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Abstract—Deep reinforcement learning approaches are
becoming appealing for the design of nonlinear controllers
for voltage control problems, but the lack of stability guar-
antees hinders their real-world deployment. This letter
constructs a decentralized RL-based controller for inverter-
based real-time voltage control in distribution systems. It
features two components: a transient control policy and
a steady-state performance optimizer. The transient policy
is parameterized as a neural network, and the steady-state
optimizer represents the gradient of the long-term operat-
ing cost function. The two parts are synthesized through
a safe gradient flow framework, which prevents the viola-
tion of reactive power capacity constraints. We prove that
if the output of the transient controller is bounded and
monotonically decreasing with respect to its input, then the
closed-loop system is asymptotically stable and converges
to the optimal steady-state solution. We demonstrate the
effectiveness of our method by conducting experiments
with IEEE 13-bus and 123-bus distribution system test
feeders.

Index Terms—Voltage control, reinforcement learning,
stability.

I. INTRODUCTION

VOLTAGE safety is one of the primary concerns of power
system operation, which requires the voltage magnitude

to stay in an acceptable range under all working conditions [1].
In recent years, the integration of distributed energy resources
(DERs) such as roof-top solar and electric vehicles has led to
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rapid and unpredictable fluctuations in the load and generation
profiles of the distribution systems, thus leading to challenges
in real-time voltage control for distribution grids.

There have been tremendous efforts made to overcome this
challenge. Much of the attention has focused on optimizing
the steady-state cost for voltage control [2], [3], [4], [5], [6],
which refers to the operation cost after the system voltage
has settled to equilibrium. However, as the system is sub-
ject to more frequent disturbances from load and generation
fluctuations, optimizing the transient performance (i.e., how
to optimally stabilize voltage after disturbances) becomes of
equal importance.

The transient performance for the voltage control problem
involves minimizing the voltage recovery time, at the mini-
mum control effort. However, optimizing the transient cost for
voltage control is a challenging task [7], as both the cost func-
tions and system dynamics can be nonlinear. This is further
complicated by the lack of exact model knowledge and limited
communications in the distribution grid. Recently, reinforce-
ment learning (RL) has emerged as a powerful approach for
addressing model-free nonlinear control problems. There has
been considerable interest in developing RL-based controllers
for optimizing the transient performance of voltage control
problems. We refer readers to a recent survey [8].

Recent research has revealed that RL with a monotone
policy network can ensure transient stability for voltage
control [9], [10], [11]. However, these works do not offer guar-
antees regarding the optimality of the steady state. Steady-state
requirements are difficult to enforce in RL since training can
only occur over a finite horizon. Motivated by the challenges,
the question we want to address in this letter is,

Can RL be structured to optimize both transient and steady-
state performance for voltage control?

The key idea underlying our approach is the synthesis
of a neural-network-based transient control policy and a
steady-state optimizer (represented by the gradient of the
cost function) in a safe gradient flow framework [12]. This
enables us to coordinate these two sub-controllers to optimize
both transient and steady-state performance while respecting
the reactive power constraint and guaranteeing closed-loop
stability. We summarize our main contributions as follows:

• We design a decentralized RL-based controller that
optimizes both transient and steady-state performance for
the distribution system voltage control;
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• We prove that the proposed controller design guarantees
both transient stability and steady-state optimality, for
strictly convex objective functions (in Theorem 1);

• We demonstrate the effectiveness of the proposed method
with extensive numerical experiments. Our method can
reduce over 30% transient cost compared to con-
trollers that only optimize the steady-state or transient
performance, and guarantee optimal steady-state cost.

The remaining parts of this letter are organized as fol-
lows. Section II presents the distribution system voltage
control problem and steady-state optimization solution as pre-
liminaries. Section III presents the proposed transient and
steady-state reinforcement learning algorithm. Its stability and
optimality guarantees are rigorously proved in Section IV.
Section V evaluates the results in IEEE test feeders and
provides a discussion, followed by concluding remarks in
Section VI.

