Sparsity-Aware Medium-Density Parity-Check
Decoder for McEliece Cryptosystems

Xinmiao Zhang and Zhenshan Xie

Abstract—MCcEliece cryptosystem based on medium-density
parity-check (MDPC) codes is one of the finalists for the post-
quantum cryptography standard. Although decoder design for
low-density parity-check (LDPC) codes used for digital com-
munications is well-investigated, the design of MDPC decoders
faces many new challenges due to the different structure in the
parity-check matrix. Even though the parity-check matrices of
MDPC codes have relatively higher density, they are still very
sparse. Previous decoder designs did not explore such sparsity
and derive the columns of the parity check matrix one after the
other by cyclic shifting. This paper proposes a low-complexity
MDPC decoder design by exploiting the sparsity of the parity-
check matrix. The processing corresponding to zero segments
of each parity check matrix column is skipped to substantially
reduce the latency. Moreover, the columns are processed in a
novel non-consecutive order to significantly reduce the number
of memory writes for deriving all the columns and accordingly the
power consumption. For an example MDPC code considered for
the standard, the proposed design can reduce both the decoding
latency and the number of memory writes by 70% with 35%
area saving.

Index Terms—Decoder, McEliece cryptosystem, Medium-
density parity-check codes, Post-quantum cryptography

I. INTRODUCTION

The fast development of quantum processors brings the
imminent need for new cryptography schemes that are secure
against quantum computing attacks. Recently, the National
Institute of Standards and Technology (NIST) has initiated the
standardization of post-quantum cryptography. The McEliece
cryptosystem based on medium-density parity-check (MDPC)
codes [1] is one of the finalists. In particular, quasi-cyclic
(QC-)MDPC codes are utilized since the key size can be
substantially reduced. The parity-check matrix of a QC-MDPC
code, H, consists of a few randomly-constructed very large
circulant matrices of relatively higher weight instead of a
large number of smaller zero and cyclic permutation matrices
(CPMs) meticulously designed to avoid short cycles [2] as
in LDPC codes for communications. Due to the different
structure, previous parallel processing schemes for QC-LDPC
decoders that process one or multiple CPMs in each clock
cycle are not applicable to QC-MDPC decoders.

To reduce the decoder complexity, the simple bit-flipping
(BF) decoding algorithm and its variations have been mainly
considered for MDPC codes. Different methodologies have
been adopted to decide whether to flip a bit in [3] and
error-correction bounds for BF decoding have been derived
in [4]. Various implementations of BF MDPC decoders are
also available in the literature. Memories contribute to the

majority of the BF decoder complexity. To reduce the memory
requirement, only the first column of each circulant in the QC-
MDPC parity check matrix is stored. The next column can be
derived by cyclical shifting. The design in [5] processes 32
bits in a column in each clock cycle, and utilizes an optimized
method to store the cyclically shifted column back to BRAMs
in FPGA devices. In [6], the syndromes get updated after every
bit flipping instead of waiting until the end of each decoding
iteration. The decision of whether to flip a bit is typically
made based on the syndrome weight. An approximate method
is proposed in [7] to reduce the Hamming weight computation
complexity. However, existing work did not exploit the sparsity
of the H matrices of the QC-MDPC codes considered for the
standard. Even though they have higher density than those of
QC-LDPC codes, they are still very sparse and have at most
1.79% nonzero entries.

This paper proposes a low-complexity decoder design for
QC-MDPC codes by exploiting the sparsity of their parity
check matrices. For moderate parallelism L, each column
of the H matrix has many segments of L zero bits. The
corresponding processing can be skipped and accordingly
many clock cycles can be saved. Besides, instead of processing
the columns in counting order as in prior designs, our proposed
design processes column j + L after column j and wraps
around to the first un-processed column after each round
of processing. This out-of-order scheme still processes each
column and does not lead to any performance loss. On the
other hand, only one segment of L bits needs to be shifted to
derive column j+ L from column j in the circulant matrix. As
a result, the memory writes can be substantially reduced. The
proposed design is synthesized using CMOS process. For an
example MDPC code achieving 80-bit security, the proposed
architecture with L = 32 reduces both the latency and the
number of memory writes by 70% with 35% area saving.

