
1

Sparsity-Aware Medium-Density Parity-Check
Decoder for McEliece Cryptosystems

Xinmiao Zhang and Zhenshan Xie

Abstract—McEliece cryptosystem based on medium-density
parity-check (MDPC) codes is one of the finalists for the post-
quantum cryptography standard. Although decoder design for
low-density parity-check (LDPC) codes used for digital com-
munications is well-investigated, the design of MDPC decoders
faces many new challenges due to the different structure in the
parity-check matrix. Even though the parity-check matrices of
MDPC codes have relatively higher density, they are still very
sparse. Previous decoder designs did not explore such sparsity
and derive the columns of the parity check matrix one after the
other by cyclic shifting. This paper proposes a low-complexity
MDPC decoder design by exploiting the sparsity of the parity-
check matrix. The processing corresponding to zero segments
of each parity check matrix column is skipped to substantially
reduce the latency. Moreover, the columns are processed in a
novel non-consecutive order to significantly reduce the number
of memory writes for deriving all the columns and accordingly the
power consumption. For an example MDPC code considered for
the standard, the proposed design can reduce both the decoding
latency and the number of memory writes by 70% with 35%
area saving.

Index Terms—Decoder, McEliece cryptosystem, Medium-
density parity-check codes, Post-quantum cryptography

I. INTRODUCTION

The fast development of quantum processors brings the

imminent need for new cryptography schemes that are secure

against quantum computing attacks. Recently, the National

Institute of Standards and Technology (NIST) has initiated the

standardization of post-quantum cryptography. The McEliece

cryptosystem based on medium-density parity-check (MDPC)

codes [1] is one of the finalists. In particular, quasi-cyclic

(QC-)MDPC codes are utilized since the key size can be

substantially reduced. The parity-check matrix of a QC-MDPC

code, H, consists of a few randomly-constructed very large

circulant matrices of relatively higher weight instead of a

large number of smaller zero and cyclic permutation matrices

(CPMs) meticulously designed to avoid short cycles [2] as

in LDPC codes for communications. Due to the different

structure, previous parallel processing schemes for QC-LDPC

decoders that process one or multiple CPMs in each clock

cycle are not applicable to QC-MDPC decoders.

To reduce the decoder complexity, the simple bit-flipping

(BF) decoding algorithm and its variations have been mainly

considered for MDPC codes. Different methodologies have

been adopted to decide whether to flip a bit in [3] and

error-correction bounds for BF decoding have been derived

in [4]. Various implementations of BF MDPC decoders are

also available in the literature. Memories contribute to the

majority of the BF decoder complexity. To reduce the memory

requirement, only the first column of each circulant in the QC-

MDPC parity check matrix is stored. The next column can be

derived by cyclical shifting. The design in [5] processes 32

bits in a column in each clock cycle, and utilizes an optimized

method to store the cyclically shifted column back to BRAMs

in FPGA devices. In [6], the syndromes get updated after every

bit flipping instead of waiting until the end of each decoding

iteration. The decision of whether to flip a bit is typically

made based on the syndrome weight. An approximate method

is proposed in [7] to reduce the Hamming weight computation

complexity. However, existing work did not exploit the sparsity

of the H matrices of the QC-MDPC codes considered for the

standard. Even though they have higher density than those of

QC-LDPC codes, they are still very sparse and have at most

1.79% nonzero entries.

This paper proposes a low-complexity decoder design for

QC-MDPC codes by exploiting the sparsity of their parity

check matrices. For moderate parallelism L, each column

of the H matrix has many segments of L zero bits. The

corresponding processing can be skipped and accordingly

many clock cycles can be saved. Besides, instead of processing

the columns in counting order as in prior designs, our proposed

design processes column j + L after column j and wraps

around to the first un-processed column after each round

of processing. This out-of-order scheme still processes each

column and does not lead to any performance loss. On the

other hand, only one segment of L bits needs to be shifted to

derive column j+L from column j in the circulant matrix. As

a result, the memory writes can be substantially reduced. The

proposed design is synthesized using CMOS process. For an

example MDPC code achieving 80-bit security, the proposed

architecture with L = 32 reduces both the latency and the

number of memory writes by 70% with 35% area saving.