II. MODEL & PRELIMINARIES

In this section, we review the distribution system power flow
model and introduce the voltage control problem.

A. Branch Flow Model

We consider the linearized branch flow model [3] in a tree-
structured distribution network for theoretical analysis. The
system is defined as G = (N0,E), consisting of a set of nodes
N0 = {0, 1, . . . , n} and an edge set E. Node 0 is known as
the substation, and N = N0/{0} denotes the set of nodes
excluding the substation node. Each node i ∈ N is associated
with an active power injection pi and a reactive power injection
qi. Let vi be the squared voltage magnitude, and let p, q and
v denote {pi, qi, vi}i∈N stacked into a vector. The variables
satisfy the following equations, ∀i ∈ N,

pi = −Pji +
∑

k:(i,k)∈E

Pik, qi = −Qji +
∑

k:(i,k)∈E

Qik, (1a)

vi = vj − 2(rjiPji + xjiQji), (1b)

where j is the parent node of i in the distribution network, Pji

and Qji represent the active power and reactive power flow on
line (j, i), and rji and xji are the line resistance and reactance.
(1) can be written in the vector form,

v = Rp + Xq + v01 = Xq + venv, (2)

where venv = Rp + v01 is the non-controllable part.
R = [Rij]n×n

, X = [Xij]n×n
are defined as Rij :=

2
∑

(h,k)∈Pi∩Pj
rhk, Xij := 2

∑

(h,k)∈Pi∩Pj
xhk. Here, Pi is

the set of lines on the unique path from bus 0 to bus i, and
v0 is the squared voltage magnitude at the substation bus.
R and X are positive definite matrices and all elements are
positive [9].

We make the following assumptions that are well-justified
for voltage control on distribution networks [3], [9].

Assumption 1: The system models (i.e., matrices R and X
in (2)) are time-invariant, and the controllers are installed in
every bus without real-time communication.

Assumption 2: There is a timescale separation between the
voltage dynamics and the dynamics of inverters, so that the
controlled inverter injects instantaneously the exact value of
reactive power computed by the controller.

B. Voltage Control Problem

The optimal voltage control problem at the steady state is,

min
q

F(q) = C(q) +
1

2
q�Xq + q��ṽ (3a)

s.t. q ≤ q ≤ q̄ (3b)

where C(q) is the control cost and �ṽ = venv − vnom. We
define the reactive power safety set as Sq = {q ∈ R

n|q ≤
q ≤ q̄}. For the per-unit system, we define vnom = 1 p.u.
Using (2), the objective function can be rewritten as F(q) =

C(q) + 1
2
(v − vnom)�X−1(v − vnom) − 1

2
�ṽ�X−1�ṽ. Since the

last term is a constant, the objective function finds an optimal
trade-off between minimizing the control cost C(q) and the

voltage deviation 1
2
(v−vnom)�X−1(v−vnom). Following [5], we

consider C(q) =
∑n

i Ci(qi), Ci(qi) =
ηi

2s̄i
q2

i , where ηi, s̄i > 0

represent the cost of reactive power of bus i and its apparent

power capacity. Compactly, C(q) = 1
2

q�Cqq, where Cq is the

diagonal matrix diag{
ηi

s̄i
}i∈N.

Note that the objective function (3a) can be equivalently
written as the sum of cost at all nodes by (2),

F(q) =

n
∑

i

(

Ci(qi) +
1

2

(

qi

(

vi + venv
i − 2vnom

i

))

)

.

The gradient of the objective function ∇F is,

∇F = Cqq + Xq + �ṽ
1©
= Cqq + v − vnom. (4)

where 1© follows from (2) and the definition of �ṽ :=
venv−vnom. We write ∇Fi =

ηi

s̄i
qi+vi−vnom

i . The decomposable

structure of the objective function and the gradient enables
decentralized training and deployment of a controller. We
make the assumption that the optimal solution of (3) is unique
and the corresponding voltage v∗ lies in the safe voltage range.