II. MDPC CODE-BASED MCELIECE CRYPTOSYSTEM AND
BIT-FLIPPING DECODING

The H matrix of an MDPC code used in the McEliece
cryptosystem is in the format of [Hy|Hy|---|H,,,_1]. Each
H; is a circulant matrix of dimension r X with column weight
w. The first columns of H; are randomly generated and they
form the private key. An invertible H,,,_; needs to be selected.
Then a generator matrix is computed as G = [I|BT], where
B =[H,' HyH,' H| - [H, " H,] and the first
columns of the circulants in B form the public key. For
encryption, the plain text is multiplied with G to calculate
a codeword c, which is added with a random vector with at

Fig. 1. H matrix structure for a toy QC-MDPC code with no=2.

TABLE I
MDPC CODE PARAMETERS USED FOR THE MCELIECE CRYPTOSYSTEM [7]

security level (bits) [no [n | v [w [¢t
80 2 9602 4801 45 84

3 10779 3593 51 53

4 12316 3079 55 42

128 2 19714 9857 71 134

3 22299 7433 81 85

4 27212 6803 85 68

256 2 65542 32771 137 264

3 67593 | 22531 155 167

4 81932 | 20483 161 137

most ¢ nonzero bits to derive x. Let x = [zg, 21, * , Tp_1]-
The decryption is to carry out MDPC decoding on x to recover
the plain text. The parameters of the MDPC codes considered
for the McEliece cryptosystem are listed in Table I. For a toy
code with ng = 2, the structure of the H matrix is illustrated
in Fig. 1. The diagonals indicate the nonzero entries. In each
circulant, the next column is the current column cyclically
shifted by one bit.

The BF decoding algorithm has been considered in
most implementations of the McEliece system due to its
low complexity [5]-[7]. Denote the set of indices of the
nonzero entries in column j of H by N,. A basic BF
MDPC decoding algorithm is described in Algorithm 1.

Algorithm 1: Bit-Flipping (BF) Decoding Algorithm
input: H, x, th
Compute s = Hx”'; Stop and return x if s = 0
For i =0 to I,,,qx
for each column j
flip z; if Ziex\/j s; > th
Stop and return x if Hx? =0

A vector x is a codeword iff the syndrome vector, s, is zero. x;
is flipped if the count of the nonzero syndromes participating
in the corresponding column of H is larger than a threshold
th. This count is referred to as the nonzero syndrome count for
column j. The decoding terminates when a codeword is found.
Decoding failure is declared if the maximum iteration, /4,
is reached without finding a codeword. The BF algorithm has
many variations. th can be dynamically adjusted over the
iterations and the bits can be flipped in a probabilistic way
[3]. Also the syndromes can be updated after every bit flip [6]
instead of being calculated at the end of each iteration.

Although there are many decoder designs for QC-LDPC
codes, most of them are processing blocks of CPMs in the H
matrix in each clock cycle and cannot be extended to MDPC
codes. Instead, QC-MDPC decoders typically process the H
matrix column by column [5]-[7]. To reduce the memory, the
first column of each circulant is stored and the other columns
are derived by cyclical shifting.

Dout RAddr. RE

I 42 |

Dout RAddr. RE Dout RAddr. RE

Fr fhogrl| Fz fiogz]|

o o 0
. . .
: . .
| | R
RAM S RAM V RAM A
12 [iegmen] ETy
. -
: L] L]
L] L]
i w1 [gman] | w-19

Tt 3 7 T FoogiT Fz Fnogf]

Din WAddr. WE Din WAddr. WE Din WAddr. WE
Fig. 2. Memories for storing syndromes and H matrix information in the
proposed design.

ITI. SPARSITY-AWARE QC-MDPC DECODER

This section proposes a low-latency and low-complexity
decoder design for QC-MDPC codes by utilizing the sparsity
of their H matrices. Besides, a novel out-of-order computation
scheduling scheme is developed to substantially reduce the
number of memory writes needed to derive the cyclically-
shifted columns of the H matrix.

