
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS 1

Low-Complexity Parallel Min-Sum Medium-Density
Parity-Check Decoder for McEliece Cryptosystem

Jiaxuan Cai, Graduate Student Member, IEEE and Xinmiao Zhang, Senior Member, IEEE

Abstract—The McEliece cryptosystem based on medium-
density parity-check (MDPC) codes remains a candidate in
the fourth round submission of post-quantum cryptography
standard. The low-density parity-check (LDPC) decoders used in
digital communications have been extensively studied. However,
the MDPC codes for the McEliece cryptosystem have much
higher column weight and different structure in their parity-
check matrices. As a result, simplification techniques for LDPC
decoders are not applicable to MDPC decoders. Besides, existing
MDPC decoder designs have been focusing on the simplest bit-
flipping algorithm, whose performance is inferior compared to
that of the Min-sum algorithm. This paper first optimizes the
scaled Min-sum algorithm for codes with high column weight to
improve the performance with simple scalar multiplications. The
overall decoder architecture is re-designed to take into account
the sparsity of the parity-check matrix and nontrivial min-
sum check node processing. Besides, a flexible message storage
scheme is proposed to reduce the worst-case decoding latency
of the randomly constructed codes utilized in the McEliece
cryptosystem. Then a 2-stage scaling scheme is developed to
reduce the long critical path caused by the high column weight
and a group size re-balancing scheme is introduced to mitigate the
precision loss caused by the 2-stage scaling in parallel decoders.
For an example MDPC decoder, the proposed optimized 2-stage
scaled Min-sum algorithm leads to orders of magnitude error-
correcting performance improvement and 16% higher clock
frequency with negligible silicon area overhead compared to
unoptimized Min-sum decoders.

Index Terms—McEliece cryptosystem, error-correcting codes,
medium-density parity-check codes, Min-sum algorithm, parallel
decoder, post-quantum cryptography.

I. INTRODUCTION

S IGNIFICANT progress has been made on quantum pro-
cessor development recently. To address the imminent

need for cryptography schemes resisting quantum computing
attacks, the National Institute of Standards and Technology
(NIST) called for post-quantum cryptography standardization
recently. The fourth round submission has been announced
in July 2022, and the McEliece cryptosystem utilizing quasi-
cyclic medium-density parity-check (QC-MDPC) codes [1],
[2] remains one of the candidates. Although low-density
parity-check (LDPC) codes for error correction in digital com-
munication and storage systems have been well-studied, their
parity-check matrices consist of an array of many smaller zero
and cyclic permutation matrices (CPMs), have low column
weight, and are carefully designed to avoid short cycles [3]. On
the other hand, the parity-check matrices of the MDPC codes
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considered for post-quantum cryptography standard have a
single row of 2, 3, or 4 randomly-constructed very large
circulant matrices of much higher column weight. Due to the
high column weight and irregularity, the decoding algorithms
extended from those of LDPC codes need to be re-optimized
and decoder architectures need to be re-designed.
MDPC codes can be decoded by various algorithms. The

bit-flipping (BF) algorithm and its variations are the simplest
and have been considered in previous literature. The bits
can be flipped according to different strategies [4]. MDPC
decoding algorithms with very a small number of decoding
iterations have been developed for BIKE [5], which is an-
other candidate of post-quantum cryptography. However, these
algorithms have inferior performance compared to those in
[4] when more decoding iterations are allowed. The error-
correction bounds and error floors for BF algorithms were
studied in [6] and [7].
In BF MDPC decoder implementations, the majority of the

complexity is contributed by the memories. To reduce the sizes
of the memories, the decoder can store only the first column
of each circulant in the QC-MDPC parity check matrix. Then
cyclical shifting is carried out to derive the other columns. The
decoder in [8] considers FPGA implementations. 32 bits in a
column are processed in each clock cycle and the cyclically
shifted column is stored back to BRAMs using an optimized
method. To reduce the decoding latency, the syndromes are
updated after every bit flipping instead of once only at the
end of each decoding iteration in [9]. Whether to flip a bit
is usually decided according to the syndrome weight, whose
computation is approximated in [10] to reduce the hardware
complexity. Even though the parity check matrices of MDPC
codes have higher density than those of LDPC codes, they
are still very sparse. The sparsity is further exploited in [11]
to reduce the decoding latency and silicon area. Besides, the
columns are processed in an out-of-order manner to reduce
memory writes.
MDPC decoding algorithms with better error-correcting

capabilities not only lower the probability of decryption failure
but also help to thwart various attacks, such as the reaction
attack [12], [13], that try to recover the secret parity-check
matrix by utilizing decoding failures. The Min-sum decoding
algorithms [14] have excellent tradeoff on performance and
complexity and can achieve substantial coding gain over BF
algorithms. The scaled version of the Min-sum algorithm
multiplies the sum of the check-to-variable (c2v) messages
by a scalar before it is added to the decoder input probability
message in the variable node processing step of the decoding.
A properly selected scalar leads to further coding gain. The
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scaled Min-sum algorithm has been well-studied for the LDPC
codes used in communication and storage systems. However,
it needs to be re-investigated and the decoder needs to be re-
designed for the MDPC codes due to the much higher column
weight. Besides, the check and variable node processing
steps in the Min-sum algorithm have much higher complexity
compared to their counterparts in BF decoders. As a result,
previous methodologies for parallel BF decoding no longer
leads to efficient design.

For the first time, this paper investigates the Min-sum decod-
ing algorithm and decoder design for the MDPC codes used
in the McEliece cryptosystem. The contributions of this paper
include the following: i) The scaled Min-sum decoding algo-
rithm is optimized to improve the error-correcting performance
of MDPC codes with low-complexity scalar multipliers; ii) An
efficient parallel decoder architecture is developed for the Min-
sum algorithm for randomly constructed MDPC codes taking
into account both the non-trivial check node processing and the
irregular sparse parity-check matrix. To shorten the decoding
latency, a flexible message storage scheme is also developed
and the decoder can choose from one of the two storage
schemes on the fly for a given MDPC code. iii) The high
column weight of MDPC codes leads to long critical path in
the c2v message accumulation of the variable node processing
step. To reduce the critical path, this paper proposes to divide
the c2v messages into groups and carry out message scaling in
two stages. A systematic procedure is also developed to decide
the group size and other parameters of the scaling for a given
critical path goal; iv) For parallel decoders, the 2-stage scaling
leads to error-correcting performance degradation due to finite
precision. A group size re-balancing scheme implemented by
simple logic is proposed to evenly distribute the c2v messages
into groups to mitigate the precision loss and bridge the
decoding performance gap. For an example decoder of MDPC
codes with 80-bit security, the proposed optimized 2-stage
scaled Min-sum algorithm leads to orders of magnitude error-
correcting performance improvement and 16% higher clock
frequency with negligible silicon area overhead compared to
unoptimized Min-sum decoders.