Assumption 3: The steady-state optimization problem (3)
is strictly convex, the optimal solution (v∗, q∗) satisfies v∗ ∈
Sv = {v ∈ R

n : vi ≤ vi ≤ v̄i}, q∗ ∈ Sq where vi, v̄i are upper
and lower bounds of desired system voltage magnitudes.

To solve (3), [2] introduces a projected gradient method

qi(t + 1) = [qi(t) − γ∇Fi]
q̄i
q

i
, (5)

where [·]a
b denotes the projection onto [a, b], and q

i
and q̄i

are the lower and upper bound of reactive power capacity.

If the stepsize γ satisfies γ < 2
λmax(∇2C(q)+X)

, where λmax

denotes the largest eigenvalue, v(t) and q(t) under the con-
troller (5) converge to (v∗, q∗) – the optimal solution of (3).
However, this approach does not account for optimizing tran-
sient performance, which is critical when the system is subject
to rapid voltage deviations due to renewable integration and
EV charging (reflected in changes in venv). This limitation
motivates our design of a controller that jointly optimizes both
steady-state and transient performance.

III. JOINT TRANSIENT AND STEADY STATE

PERFORMANCE OPTIMIZATION

In this section, we first introduce the joint transient
and steady-state optimization problem. Then, we propose a
Transient and Steady-state Reinforcement Learning (TASRL)
framework to solve it. We provide transient stability and
steady-state optimality guarantees in the next section.
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From the system operator perspective, we wish to achieve
two main objectives: 1) transient stability and performance:
fast convergence of system voltage to the desired operat-
ing range Sv (e.g., ±5% around vnom) after a disturbance;
2) steady-state performance: maintaining the system opera-
tion at the most economical point. Thus, the joint transient
and steady-state optimization problem is formulated as,

min
θ

J(θ) =

∫ tf

t=0

γ t

n
∑

i=1

ci(vi(t), qi(t)) (6a)

s.t. v(t) = Xq(t) + venv, (6b)

q̇(t) = fθ (q(t), v(t)), (6c)

v∗ = lim
t→tf

v(t), q∗ = lim
t→tf

q(t), (6d)

q∗is the optimal solution for (3), (6e)

q(t) ∈ Sq,∀t and v∗ ∈ Sv. (6f)

where γ is the discount factor and ci is the cost function at
node i, for which we choose ci(vi, qi) = Ci(qi)+

1
2
qi(vi+venv

i −
2vnom

i ). fθ (·, ·) is the controller to be optimized. Here, tf ∈ R>0

is the (possibly unbounded) stabilization time. During the tran-
sient period [0, tf ], the goal is to recover the voltage quickly
under limited reactive power resources while minimizing the
control effort. In addition, we want the system to converge
to the steady-state optima limt→tf v(t) → v∗, limt→tf q(t) →
q∗, and such that the equilibrium point (v∗, q∗) solves the
steady-state optimization (3).

Controller synthesis inspired by safe gradient flow: Here,
we introduce the proposed decentralized controller design.
Each controller measures the local voltage magnitude and
computes the local reactive power injection without real-
time communication. To jointly optimize the transient and
steady-state performance, let’s start by considering a direct
combination of a transient policy πθ (v), parameterized by a
neural network, and the gradient ∇F(q), cf. (4),

q̇ = fθ (q, v) := −∇F(q) + πθ (v), (7)

with q(0) = 0. The main issue with the controller (7) is that
the resulting trajectory of q(t) may not satisfy the reactive
power constraint q ≤ q(t) ≤ q at all times. To enforce it, we
build on the safe gradient flow framework introduced in [12].
This design employs a control barrier function g(q) to ensure
that a given dynamics never leaves a safe set Sq = {q ∈
R

n|g(q) ≤ 0}, where g(q) is defined by

g(q) =
[

I − I
]�

q +
[

−q̄ q
]�

. (8)