A. Sparsity-Aware H Matrix Storage

Although the H matrix for an MDPC code is denser
compared to that of an LDPC code, it is still very sparse.
At most 1.79% of the entries are nonzero for the codes listed
in Table I. Also the higher level the security, the sparser the H
matrices. For low-cost implementations, a segment of L < r
bits of a column of H is processed in each clock cycle. For
moderate or smaller L, many segments of L bits in each
column of H are zero. For example, for a randomly-generated
QC-MDPC code with r = 4801 and w = 45, if each column of
H is divided into 32-bit segments for 32-parallel processing, at
least 106 of the 151 32-bit segments are zero in each column.
The zero-segment processing can be skipped and their storage
can be eliminated. Accordingly, the number of clock cycles
needed and the memory requirement are greatly reduced.

Our design also stores only one column of each circulant
of H at any time. The other columns are derived by cyclical
shifting. The information about h;, a column of H, is recorded
using RAM V and RAM A as shown in Fig. 2 in our design.
h; is divided into L-bit segments from the first bit, and the
nonzero L-bit segments are stored consecutively in RAM V.
The indices of the nonzero segments are stored in RAM A
with the same depth. In the case that d =r mod L is small,
the last d bits of h; can be efficiently stored in registers. The
depths of both RAM V and RAM A are w. These memories
are dual-port. One read and one write at different addresses
can be carried out in the same clock cycle. ‘RE’ and “WE’ in
Fig. 2 are the read and write enable pins, respectively. For an
(n,r,w)=(9602,4801,45) MDPC decoder with L = 32, the
memory requirement for recording the information about h;
is reduced from 4801 bits in [6] to w x (L + [logy w]) =
45 x (32 4 [logy 45]) = 1710 bits using our design.

Different from h;, every syndrome needs to be stored. s
is divided into segments of L bits and stored in RAM S.
Similarly, the last d syndromes can be more efficiently stored

in registers if d is small. In this case, the dimension of RAM
Sis [r/L| x L as shown in Fig. 2.

B. Out-of-Order Column Processing-Shifting by L Columns

In all previous designs, such as [5] and [6], h;y; is
processed after h; and it is generated by cyclically shifting
h; by one bit. In this case, each L-bit segment of h; stored in
the memory is overwritten with a new segment of h; . The
repeated memory writes cause high power consumption [8].

To substantially reduce memory writes, this paper proposes
to process column hj;,r after h;. In this case, the i-th
segment of h;, except the last one, is the (i + 1)-th segment
of h; . Hence, no write to RAM V is needed for these
segments, and only the contents of RAM A, whose width
and power consumption are much lower than that of RAM
V, need to be incremented by one. Utilizing this idea, the
columns are processed in the order of hg,hy, hor,--- in
our design. After h,_, is processed, the decoding continues
with h;,hy 1, hopyq,---. Such a wrap-around process is
repeated until all columns of H are processed. This subsection
addresses the processing of h;, r after h;. The processing of
h, after h,_; and other wrap around will be discussed in the
next subsection.

From Table I, r is always a prime number and hence
d # 0. Denote the last d bits of h; by b =
[(hjr—dshjr—d+1,- -+, hjr—1] and the L bits right before the d
bitsby a = [hjr—a—r, hjr—d—r+1, ", hjr—a—1]. Forhj p,
the last d bits should be b’ = [h;,—q—r, - ,hj,r—r—1] and
its first L-bit segment is a’ = [hj,_r,- - ,h;r—1]. These
notations are illustrated in Part (1) of Fig. 3. In the case that
a = 0and a’ # 0, h;;; has one more nonzero segment
compared to h;. If a # 0 and a’ = 0, then h;;, has one less
nonzero segment. The number of nonzero segments and their
locations change over the columns of H. To keep track of the
storage of nonzero segments in RAM V and A, two pointers,
p1 and po, are utilized in our design as shown in Fig. 2. py
is always pointing at the last nonzero L-bit segment. Initially,
p2 is w and the first nonzero segment is stored at address 0.
Whenever a’ # 0 for h;, po is decreased by one and a’
is written into the address pointed by po. In other words, po
points to the first nonzero segment of h; 7, if at least one of
the a’ vectors from the previous column shifting is nonzero.

