B[V R E[ BB, 0,V R]
> o E[IVR)

Plug (301) into (291),
E[|V Ry |*]+ k(E[RkJrl] —E[Ry]) <oy Fmex—Fmin) e B,

Apply telescope sum from k;+1 to K and divide both sides by K,

E[Rk+1]-E[R o
- Z HVRkH ( [ K+1] [ kt]) <,80£k€2t(Fmax_me)€BQ.
k o oK

2e(E[Ry,, — Ric41])

_ E R < Fmax mm) B2
L S B[V R <P ‘ )

kkt

26(Jg‘ma.x_1?1111in)
CtkK

<Boék62t(Fmax_Fmin)€BQ+

2(I?max*}?min)

et(ﬁmax7ﬁmin) /BB2K ’

Consider that ag=

X ZE IV B4 2] </ 8B s Fain) 1 [ B(Fima— Finin)
k ke

completing the proof.
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Proof of Theorem 14. From the assumptions, we have E(t;&) is §-PL, i.e.,
n(R(1:0) - R*)<|VR(t:6)|, (307)

where R*:=R(t:0(t)). Let

4 4 LB t(ﬁmax_ﬁmin)
ki:=argmax k<S4 ctlLBe , (308)
k I wk
and
1 .
ak:{tLBet(ﬁmaxﬁmin)Jrl’ If k‘gk‘t (309)
4de h ;
i otherwise.
Similarly, we can prove for any k>1,
E[e! (=R g, . 0] <2e. (310)
Similarly,
- -« N 5a2€2t(ﬁmx—ﬁmin)32
E[Ry1| B[R]+ 5 BV B *] < —F—— (311)
Therefore,
~ ~ o« <~ Ba2et(Fmax—Fuim) B2
E[RkH]—E[Rk]+2—’;ME[Rk—R*]< s (312)
- - N . 2 ,2t(Finax—Finin) B2
E[Rkﬂ—R*]—E[Rk—R*]+¥ME[RR—R*]<5 e (313)
e

Balz_e%f(ﬁmax_ Nmin) _B2

~ ~ o ~ ~
E[Rk_H —R*] < <1—?:M>E[Rk—R*] +

2
(314)
Let akzﬁ, and
N - 8 Bzezt(ﬁmaxfﬁmin)m
Vtzmax{k‘tE[Rkt—R*], b e . (315)
We next prove E[ﬁk—é*]<% (k=k;) by induction. Suppose E[ék—ﬁ*]é%, then
E[Ri1—R*]< (1—k>E[Rk—R*]+k; (316)
2\Vi Vi
<(1—=)=—+-—= 1
( k) i (317)
Vi
X5 1 ]-
k+1 (318)
which concludes the proof. O
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t=1, batch size=1

100 ——— one mini-batch
D two independent mini-batches
101
al
=
& 102
1073
-
107 e
0 1 2 3

# iters x10°

Figure 17: Convergence of Algorithm 2 using two independent mini-batches to update Ry
and calculate /(@9 V, f(2:0) and a simpler variant using only one mini-batch to query
wi Vo f(x;0). We plot the optimality gap versus the number of iterations on the point
estimation example (Figure 1 (a)) with batch size being 1. While Algorithm 2 allows us
to get better convergence guarantees theoretically, we find that these two variants perform

similarly empirically.

16—6"1l2

16+l

t=-1, batch size=1

100 ——— one mini-batch

0.0 0.5 1.0 1.5
# iters

Table 10: TERM Applications and their corresponding solvers.

Three toy examples (Figure 1)
Robust regression (Table 2)
Robust classification (Table 4)
Low-quality annotators (Figure 9)
Fair PCA (Figure 10)

Class imbalance (Figure 14)
Variance reduction (Table 7)
Hierarchical TERM (Table 8)
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Appendix D. Additional Experiments and Experimental Details

In Appendix D.1, we provide complete experimental results on the properties or the use-cases
of TERM. Details on how the experiments in Section 7 were executed are provided in
Appendix D.2.

