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Abstract— Learning a dynamical system requires stabilizing
the unknown dynamics to avoid state blow-ups. However, the
standard reinforcement learning (RL) methods lack formal
stabilization guarantees, which limits their applicability for the
control of real-world dynamical systems. We propose a novel
policy optimization method that adopts Krasovskii’s family of
Lyapunov functions as a stability constraint. We show that
solving this stability-constrained optimization problem using
a primal-dual approach recovers a stabilizing policy for the
underlying system even under modeling error. Combining
this method with model learning, we propose a model-based
RL framework with formal stability guarantees, Krasovskii-
Constrained Reinforcement Learning (KCRL). We theoreti-
cally study KCRL with kernel-based feature representation
in model learning and provide a sample complexity guarantee
to learn a stabilizing controller for the underlying system.
Further, we empirically demonstrate the effectiveness of KCRL
in learning stabilizing policies in online voltage control of a
distributed power system. We show that KCRL stabilizes the
system under various real-world solar and electricity demand
profiles, whereas standard RL methods often fail to stabilize.

I. INTRODUCTION

Reinforcement Learning (RL) has been recognized as a
promising alternative for traditional decision-making and
control tasks in engineering systems, e.g. robotics [1], energy
systems [2], and transportation [3]. However, despite the
promise, major hurdles remain before deployment in such
systems is feasible. One of the key challenges is that many
real-world systems are safety-critical and have high standards
for stability. Even though RL algorithms outperform clas-
sical control methods in complex and uncertain dynamical
environments, they often do not provide formal stability
guarantees outside of simple systems [4]. In particular, most
popular RL algorithms for control of nonlinear systems
follow model-free gradient-based policies that focus on min-
imizing the control cost and do not explicitly consider stabil-
ity [5]. This lack of stability guarantees currently prevents
the deployment of RL algorithms in real-world problems,
where the dynamics are usually nonlinear and instabilities
are costly, e.g., voltage instability in power systems [6].

In contrast, control-theoretic approaches provide a rich set
of tools for analyzing the stability of dynamical systems and
synthesizing stable control policies. There is a large body of
work that focuses on designing stable and robust controllers
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for linear systems and beyond [7]. Tools like Lyapunov’s
direct method, contraction (incremental stability) analysis
[8]-[10] and passivity theory [11] provide ways to verify
stability and synthesize stabilizing controllers for nonlinear
dynamical systems. The key challenge in these methods is to
find the valid Lyapunov functions to verify stability, which
in practice heavily relies on trial and error.

Contributions. In this work, we integrate control theoretic
tools into the policy optimization in RL and provide a new
model-based RL framework that is guaranteed to design
stabilizing controllers in online control of unknown nonlinear
discrete-time dynamical systems. In particular, we propose a
policy optimization problem that adapts Krasovskii’s con-
struction of quadratic Lyapunov functions [12] as a stability
constraint, which guarantees that the Lyapunov stability
conditions are met by design for the solution of the policy
optimization problem (Theorem 1). Further, we show that
this stabilization guarantee holds for the controllers obtained
using a learned model of system dynamics in the policy
optimization for small enough modeling errors (Theorem 2).

To adapt this stability-constrained policy optimization prob-
lem into RL, we propose a primal-dual method. We show
that the primal-dual method guarantees the satisfaction of
the stability constraint and the design of a stabilizing policy
for the underlying system after convergence (Theorem 3).
This allows us to design a novel model-based RL frame-
work, Krasovskii-Constrained RL (KCRL), via combining
model learning and the proposed policy optimization method.
KCRL learns the unknown model dynamics in epochs and
solves the proposed stability-constrained policy optimization
problem via the primal-dual method using the learned model.

We study the KCRL framework both theoretically and em-
pirically. On the theory side, we consider KCRL with kernel-
based feature representations for model learning, i.e. Random
Fourier Features (RFF) [13]. We show that KCRL with
RFF-learning formally guarantees the design of stabilizing
control policies in finite time/samples (Theorem 4). On the
empirical side, we study the performance of the KCRL
framework in learning a stable policy for voltage control in a
distributed power system with different operating conditions
obtained via real-world operation data. We show that KCRL
guarantees stability under all operating conditions, whereas
the standard RL methods fail in stabilizing.

II. RELATED WORK

Our work connects to a broad set of control and RL literature.