II. MDPC CODE-BASED MCELIECE CRYPTOSYSTEM AND

BIT-FLIPPING DECODING

The H matrix of an MDPC code used in the McEliece

cryptosystem is in the format of [H0|H1| · · · |Hn0−1]. Each

Hi is a circulant matrix of dimension r×r with column weight

w. The first columns of Hi are randomly generated and they

form the private key. An invertible Hn0−1 needs to be selected.

Then a generator matrix is computed as G = [I|BT], where

B = [H−1
n0−1H0|H−1

n0−1H1| · · · |H−1
n0−1Hn0−2], and the first

columns of the circulants in B form the public key. For

encryption, the plain text is multiplied with G to calculate

a codeword c, which is added with a random vector with at

2

Fig. 1. H matrix structure for a toy QC-MDPC code with n0=2.

TABLE I
MDPC CODE PARAMETERS USED FOR THE MCELIECE CRYPTOSYSTEM [7]

security level (bits) n0 n r w t

80 2 9602 4801 45 84
3 10779 3593 51 53
4 12316 3079 55 42

128 2 19714 9857 71 134
3 22299 7433 81 85
4 27212 6803 85 68

256 2 65542 32771 137 264
3 67593 22531 155 167
4 81932 20483 161 137

most t nonzero bits to derive x. Let x = [x0, x1, · · · , xn−1].
The decryption is to carry out MDPC decoding on x to recover

the plain text. The parameters of the MDPC codes considered

for the McEliece cryptosystem are listed in Table I. For a toy

code with n0 = 2, the structure of the H matrix is illustrated

in Fig. 1. The diagonals indicate the nonzero entries. In each

circulant, the next column is the current column cyclically

shifted by one bit.

The BF decoding algorithm has been considered in

most implementations of the McEliece system due to its

low complexity [5]–[7]. Denote the set of indices of the

nonzero entries in column j of H by Nj . A basic BF

MDPC decoding algorithm is described in Algorithm 1.

Algorithm 1: Bit-Flipping (BF) Decoding Algorithm
input: H, x, th
Compute s = HxT ; Stop and return x if s = 0
For i = 0 to Imax

for each column j
flip xj if

∑
i∈Nj

si > th

Stop and return x if HxT = 0

A vector x is a codeword iff the syndrome vector, s, is zero. xj

is flipped if the count of the nonzero syndromes participating

in the corresponding column of H is larger than a threshold

th. This count is referred to as the nonzero syndrome count for

column j. The decoding terminates when a codeword is found.

Decoding failure is declared if the maximum iteration, Imax,

is reached without finding a codeword. The BF algorithm has

many variations. th can be dynamically adjusted over the

iterations and the bits can be flipped in a probabilistic way

[3]. Also the syndromes can be updated after every bit flip [6]

instead of being calculated at the end of each iteration.

Although there are many decoder designs for QC-LDPC

codes, most of them are processing blocks of CPMs in the H
matrix in each clock cycle and cannot be extended to MDPC

codes. Instead, QC-MDPC decoders typically process the H
matrix column by column [5]–[7]. To reduce the memory, the

first column of each circulant is stored and the other columns

are derived by cyclical shifting.

RAM V RAM A

Dout RAddr. RE

Din WAddr. WE

Dout RE

Din WE

RAM S

Dout RE

Din WE

RAddr.

WAddr.

RAddr.

WAddr.

-bit segment

-bit segment

-bit segment

-bit segment

-bit segment

-bit segment

-bit index

-bit index

-bit index

-bit index

Fig. 2. Memories for storing syndromes and H matrix information in the
proposed design.

III. SPARSITY-AWARE QC-MDPC DECODER

This section proposes a low-latency and low-complexity

decoder design for QC-MDPC codes by utilizing the sparsity

of their H matrices. Besides, a novel out-of-order computation

scheduling scheme is developed to substantially reduce the

number of memory writes needed to derive the cyclically-

shifted columns of the H matrix.