If the dynamics q̇ = fθ (q, v) satisfies

∂g

∂q
fθ (q, v) ≤ −αg(q), (9)

then, by Nagumo’s theorem [13], q(t) must stay inside the safe
region Sq for all t. Here, the hyperparameter α > 0 indicates
the degree of conservatism regarding the reactive power con-
straints, where the larger α is, the more flexibility is allowed
when q(t) is not reaching the constraints. To ensure that the
controller in (7) satisfies the safety constraints, the safe gra-
dient flow framework [12] prescribes modifying it minimally
according to the following control barrier function quadratic
program (CBF-QP) safety filter [14],

fθ (q, v) = arg min
ξ∈Rn

1

2
‖ξ − (−∇F(q) + πθ (v))‖

2
2 (10a)

Algorithm 1 Transient and Steady-State Reinforcement
Learning (TASRL) for Distribution Grid Voltage Control

Ensure: policy networks πi,θi(vi) with parameters θi;
hyperparameter α; sampling time h; replay buffers
Di,∀i ∈ N.
for j = 0 to Nep do

Randomly generate initial states v(0)
for t = 0 to Nstep do

For each agent i ∈ N

Measure the current state vi(t)
Compute the control action (reactive power adjust-

ment) fi,θi(qi(t), vi(t)) = [πi,θi(vi(t)) − ∇Fi]
α(q̄i−qi(t))

α(q
i
−qi(t))

Execute qi(t + 1) = qi(t) + hfi,θi(qi(t), vi(t))
Transit to next state vi(t + 1), receive cost ci(t)
Store {vi(t), qi(t), fi,θi(qi(t), vi(t)),−ci(t), vi(t + 1)}

in Di

Update policy network θi

end for
end for

s.t.
∂g

∂q
ξ ≤ −αg(q) (10b)

Plugging in g(q) gives,

fθ (q, v) = arg min
ξ∈Rn

1

2
||ξ + ∇F(q) − πθ (v)||

2 (11a)

s.t. α(q − q) ≤ ξ ≤ α(q̄ − q) (11b)

The controller (11) is our proposed controller to solve
the joint optimization problem in (6). We envision that (11)
finds the safe control action closest to −∇F(q) + πθ (v)
while ensuring the reactive power constraints are never vio-
lated. If sufficient reactive power capacity exists, fθ (q, v) =
−∇F(q) + πθ (v), otherwise, the action is projected to ensure
reactive power capacity constraints are met. As α → ∞, (11)
reduces to a projection of −∇F(q(t)) + πθ (v(t)) onto [q, q].

Proposition 1: The optimal solution to (11) is given by,

fθ (q, v) = [πθ (v) − ∇F(q)]
α(q̄−q)

α(q−q)
(12)

where [·]a
b denotes the projection onto [a, b].

Proposition 1 is a direct result of solving the QP [15, Ch. 8]
formulated by Equation (11). We summarize the proposed
controller in Algorithm 1. As observed in Algorithm 1,
the controller computation and execution are decentral-
ized. The training process of TASRL follows the stan-
dard policy optimization RL algorithms. Each local tran-
sient policy πi,θi(vi) can be parameterized as neural
networks (with requirements specified in Section IV
Def. 1) and trained together with ∇F to optimize
the transient performance. The proposed TASRL frame-
work is general and can be integrated with most policy
optimization methods, including DDPG [16], PPO [17], and
TRPO [18].