D.1 Complete Results

Recall that in Section 2, Interpretation 1 is that TERM can be tuned to re-weight samples to
magnify or suppress the influence of outliers. In Figure 18 below, we visually show this effect
by highlighting the samples with the largest weight for t—+00 and t——o0 on the logistic
regression example previously described in Figure 1.

logistic regression logistic regression

(a) Samples with the largest weights as t—+0c0.  (b) Samples with the largest weights as t——o0.

Figure 18: For positive values of ¢, TERM focuses on the samples with relatively large losses
(rare instances). When t—+o0 (left), a few misclassified samples have the largest weights
and are highlighted. On the other hand, for negative values of ¢, TERM suppresses the effect
of the outliers, and as t——o0 (right), samples with the smallest losses hold the the largest
weights.

Next, we provide complete results of applying TERM to a diverse set of applications.

Robust classification. Recall that in Section 7.1, for classification in the presence of label
noise, we only compare with baselines which do not require clean validation data. In Table 11
below, we report the complete results of comparing TERM with all baselines, including
MentorNet-DD (Jiang et al., 2018) which needs additional clean data. In particular, in
contrast to the other methods, MentorNet-DD uses 5,000 clean validation images. TERM is
competitive with the performance of MentorNet-DD, even though it does not have access to
this clean data.

To interpret the noise more easily, we provide a toy logistic regression example with
synthetic data here. In Figure 19, we see that TERM with ¢t=—2 (blue) can converge to the
correct classifier under 20%, 40%, and 80% noise.
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Table 11: A complete comparison including two MentorNet variants. TERM is able to match
the performance of MentorNet-DD, which needs additional clean labels.

test accuracy (CIFAR-10, Inception)

objectives

20% noise 40% noise 80% noise
ERM 0.775 (oosy 0.719 (004 0.284 (.004)
RandomRect (Ren et al., 2018) 0.744 ooy 0.699 (.005) 0.384 (.005)
SelfPaced (Kumar et al. 2010) 0.784 (.004) 0.733 (.004) 0.272 (.004)

MentorNet-PD (Jiang et al., 2018) 0.798 (ooe) 0.731 (.004) 0.312 (.005)
GCE (Zhang and Sabuncu, 2018) 0.805 (.00s) 0.750 (.004) 0.433 (.005)
MentorNet-DD (Jiang et al. 2018) 0.800 (.004) 0.763 (.004) 0.461.005)

TERM 0.795 (oos) 0.768 (.004) 0.455 (.005)
Genie ERM 0.828 (00a)y 0.820 (.004) 0.792 (.004)
logistic regressio‘n,‘(j% noise{ B logistic regressiog,ﬁo% noise logistic regression, 40% noise logistic regression, 80% noise

Figure 19: Robust classification using synthetic data. On this toy problem, we show that
TERM with negative t’s (blue) can be robust to random noisy samples. The green line
corresponds to the solution of the generalized cross entropy (GCE) baseline (Zhang and
Sabuncu, 2018). Note that on this toy problem, GCE is as good as TERM with negative ¢’s,
despite its inferior performance on the real-world CIFAR10 dataset.

Low-quality annotators. In Section 7.1.3, we demonstrate that TERM can be used to
mitigate the effect of noisy annotators, and we assume each annotator is either always correct,
or always uniformly assigning random labels. Here, we explore a different and possibly more
practical scenario where there are four noisy annotators who corrupt 0%, 20%, 40%, and
100% of their data by assigning labels uniformly at random, and there is one additional
adversarial annotator who always assigns wrong labels. We assume the data points labeled
by each annotator do not overlap, since (Khetan et al., 2018) show that obtaining one label
per sample is optimal for the data collectors under a fixed annotation budget. We compare
TERM with several baselines: (a) training without the data coming from the adversarial
annotator, (b) training without the data coming from the worst two annotators, and (c)
training with all the clean data combined (Genie ERM). The results are shown in Figure 20.
We see that TERM outperforms the strong baselines of removing one or two noisy annotators,
and closely matches the performance of training with all the available clean data.
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CIFAR10
80
>
®
5 60
(O]
Q full clean data
5 10 Genie ERM
s —-= TERM
------ remove two noisy annotators
200 Ll remove one noisy annotator
I
0 20 40 60 80

# epochs

Figure 20: TERM achieves higher test accuracy than the baselines, and can match the
performance of Genie ERM (i.e., training on all the clean data combined).