Lyapunov theory is a systematic framework to analyze the
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stability of a control system. To prove stability, Lyapunov’s
direct method aims to define a positive definite function,
that decreases along the system trajectory, i.e. a Lyapunov
function. There is a large body of tools in control such as
Krasovskii’s method [12], contraction theory [8], feedback
linearization [14] and passivity theory [11], which provide
ways to construct Lyapunov function candidates and an-
alyze stability of the systems. In our work, we consider
Krasovskii’s method in designing stabilizing policies for
systems with modeling error. In the context of these control
theoretic tools, our contributions bridge one of the classical
tools in control with policy optimization in RL.

Control Lyapunov functions (CLFs) are popular tools in
designing stabilizing controllers and they are also closely
related to our framework [15]. In the construction of CLFs,
it is often assumed that the system is control-affine, or more
generally input-output linearizable [16]. For such systems,
the Lyapunov function design problem simplifies due to
linearized system dynamics [17]. However, to achieve such
input-output linerization, existing works either assume the
knowledge of the model dynamics or assume that the CLF
constructed for the learned model is also a CLF for the
underlying system [18]-[21]. In this work, we do not have
these assumptions on the system dynamics or the constructed
Lyapunov function, which are violated in many practical
systems. Instead, we consider nonlinear systems that admit
Krasovskii’s family of Lyapunov functions and provide an
end-to-end RL method, KCRL, which designs stabilizing
controllers for the underlying system using model estimates.
In particular, we quantify the amount of modeling error that
KCRL can tolerate for stabilization.

Model-based RL in dynamical systems has been studied in
many recent works due to its superior sample efficiency
and interpretable guarantees. The main focus has been on
learning the system dynamics and providing performance
guarantees in finite-time for both linear [22] (and references
within), and nonlinear systems [23]. While deriving these
guarantees, the formal finite-time stability guarantees are also
derived for linear systems [24]. However, these guarantees
have only been assumed to hold with a stabilizing oracle
for nonlinear systems [23]. Our work provides formal finite-
time (sample) stabilization guarantees for nonlinear systems
without these assumptions.

Stability Guarantees in Learning-based Control. What we
present here is one among many directions on incorporating
stability guarantees in learning-based control, with a focus on
incorporate stability guarantees for policy optimization (PO)
based RL algorithms. For the benefit of readers from both
learning and control community, we highlight a few results
from this vast and growing literature. Stability of learning-
based MPC was established in [25], [26] and followed,
for nonlinear systems, by efforts on joint learning of the
controller and(or) Lyapunov functions [27]-[31]. [32], [33]
studied learning of stability certificates and stable controllers
from data, and [34] developed a provably stable data-driven

algorithm based on system measurements and prior system
knowledge. Another line of work consider incremental stabil-
ity for nonlinear systems using contraction theory and convex
optimization with modeling errors [35], [36]. Different from
existing works, we construct the Lyapunov function based
on Krasovskii’ method (rather than learning the Lyapunov
function from scratch or data), and train the policy network
to satisfy the stability conditions derived from Krasovskii’
method. In addition to incorporate stability guarantees to pol-
icy optimization methods in RL, there have been works [37]—
[40] that proved stability and convergence for actor-critic
based RL methods [37], [38] and Q-learning [40].

III. PRELIMINARIES
A. Control Problem

Consider a discrete-time nonlinear system given as

Xt+1 =f(xt,ut), (D

where x; € R" is the state of the system, u, € R? is the control
input at time-step t. We study the discrete optimal control
setting for the system given in (1). Suppose there is a class
of controllers gg(-), parameterized by 6 € ©. The goal is to
design a controller gg(-) that minimizes a control cost,

m@in](é) =ZZO yie(xnup),

s.t. Xee1 = f(x,us) ,ur = go(xyr),

(2a)
(2b)

where c(x,u) is the cost and y is the discounting factor. Note
that there are many ways to solve or approximate the policy
optimization problem (2). Generally speaking, the procedure
is to run gradient methods on the policy parameter 6 with
step size n, 0 «— 0—nVJ(0). To approximate the gradient
VJ(0), one can use sampled trajectories such as REIN-
FORCE or value function approximation such as actor-critic
methods. As we are dealing with deterministic policies, one
of the most popular choices is the Deep Deterministic Policy
Gradient (DDPG) [5], where the policy gradient is approx-
imated; by VJ(0) ~ # DicB VuQ(xau) |x=xi,u=gg (x0) Vogo () |x;-
Here Q(x,u) is the value (critic) network that can be learned
via temporal difference learning, gy(x) is the actor network,
and {x;};cp, are a batch of samples with batch size |B;| = N
sampled from the replay buffer which stores historical state-
action pairs. For further details on DDPG, please refer to [5].