This paper is organized as follows. Section II introduces
the McEliece cryptosystem and baseline Min-sum decoding
algorithm. Section III proposes optimized scaled Min-sum
algorithm for MDPC decoding. The parallel Min-sum MDPC
decoder architecture with flexible message storage scheme is
presented in Section IV. The 2-stage scaling for critical path re-
duction and the group size re-balancing scheme are detailed in
Section V and VI, respectively. Section VII presents hardware
complexity comparisons. Discussions and conclusions follow
in Section VIII and IX, respectively.

II. MCELIECE CRYPTOSYSTEM AND MIN-SUM DECODING

An MDPC code is a linear block code that can be defined by
a parity-check matrix H. A vector x is a codeword iff xHT=0.
For the McEliece cryptosystem based on MDPC codes, n0 r-
bit vectors, each of which has Hamming weight w, are ran-
domly generated and are used as the private key. They define
the first columns of n0 circulant matrices Hi (0 ≤ i < n0)

TABLE I: QC-MDPC code parameters considered in McEliece
cryptosystem [2].

security level (bits) n0 n r w t

80 2 9602 4801 45 84
3 10779 3593 51 53
4 12316 3079 55 42

128 2 19714 9857 71 134
3 22299 7433 81 85
4 27212 6803 85 68

256 2 65542 32771 137 264
3 67593 22531 155 167
4 81932 20483 161 137

check nodes

variable nodes

ui,j
vi,j

j

Fig. 1: A toy H matrix and its Tanner graph.

and the parity-check matrix of the MDPC code is H =
[H0|H1| · · · |Hn0−1]. If Hn0−1 is not invertible, the corre-
sponding vector needs to be regenerated randomly. The parity
check matrix,H, and the generator matrix,G, of a linear block
code satisfy GHT = 0. Hence, G can be derived as [I|BT ],
where B = [H−1

n0−1H0|H−1
n0−1H1| · · · |H−1

n0−1Hn0−2]. Each
H−1

n0−1Hi (0 ≤ i < n0 − 1) is also circulant, and the first
columns of these matrices form the public key of the McEliece
cryptosystem.
The encryption mainly consists of an MDPC encoding

process. The plaintext vector of (n0 − 1)r bits is multiplied
with G to calculate a n = n0r-bit codeword c. Then a
randomly generated n-bit vector with at most t nonzero bits
is added to c to derive the ciphertext x. Hence, the ciphertext
is an MDPC codeword corrupted by a random vector of t
errors. The decryption is to carry out MDPC decoding on x
to recover the correct codeword c. Since G is systematic, the
first (n0 − 1)r bits of c equals the plaintext. Table I lists
the parameters of the MDPC codes adopted in the McEliece
cryptosystem for the standard.
The H matrix of an MDPC code can be represented by a

bipartite graph, also called the Tanner graph. This graph has
two types of nodes: variable nodes and check nodes. Fig. 1
shows a toy H matrix and the corresponding Tanner graph.
Each variable node represents a column of H and each check
node corresponds to a row. If an entry in H is nonzero, the
corresponding variable and check nodes are connected by an
edge in the Tanner graph.
MDPC codes can be decoded by extending the algorithms

for LDPC decoding. There are a spectrum of LDPC decoding
algorithms, ranging from BF, Min-sum, to belief propaga-
tion. Compared to the simple BF algorithms, the Min-sum
algorithm [14] achieves significant coding gain. Besides, they
have much better performance-complexity tradeoff than the
complicated belief propagation.
Most previous MDPC decoder designs for the McEliece

cryptosystem use the simple BF algorithms. The popular Gal-
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Fig. 2: FERs of Min-sum and BF decoding with Imax = 30
for an MDPC code with (n0, r, w) = (2, 4801, 45).

lager’ BF algorithm flips a bit when its number of participating
unsatisfied parity checks (PUPCs) exceeds a threshold [15].
Other variations on BF algorithms have been proposed in the
literature to improve the correction performance for MDPC
codes. In particular, the REMP-2 algorithm [4], which uti-
lizes extrinsic messages and introduces random erasures with
certain probability to the variable-to-check (v2c) messages,
are among the BF algorithms with the best performance.
Fig. 2 shows simulation results of Gallager’s and REMP-2
BF algorithms for a randomly generated MDPC code with
(n0, r, w) = (2, 4801, 45). The maximum number of decoding
iterations is set to Imax = 30. For the Gallager’s algorithm,
th = 29 is used as the threshold for bit flipping because it
leads to the lowest decoding frame error rate (FER) from
simulations. For the REMP-2 algorithm, ω = 13 is the weight
multiplied to the channel bit and p∗ = 0.1 is the probability of
inserting erasures in the v2c message computation. These are
optimized parameters found in [4]. Simulation results for Min-
sum algorithms with optimized scalars, which will be detailed
in the following sections, are also included in Fig. 2. They
can achieve orders of magnitude improvement on the decoding
FER compared to BF algorithms.

The Min-sum algorithm iteratively passes multi-bit reliabil-
ity information between connected check and variable nodes
to update the decisions on the input bits as listed in Algorithm
1. For hard-decision input vector x = [x0, x1, · · · , xn−1], the
initial probability information of xi, denoted by γi, is set to
+C or −C when xi is ‘0’ or ‘1’, respectively. Here C is
a constant that can be decided from simulations. Its optimal
value depends on the number of bits used to represent the
reliability messages and the column weight of the code. In
Algorithm 1, ui,j denotes the reliability message from variable
node j to check node i, and vi,j is the message from check
node i to variable node j. Sc(j) (Sv(i)) represents the set of
check (variable) nodes that are connected to variable (check)
node j (i). The sign bit of a message is ‘0’ and ‘1’ when
it is positive and negative, respectively. In Algorithm 1, ⊕
denotes the XOR operation. If no codeword is found at the
end of iteration Imax, decoding failure is declared. To improve

(a) (b)

Fig. 3: Example parity check matrices of (a) an MDPC code
used in the McEliece cryptosystem; (b) an LDPC code used for
error correction in digital communication and storage systems.

the error-correcting capability, a scalar, α, is multiplied to the
sum of the c2v messages in the variable node processing and
a posteriori information calculation [14]. It is typically set to
0.5 or 0.25 for LDPC codes with column weight 4 in order to
reduce the hardware complexity [16].