D.2 Experimental Details

We first describe the datasets and models used in each experiment presented in Section 7,
and then provide a detailed setup including the choices of hyperparameters. All code and
datasets are publicly available at github.com/litian96 /TERM.

D.2.1 DATASETS AND MODELS

In Section 7.1, for regression tasks, we use the drug discovery data extracted from Diakonikolas
et al. (2019) which is originally curated from Olier et al. (2018) and train linear regression
models with different losses. There are 4,085 samples in total with each having 411 features.
We randomly split the dataset into 80% training set, 10% validation set, and 10% testing set.
For mitigating noise on classification tasks, we use the standard CIFAR-10 data and their
standard train/val/test partitions along with a standard inception network (Szegedy et al.,
2016). For experiments regarding mitigating noisy annotators, we again use the CIFAR-10
data and their standard partitions with a ResNet20 model. The noise generation procedure
is described in Section 7.1.3.

In Section 7.2, for fair PCA experiments, we use the complete Default Credit data to learn
low-dimensional approximations and the loss is computed on the full training set. We follow
the exact data processing steps described in the work (Samadi et al., 2018) we compare with.
There are 30,000 total data points with 21-dimensional features (after preprocessing). Among
them, the high education group has 24,629 samples and the low education group has 5,371
samples. For meta-learning experiments, one the popular sine wave regression problem (Finn
et al., 2017), we generate 5,000 meta-training and 5,000 meta-testing tasks. Following Collins
et al. (2020), there are 250 hard meta-training tasks with amplitudes drawn from [4.95,5]
and 4,750 easy meta-training tasks with amplitudes drawn from [0.01,1]. The amplitudes of
meta-testing tasks are drawn uniformly from [0.1,5]. The phase values are drawn uniformly
from [0,7] for all tasks. For class imbalance experiments, we directly take the unbalanced data
extracted from MNIST (LeCun et al., 1998) used in Ren et al. (2018). When demonstrating
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the variance reduction of TERM, we use the HIV-1 dataset (Régnvaldsson, 2013) as in (Duchi
and Namkoong, 2019) and randomly split it into 80% train, 10% validation, and 10% test
set. There are 6,590 total samples and each has 160 features. We report results based on
five such random partitions of the data. We train logistic regression models (without any
regularization) for this binary classification task for TERM and the baseline methods. We
also investigate the performance of a linear SVM.

In Section 7.3, the HIV-1 data are the same as that in Section 7.2. We also manually
subsample the data to make it more imbalanced, or inject random noise, as described in
Section 7.3. The CIFARI10 dataset used in this section is a standard benchmark, and we
follow the same procedures in Cao et al. (2021) to generate a noisy and imbalanced variant.

D.2.2 HYPERPARAMETERS

Selecting t. In Section 7.2 where we consider positive t’s, we select ¢ from a limited
candidate set of {0.1,1,2,5,10,50,100,200} on the held-out validation set. For initial robust
regression experiments, RMSE changed by only 0.08 on average across t; we thus used t=—2
for all experiments involving noisy training samples (Section 7.1 and Section 7.3).