IV. TRANSIENT STABILITY AND STEADY-STATE

OPTIMALITY GUARANTEES

In this section, we establish the closed-loop stability and
optimal steady-state performance properties of Algorithm 1.
The guarantees rely on certain structural constraints of the
transient policy in the next definition.
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Definition 1 (Stable Decentralized Transient Policy): A set
of local policy {πi,θi ,∀i ∈ N} is a stable transient policy if it
satisfies the following conditions for each bus i ∈ N:

1) πi,θi(vi) is a continuously differentiable function satisfy-
ing πi,θi(vi) = 0 for vi ∈ [vi, v̄i];

2) πi,θi(vi) is monotonically decreasing for vi ∈ (−∞, vi)∪
(v̄i,∞);

3) πi,θi(vi) is bounded, i.e., cα(q′
i
− qi(t)) ≤ πi,θi(vi(t)) ≤

cα(q̄′
i − qi(t)), where q′

i
= q

i
(1 − ε), q̄′

i = q̄i(1 − ε), and

ε ∈ (0, 1) c ∈ [0, 1).
We write πi,θi(vi) = πi,θi(vi) − πi,θi(v

∗
i ) as πi,θi(v

∗
i ) = 0.

For vi �= v∗
i , we define Kii(vi) =

πi,θi
(vi)−πi,θi

(v∗
i )

vi−v∗
i

and K(v) :=

−diag(K11(v1), K22(v2), . . . , Knn(vn)). By the monotonically
decreasing condition in Definition 1, when vi ∈ (−∞, vi) ∪
(v̄i,∞), Kii(vi) < 0. When vi ∈ [vi, v̄i] and vi �= v∗

i , Kii(vi)
= 0. We define Kii(vi) = 0 if vi = v∗

i . As a result, for every
v, we can write πθ (v) = −K(v)(v − v∗). Define σmax(·) and
σmin(·) as the largest and smallest singular value of a matrix.
The following result establishes the theoretical guarantees.

Theorem 1 (Transient Stability and Steady-State
Optimality): Suppose Assumption 3 holds, πθ is a stable
decentralized transient policy according to Definition 1, and
2σmax(K(v)) ≤ σmin(CqX−1 + I),∀v ∈ R

n, then with a suffi-
ciently large α, the closed-loop system is asymptotically stable
with controller (11). In addition, lim

t→tf
v(t) = v∗, lim

t→tf
q(t) = q∗,

q∗ is the global minimizer of optimization problem (3),
v∗ ∈ Sv, and q(t) ∈ Sq,∀t ≥ 0.

Theorem 1 shows that with a Lipschitz-like bound on the
transient policy πi,θi ,∀i ∈ N, the proposed controller in (11)
obtains both transient stability and steady-state optimality
while respecting the reactive power capacity constraint at all
times. Below, we present the theoretical analysis of Theorem 1.

Lemma 1: Suppose 2σmax(K(v)) ≤ σmin(CqX−1 + I),∀v ∈

R
n and let 〈·, ·〉 be the dot product, then ‖−∇F(q)‖2 +

2〈πθ (v),−∇F(q)〉 ≥ 0,∀v ∈ R
n, q ∈ Sq.

Proof: Following (4) and (2), ∇F(q) = ∇F(q)−∇F(q∗) =
(CqX−1 + I)(v − v∗). Denote A = CqX−1 + I, we have

‖−∇F(q)‖2 + 2〈πθ (v),−∇F(q)〉

= (v − v∗)�
[

A�A + K(v)A + A�K(v)
]

(v − v∗).

To ensure ‖−∇F(q)‖2 + 2〈πθ (v),−∇F(q)〉 ≥ 0, it suffices to
have A�A + K(v)A + A�K(v) � 0.

A�A + K(v)A + A�K(v) � 0 (13a)

⇐⇒ [A + K(v)]�[A + K(v)] � K(v)�K(v) (13b)

⇐⇒ σmin(A + K(v)) ≥ σmax(K(v)) (13c)

By [19, Proposition 9.6.8], σmin(A + K(v)) ≥ σmin(A) −
σmax(K(v)). Thus, σmin(A) ≥ 2σmax(K(v)) is a sufficient
condition for ‖−∇F(q)‖2 + 2〈πθ (v),−∇F(q)〉 ≥ 0.