Algorithm 1 Scaled Min-sum Decoding Algorithm

1: Input: x = [x0, x1, · · · , xn−1]
2: Initialization: ui,j = γj
3: for iter = 1 to Imax do
4: Stop if xHT = 0

5: Check node processing:
6: min1i = minj∈Sv(i) |ui,j |
7: idxi = argminj∈Sv(i) |ui,j |
8: min2i = minj∈Sv(i),j ̸=idxi

|ui,j |
9: si = ⊕j∈Sv(i)sign(ui,j)

10: for each j ∈ Sv(i)

11: |vi,j | =

{
min1i if j ̸= idxi

min2i if j = idxi

12: sign(vi,j) = si ⊕ sign(ui,j)

13: Variable node processing:
14: ui,j = γj + α

∑
i′∈Sc(j),i′ ̸=i vi′,j

15: A posteriori info. comp. & tentative decision:
16: γ̃j = γj + α

∑
i∈Sc(j)

vi,j
17: xj = sign(γ̃j)
18: end for

Many hardware implementation architectures have been
developed for the Min-sum decoders of LDPC codes [17]–
[20]. However, the LDPC codes used for error correction in
communication and digital storage systems have fundamen-
tally different structure in their parity check matrices compared
to the MDPC codes in the McEliece cryptosystem as shown
in Fig. 3. The diagonal lines in this figure denote the nonzero
entries. A QC-LDPC parity check matrix consists of a large
number of smaller CPMs. Hence, efficient parallel decoders
can be realized by processing blocks of CPMs simultaneously
in each clock cycle. However, such parallel processing is not
applicable to MDPC decoders due to the irregular locations
of the nonzero entries in the randomly generated H matrix.
The check node processing in the BF decoding algorithms
are simple XOR operations. Hence, previous MDPC decoders
[8]–[11] process a segment of L consecutive bits in a column
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of H each time by using L check node units (CNUs) even
though many of them are idling for those ‘0’ entries in each
clock cycle. On the other hand, the Min-sum check node
processing has much higher complexity as shown in Algorithm
1. Extending the parallel processing scheme of BF decoders
to Min-sum decoders would lead to large silicon area and low
hardware efficiency. As a result, the parallel processing scheme
needs to be re-designed for Min-sum MDPC decoding.

The MDPC codes listed in Table I have column weight
45 or higher instead of 3 or 4 as in the LDPC codes for
communications and digital storage. The much higher column
weight necessitates the re-optimization of the scaling in the
Min-sum algorithm. Besides, the accumulation of a large
number of c2v messages in the variable node processing and a
posteriori information calculation of Algorithm 1 lead to long
data paths in feedback loops and limit the achievable clock
frequency of the decoder. As a result, the scaling scheme also
needs to be reformulated for critical path reduction.

In the following sections, the scaled Min-sum algorithm is
first optimized for MDPC codes. Then an efficient parallel
decoder architecture is developed. Besides, 2-stage scaling
and group size re-balancing schemes are proposed to reduce
the critical path with negligible performance degradation and
silicon area overhead.

III. SCALED MIN-SUM DECODING ALGORITHM FOR
MDPC CODES

In the Min-sum MDPC decoding for the McEliece cryp-
tosystem, the initial probability information γj is set to either
+C or −C when the i-th bit at the decoder input is ‘0’ or
‘1’, respectively. The value of C leading to the best decoding
performance can be decided from simulations. In the variable
node processing and a posteriori information calculation steps
of Algorithm 1, the sum of the c2v messages are scaled by α
before it is added to γj . If the magnitudes of the scaled sums
are too big, then the initial probabilities and hence the bits at
the decoder input do not have much effect on the decoding
after the first iteration. On the other hand, if the initial
probabilities have much larger magnitudes than the scaled
sums, they will prevent erroneous bits from being corrected.
Hence, the choice of the scalar α affects the decoding FER
significantly. For LDPC codes with column weight 3 or 4,
which are typically used in digital communication and storage
systems, setting α to 0.5 or 0.25 leads to good error-correcting
performance without actually requiring any multiplier in hard-
ware implementation. However, when the column weight is
much higher, as in the MDPC codes for the McEliece cryp-
tosystem, these scalar values lead to substantial performance
degradation. Fig. 2 shows simulation results for a randomly
generated MDPC code with (n0, r, w) = (2, 4801, 45) and
Imax = 30. In our simulations, each v2c and c2v message is
represented by 4-bit integer magnitude and 1-bit sign. In this
case, setting C to 9 leads to good performance. Using more
bits to represent the messages would lead to lower FER at
the cost of higher implementation complexity. From Fig. 2, it
can be observed that, the Min-sum decoding with α = 0.25
does not achieve better performance than the BF algorithms. A

...a2a1a0 a-2a-3...

+1

a-1

Fig. 4: Hardware implementation architecture for rounding.

much smaller α is needed to prevent the sums of c2v messages
from overly dominating the decoding process.
The scalar that leads to the lowest FER can be found from

simulations. To simplify the scalar multipliers, the scalars
considered in our design can be represented by at most
two nonzero digits, each of which is either +1 or −1. In
this case, the scalar multiplication requires at most a single
adder/subtractor to implement. The less significant bits of the
scalar do not affect the decoding FER much. To reduce the
search space, the scalar is limited to 6 digits in the fractional
part. From simulations, among the scalars satisfying these
conditions, α = 0.09375 leads to the lowest FER when full
precision is kept on the multiplication results. It is more than
three orders of magnitude lower compared to using α = 0.25
when there are 101 errors in the decoder input as shown in
Fig. 2. When the input has 84 errors as the target correction
capability listed in Table I, the gain would be even more
significant.
To reduce the hardware complexity of Min-sum decoders,

the a posteriori information of variable node j is shared to
compute each v2c message from variable node j for the next
decoding iteration as

ui,j = (γj + α
∑

i′∈Sc(j)

vi′,j)− αvi′j . (1)