B. Stability

In control systems, stability studies whether the state trajec-
tory of the closed-loop system x;.1 = f(x;,gg(x;)) asymptot-
ically converges to the desired stationary point or a set of
stationary points. The following formally defines stability in
our context, using the notation dist(x,S) := inf s ||y — x|| to
denote distance between point x and set S.

Definition 1. (Asymptotically stable equilibrium) A dy-
namical system x:11 = f(xt,g0(xt)) is asymptotically stable
around x'© if f(x(©),go(x©)) =x'©), and further, there exists
a region around x'©), Bs(x(®)) = {x : ||x—x'|| < &} such that
Vxg € Bs(x'©)), we have lim;_,e, ||x; — x| = 0.
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More generally, the following definition considers a set of
equilibrium points, where we have used notation dist(x,S) :=
inf s |ly — x| to denote distance between point x and set S.

Definition 2. (Asymptotically stable set) A dynamical system
Xee1 = f(x1,90(x:)) is asymptotically stable around set S, if
F(x9,g9(x(©))) = x(©,Vx©) €S,, and further, there exists
Bs(Se) :={x : dist(x,S.) < &} such that Vxy € Bs(Se), we have
lim;_, dist(x;,Se) = 0.

A common approach to prove stability of a dynamical
system with respect to an equilibrium is via Lyapunov’s
direct method, and a generalization of Lyapunov’s method,
known as LaSalle’s Invariance Principle for proving stability
to a set. Both involve defining a positive definite function
that decreases along the system trajectory, i.e. a Lyapunov
function V. Please refer to [7] for a more complete overview.

In this work, we study problem (2) under unknown system
dynamics. Note that for ¢, =[x],u]]7, one can write the
system dynamics given in (1) as

xer1 = F(de), 3)

for some nonlinear function F. Further, we denote the closed-
loop system dynamics obtained via the policy u; = gg(x;) as

X411 = Fo(x), “4)

where Fp(x;) = F(¢;) for ¢, =[x;,go(x;)T]". To ease the
presentation, we use both notations interchangeably through-
out this work. Suppose that F and gy are both continuously
differentiable. Let G(x,0) denote the true Jacobian of the
closed-loog) system with respect to state x, i.e., G(x,0) =
D) D) ou For discrete-time dynamical systems as in

ax " ou ox: . .
(4), Krasovskii’s Lyapunov function candidate follows,

V(x) = (x = Fo(x)) "M(x = Fo(x)), &)

such that there exists a pair (M,0), where M > 0 and
G(x,0)"TMG(x,0) —M < 0. In this work, we assume that the
underlying system in (3) satisfies the Krasovskii’s Lyapunov
function construction for an (M,0) pair with a stability
margin, i.e., for some é > 0,

G(x,0)"MG(x,0) — M < —éI. (6)

Remark 1. The stability margin is required to accommodate
modeling errors in the dynamics. If one has access to the true
model, F(-), € =0 would suffice, i.e., asymptotic stability.

In this manuscript, some of the proofs are omitted due to
space constraints. The detailed discussions/proofs are in [41].

IV. KRASOVSKII-CONSTRAINED POLICY OPTIMIZATION

In this section, we introduce our novel stability-constrained
policy optimization problem and prove that its solution is
a stabilizing policy under perfect model dynamics and also
under modeling errors. We then provide a primal-dual policy
gradient approach to solve this problem using a learned
model and show that it finds a stabilizing policy.

A. Stabilizing Policy Design

Using Krasovskii’s method of constructing Lyapunov func-
tions for the underlying system described in Section III-B,
we add a stability constraint into the standard policy opti-
mization problem in (2). In particular, for a given (estimated)
model £(-) on the true system dynamics F(-), we propose to
solve the following constrained optimization problem

. T
m;n](@) =Zt:0 Yie(xeur), (7a)
s.t. xe41 = F(¢r),ur = go(xr), (7b)
G(x,0)"MG(x,0) - M < —e;, VxeX, (7¢)
A ) = D) TG ou :
where M i& G(x,@\— ot o 5 for the Jacobian
estimates 229 and %(f) which can be computed via finite

difference method using F (+), and € > ¢; > 0, which is chosen
based on the modeling error in F(-) as discussed shortly.