A. Sparsity-Aware H Matrix Storage

Although the H matrix for an MDPC code is denser

compared to that of an LDPC code, it is still very sparse.

At most 1.79% of the entries are nonzero for the codes listed

in Table I. Also the higher level the security, the sparser the H
matrices. For low-cost implementations, a segment of L < r
bits of a column of H is processed in each clock cycle. For

moderate or smaller L, many segments of L bits in each

column of H are zero. For example, for a randomly-generated

QC-MDPC code with r = 4801 and w = 45, if each column of

H is divided into 32-bit segments for 32-parallel processing, at

least 106 of the 151 32-bit segments are zero in each column.

The zero-segment processing can be skipped and their storage

can be eliminated. Accordingly, the number of clock cycles

needed and the memory requirement are greatly reduced.

Our design also stores only one column of each circulant

of H at any time. The other columns are derived by cyclical

shifting. The information about hj , a column of H, is recorded

using RAM V and RAM A as shown in Fig. 2 in our design.

hj is divided into L-bit segments from the first bit, and the

nonzero L-bit segments are stored consecutively in RAM V.

The indices of the nonzero segments are stored in RAM A

with the same depth. In the case that d = r mod L is small,

the last d bits of hj can be efficiently stored in registers. The

depths of both RAM V and RAM A are w. These memories

are dual-port. One read and one write at different addresses

can be carried out in the same clock cycle. ‘RE’ and ‘WE’ in

Fig. 2 are the read and write enable pins, respectively. For an

(n, r, w)=(9602, 4801, 45) MDPC decoder with L = 32, the

memory requirement for recording the information about hj

is reduced from 4801 bits in [6] to w × (L + �log2 w�) =
45× (32 + �log2 45�) = 1710 bits using our design.

Different from hj , every syndrome needs to be stored. s
is divided into segments of L bits and stored in RAM S.

Similarly, the last d syndromes can be more efficiently stored

3

in registers if d is small. In this case, the dimension of RAM

S is �r/L� × L as shown in Fig. 2.

B. Out-of-Order Column Processing-Shifting by L Columns

In all previous designs, such as [5] and [6], hj+1 is

processed after hj and it is generated by cyclically shifting

hj by one bit. In this case, each L-bit segment of hj stored in

the memory is overwritten with a new segment of hj+1. The

repeated memory writes cause high power consumption [8].

To substantially reduce memory writes, this paper proposes

to process column hj+L after hj . In this case, the i-th
segment of hj , except the last one, is the (i + 1)-th segment

of hj+L. Hence, no write to RAM V is needed for these

segments, and only the contents of RAM A, whose width

and power consumption are much lower than that of RAM

V, need to be incremented by one. Utilizing this idea, the

columns are processed in the order of h0,hL,h2L, · · · in

our design. After hr−d is processed, the decoding continues

with h1,hL+1,h2L+1, · · · . Such a wrap-around process is

repeated until all columns of H are processed. This subsection

addresses the processing of hj+L after hj . The processing of

h1 after hr−d and other wrap around will be discussed in the

next subsection.

From Table I, r is always a prime number and hence

d �= 0. Denote the last d bits of hj by b =
[hj,r−d, hj,r−d+1, · · · , hj,r−1] and the L bits right before the d
bits by a = [hj,r−d−L, hj,r−d−L+1, · · · , hj,r−d−1]. For hj+L,

the last d bits should be b′ = [hj,r−d−L, · · · , hj,r−L−1] and

its first L-bit segment is a′ = [hj,r−L, · · · , hj,r−1]. These

notations are illustrated in Part (1) of Fig. 3. In the case that

a = 0 and a′ �= 0, hj+L has one more nonzero segment

compared to hj . If a �= 0 and a′ = 0, then hj+L has one less

nonzero segment. The number of nonzero segments and their

locations change over the columns of H. To keep track of the

storage of nonzero segments in RAM V and A, two pointers,

p1 and p2, are utilized in our design as shown in Fig. 2. p1
is always pointing at the last nonzero L-bit segment. Initially,

p2 is w and the first nonzero segment is stored at address 0.