When |vi,j | is represented as a 4-bit integer, ⌈log2(w(24−1))⌉
bits are needed to represent the magnitude of the sum of w c2v
messages. If |ui,j | is larger than 24 − 1 = 15, it is saturated
to 15.
Scalar multiplication results have fractional parts. Trun-

cation or rounding can be applied to bring them back to
integer format. Assume that the scalar multiplication result
is a = · · · a2a1a0.a−1a−2 · · · . Truncation is just to discard
the fractional bits. Rounding can be implemented by the
architecture shown in Fig. 4. To shorten the data path, ‘1’
is pre-added to the integer part of a. Then the result of this
addition or the integer part itself is selected to be the rounding
result when a−1 is ‘1’ or ‘0’, respectively. As the bits of a are
generated from the scalar multiplication, they are added with
‘1’. Hence, such rounding does not add much to the data path
of scalar multiplication.
In (1), different combinations of truncation and rounding

can be applied to the two scalar multiplications. Simulations
have been re-run to find the optimal scalar for each com-
bination and the results are shown in Fig. 2. Carrying out
rounding on both scalar multiplication results leads to the best
performance. On the other hand, truncating αvi,j substantially
degrades the error-correcting performance. This is because that
the optimal α for MDPC codes with high column weight is
very small and hence α multiplied to a single c2v message
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Fig. 5: Top-level architecture of the proposed Min-sum MDPC
decoder for the case of 2-parallel processing.

vi,j is also small. As a result, discarding the fractional bits
will lead to more substantial precision loss. As shown in Fig.
4, although rounding needs an extra multiplexer and an adder,
these units have small area overhead and do not add much
to the data path of the multiplier. Hence, rounding is applied
after both scalar multiplications in (1) in our design.

IV. EFFICIENT AND LOW-LATENCY PARALLEL MIN-SUM
MDPC DECODER ARCHITECTURE

In this section, an efficient parallel Min-sum decoder ar-
chitecture is first proposed for MDPC codes. Then a flexible
message storage scheme is developed to reduce the decoding
latency for randomly constructed MDPC codes.

A. Efficient parallel Min-sum MDPC decoder architecture

For MDPC codes, a column in a submatrix ofH is a cyclical
shift of the previous column and the locations of the ‘1’s
in each column are random. Due to these reasons, MDPC
decoders can be implemented more efficiently by processing
the H matrix column by column. Previous implementations of
MDPC decoders consider BF algorithms [8]–[11], which are
much simpler than the Min-sum algorithm listed in Algorithm
1. For BF algorithms, the v2c messages are single bits. The
check node processing consists of XOR operations, and the
variable node processing counts the total number of PUPCs,
which is utilized to decide whether to flip a bit. For parallel
processing, L CNUs can be allocated to process a segment of
L consecutive bits of a column of H in each clock cycle. Even
though many of the CNUs are idling since most of the entries
of H are still ‘0’ for MDPC codes, having many copies of
them does not bring much area overhead to the overall decoder
due to their very simple architecture. However, such a parallel
processing scheme can not be extended to Min-sum decoders,
which have much more complicated CNUs.

In our proposed Min-sum MDPC decoder, only the nonzero
entries of H are processed in order to reduce the area and
increase the hardware utilization efficiency. To reduce the
memory requirement, the columns are processed one after
another, and the nonzero entry indices for the next column
are derived through adding those for the current column by
one mod r. The block diagram of the proposed decoder for an
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example case of L = 2-parallel processing is shown in Fig. 5.
In the beginning, the indices of the nonzero entries in the first
column of each submatrix of H are split and stored into L = 2
blocks of RAM I. During the decoding process, as an index is
read out, it is added by one mod r to derive the index of the
shifted entry in the next column ofH in the "H matrix shifting"
block and the result is written back to RAM I. The decoder
input bits are written into a pair of RAM C in the beginning.
RAM C0 holds the input bits. Depending on whether a bit
is ‘0’ or ‘1’, the corresponding probability information is set
to +C or −C, respectively, through a multiplexer. RAM C1
records the updated bit from Line 17 of Algorithm 1. When
the decoding stops. The decoding result is available in RAM
C1.
There are two pairs of RAM M. In the first decoding

iteration, each row of the RAM M0 and M1 pair stores the
temporary min1, min2, idx and s values corresponding to a
row of H. The indices stored in RAM I0 and I1 are used as
the addresses to access RAM M0 and M1, and L = 2 CNUs
are utilized to process the entries read out. A CNU consists
of two parts and its architecture is shown in Fig. 6 [16].
Part A updates the temporary min1, min2, idx, and s values
according to Lines 6-9 of Algorithm 1, and the updated results
are stored back to RAM M0 and M1. After all the columns of
H are processed, the final min1, min2, idx, and s for every
row of H are available in RAM M0 and M1. They can be
considered as compressed c2v messages. From these values,
part B of the CNU derives the c2v messages according to Lines
11-12 of Algorithm 1. The signs of ui,j that are processed by
the same CNU A are stored into consecutive addresses of a
RAM S block. Each CNU A processes one ui,j in each clock
cycle. However, storing the signs of ui,j into memories of
1-bit wide leads to very deep memories considering the large
column weight of the code and long codeword length. Instead,
our design uses a shift register to collect a number of sign bits,
such as 2e (e ∈ Z+), and writes them into memories that are
2e-bit wide. The depth of the memories is reduced accordingly.
e can be adjusted to trade off memory width and depth. When
the sign bits are needed for Line 12 of Algorithm 1 in CNU B,
2e of them are read out from a line of RAM S each time and
loaded into a shift register, which shifts out individual sign
bits.
A 2-parallel variable node unit (VNU) can be implemented

by the architecture in Fig. 7. The c2v and v2c message
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Fig. 8: Scheduling of variable and check node processing in
the proposed decoder.

magnitudes are represented by d bits. The c2v messages are
first converted from sign-magnitude format to 2’s complement
representation. Then up to L = 2 c2v messages are accumu-
lated in each clock cycle. Since it takes multiple clock cycles
to calculate the a posteriori message, the c2v messages are
also stored into RAM T before they are subtracted to derive
the v2c messages for the next iteration. The v2c messages are
converted back to sign-magnitude representation, and those
magnitudes larger than 2d−1 are saturated to this value before
they are sent to the CNUs. While the c2v messages from
decoding iteration k are being generated, the newly computed
v2c messages are sent to the CNUs to carry out decoding
iteration k + 1. Therefore, the RAM M2, M3 pair and RAM
M0, M1 pair are used in a ping-pang manner to store the final
min1, min2, idx, and s for iteration k and those temporary
values for iteration k + 1. Different from the compressed c2v
messages stored in RAM M, a sign bit for decoding iteration k
can be overwritten by that for iteration k+1 once it is utilized
to derive the corresponding c2v message in CNU B. Hence,
the decoder only needs one set of RAM S blocks.