h;,r can be processed after h; following the data flow
chart in Part (2) of Fig. 3. In this chart, “:=’ denotes value
assignment. V[¢] stands for the content of RAM V at address
i and V[i][j:k] denotes the j-th through k-th bits of V[i].
Similar notations are used for the other memories and vectors.
The nonzero segments of h; are processed in increasing
order. The index of the last nonzero segment of h; is A[p;].
If it equals |r/L] — 1, it means a = V[p1] and p; for hj,,
should be decreased by one. Otherwise, a = 0. Then a’
and b’ are derived accordingly. They are used to update the
corresponding syndromes and b’ is written back into registers.
If &’ # 0, then it is the first nonzero segment of h; . It is
stored into RAM V at address p, — 1 and its index to be stored
at RAM A is 0. The index ¢ in Fig. 3 is initially the address
of the first nonzero segment of h;. Each nonzero segment

Y N
a = {V[p;1[d: L - 1], b}; 0B
b = VpJ[0:d — 1] i
pi=p1— 1 2
Ny J

N2
[Sr—d' Sp—d+1,"""» Sr—l] = [Sr—dJ Sr—d+1,""") Sr—l] XOR (b &39 +L);
S[0] = S[0] XOR (a'&x;,); i:=(p, <w)?p,:0;

k“

[P2:= P2 = 1, VIpy] :=a'; Alps] = 0]
N7

<
Alil] = A[l] + 1;
S[A[i]] := S[A[i]] XOR (V[i]&x;;.);
P=i4+1; i=(<w)?i0;
N *@
Y

Fig. 3. Part (1): Illustration of shifting for generating h; r, from h;; Part
(2): Flow chart for processing h; 1, after h;.

Alp) = [7] - 12

VipJd: 1 — 1252

P2 < w?

L—d
0 +
d
VIpJ[0:d — 1] —F#—]
0o—%
(@ (b)
Fig. 4. Architectures of control signal generation for implementing H column
shifting by L bits.

of hj, except the last one if its index is |7/L]-1, becomes
a nonzero segment of h;,r with the corresponding index
increased by one. This is achieved by increasing A[z] by one.
The corresponding syndromes are also updated simultaneously
as the index updating. This is repeated for every such nonzero
segment by increasing ¢ to w—1 and then going through ¢+ = 0
to p;.

The a’, b/, and index 7 of the proposed decoding process
according to the data flow in Fig. 3 can be generated by the
architectures in Fig. 4. The control signals for the multiplexers
in this figure are derived by simple comparators. The p; and
p2 updating is also implementable by simple logic.

C. Out-of-Order Column Processing-Shifting by 1 < 6 < L
Columns

In the first round of processing H, columns
hg,hy, -+ ,h,._; are handled. Then in each of the later
rounds, the decoder moves back to the first un-processed
column and continues by jumping over L columns each time
until the index of the column becomes larger than r — 1 if
it is further increased by L. This process is repeated until
every column has been processed. For example, in the case
of r = 4801 and L = 32, hg, hss,--- ,hyggp are processed
in the first round followed by hj, hss, - hyre9 in the
second round and hs,hsy, -, hyr70,--- in later rounds.
Let the last column processed in round [be h,,. The first
column handled in the (I + 1)-th round is h;. To get hy,
h,, needs to be cyclically shifted by (I + r) — u; bits. This

b, £} = {0,b};

[, £} = (viw — 1][L - 5: L — 1], b}]
P2

N3

|[Sr—d’5r—d+1»""5r—1] = [Sr—a, Sr—a+1, > Sr—1] XOR (b’ & X(j46) mod r);l
N

Y N

i] = k7

g:={f V[i][0:L -6 —1]} g = {f,0}
f:=V[i][L—-6:L—1]; f:=0;
N2 N2

N
[SLk] := S[k] XOR (g & X(; 16) mod +);]

k”

[pr=pi + 1, VIpi] =g Alps] = ki

Y N

[[=i+1 k=k+1]] [i=14 k=A[)
N2 N

@

Fig. 5. Flow chart for shifting by ¢ bits (1 < § < L).

subsection presents the details for shifting h; by 1 < < L
bits that is needed when the decoder moves back to the first
un-processed column.

Different from shifting by L bits, every nonzero segment of
h; needs to be shifted by ¢ bits to derive those of h;_s. In the
processing of the first column in round [, the last d bits of this
column are derived first. Since p; = —1 after processing the
last column in round [— 1, only the nonzero segments stored
at addresses ps to w — 1 need to be processed one by one
to derive the first column for round /. The nonzero segments
of the first column of round [and their indices are written to
RAM V and A, respectively, at addresses starting from O.