Compared to (2), the formulation (7) incorporates an ad-
ditional constraint (7c). This constraint adapts Krasovskii’s
method for Lyapunov function construction and enforces the
stability of the learned policy. In following, we show that the
solution of the novel stability-constrained policy optimization
problem (7) using the true system F(-), particularly the true
Jacobians in (7c¢), is a stabilizing policy by design.

Theorem 1 (Stability of the True Discrete-time System).
Consider solving (7) with the knowledge of true model F(-),
i.e., (7c) is evaluated using the true Jacobian. Let 0, denote
the solution of (7), such that (7c) holds for some ¢€;, where
€>¢€;>0. Then, we have the trajectory of xi+1=Fo (x:) is
asymptotically stable around the origin, Fg,_(0)=0.

The proof is given in Section A.1 of [41]. The key idea that
underpins this result is to use Kowalewki’s mean value the-
orem to show that the difference equation along the closed-
loop system trajectory is negative definite for the Lyapunov
function candidate (5), due to our stability constraint (7c).
Note that Theorem 1 uses the exact Jacobians rather than
estimates obtained via the finite difference method.

B. Effect of Modeling Errors

We extend this result to tolerate modeling errors, in particular
errors in the Jacobian estimates. First, we quantify some
regularity conditions of the system and the policy class.

Assumption 1 (Regularity Conditions). (i) F is Lp-Lipschitz,
i.e., we have Jacobian of F, ||Jr|| <Lg. (ii) ||V?F;|| <Fn, Vi,
where F; denotes the mapping from @, to ith element of state
vector Xii1, L.e., (xp41)i=Fi(¢y) for i=1,...,n. (iii) Policies in
the policy class are L,-Lipschitz, that is, ||ag§—)({x)|| <L, V6.

Note that in practice, one can use loose upper bounds for
these system-related quantities and update them over time.
The following shows that solving (7) using a well-refined
model estimate F and an appropriate choice of ¢; guarantees
the recovery of stabilizing policy for the underlying system.

Theorem 2 (Stability under Modeling Error). Suppose
Assumption 1 holds and the Jacobian estimates obtained
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—

using a model estimate E(-) satisfy supxmax(||%)(fw—

LD || ek _ PGBy < o <1, for all i =1,....n. Let Oy
be the solution of (7) using these Jacobian estimates in (7¢)
for €, such that € > €; > 2G||M||(1+Ly)ey+ ||M||(1+L, 26’%,
where G = (1+L,)(Lr+¢j). Then, we have the trajectory of

xes1=Fp,(x¢) is asymptotically stable around the origin.

Proof. By Theorem 1, we only need to show the following:
(here we drop 6 dependence as it is fixed in the proof)

G(x)"MG(x)-M <0,¥x € X. 8)

Let AG; := Gi(x) —Gi(x). Using Assumption 1 and the
construction of G;(x), we first bound |AG;||:

IAG|| < (1+Ly)é;. €))

Next, note that the stability constraint (7c) indicates
Gi(x)"MG;(x) —M < —¢;1. Using this, we get

Gi(x)TMG;(x) = Gi(x) T MG;(x) + AG] MG(x)
+Gi(x) TMAG; + AG] MAG;
< M= &I+2G|IMI[||AGIT+[IMIIIAG]IT < M

where in the final step, we use (9) and the choice of ¢;. This
verifies (8) and gives the advertised result. O]

Theorems 1 and 2 show that the solution of (7) stabilizes
the underlying system even under modeling errors. To use
this framework in online policy optimization, one requires to
solve this constrained optimization effectively. To that end,
we propose a primal-dual policy gradient technique.

C. Primal-Dual Approach

In the following, we describe the primal-dual technique to
solve (7) and show that the convergence of this method
guarantees the satisfaction of stability condition in (7c¢) with
appropriate algorithmic choices. We use the following short-
hand notation, K (x,0)=G(x,0) MG (x,0)—M+e;1. With this,
(7) can be reformulated as

mgin](@) 8.t. SuUp Amax (K (x,0)) <0,

where Amax(-) is the largest eigenvalue. The Lagrangian for
the problem is given as L(6, i) = J(0) + psup,, Amax (K(x, 0)).
The primal-dual algorithm then proceeds as follows [42],

0 = 01| VJ(0)+ Vo sup A (K (x.0)) |
< max(0, g+ 12 sup Amax (K (x,0))).