Fig. 8 shows the scheduling of the computations in our
proposed decoder. The c2v messages generated by CNU Bs for
column j are accumulated, scaled, and added to γj . Then the
sum is subtracted by the scaled individual c2v messages stored
in RAM T to compute the v2c messages for column j, which
are sent to CNU A to carry out the check node processing
for the next iteration. Meanwhile, CNU B generates the c2v
messages for column j +1. Although the nonzero indices for
two columns of H are needed at the same time, the indices of
column j+1 can be derived from those of column j by adding
one mod r on the fly. Hence, only the nonzero indices of one
column of each sub-matrix of H are stored in RAM I at any
time. From Table I, n0 > 1 for the MDPC codes considered
for the standard. Hence, each RAM I block consists of n0

banks.
The sizes of the RAM blocks utilized in a L-parallel decoder

for MDPC codes with code parameters (n0, r, w) and d-bit

TABLE II: Sizes of the RAM blocks utilized in the proposed
L-parallel decoder for (n0, r, w) MDPC codes with d-bit c2v
and v2c message magnitude.

RAM name # of
blocks size values stored

RAM I L
(⌈w/L⌉+ δ)×
(n0⌈log2(r/L)⌉)

row indices of nonzero
entries in one column of

the H matrix

RAM C 2 n× 1
bits indicating whether
γj equals +C or −C /
updated hard-decision bits

RAM M 2L
⌈r/L⌉ × (2d+
1 + ⌈log2n⌉)

compressed version of all
vi,j

RAM S L
(n⌈(w/L+
δ)/2e⌉)× 2e

sign bits for all ui,j

RAM T L
(⌈w/L⌉+ δ)×

(d+ 1)

buffer for ui,j for
column j during variable

node processing

c2v and v2c message magnitude are summarized in Table II.
If the decoder needs to be reconfigurable to support codes with
different parameters, each RAM should be set to the largest
possible size. Taking into account the random construction
of H, the numbers of nonzero entries in each segment of a
column of H are uneven. Hence, ⌈w/L⌉+δ rows are allocated
to each of the RAM I and T blocks. The value of δ can
be derived from simulations over a large number of random
codes. The entries in each memory, except RAM M blocks,
are accessed consecutively one after another. The addresses
for accessing RAM M blocks are read from RAM I blocks.

B. Flexible message storage scheme for decoding latency
reduction

To achieve L-parallel processing, the indices of the nonzero
entries in each column of the H matrix need to be split
and stored into L blocks of RAM I. The number of clock
cycles needed to process a column of H is the maximum
of the number of entries stored in the L memory blocks.
The H matrix for the McEliece cryptosystem is generated
randomly. In many cases, the nonzero entries are unevenly
distributed. As a result, a larger number of clock cycles are
needed for each decoding iteration. To address this issue, our
proposed decoder allows two different nonzero entry splitting
and message storage schemes. For a given randomly generated
H matrix, the scheme leading to shorter decoding latency is
chosen. Both of the schemes are implemented with negligible
hardware overhead.
Our first scheme divides the rows of H into L segments,

where segment l ( 0 ≤ l < L− 1) consists of ⌈r/L⌉ consec-
utive rows starting from row ⌈r/L⌉l and the last segment has
the rest rows. The indices of the nonzero entries in segment l
of a column are stored in block l of RAM I, and the ⌈r/L⌉
compressed c2v messages of this segment are stored in one
RAM M block. The indices are added by one mod r to
generate the indices for the next column of H . If the modular
sum falls into the range of the next segment, it is stored in the
next block of RAM I. Our second scheme puts row i satisfying
i mod L = l in segment l. The nonzero entry indices of H
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Fig. 9: Modifications to support flexible message storage
scheme in a 2-parallel decoder.

in the same segment are stored in the same RAM I block.
The compressed c2v messages corresponding to a segment
are recorded in a block of RAM M. Different from the first
scheme, an index added by one mod r always belongs to the
next segment and is written to the next block of RAM I in the
derivation of the next column of H.

For a given randomly generated H matrix, the number
of clock cycles needed to process a column equals to the
maximum of the number of nonzero entries in the corre-
sponding L segments of bits. These numbers for each of the
columns can be derived from simulations and are added up
to estimate the latency of each decoding iteration. The storage
scheme leading to the shorter latency is chosen. To support the
proposed scheme, the 2-parallel decoder architecture in Fig. 5
is modified as shown in Fig. 9 to be able to select one of the
two storage schemes on the fly. For the purpose of conciseness,
only the modified parts are shown in this figure. The select
signal sel equals ‘1’ and ‘0’ when the first and second storage
scheme, respectively, are chosen. The index of each nonzero
entry originally has q = ⌈log2 r⌉ bits. For the first scheme,
if the index is lower than ⌈r/2⌉, it is stored into RAM I0.
Otherwise, it is subtracted by ⌈r/2⌉ and the difference is stored
into RAM I1. This subtraction is necessary since the indices
stored in RAM I are used as the addresses to access RAM M
and the addresses of each RAM M start from zero. For the
second scheme, whether the index is even or odd can be told
from the least significant bit (LSB). The LSB is eliminated and
the higher q−1 bits are stored into RAM I0 and I1 also because
the addresses for accessing each RAM M block start from
zero. Compared to the decoder architecture in Fig. 5, the extra
units needed to support the flexible message storage scheme
include the subtractor, comparator, and multiplexers shown
in gray color in Fig. 9. Besides, the logic in the "H matrix
shifting" block of Fig. 5 needs to be modified accordingly.
These modifications bring negligible overheads to the overall
decoder and can be easily extended to decoders with higher
parallelism.
To find the decoding latency reduction that can be achieved

by the proposed scheme, simulations have been carried out
on 1000 randomly generated MDPC codes with (n0, r, w) =
(2, 4081, 45). The shorter decoding latency of the two message
storage schemes is compared to that of the first scheme and

(a) (b)

Fig. 10: Decoding latency reduction achieved by the proposed
flexible message storage scheme over 1000 randomly gener-
ated MDPC codes with (n0, r, w) = (2, 4801, 45) for (a) 2-
parallel decoder; (b) 4-parallel decoder.

the results are shown in Fig. 10. Among the 1000 codes, for
4-parallel design, the codes with top 5% decoding latency
reduction have their latency reduced by an average of 15.6%
using the proposed scheme. The latency reductions range
between 13.1% and 20.9% and the top and bottom edges of the
rectangle in Fig. 10 represent the bottom and top quadruples,
respectively, of the latency reduction. For the next 5% of the
codes with the greatest latency reduction, which is labeled as
‘5-10%’ in the figure, the average latency reduction achieved
by the second scheme on average is 11.2%. The achievable
saving increases with the parallelism since dividing the rows of
H into more segments leads to larger variation on the number
of nonzero entries in each segment.