Whenever a′ �= 0 for hj+L, p2 is decreased by one and a′

is written into the address pointed by p2. In other words, p2
points to the first nonzero segment of hj+L if at least one of

the a′ vectors from the previous column shifting is nonzero.

hj+L can be processed after hj following the data flow

chart in Part (2) of Fig. 3. In this chart, ‘:=’ denotes value

assignment. V[i] stands for the content of RAM V at address

i and V[i][j:k] denotes the j-th through k-th bits of V[i].
Similar notations are used for the other memories and vectors.

The nonzero segments of hj+L are processed in increasing

order. The index of the last nonzero segment of hj is A[p1].

If it equals �r/L� − 1, it means a = V[p1] and p1 for hj+L

should be decreased by one. Otherwise, a = 0. Then a′

and b′ are derived accordingly. They are used to update the

corresponding syndromes and b′ is written back into registers.

If a′ �= 0, then it is the first nonzero segment of hj+L. It is

stored into RAM V at address p2−1 and its index to be stored

at RAM A is 0. The index i in Fig. 3 is initially the address

of the first nonzero segment of hj . Each nonzero segment

N

N

N

Y

Y

Y

;

?

;

; ; ;

;
; ;

;
;

;

;
;

;

?

;

Fig. 3. Part (1): Illustration of shifting for generating hj+L from hj ; Part
(2): Flow chart for processing hj+L after hj .

1
0

1
0

(a)

1
0 1

0

D

D

1
0

?

?

?

(b)

init. ?

Fig. 4. Architectures of control signal generation for implementing H column
shifting by L bits.

of hj , except the last one if its index is �r/L�-1, becomes

a nonzero segment of hj+L with the corresponding index

increased by one. This is achieved by increasing A[i] by one.

The corresponding syndromes are also updated simultaneously

as the index updating. This is repeated for every such nonzero

segment by increasing i to w−1 and then going through i = 0
to p1.

The a′, b′, and index i of the proposed decoding process

according to the data flow in Fig. 3 can be generated by the

architectures in Fig. 4. The control signals for the multiplexers

in this figure are derived by simple comparators. The p1 and

p2 updating is also implementable by simple logic.

C. Out-of-Order Column Processing-Shifting by 1 < δ < L
Columns

In the first round of processing H, columns

h0,hL, · · · ,hr−d are handled. Then in each of the later

rounds, the decoder moves back to the first un-processed

column and continues by jumping over L columns each time

until the index of the column becomes larger than r − 1 if

it is further increased by L. This process is repeated until

every column has been processed. For example, in the case

of r = 4801 and L = 32, h0,h32, · · · ,h4800 are processed

in the first round followed by h1,h33, · · · ,h4769 in the

second round and h2,h34, · · · ,h4770, · · · in later rounds.

Let the last column processed in round l be hul
. The first

column handled in the (l + 1)-th round is hl. To get hl,

hul
needs to be cyclically shifted by (l + r) − ul bits. This

4

Y N

 Y N

;

Y

N

 Y N

;

Fig. 5. Flow chart for shifting by δ bits (1 < δ < L).

subsection presents the details for shifting hj by 1 < δ < L
bits that is needed when the decoder moves back to the first

un-processed column.

Different from shifting by L bits, every nonzero segment of

hj needs to be shifted by δ bits to derive those of hj+δ . In the

processing of the first column in round l, the last d bits of this

column are derived first. Since p1 = −1 after processing the

last column in round l− 1, only the nonzero segments stored

at addresses p2 to w − 1 need to be processed one by one

to derive the first column for round l. The nonzero segments

of the first column of round l and their indices are written to

RAM V and A, respectively, at addresses starting from 0.