Since it is not possible to evaluate sup,., we replace it with a
supremum over a batch of representative points in the state
space {x;}icg. For the term VJ(6), we use standard policy
gradient estimators, e.g. DDPG [5], to evaluate the policy
gradient and denote the estimated gradient as VJ(6). Thus,
the primal-dual algorithm is given as,

0 0= [ V() + V0 50p s (K (3,0)
i€

p = max (0, u+1n2 sugﬂmax(K (x5,0) +epal)),  (10)
ie

where 751,17 > 0 are the step sizes and B is a batch of
representative points in the state space, and ey > 0 is a
constant that is chosen to tolerate the possible representation
incapability of B. The following gives the characterization
of €pq to verify that the solution obtained via the primal-dual
method stabilizes the underlying system.

Theorem 3 (Primal-Dual Convergence Guarantees Stabil-
ity). Suppose the primal-dual procedure converges, then the
stability condition will be met for all samples in the batch
of representative points B given in (10). Suppose the batch
B = {x,-}fi | contains a finite set of points in X such that,
Vx € X,3x; € B,||x —xil| < h, for some h > 0. Under the
conditions of Theorem 2, for ||%|| < Mg, if €pq in (10)
is set 1o €pq = 2G||M||Mgh, then the stability condition is met
on the entire state space X for the choice of €—e€pq > €; 2
2GIMI|(1+Ly)eg +[IMI|(1+Ly)?e] in (Tc).

Remark 2. The batch B constitutes arbitrary points in X
to estimate the supremum of the stability constraint and
does not correspond to data collected from the system.
The primal-dual algorithm only requires the evaluation of
Amax (K(x;,0)) at these particularly chosen representative
points in X using the estimated dynamics F(-). Here h is
the fill distance for the batch B. This condition can be met
by using N=(T/h+1)¢ samples in the batch B. Note that
this dependency is unavoidable to formally verify stability
for the entire X using samples [43]. In practice, one can
use falsifiers [44] to find states which violate the stability
constraint and add them in B, similar to [28]. Furthermore,
in the expense of computational burden, N can be also picked
larger which would reduce h and shrink €,q arbitrarily.

Proof. The dual variable update in (10) follows pu «
max (0, yt + 72 Sup; c g Amax (K (x3,0) + €pal)), and convergence
of (p,0) to (p*,0%) implies Vi € B, Anax (K(x;,0%))) <0, that is
the Krasovskii’s stability condition holds for all the samples
in the batch. Since each batch B is drawn from the state space
X, as training time goes to infinity, the stability condition
Amax (K(x;,6%))) < 0 also holds for all x; € 8. By the fill
distance condition, ie., Vx € X,3x; € B,||x —x;|| < h, (here
we drop the dependence on 0* as it is fixed in the proof)

min ||K (x)-K (x;)|| = min 1G(x)TMG(x) = G (xi) TMG (xi) |
S}glei%lI(G(X)—@(xi))TM@(X)|I+|Ié(xi)TM(@(x)—@(xi))||
(11)

Let €pq = 2G||M||Mgh, if Vx; € B,K(x;,6%) +é€pal < —€il,
then K(x,0*) < —¢;I holds for all x in the entire state space
X. By Theorem 2, stability holds for the true system, i.e.,
G(x)"TMG(x)—M <0 for all x € X. O

< 2G||M||Mgh

Remark 3. The convergence of primal-dual algorithm has
been shown for linear systems in risk-constrained con-
trol [45], [46] and Q-learning [47]. The similar convergence
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Algorithm 1 KCRL

1: Input: 7, gg,, D, A, €, M, p, n1, 12, €pa
2: for i=0,... do

3 for t =ir,...,(i+1)r do

4 Execute u; = g, (x;)

5 Store ¢, = [x/],u]]" and x4y

6:  Estimate the model dynamics £;(-) > Learning
7 Solve (7) for 6;, using Ei(+) via (10)

8

Construct gg,,, > Stable Policy Design

proofs translate to our setting for linear systems. Showing
convergence for general nonlinear dynamics requires a new
machinery and is beyond the scope of this work.