V. TWO-STAGE SCALING FOR CRITICAL PATH REDUCTION

In the VNU architecture shown in Fig. 7, even though the
c2v messages are accumulated in L streams, a large number
of c2v messages are accumulated in each feedback loop due to
the high column weight of the MDPC codes. Hence, the adders
in the feedback loops are wide. For example, for the MDPC
code with w = 45, the δ in Table II for 2-parallel processing
is 10 from simulations. Hence ⌈w/L⌉+ δ = 33 c2v messages
may be accumulated in a feedback loop. If each c2v message is
represented by 1-bit sign and d = 4-bit magnitude, the result
needs ⌈log2 33⌉ + 5 = 11 bits to represent. Since each full
adder has 2 levels of logic in the data path, the accumulator
has 22 levels of logic in the data path. Comparatively, the 4-
bit comparator and 3-input multiplexer in the feedback loop
of a CNU shown in Fig. 6(a) can be implemented by 8 levels
of 2-input logic. Therefore, the feedback loops in the VNUs
have much longer data path than those in the CNUs and they
limit the achievable clock frequency of the overall decoder.
To shorten the critical path, a 2-stage scaling scheme is
proposed in this section. Additionally, a systematic procedure
is developed to decide the parameters of the 2-stage scaling
for achieving a given critical path goal.
In our 2-stage scaling scheme, the scalar α is decomposed

into α1 and α2. The stream of c2v messages output from a
CNU is divided into groups of g messages. In the case that
the number of messages is not a multiple of g, the last group
has a smaller number of messages. The messages in each
group are accumulated and the result is multiplied by α1. The



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS 8

D 2

D

1

1

D

D

c2v

c2v
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parallel decoders.

product is rounded to eliminate the fractional bits. Then the
rounded product for each group is accumulated in the second
feedback loop. The final accumulated result is scaled by α2

followed by rounding. For 2-parallel decoding, the architecture
implementing this 2-stage scaling is shown in Fig. 11. This
architecture replaces the units circled by the dashed block in
the VNU architecture in Fig. 7.

Since the sum of each group is scaled down and rounded
before it is further accumulated, the widths of the adders in
the feedback loops and accordingly the critical path is reduced.
Through tuning the group size g, α1, and α2, the data paths
in the feedback loops can be controlled to achieve a given
critical path goal. On the other hand, the rounding after the
α1 multiplication causes additional precision loss and hence
performance degradation compared to using a 1-stage scaling
with α = α1α2. To reduce the hardware implementation
complexity, every involved scalar should be represented by
using no more than 2 nonzero digits. All these issues are
jointly considered to develop the following steps for deciding
g, α1, and α2, given that the critical path does not exceed p
full adders.

Step 1: Group Size Decision
The group size, g, in the 2-stage scaling should be as large

as possible since adding more c2v messages up before scaling
and rounding reduces precision loss and improves the error-
correcting performance. To make the width of the adders in
the first-stage feedback loops of Fig. 11 at most p-bit, the
group size can be chosen as g = ⌊(2p−1 − 1)/(24 − 1)⌋ when
each c2v message uses 4 bits to represent the magnitude. For
example, if the critical path goal is p = 9 full adders, the
group size is set to g = ⌊(28 − 1)/(24 − 1)⌋ = 17.

Step 2: Range of α1 Determination
The number of bits needed to represent the data in the

second-stage feedback loops in Fig. 11 should not exceed p
either to achieve a critical path of p full adders. The maximum
number of c2v messages sent to a first-stage feedback loop in
Fig. 11 is ⌈w/L⌉+δ. Then the maximum magnitude at the out-
put of a second-stage feedback loop is α1(2

4−1)(⌈w/L⌉+δ).
Therefore, from α1(2

4 − 1)(⌈w/L⌉ + δ) ≤ 2p−1 − 1, the
range of α1 can be determined. For example, in 2-parallel
decoding, from the simulation over 1000 randomly generated
MDPC codes with (n0, r, w) = (2, 4081, 45), it was found
that δ = 10. To achieve a critical path of p = 9 full adders,
α1 ≤ (29−1 − 1)/((24 − 1)(⌈45/2⌉ + 10)) = 0.515 in the
2-parallel decoder.

Step 3: α1, α2, and α Selection
To reduce the hardware implementation complexity, our

design allows each scalar, including α1, α2, and α = α1α2,

TABLE III: Combinations of α1 ≤ 0.515, α2 < 1 and α =
α1α2, each of which has up to 2 nonzero digits in 6-digit
representation.

α1 α2 α

0.5 0.03125 0.015625
0.0625 0.03125
0.09375 0.046875
0.125 0.0625
0.15625 0.078125
0.1875 0.09375
0.21875 0.109375
0.25 0.125

0.28125 0.140625
0.3125 0.15625
0.375 0.1875
0.4375 0.21875
0.46875 0.234375
0.5 0.25

0.53125 0.265625
0.5625 0.28125
0.625 0.3125
0.75 0.375
0.875 0.4375
0.9375 0.46875
0.96875 0.484375

0.46875 0.5 0.234375
0.4375 0.5 0.21875

0.25 0.109375
0.375 0.75 0.28125

0.625 0.234375
0.5 0.1875

0.375 0.140625
0.25 0.09375
0.125 0.046875

α1 α0 α

0.3125 0.75 0.234375
0.5 0.15625
0.25 0.078125

0.28125 0.5 0.140625
0.25 0.0625 0.015625

0.125 0.03125
0.1875 0.046875
0.25 0.0625
0.3125 0.078125
0.375 0.09375
0.4375 0.109375
0.5 0.125

0.5625 0.140625
0.625 0.15625
0.75 0.1875
0.875 0.21875
0.9375 0.234375

0.21875 0.5 0.109375
0.1875 0.25 0.046875

0.5 0.09375
0.75 0.140625

0.15625 0.5 0.078125
0.125 0.125 0.015625

0.25 0.03125
0.375 0.046875

0.125 0.5 0.0625
0.625 0.078125
0.75 0.09375
0.875 0.109375

0.09375 0.5 0.046875
0.0625 0.25 0.015625

0.5 0.03125
0.75 0.046875

0.03125 0.5 0.015625
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Fig. 12: FERs of two-stage scaling Min-sum decoders achiev-
ing 9-full-adder critical path for a random MDPC code with
(n0, r, w) = (2, 4801, 45) and Imax = 30.