The proposed data flow for shifting hj by δ bits (1 < δ < L)

is shown in Fig. 5. Similarly, b and b′ are used to denote the

last d bits of hj and h(j+δ) mod r, respectively. f is a vector

utilized to track the δ bits shifted out of the register or a data

segment. g concatenates f and the bits in the next segment and

it forms an L-bit segment for h(j+δ) mod r. i is initialized to

p2 and points to the nonzero segments of hj stored in RAM

V and A. k is used to track the indices of the segments of

h(j+δ) mod r that have been processed. In the beginning, b′

is derived in a similar way as in Fig. 3. Also the δ bits shifted

out from the register are held in f and the last d syndromes are

updated. Since δ < L, some bits in segment k of hj are also

bits in segment k of h(j+δ) mod r. If A[i] = k, the other bits

of segment k comes from V[i]. Otherwise, the other bits are

‘0’s. If the segment g is zero, nothing needs to be recorded.

If g �= 0, then g and index k are stored in RAM V and A,

respectively, and p1 is increased by one. Similar to that in Fig.

3, p1 is the pointer for the last nonzero segment stored in the

memories. If A[i] �= k, the next possible nonzero segment of

h(j+δ) mod r has index A[i]. Instead of increasing k by one

each time, it can be directly set to A[i] to save clock cycles.

The processing of h(j+δ) mod r is completed when i reaches

w − 1.

The control signal generation architecture for shifting an H

D

1
0

1
0 D

1
0

1
0 D

1
0 D

?

?

1
0

init. ?

Fig. 6. Architecture of control signal generation for implementing H column
shifting by δ (1 < δ < L) bits.

TABLE II
CONFIGURATIONS OF MEMORIES FOR (n, r, w) = (9602, 4801, 45)

MDPC DECODER WITH L = 32
proposed design RAM S RAM V RAM A

depth×width 150×32 45×32 (2 copies) 45×8 (2 copies)

prior design [6] syndrome RAM H column RAM -
depth×width 151×32 151×32 (2 copies) -

TABLE III
SYNTHESIS RESULTS USING TSMC 65nm PROCESS WITH T = 1ns FOR

(n, r, w) = (9602, 4801, 45) MDPC DECODESR WITH L = 32

Logic Area Memory Total Area
(μm2) (Bits) (# of NAND2)

prior design [6] 1406 14496 22720
proposed design 2831 8400 14566

column by δ (1 < δ < L) bits is shown in Fig. 6. Similarly, the

multiplexer select signals are derived by simple comparators.

The updating of p1 and RAM contents is implemented by

simple logic and hence is not included in Fig. 6.

IV. COMPLEXITY COMPARISONS

In this section, the proposed design is compared with prior

design that does not utilize the sparsity of H and processes

the columns in counting order for an example (n, r, w) =
(9602, 4801, 45) MDPC decoder with L = 32.

In MDPC decoding, the syndromes are computed as il-

lustrated in Fig. 3 and 5. The nonzero syndrome count for

column j,
∑

i∈Nj
si, can be computed by ANDing each L-

bit nonzero segment of hj with the corresponding syndrome

segment and then adding up the number of nonzero bits in the

AND result. To reduce the complexity of finding the number

of nonzero bits in an L-bit segment, the L bits can be divided

into multiple groups. The count of nonzero bits for each group

can be found by using a lookup table (LUT), and the counts

for different groups are added up using a tree structure. On

the other hand, the data path and area of the adder tree also

need to be considered. From synthesis results using TSMC

65nm process with 1ns timing constraint, dividing each 32-

bit segment into 8 4-bit groups leads to the smallest area.

For the example code, the depths and widths of the RAMs

required in the proposed design are listed in Table II. Two

copies of RAM V and RAM A are needed since there are

n0 = 2 circulant matrices in H. Comparatively, the previous

design [6] needs a RAM with size 151×32 to store a column

of H since all segments are recorded. The synthesis results

5

of the logic components of both the proposed design and that

from [6] using TSMC 65nm process under timing constraint

T = 1ns are listed in Table III. Each NAND2 gate occupies

around 1.44 μm2. Assume that each bit of memory takes the

area of 1.5 NAND2 gates [9]. The equivalent total gate counts

in terms of NAND2 can be computed as shown in Table III.

Although the proposed design has more complicated logic than

that in [6], it requires much smaller memories. Overall, our

design achieves (22720− 14566)/22720 ≈ 35% area saving.