Theorem 3 shows that solving (7) via primal-dual approach
will recover a stabilizing solution within the given parameter
space O, provided that the estimation error is sufficiently
small. The parameter space ® and its coupling with the
underlying system in closed-loop form determine the level of
estimation error required in the system dynamics through L,,,
G, and Mg. For instance, in the LQR problem restricted to
the linear state-feedback policy class ©, the estimation error
of the model parameters necessary for stable policy design
depends on the maximum operator norms of the feedback
controllers and their corresponding closed-loop matrices in
the given parameter set ©, while Mg = 0. In other words,
the feasible set of 6 € © for a fixed estimation error of the
linear model parameters is determined by L, and G, which
can be upper-bounded using the continuous differentiability
of F and gy. In the following, we design a model-based
RL framework using the discussed primal-dual approach and
show that for smooth dynamical systems it can be used for
learning stabilizing controllers from scratch.

V. KRASOVSKII-CONSTRAINED RL FRAMEWORK

In this section, we present the novel model-based RL frame-
work: KCRL. The algorithm is outlined in Algorithm 1.
KCRL works in epochs of length 7, where the controller
is during the epoch is fixed. Each epoch consists of two
parts: (i) Model Learning, where KCRL deploys the current
controller in the underlying system to generate trajectories
and update the model estimates, (ii) Stable Policy Design,
where KCRL uses Krasovskii-constrained policy optimiza-
tion approach to design the new controller for the next epoch.

Each epoch i of KCRL starts with a data collection from
the underlying system for 7 time-steps with the current
controller, gg,(-). In each time step, KCRL takes the action
u; = go,(x;), and stores the current state-action pair ¢, =
[x/,u/]" and the observed next state x,,;. Note that 7 is
a user-defined parameter and gy, (-) is the initial policy.

At the end of each epoch, KCRL uses all the data gathered
to estimate a model of underlying system dynamics F;(-).
This estimate can be obtained in various ways within a
general supervised learning framework, e.g., through neural
networks or system-dependent feature representations. Using

neural networks, one can run a variant of gradient descent to
update the model estimates. On the other hand, for system-
dependent feature representations, one can consider the best
linear approximation of the system dynamics on a nonlinear
basis such as Random Fourier Features [13], wavelets, or
more generally using an atomic norm minimization frame-
work [48]. Once KCRL has a model estimate after the data
collection, it aims to recover a stabilizing policy via solving
(7) using (10) to obtain the controller for the next epoch.

VI. KCRL wiTH RANDOM FOURIER FEATURES (RFF)

In this section, we theoretically analyze a variant of KCRL
that uses RFF to learn the system dynamics. In particular,
we give a sample complexity result to learn a stabilizing
controller for the underlying system. To obtain such a result,
we assume that the unknown nonlinear system F lives within
Reproducing Kernel Hilbert Spaces H (RKHS) of infinitely
smooth functions defined by a known positive definite con-
tinuous kernel k(-,-), e.g. Gaussian kernel. In particular, we
assume that each mapping of ¢, to the elements of state vec-
tor x¢41, i.e. (xp41);=F;(¢p) fori=1,...,n, lives in this RKHS.

Remark 4. Note that Gaussian kernels are universal kernels
such that they can approximate an arbitrary continuous
target function uniformly on any compact subset of the
input space using possibly infinite kernel evaluations [49].
Therefore, the class of nonlinear dynamics considered in this
work constitutes various nonlinear systems.

Assume that we have an underlying functional A such that
y; =h(x;) and some collected data pairs Z):(xi,yi)fi o for
x€R% and yeR. The kernel methods construct nonlinear
models as fz(-)szilaik(xi,'), such that @; are chosen to
best represent 9 for some kernel x(-,-). However, for the
large number of data points, solving for «; is computation-
ally expensive. Building upon the kernel trick, i.e., kernel
evaluations can be written as inner products between infinite
dimensional feature representations (-) in H, [13] proposes
finite D-dimensional features z(-) to approximate /(-): h(-) =

K (), ¥ () = X aiz(x;) Tz (). These features are
termed as Random Fourier Features (RFF) and generated as

z(x) = \/%[cos (0 x+b1),...,cos (a)lT)x+bD)]T (12)

where w; are drawn iid from the normalized Fourier trans-
form of the kernel x, which corresponds to a proper distribu-
tion p(w), and b; are drawn iid from the uniform distribution
on [0,2x]. Furthermore, [13] shows that this method pro-
vides an unbiased estimate of k and the approximation error
decays exponentially in D (Claim 1 of [13]), which motivates
the use of RFFs in function approximation in practice [23].