to have 6 digits in the fractional part and at most two digits
are nonzero. In this case, the corresponding multiplication
takes at most one addition/subtraction. Once the range of
α1 is determined from Step 2, all possible values of α1,
α2, and α satisfying these conditions can be found. For
α1 ≤ 0.515 considered in the previous example, Table III
shows all possible combinations of α1, α2 and α satisfying
the constraints. Simulations are then carried out to determine
the combination of scalars leading to the lowest FER.
Following the above procedure, the scalars leading to
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Fig. 13: Flow chart for group size re-balancing when g = 16
and the number of c2v messages in a stream to accumulate is
at most 3g.

the lowest FER for the 2-parallel decoder consisting of 9
full adders in the critical path are α1 = α2 = 0.375,
and α = 0.140625. This 2-stage scaling reduces the crit-
ical path and increases the achievable clock frequency by
(1/9 − 1/11)/(1/11) = 22% compared to the original 1-
stage scaling that has 11 full adders in the critical path.
For a 4-parallel decoder with the same critical path, the best
scalars found from simulations are α1 = 0.5625, α2 = 0.25,
and α = 0.140625. The FERs of these two settings are
shown in Fig. 12 for a randomly generated MDPC code. The
performance degradation of the decoding with 2-stage scaling
compared to 1-stage scaling is mainly caused by the precision
loss resulted from the α1 multiplication and rounding. In
particular, if the last group of c2v messages has less than
g entries, the scaling and rounding on their sum cause more
precision loss. This analysis is further verified from the fact
that the 4-parallel decoder has higher FER than the 2-parallel
decoder as shown in Fig. 12, although both of the settings
use the best possible scalars. In the 4-parallel design, since
the c2v messages associated with a column of H are divided
into 4 instead of 2 streams, the last group of each stream
more likely has a smaller number of entries. Besides, there
are 4 such groups that go through scaling and rounding. As a
result, more precision is lost.

VI. GROUP SIZE RE-BALANCING

To mitigate the performance loss brought by scaling and
rounding the sum of a small number of c2v messages in the
2-stage scaling, a group size re-balancing scheme is proposed
in this section. This technique aims to evenly distribute the
number of c2v messages to be accumulated in each group as
much as possible, thereby reducing the amount of precision
loss and narrowing the gap in the decoding performance.

To simplify the group size re-balancing, g is adjusted to the
next lower integer that is in the format of a power of 2. For
the example MDPC code with (n0, r, w) = (2, 4801, 45) with
2-parallel decoding and 9 full adders in the critical path, g is
adjusted from 17 to 16. For an example case that the number
of c2v messages to accumulate in a stream does not exceed
3g = 48, the group sizes can be re-balanced according to the
chart in Fig. 13. A similar procedure can be developed to re-
balance the group sizes for other values of g and/or when the
number of c2v messages to accumulate in a stream is more
than 3g.

TABLE IV: Number of entries to move from each of the first
a5a4 = 2 groups to the last group for size re-balancing in the
case of g = 16.

a3a2a1a0 m2m1m0 a3a2a1a0 m2m1m0 a3a2a1a0 m2m1m0

0001 101 0110 011 1011 010
0010 101 0111 011 1100 001
0011 100 1000 011 1101 001
0100 100 1001 010 1110 001
0101 100 1010 010 1111 000

In the case that the number of c2v messages in a stream
does not exceed 48, it can be represented by a 6-bit integer
as a5a4a3a2a1a0. Originally, for g = 16, h = a5a4 is the
number of groups with g = 16 entries and y = a3a2a1a0 is
the size of the last group if y ̸= 0. When y = 0, the stream
length is a multiple of 16 and every group has 16 entries.
Group size adjustment is not necessary. When h = 0, there
is only one group with less than 16 entries. Group size re-
balancing is not needed either. Since 48=‘11000’, a5a4 =‘01’
or ‘10’ for the rest cases. If y ̸= 0, our design tries to take out
the same number of entries from each of the first h groups
and put them into the last group. However, if h+ y > 16, this
would make the last group have more than 16 entries even if
only one entry is moved from each of the other groups. Our
design chooses not to adjust the group size in this case.

If group size re-balancing is needed, and there are only
two groups, which happens if a5a4 =‘01’, the stream is
evenly divided between the two groups. The size of one
group is adjusted to a4a3a2a1, and the size of the other is
a4a3a2a1+a0. For the remaining cases, a5a4 =‘10’. Assume
that m entries are moved from each of the first h = a5a4
groups to the last group. Then the size of the last group
becomes m · a5a4 + a3a2a1a0, while the first h groups are
reduced to 16−m entries each. The goal of the group size re-
balancing is to distribute the c2v messages among the groups
as evenly as possible. Hence, m should be chosen to minimize
the difference between m · a5a4 + a3a2a1a0 and 16−m. For
a5a4=‘10’=2, such values of m = m2m1m0 corresponding
to different a3a2a1a0 are listed in Table IV. Utilizing K-map,
simplified logic formulas can be derived for m2m1m0.
Simulation results of MDPC decoding using the the pro-

posed group size re-balancing scheme are also included in
Fig. 12. It can be observed that the group size re-balancing
effectively reduces the performance gap between the decoding
with single-stage scaling and that with two-stage scaling and
parallel processing. Besides, it can be implemented by simple
logic following the chart in Fig. 13. After the accumulation of
the c2v messages of each group, the result is sent to the α1

multiplier, while the feedback loop starts to accumulate the
c2v messages for the next group. Therefore, having groups of
adjusted sizes does not bring any latency penalty.

VII. HARDWARE COMPLEXITY COMPARISONS

The proposed flexible message storage scheme only requires
a comparator, an adder, a few extra multiplexers, and simple
change in the control logic. It brings negligible area overhead
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TABLE V: Synthesis results of the VNU with 1-stage and
2-stage scaling using GlobalFoundries 22FDX process.

timing constraint (ps) area (µm2)
VNU with 1-stage scaling 242 467
VNU with 2-stage scaling 208 604

TABLE VI: 2-parallel Min-sum and BF decoder area and
latency comparisons for an MDPC code with (n0, r, w) =
(2, 4801, 45).