Other parameters. For all experiments, we tune all other hyperparameters (the learning
rates, the regularization parameters, the decision threshold for ERM, p for (Duchi and
Namkoong, 2019), the quantile value for CVaR (i.e., « in Eq. (62)) (Rockafellar et al., 2000),
a and v for focal loss (Lin et al., 2017)) based on a validation set, and select the best
one. For experiments regarding focal loss (Lin et al., 2017), we select the class balancing
parameter (« in the original focal loss paper) from range(0.05,0.95,0.05) and select the main
parameter v from {0.5,1,2,3,4,5}. We tune p in (Duchi and Namkoong, 2019) such that % is
selected from {0.5,1,2,3,4,5,10} where n is the training set size. We tune « for CVaR from
{0.1,0.3,0.5,0.7,0.9}. All regularization parameters including regularization for linear SVM
are selected from {0.0001,0.01,0.1,1,2}. For all experiments on the baseline methods, we use
the default hyperparameters in the original paper (or the open-sourced code).
We summarize a complete list of main hyperparameter values as follows.
Section 7.1:

e Robust regression. The threshold parameter ¢ for Huber loss for all noisy levels is 1, the
corruption parameter k for CRR is: 500 (20% noise), 1000 (40% noise), and 3000 (80%
noise); and TERM uses t=—2.

e Robust classification. The results are all based on the default hyperparameters provided
by the open-sourced code of MentorNet (Jiang et al., 2018), if applicable. We tune the ¢
parameter for generalized cross entropy (GCE) from {0.4,0.8,1.0} and select a best one for
each noise level. For TERM, we scale t linearly as the number of iterations from 0 to -2
for all noise levels.

e Low-quality annotators. For all methods, we use the same set of hyperparameters. The
initial step-size is set to 0.1 and decayed to 0.01 at epoch 50. The batch size is 100.

Section 7.2:
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e Fair PCA. We use the default hyperparameters and directly run the public code of (Samadi
et al., 2018) to get the results on the min-max fairness baseline. We use a learning rate of
0.001 for our gradient-based solver for all target dimensions.

e Fair meta-learning. We use a fixed learning rate of 0.01 for all methods, and tune a best
learning rate for the task weights for the work of Collins et al. (2020). Similar as Collins
et al. (2020), for all methods, we run one step of mini-batch SGD for inner optimization.

e Handling class imbalance. We take the open-sourced code of LearnReweight (Ren et al.,
2018) and use the default hyperparameters for the baselines of LearnReweight, HardMine,
and ERM. We implement focal loss, and select a=0.05,y=2.

e Variance reduction. The regularization parameter for linear SVM is 1. « for focal loss is 2.
We perform binary search on the decision thresholds for ERM and RobustRegRisk,, and
choose 0.26 and 0.49, respectively.

Section 7.5:

e Logistic regression on HIV. We tune the ¢ parameter for GCE based on validation data.
We use ¢=0,0,0.7,0.3 respectively for the four scenarios we consider. For RobustlyRegRisk,
we use £=10 (where n is the training sample size) and we find that the performance
is not sensitive to the choice of p. For CVaR, the tuned « value is 0.5 when the data
imbalance ratio is 1:4, and 0.1 when the imbalance ratio is 1:20. For focal loss, we tune
the hyperparameters for best performance and select y=2, a=0.5, 0.1, 0.5, and 0.2 for
four scenarios. For HAR, we tune the regularization parameter A via grid search from
{0.1,1,2,5,10} and select the best one. We use t=—2 for TERM in the presence of noise,
and tune the positive t’s based on validation data. In particular, the values of tilts under
four cases are: (0, 0.1), (0, 50), (-2, 5), and (-2, 10) for TERMg. and (0.1, 0), (50, 0), (1,
-2) and (50, -2) for TERM,.

e ResNet32 on CIFAR10. We reproduce (and then directly take) the results from (Cao
et al., 2021) for all baseline methods. For hierarchical TERM, we scale t from 0 to 3 for
group-level tilting, and scale t from 0 to -2 for sample-level tilting within each group. A
is set to 0.2. We use the default hyperparameters (batch size, learning rate, etc) in the
open-sourced code of HAR (Cao et al., 2021) for TERM.
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