A. Proof of Theorem 1

Proof of Theorem 1: By design, the proposed controller (11)
guarantees q(t) ∈ Sq, ∀t ≥ 0 by the CBF-QP safety filter. We
will work with the equivalent controller form in (10) through-
out the proof since the inequality constraints are in a more
compact form. The Lagrangian of (10) is,

L(ξ ,ω; q) = 1
2
‖ξ + ∇F(q) − πθ (v)‖

2
2 + ω�

(

∂g(q)
∂q

ξ + αg(q)
)

,

where ω is the nonnegative Lagrange multiplier for (10b). The
Karash-Kuhn-Tucker (KKT) conditions [20, Ch. 3] of (10) are:

ξ + ∇F(q) − πθ (v) +
∂g(q)

∂q

�

ω = 0 (14a)

ω ≥ 0,
∂g(q)

∂q
ξ + αg(q) ≤ 0 (14b)

ω�

(

∂g(q)

∂q
ξ + αg(q)

)

= 0 (14c)

Because (10) is strongly convex with respect to ξ , the exis-
tence of a (ξ ,ω) satisfying (14) is sufficient for ξ = fθ (q).
To verify the feasibility of the KKT conditions, we apply
the Mangasarian-Fromovitz Constraint Qualification (MFCQ)
condition [20, Ch. 3], which requires a ξ ∈ R

n s.t.

∇gi(q)Tξ < 0 ∀i ∈ I0(q) = {1 ≤ i ≤ 2n|gi(q) = 0}

where I0(q) is the active constraint set. Given the specific
structure of g(q), ∀q ∈ Sq, there always exists an ξ such that
the MFCQ is satisfied. By [12, Lemma 4.5], the existence of a
solution (ξ ,ω) satisfying (14) is guaranteed. We next charac-
terize the stability properties of our proposed algorithm with
the solution (ξ ,ω) of the KKT conditions (14).

An immediate result of Lemma 1 is

‖πθ (v) − ∇F(q)‖2 = 〈πθ (v) − ∇F(q), πθ (v) − ∇F(q)〉

= ‖πθ (v)‖
2 + ‖−∇F(q)‖2 + 2〈πθ (v),

− ∇F(q)〉 ≥ ‖πθ (v)‖
2

For every bus i s.t. πi,θi(vi) �= 0, we have |[πi,θi(vi) −

∇Fi(q)]
α(q̄i−qi)

α(q
i
−qi)

| ≥ |[πi,θi(vi) − ∇Fi(q)]
αε(q̄i)

αε(q
i
)
|. Given that

−∇Fi(q) is bounded on both sides, there exists a finite α such

that [πi,θi(vi) − ∇Fi(q)]
α(q̄−q)

α(q−q)
= πθ (vi) − ∇Fi(q). A similar

reasoning holds if πi,θi(vi) = 0. Therefore, with a sufficiently

large α, we have ‖fθ (q, v) ‖ = ‖[πθ (v) − ∇F(q)]
α(q̄−q)

α(q−q)
‖ ≥

‖πθ (v)‖. Using F(q) as a Lyapunov-like function, from

Eq. (14a), we have ∇F(q) = −
∂g(q)
∂q

�
ω − fθ (q, v) + πθ (v),

thus

Lfθ F(q(t))

= fθ (q(t), v(t))�∇F(q(t))

= fθ (q(t), v(t))�
(

−
∂g(q(t))�

∂q(t)
ω − fθ (q(t), v(t)) + πθ (v(t))

)

= −‖fθ (q(t), v(t))‖2 + f �
θ (q(t), v(t))πθ (v(t)) + αω�g(q(t))

≤ −‖fθ (q(t), v(t))‖2 + ||fθ (q(t), v(t))‖‖πθ (v(t))‖ + αω�g(q(t))

≤ 0 (15)

where the second equality follows Eq. (14c). Given that
g(q(t)) ≤ 0, ω is a nonnegative dual variable, α > 0,
αω�g(q(t)) ≤ 0 holds, which leads to the final inequality.