REMP-2 Min-sum Min-sum (2-stg.
BF [4] (1-stg. scal.) scal. proposed)

RAM I (bits) 1716 1716 1716
RAM C (bits) 19204 19204 19204
RAM M (bits) 163268 220892 220892
RAM S (bits) 633732 633732 633732
RAM T (bits) 132 330 330

Total memory (bits) 818052 875874 875874
Logic Area (µm2) 299 577 718

Total Area (# of NAND2) 1228573 1316696 1317401
(normalized) (1) (1.0717) (1.0723)

Avg. # of iter. 4.41 4.66 4.68
# of clks /iter. (worst case) 316866 316866 316866
Max. clock freq. (GHz) 6.024 4.132 4.808

Latency (ms) 0.232 0.357 0.308
(normalized) (1) (1.539) (1.328)

while achieving non-trivial latency reduction for a significant
portion of MDPC codes as shown in Fig. 10. The group size
re-balancing scheme can be also implemented by simple logic
with negligible area overhead, such as according to Fig. 13
for an example setting. It mitigates the error-correcting perfor-
mance loss brought by the 2-stage scaling without increasing
the number of clock cycles needed for the decoding.

The 2-stage scaling scheme only affects the VNUs. To
further evaluate the data path reduction achievable by this
scheme, the VNU architecture in Fig. 7 for implementing
the original 1-stage scaling and that with the units inside
the dashed block replaced by the architecture in Fig. 11 for
implementing the proposed 2-stage scaling are synthesized
using GlobalFoundries 22FDX process. The synthesis results
are listed in Table V. Each design is synthesized using different
timing constraints. For the VNU with 1-stage scaling, the area
increases substantially when the timing constraint becomes
shorter than 242ps. On the other hand, the area of the VNU
with 2-stage scaling does not increase significantly until the
timing constraint becomes shorter than 208ps. Hence the 2-
stage scaling increases the achievable clock frequency by
(1/208-1/242)/(1/242)=16%. This percentage is less than the
(1/9-1/11)/(1/11)=22.2% estimated from the critical path in
architectural level since the setup time and propagation delay
of the registers also contribute to the achievable clock period.

The overall complexities of 2-parallel Min-sum decoders
are compared in Table VI. The logic areas listed in this table
are contributed by VNUs, CNUs, and other control logic.
Hence they are larger than those in Table V, which are for
VNUs only. It can be assumed that storing a bit in memory
takes the area of 1.5 NAND2 gates [9]. On the other hand,

the area of one NAND2 gate in the GlobalFoundries 22FDX
process is 0.2µm2. From this assumption, the size of the
proposed Min-sum MDPC decoder in terms of equivalent
NAND2 gates is listed in Table VI. It can be seen that our
new design has negligible area overhead compared to the
design with traditional 1-stage scaling. This is because that
the memories contribute to the majority of the complexity and
they are the same in both designs. The average number of
decoding iterations is collected from simulations over 10,000
samples with t = 84 errors at decoder input, which is the error
number targeted by the standard. From the average number of
decoding iterations, number of clock cycles for each decoding
iteration, and the maximum achievable clock frequency for
each decoder listed in Table VI, it can be calculated that
the proposed decoder with 2-stage scaling achieves (0.357-
0.308)/(0.357)=14% latency reduction. This is lower than the
16% achievable clock frequency increase because that the
proposed design requires slightly more decoding iterations.
For comparison, the complexity of the REMP-2 decoder,

which is among the best-performing BF decoders for MDPC
codes [4], is also included in Table VI. It can be implemented
following similar overall architecture and scheduling scheme
as shown in Fig. 5 and Fig. 8, respectively. Since each v2c
message in the REMP-2 decoder can only have three possible
values: ‘0’, ‘+1’, and ‘-1’, the CNU is simplified to count
whether the number of ‘0’ v2c messages is 0, 1, or at least
2. Accordingly, the size of RAM M is reduced. However,
the sign bit of every v2c message still needs to be stored
in RAM S. As it can be observed from Table II, this RAM
dominates the memory complexity due to the high column
weight of the code. As a result, the total memory size of
the REMP-2 decoder is not reduced much and the overall
complexity is only 7% less compared to Min-sum decoders
for the MDPC code with (n0, r, w) = (2, 4801, 45) as shown
in Table VI. Since the c2v messages in the REMP-2 BF
decoder are either ‘0’, ‘+1’, or ‘-1’ instead of 5-bit as in the
proposed Min-sum decoder, their accumulation in the VNU
has shorter data path. Hence, the achievable clock frequency
of the REMP-2 decoder is higher. Although the proposed 2-
stage scaled Min-sum decoder has (0.308-0.232)/0.232=32.8%
longer latency, its decoding FER is several orders of magnitude
lower compared to the REMP-2 decoder as shown in Fig. 2.

VIII. DISCUSSIONS

For codes with higher column weight w, the critical path
of the original scaled Min-sum decoder is even longer. The
parameters of the 2-stage scaling can be tuned to achieve
a given critical path goal. Accordingly, the proposed design
can achieve even more significant improvement on the clock
frequency.
In the proposed flexible message storage scheme, two

different schemes are implemented and the decoder can choose
to use one of them on the fly for a given MDPC code.
More storage schemes can be utilized to further reduce the
decoding latency for a larger percentage of random MDPC
codes. However, the additional improvement would be less
significant due to the random locations of the nonzero entries
in the parity-check matrix.
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Due to the irregularity of the parity-check matrix, increasing
the parallelism of the proposed design would lead to less
significant increase in the decoding throughput. However, the
proposed design processes only the nonzero entries in the H
matrix. Even with low parallelism, it is more effective that
prior designs that process a large number of consecutive bits
in a column of H in each clock cycle. This is because that,
although the parity-check matrix of an MDPC code has higher
density than that of an LDPC code, it is still very sparse. As
a result, a segment of consecutive bits in a column of H most
likely only has one nonzero bit. For example, it was found
in [11] that, for the code with (n0, r, w) = (2, 4801, 45),
dividing a column of H into 32-bit segments will lead to
39 segments with nonzero bits. Hence, 39 clock cycles are
needed to process a column in this 32-parallel design. On the
other hand, our proposed 2-parallel design requires at most
⌈w/2⌉+ δ = 33 clock cycles to process a column of H.

IX. CONCLUSIONS

For the first time, this paper investigates scaled Min-sum
decoding for MDPC codes with high-column weight used
in the McEliece cryptosystem. The scalar is optimized to
improve the error-correcting performance and a 2-stage scal-
ing scheme is developed to reduce the critical path in the
decoder hardware implementation. An efficient parallel Min-
sum MDPC decoder is also proposed by jointly considering
the non-trivial check node processing and the irregular but
sparse parity check matrix. A group-size re-balancing scheme
is developed to mitigate the performance degradation caused
by 2-stage scaling in parallel decoders. Besides, a flexible
message storage scheme is proposed to reduce the decoding
latency for randomly constructed MDPC codes. Future work
will address reducing the memory requirement of the decoder
and achieving efficient design with higher parallelism.
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