The proposed data flow for shifting h; by § bits (1 < 6 < L)
is shown in Fig. 5. Similarly, b and b’ are used to denote the
last d bits of h; and h;) mod r» respectively. f is a vector
utilized to track the § bits shifted out of the register or a data
segment. g concatenates f and the bits in the next segment and
it forms an L-bit segment for h(;; sy mod - ¢ is initialized to
p2 and points to the nonzero segments of h; stored in RAM
V and A. k is used to track the indices of the segments of
h(;15) mod » that have been processed. In the beginning, b’
is derived in a similar way as in Fig. 3. Also the § bits shifted
out from the register are held in f and the last d syndromes are
updated. Since § < L, some bits in segment % of h; are also
bits in segment & of h; 5 moa r- If Afi] = k, the other bits
of segment k£ comes from V[i]. Otherwise, the other bits are
‘0’s. If the segment g is zero, nothing needs to be recorded.
If g # 0, then g and index k are stored in RAM V and A,
respectively, and p; is increased by one. Similar to that in Fig.
3, p1 is the pointer for the last nonzero segment stored in the
memories. If Afi] # k, the next possible nonzero segment of
h(;15) mod » has index Ali]. Instead of increasing k by one
each time, it can be directly set to A[] to save clock cycles.
The processing of h(;) moda » is completed when 7 reaches
w — 1.

The control signal generation architecture for shifting an H

g
LS

Fig. 6. Architecture of control signal generation for implementing H column
shifting by 6 (1 < § < L) bits.
TABLE II

CONFIGURATIONS OF MEMORIES FOR (n, 7, w) = (9602, 4801, 45)
MDPC DECODER WITH L = 32

proposed design RAM S RAM V RAM A
depthx width 150%x32 45x32 (2 copies) |45x8 (2 copies)
prior design [6] |syndrome RAM| H column RAM -
depthx width 151x32 15132 (2 copies) -
TABLE III

SYNTHESIS RESULTS USING TSMC 65nm PROCESS WITH T" = 1ns FOR
(n,r,w) = (9602,4801,45) MDPC DECODESR WITH L = 32

Logic Area | Memory Total Area
(wm?) (Bits) | (# of NAND2)
prior design [6] 1406 14496 22720
proposed design 2831 8400 14566

column by 6 (1 < d < L) bits is shown in Fig. 6. Similarly, the
multiplexer select signals are derived by simple comparators.
The updating of p; and RAM contents is implemented by
simple logic and hence is not included in Fig. 6.

IV. COMPLEXITY COMPARISONS

In this section, the proposed design is compared with prior
design that does not utilize the sparsity of H and processes
the columns in counting order for an example (n,r,w) =
(9602, 4801,45) MDPC decoder with L = 32.

In MDPC decoding, the syndromes are computed as il-
lustrated in Fig. 3 and 5. The nonzero syndrome count for
column j, > . A7 Si> can be computed by ANDing each L-
bit nonzero segment of h; with the corresponding syndrome
segment and then adding up the number of nonzero bits in the
AND result. To reduce the complexity of finding the number
of nonzero bits in an L-bit segment, the L bits can be divided
into multiple groups. The count of nonzero bits for each group
can be found by using a lookup table (LUT), and the counts
for different groups are added up using a tree structure. On
the other hand, the data path and area of the adder tree also
need to be considered. From synthesis results using TSMC
65nm process with 1ns timing constraint, dividing each 32-
bit segment into 8 4-bit groups leads to the smallest area.

For the example code, the depths and widths of the RAMs
required in the proposed design are listed in Table II. Two
copies of RAM V and RAM A are needed since there are
nog = 2 circulant matrices in H. Comparatively, the previous
design [6] needs a RAM with size 151 x 32 to store a column
of H since all segments are recorded. The synthesis results

of the logic components of both the proposed design and that
from [6] using TSMC 65nm process under timing constraint
T = 1ns are listed in Table III. Each NAND2 gate occupies
around 1.44 pm?. Assume that each bit of memory takes the
area of 1.5 NAND?2 gates [9]. The equivalent total gate counts
in terms of NAND2 can be computed as shown in Table III.
Although the proposed design has more complicated logic than
that in [6], it requires much smaller memories. Overall, our
design achieves (22720 — 14566)/22720 ~ 35% area saving.
The same LUTs and adder tree can be utilized to compute
the nonzero syndrome count in the proposed decoder and
that in [6]. Their data path is much longer than that of the
architectures in Fig. 4 and 6. Hence, the proposed decoder
has the same critical path as the design in [6].