Furthermore, Lfθ F(q) = 0 if and only if fθ (q
∗, v∗) = 0.

Then there exists (0, ω∗), which is the solution of (14). Plug
(0, ω∗) into (14), it is reduced to

∇F(q∗) − πθ (v
∗) +

∂g(q∗)

∂q

�

ω∗ = 0 (16a)

ω∗ ≥ 0, αg(q∗) ≤ 0 (16b)

(ω∗)�
(

αg(q∗)
)

= 0 (16c)
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By Assumption 3 where v∗ ∈ Sv, we have πθ (v
∗) = 0.

Given that α > 0, (v∗, q∗) is the optimal solu-
tion of (3). Due to the strict convexity of F(q), q∗

is the unique global minimizer. By Lyapunov Stability
Theory [21, Ch. 3], we conclude that the closed loop
system is asymptotically stable with respect to the global
minimizer.

B. Stable Transient Policy Design

We now present the neural network design that meets the
stable decentralized transient policy πi,θi(vi) in Definition 1.

Conditions 1) and 2): To ensure conditions 1) and 2), we
adopt the structure in [22] for each bus i. The stacked ReLU
function constructed by Eq. (17) is monotonically decreasing
for vi − v̄ > 0 and zero when vi − v̄ ≤ 0.

ξ+(vi − v̄; w+, b+) = (w+)�ReLU(1(vi − v̄) + b+), (17a)

d′
∑

l=1

w+
l < 0,∀d′ = 1, · · · , d, b+

1 = 0, b+
l ≤ b+

l−1,

∀l = 2, . . . , d. (17b)

The stacked ReLU function constructed by Eq. (18) is
monotonically decreasing for vi − v < 0 and zero otherwise.

ξ−(vi − v; w−, b−) = (w−)�ReLU(−1(vi − v) + b−), (18a)

d′
∑

l=1

w−
l > 0,∀d′ = 1, · · · , d, b−

1 = 0, b−
l ≤ b−

l−1,

∀l = 2, · · · , d. (18b)

Condition 3): This condition requires the output of πi,θi(vi)
to be bounded. We use tanh activation function to scale the
output as a percentage while preserving its sign. Then the
percentage is multiplied by the absolute value of the bounds.
The local policy network of bus i is defined as,

πi,θi(vi) = cα(qi − q′

i
) tanh(ξ+(vi − v̄; w+, b+))

+ cα(q̄′
i − qi) tanh(ξ−(vi − v; w−, b−)). (19)

It is noteworthy that the monotonicity of the tanh function
ensures that conditions 1) and 2) are still satisfied.

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of the
proposed method in two IEEE distribution test systems.

A. Experiment Setup

We evaluate our approach on the IEEE 13-bus and 123-
bus test feeders [23]. The nominal voltage magnitude for
both environments at each bus except the substation is 4.16
kV, and the acceptable range of operation is ±5% of the
nominal value, which is [3.952kV, 4.368kV]. Though our the-
oretical analysis is based on the linearized system model
in (2), all experiments are run using Pandapower [24] as
the nonlinear power flow simulator to evaluate the algorithm
performance.

1) Stable-DDPG [9] with Safety Filter: The Stable-
DDPG [9] optimizes the transient performance with a
stability guarantee. To enforce reactive power safety, we
incorporate the CBF-QP safety filter in (10) by replacing

the obj (10a) with arg minξ∈Rn
1
2
‖ξ − πθ (v)‖

2
2.

2) Safe gradient flow [12]: Safe gradient flow optimizes the
steady-state performance with reactive power safety.