Recently, [23] derived theoretical guarantees for using RFF
to approximate vector-valued nonlinear functions that belong
to H within a bounded region, e.g. F(+) in (3). They showed
that for large enough RFF (D), for the best D-dimensional
RFF approximation of F, F(-) = W, z(-), we have

sup g <r, IF () — F($)ll <0(1/VD), (13)
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Fig. 1: KCRL Framework with RFF Learning

where Ty describes the bounded region. Here o()
denotes the order up to logarithmic factors and hides the
dependencies on n, Is, and the fill distance. Here W, is the
unique min-max optimal model and unique for the particular
selection of RFF basis, i.e., a realization obtained via (12).
This result is key to our analysis as we use it to derive the
finite-time learning and stabilization guarantees of KCRL.

Using the best D-dimensional RFF approximation of F
defined in (13), we can approximate (3) as x;+1 ~ W," z(¢;),
for some unknown W, € RP*"_ For model learning, KCRL
considers this approximate model and tries to recover the best
estimate for W, using all the data gathered. In particular, after
the data collection of epoch i, KCRL solves the following:
. 2 t=(
mmljn/1||W||F+ZS:0

)T
lxse1 —WT2($9)l3,  (14)

for some A > 0 to obtain an estimate of W,. Note that W; =
(Z:Z] +AI)7' Z,XT gives the closed-form solution of (14) for
Xe=[xps1,. x| ERED 7= [2(h)), ..., 2(¢o)] eRP*(+D)
Thus, at epoch i, the learned model by KCRL is given by
Fi() = W' z(-). Before we proceed, we have the following
assumption on the initial policy of KCRL.

Assumption 2 (Exploratory and Bounded Initial Policy). The
initial controller gg, provides persistently exciting (PE) and
bounded inputs that can be used for exploration and excite
the system uniformly. In other words, the smallest eigenvalue
of the design matrix Z,Z scales linearly over time, and for
X141 = Fy (x;), we have ||¢:|| < Ty, for some finite Ty.

These assumptions are standard for consistent estimation
of the model dynamics in statistical learning [23]. To
achieve such initial controllers, recent tools in control could
be deployed [50], [51]. In practice, Dataset Aggregation
methods could be used with policy gg, () for safe excitement
of the systems coupled with randomized feedback policies.

Next, we focus on the learning guarantees of KCRL. We
need to guarantee that the model estimation errors are
small enough at the end of the first epoch such that the
controller obtained via solving (7) would stabilize the
system. Using standard least-squares estimation error results
for the solution of (14), in particular Theorem 1 and 2 of
[23], and under Assumption 2, for large enough D, we get

supyg) <t I1F(9) = F1($)| = O(1/ND++/D/7),

after r time-steps, i.e., at the end of first epoch of KCRL.
From (15), we derive the following novel finite sample
approximation error guarantee on the Jacobian of the un-
derlying function F(-) via the finite difference method. This

(15)

result could be of independent interest in RFF learning and
linearization of RFF-learned model dynamics for the study of
different stability notions such as contraction theory or CLFs.

Proposition 1 (Approximation Error of Jacobian using RFF).
Let Jr denote the Jacobian of the underlying system F given

in (3). Consider the finite difference approximation of Jr us-

ing Fi(+) :Wsz(-), such that];si’j) (¢) = Fui(gre 61)2;1 a(Pme e

where ¢ > 0, ﬁl,i(-) is the mapping from input to the lth
index of the output of Fy and ¢j is the jth standard basis.
Under Assumptions 1 & 2, for the choice of € = O((D‘1/2+

VD/0)'3), we have that sup 4 <5 |l Jr($) = Jr (§)|lr = O(£2).

The proof is given in [41]. It builds upon (15) and uses the
Taylor expansions of F;(¢+¢ ¢;) and F;(¢ —¢ ;) at ¢. This
result shows that the Jacobian of a vector-valued function
in a known RKHS is well-approximated using the RFF
representation of the function with finite samples. We finally
provide the finite-sample stabilization guarantee of KCRL.

Theorem 4 (Finite Sample Stabilization via KCRL). Sup-
pose Assumptions 1-2 hold and the batch B is informative
enough that its fill distance h satisfies € —€yq > 0, for
€pd = 2G|IM||Mgh. Set €; = €= €pq in the constraint (7c).
If KCRL uses D = (5((ZG“MH“”;ﬁl:EM”(HL“)Z)3) number of
RFF in learning the system, after D> samples (time-steps), we
have the trajectory of xi+1 = f(x1,99(x:)) is asymptotically
stable around the origin, i.e., the solution of (7) after = D?
samples from the system gives a stabilizing controller gg, for
the unknown nonlinear dynamical system.