The same LUTs and adder tree can be utilized to compute

the nonzero syndrome count in the proposed decoder and

that in [6]. Their data path is much longer than that of the

architectures in Fig. 4 and 6. Hence, the proposed decoder

has the same critical path as the design in [6].

For the example code, hj has at most w = 45 nonzero

segments and it takes at most 45 clock cycles to process hj+L

after hj . To process h(j+δ) mod r with 1 < δ < L, one more

clock cycle is needed if the shifting of a nonzero segment by δ
bits generates a new nonzero segment. Hence, it takes at most

45 × 2 = 90 clock cycles. However, only 32/4801 ≈ 0.67%
of the columns need 90 instead of 45 clock cycles to process.

On the other hand, 151 clock cycles are required to process

each column in the design from [6]. Therefore, the proposed

design achieves around (151 − 45)/151 ≈ 70% reduction on

the latency. The number of memory writes is also reduced by

70% in our design. Additionally, most of the writes in our

design are to RAM A, which is narrower than RAM V.

When L is larger, the portion of nonzero segments in H
is larger, and hence the latency reduction achievable by the

proposed design is less significant. On the other hand, the

width of RAM A is reduced for larger L. Since most of the

writes are into RAM A in our design, the power consumption

of memory writes is further reduced. For MDPC codes used to

achieve higher security level, the H matrices are even sparser.

Accordingly, the proposed design would achieve even more

significant reductions on latency and memory writes.

Our proposed design also helps to simplify software imple-

mentations of MDPC decoders. Since the nonzero segments

form a small portion of each column of H and only the

nonzero segments are processed in the decoding, our design

would also lead to significant reductions in latency and mem-

ory requirement in software implementations.

V. CONCLUSIONS

This paper proposes a low-complexity MDPC decoder de-

sign for the McEliece cryptosystem by exploiting the sparsity

of the parity check matrix. Only the nonzero segments of H
are stored and processed to reduce the latency and memory

requirements. Besides, a novel out-of-order processing scheme

is developed to derive the columns of H with substantially

reduced memory writes. Detailed data flows with simple

logic are also developed to implement the proposed scheme.

Analysis and synthesis results show that the proposed design

achieves substantial latency and memory write reductions with

significantly smaller area. Future research will address the

implementation of other MDPC decoding schemes.

REFERENCES

[1] D. J. Bernstein, et al. “Classic McEliece: conservative code-based cryp-
tography,” available at https://classic.mceliece.org/nist.html.

[2] S. Lin and D. J. Costello, Error Control Coding, Pearson, 2004.
[3] H. Bartz and G. Liva, “On decoding schemes for the MDPC-McEliece

cryptosystem,” Proceedings of International ITG Conference on Systems,
Communications, and Coding, Mar. 2019, pp. 1-6.

[4] P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Analysis of the
error correction capability of LDPC and MDPC codes under parallel bit-
flipping decoding and application to cryptography,” IEEE Transactions
on Communications, vol. 68, no. 8, pp. 4648-4660, Aug. 2020.

[5] I. V. Maurich and T. Güneysu, “Lightweight code-based cryptography:
QC-MDPC McEliece encryption on reconfigurable devices,” IEEE De-
sign, Automation & Test in Europe Conference & Exhibition, 2014, pp.
1-6.

[6] I. V. Maurich, T. Oder, and T. Güneysu, “Implementing QC-MDPC
McEliece encryption,” ACM Transactions on Embedded Computing Sys-
tems, vol. 14, no. 3, pp. 1-27, Apr. 2015.

[7] J. Hu and R. Cheung, “Area-time efficient computation of Niederreiter
encryption on QC-MDPC codes for embedded hardware,” IEEE Trans-
actions on Computers, vol. 66, no. 8, pp. 1313-1325, Aug. 2017.

[8] M. Sharifkhani, “Design and analysis of low-power SRAMs,”
Ph.D dissertation, Electrical and Computer Engineering,
University of Waterloo, Canada, 2006. [Online]. Available:
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/OWTU/TC-OWTU-
1005.pdf

[9] X. Chen and C. Wang, “High-throughput efficient non-binary LDPC
decoder based on the simplified min-sum algorithm,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2784-2794,
Nov. 2012.