Fig. 1. Left: Schematic diagram of the 13 bus system with three PV
generators and voltage controllers located at nodes 2, 7, and 9. Right:
Schematic diagram of 123 bus system, with 14 PV generators and volt-
age controllers located at nodes 10, 11, 16, 20, 33, 36, 48, 59, 61, 66,
75, 83, 92, and 104.

TABLE I
PERFORMANCE OF 500 SCENARIOS FOR 13-BUS SYSTEM

TABLE II
PERFORMANCE OF 500 SCENARIOS FOR 123-BUS SYSTEM

B. Results

1) IEEE 13-Bus: IEEE 13-bus system is a standard radial
distribution system depicted in Figure 1 (Left), where three
PV stations and controllers are located at buses 2, 7, and 9.

Table I compares the transient and steady-state performance
of 500 different voltage violation scenarios. Clearly, TASRL
achieves the best performance for both transient and steady
states. For this test case, the magnitude of the gradient is rela-
tively large. As a result, the transient performance of the safe
gradient flow is close to TASRL, and the Stable-DDPG is
underperforming. In terms of steady-state performance, both
the safe gradient flow and the TASRL achieve the best result
as v(t) and q(t) converge to the steady-state optima (v∗, q∗).

2) IEEE 123-Bus: Figure 1 (Right) demonstrates the IEEE
123-bus distribution test feeder, which has 14 PV genera-
tors and controllers randomly placed in the network. We
summarize the performance of our method and the base-
lines in Table II. The average response time for TASRL is
12.08 steps, which saved 77% of time compared to the safe
gradient flow, and 30% compared to the Stable-DDPG. Both
the TASRL and safe gradient flow obtain optimal steady-state
cost. Interestingly, compared to the results of IEEE 13-bus,
the gap between the steady-state performance of Stable-DDPG
and the other two methods is larger. This indicates that opti-
mizing the steady-state performance becomes increasingly
crucial as the system complexity increases.
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Fig. 2. Control trajectory of IEEE 123-bus system. The voltage trajec-
tory is shown in the left plot, the middle plot displays the reactive power
usage, and the right plot shows the objective function’s trajectory.

Fig. 3. Control trajectory of IEEE 123-bus system with our proposed
method using different α. For simplicity, we did not plot q

16
= −21.6.

Figure 2 shows an example control trajectory of the
proposed approach and the baselines at bus 20 and bus 66.
Although both the Stable-DDPG and the proposed method
restore voltage quickly, Stable-DDPG uses more reactive
power at bus 66 and less at bus 20, leading to a suboptimal
solution for F(q). On the other hand, the safe gradient flow
and the proposed method converge to the same steady state,
while the safe gradient flow’s convergence is slower.

C. Effect of Design Parameter of Safe Gradient Flow

We illustrate the effect of hyperparameter α in Figure 3.
Smaller α results in a smoother voltage trajectory, as the
controller becomes more conservative for the reactive power
capacity constraints. The right plot shows the reactive power
injection, which is not significantly affected by α when it is
far from the capacity limit due to the presence of a transient
performance optimizer (bus 16). However, when approaching
the capacity limit, smaller α will slow down the rate of change
of reactive power injection (bus 66).

VI. CONCLUSION

We proposed the TASRL framework to optimize transient
and steady-state performance simultaneously for voltage con-
trol and established formal guarantees for it. The main insight
underlying our approach is that, by synthesizing a stable
transient policy and a steady-state optimizer within a safe
gradient flow framework, the performance of different time
scales can be optimized end-to-end. Our proposed method
was tested on both IEEE 13-bus and 123-bus systems. The
results demonstrate that TASRL not only converges to the
steady-state optimal solution but also exhibits superior tran-
sient performance compared to existing methods. Future work
will (i) extend the theoretical analysis to include the controller
dynamics and nonlinear system models and (ii) generalize
our design to handle time-varying and dynamic loads while
maintaining the stability guarantees.
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