Proof. Recall that the stability condition holds for the under-
lying system with € margin. Thus, combining Theorem 2 and
Theorem 3, to guarantee the stabilization of the underlying
system for the entire state-space, we require €; < €—¢,q, i.e.,

€— €pd
2GTMI(1+ L) + M1+ L)

since £;<1. This gives an upper bound on the error of Jaco-
bian estimates to guarantee stabilization. From Proposition

1, we also have that ;=0 ((1/VD++/D/7)*/3), since aF(¢)

aF(¢) and 31;(‘7’) a};(f) are submatrices of Jr(¢)—Jr(¢). The
optlmal choice of r and D that minimizes this upper bound
is 7=D?, which results that e;=0 (D™'/3) after ¢ samples.
Thus, for the stated choice of D, after 7= D? time-steps,
KCRL is guaranteed to stabilize the underlying system. [J]

(16)

This result shows that by setting the epoch length 7 = D?,
KCRL guarantees the recovery of a stabilizing controller
at the end of first epoch, i.e. gg,. The choice of ¢; also
guarantees the recovery of stabilizing controllers for the
subsequent epochs with the non-increasing estimation errors.

VII. CASE STUDY

We numerically study KCRL in learning stable policies
for voltage control in a power distribution system [6].
Our case study focuses on the South California Edison
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Fig. 2: a) Real-world solar and load data across 24 hours
with 6 seconds resolution; b) Serious voltage violations in
the system without control; ¢) Standard DDPG [5] causes
voltage violations in some nodes (e.g., node 18); d) KCRL
can stabilize the system voltage within the nominal operation
region (between the two dashed lines) under all conditions.

56-bus test feeder with high penetration of photovoltaic
(PV) generations. The detailed system parameters follow
the configuration in [6]. The system model for the voltage
control of this system is given by,

—pj(t) =Pij(t) —rijlij (1) —Zk:(j’k)eEij(t)st
~q;(1)= Qi (D) =il ()= D o Quie().Vi

0; (1) =0;(£) =2(ri;Pij (1) +x1;Q1j (1) + (r;+x7) i (1), Y (i, j) € E
(17¢)

(17a)
(17b)

Here (17a) and (17b) represent the power conservation
at node j, p; denotes the real power injection at node
j and g; denotes the reactive power injection. (17c)
represents the voltage drop from node i to node j.
Lj(t) = | = (P} + Q) /o; is the squared current,
v; :=|V;]? is the squared voltage, P;j(t) and Q;;(t) represent
active and reactive power flow on line (i, j), respectively.

Consider the controller form q(t+1) = q(t) +go(v(t)), where
go(v(t)) is represented as a neural network, that can be
trained either by the proposed KCRL framework, or standard
RL framework. We adopt DDPG [5], a commonly used RL
algorithm for continuous control as baseline. [6] shows that a
Krasovskii’s Lyapunov function exists for the voltage control
system (17), where M = X! with X representing the network
reactance matrix. The desired stable set for the system is
denote as S, = {v € R" : v, < v; < v;}, where v,,0; are the
lower and upper bound for the nominal voltage range. For
the considered system, v; = 12.6kV v, = 11.4kV Vi, that are
plotted as the two dashed lines in Figure 2. We simulate the
performance of KCRL and DDPG using a real-world voltage
control dataset and the results are presented in Figure 2.
We also plot the training curve of the KCRL algorithm and
the model learning error for the first 100 iterations in Fig.

0.75
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n
3 L, 050
g 600 0
3 2
g 0.25
-700
: 0.001, :
0 600 1200 1800 2400 0 25 5 75 100
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Fig. 3: Model Performance vs Iterations

Model Learning Iteration

3. We observe that the model error keeps reducing and the
policy performance keeps improving (measured by a lower
cost 31, y'c(x;,u)) per training iteration.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we adapt the classical Krasovskii’s Lyapunov
function into policy optimization in RL. Using this method,
we design stabilizing policies under modeling error with
precise robustness guarantees. Furthermore, we propose a
model-based RL framework, KCRL, that is guaranteed to
design stabilizing controllers in online control of unknown
nonlinear dynamical systems using finite samples. In future
work, we aim to broaden the KCRL framework to incorporate
other Lyapunov function constructions or learn and update
the Lyapunov functions on the fly. For example, in closely
related contraction analysis, the matrix M can be state-
dependent. Extending our current results to such construction
would allow KCRL to be deployed for different tasks.
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