For the example code, h; has at most w = 45 nonzero
segments and it takes at most 45 clock cycles to process h; 1,
after h;. To process h(;,s) mod » With 1 < § < L, one more
clock cycle is needed if the shifting of a nonzero segment by ¢
bits generates a new nonzero segment. Hence, it takes at most
45 x 2 = 90 clock cycles. However, only 32/4801 ~ 0.67%
of the columns need 90 instead of 45 clock cycles to process.
On the other hand, 151 clock cycles are required to process
each column in the design from [6]. Therefore, the proposed
design achieves around (151 — 45)/151 ~ 70% reduction on
the latency. The number of memory writes is also reduced by
70% in our design. Additionally, most of the writes in our
design are to RAM A, which is narrower than RAM V.

When L is larger, the portion of nonzero segments in H
is larger, and hence the latency reduction achievable by the
proposed design is less significant. On the other hand, the
width of RAM A is reduced for larger L. Since most of the
writes are into RAM A in our design, the power consumption
of memory writes is further reduced. For MDPC codes used to
achieve higher security level, the H matrices are even sparser.
Accordingly, the proposed design would achieve even more
significant reductions on latency and memory writes.

Our proposed design also helps to simplify software imple-
mentations of MDPC decoders. Since the nonzero segments
form a small portion of each column of H and only the
nonzero segments are processed in the decoding, our design
would also lead to significant reductions in latency and mem-
ory requirement in software implementations.

V. CONCLUSIONS

This paper proposes a low-complexity MDPC decoder de-
sign for the McEliece cryptosystem by exploiting the sparsity
of the parity check matrix. Only the nonzero segments of H
are stored and processed to reduce the latency and memory
requirements. Besides, a novel out-of-order processing scheme
is developed to derive the columns of H with substantially
reduced memory writes. Detailed data flows with simple
logic are also developed to implement the proposed scheme.
Analysis and synthesis results show that the proposed design
achieves substantial latency and memory write reductions with
significantly smaller area. Future research will address the
implementation of other MDPC decoding schemes.

(1]
[2]
(3]

(4]

[5]

(6]

(71

(8]

(91

REFERENCES

D. J. Bernstein, et al. “Classic McEliece: conservative code-based cryp-
tography,” available at https://classic.mceliece.org/nist.html.

S. Lin and D. J. Costello, Error Control Coding, Pearson, 2004.

H. Bartz and G. Liva, “On decoding schemes for the MDPC-McEliece
cryptosystem,” Proceedings of International ITG Conference on Systems,
Communications, and Coding, Mar. 2019, pp. 1-6.

P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Analysis of the
error correction capability of LDPC and MDPC codes under parallel bit-
flipping decoding and application to cryptography,” IEEE Transactions
on Communications, vol. 68, no. 8, pp. 4648-4660, Aug. 2020.

I. V. Maurich and T. Giineysu, “Lightweight code-based cryptography:
QC-MDPC McEliece encryption on reconfigurable devices,” IEEE De-
sign, Automation & Test in Europe Conference & Exhibition, 2014, pp.
1-6.

I. V. Maurich, T. Oder, and T. Giineysu, “Implementing QC-MDPC
McEliece encryption,” ACM Transactions on Embedded Computing Sys-
tems, vol. 14, no. 3, pp. 1-27, Apr. 2015.

J. Hu and R. Cheung, “Area-time efficient computation of Niederreiter
encryption on QC-MDPC codes for embedded hardware,” IEEE Trans-
actions on Computers, vol. 66, no. 8, pp. 1313-1325, Aug. 2017.

M. Sharifkhani, “Design and analysis of low-power SRAMs,”
Ph.D dissertation, Electrical —and Computer Engineering,
University of Waterloo, Canada, 2006. [Online]. Available:
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/OWTU/TC-OWTU-
1005.pdf

X. Chen and C. Wang, “High-throughput efficient non-binary LDPC
decoder based on the simplified min-sum algorithm,” /EEE Transactions
on Circuits and Systems 1: Regular Papers, vol. 59, no. 11, pp. 2784-2794,
Nov. 2012.

