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Abstract

Despite long-standing theory for classifying plant ecological strategies,

limited data directly link organismal traits to whole-plant growth rates

(GRs). We compared trait-growth relationships based on three prominent

theories: growth analysis, Grime’s competitive–stress tolerant–ruderal
(CSR) triangle, and the leaf economics spectrum (LES). Under these

schemes, growth is hypothesized to be predicted by traits related to relative

biomass investment, leaf structure, or gas exchange, respectively. We also

considered traits not included in these theories but that might provide

potential alternative best predictors of growth. In phylogenetic analyses of

30 diverse milkweeds (Asclepias spp.) and 21 morphological and physiologi-

cal traits, GR (total biomass produced per day) varied 50-fold and was best

predicted by biomass allocation to leaves (as predicted by growth analysis)

and the CSR traits of leaf size and leaf dry matter content. Total leaf area

(LA) and plant height were also excellent predictors of whole-plant GRs.

Despite two LES traits correlating with growth (mass-based leaf nitrogen

and area-based leaf phosphorus contents), these were in the opposite

direction of that predicted by LES, such that higher N and P contents

corresponded to slower growth. The remaining LES traits (e.g., leaf gas

exchange) were not predictive of plant GRs. Overall, differences in GR were

driven more by whole-plant characteristics such as biomass fractions and

total LA than individual leaf-level traits such as photosynthetic rate or spe-

cific leaf area. Our results are most consistent with classical growth

analysis—combining leaf traits with whole-plant allocation to best predict

growth. However, given that destructive biomass measures are often not

feasible, applying easy-to-measure leaf traits associated with the CSR classi-

fication appear more predictive of whole-plant growth than LES traits.

Testing the generality of this result across additional taxa would further

improve our ability to predict whole-plant growth from functional traits

across scales.
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INTRODUCTION

Predicting variation in plant growth is a long-standing
problem in ecology. Because plants largely determine ter-
restrial ecosystem productivity, estimating current and
future plant growth is increasingly relevant because
global change drivers impact ecosystem services (Arndt
et al., 2019; Helbig et al., 2017). Because it is typically
impractical to measure the total vegetative biomass of a
community or ecosystem, an emerging method is to
apply plant traits to predict growth rate (GR). These
trait-based approaches take advantage of a large body of
literature that analyzes covariation and trade-offs among
plant traits (Dìaz et al., 2015; Enquist et al., 2007;
Lambers & Poorter, 1992; Wright et al., 2004). Given that
morphological and physiological characters are central to
resource acquisition and allocation, they are likely to
shape plant productivity in predictable ways.

Three classic approaches have attempted to distill plant
diversity into cohesive strategies and estimate growth based
on defining characteristics: growth analysis, Grime’s CSR
triangle (competitive–stress tolerant–ruderal), and the leaf
economics spectrum (LES) (Table 1). In growth analysis,
GR is predicted by the relative allocation of biomass among
roots, stems, and leaves (Evans, 1972; Lambers & Poorter,
1992). Faster growing plants are expected to invest more
in leaves relative to stems and roots. Due to the impor-
tance of leaf investment, GRs are additionally dependent
on specific leaf area (SLA), the ratio of leaf area to
dry mass.

Grime’s CSR framework predicts that three plant strate-
gies have repeatedly evolved in response to combinations of
stress and disturbance (Grime, 1977). Until recently, the
CSR framework was conceptual rather than empirically
trait-based. However, Pierce et al. (2016) showed that three
leaf traits were predictive of the scheme: average leaf sur-
face area (individual leaf size), SLA, and leaf dry matter
content (LDMC). In this context, the competitive strat-
egy is defined by large leaves with intermediate SLA
and LDMC. The stress-tolerant strategy has small leaves
with large SLA and LDMC, and the ruderal strategy has
small leaves with small LDMC and large SLA (Pierce
et al., 2016).

The most commonly applied trait-based framework is
the LES, which describes patterns of covariation among
six leaf traits: leaf lifespan, SLA, leaf mass-based nitrogen
(N) and phosphorus (P) contents, and leaf mass-based
rates of light-saturated photosynthesis (Amax) and dark
respiration (Rd). Together, these traits represent the
return on investment of fixed carbon at the leaf level
(Reich, 2014; Wright et al., 2004). On one end of the spec-
trum is a “resource-acquisitive” strategy with short leaf
lifespan and larger SLA, N and P contents, and gas

exchange rates (photosynthesis, respiration). On the other
end of the spectrum is a “resource-conservative” strategy
with the opposite combination of trait values. It is gener-
ally predicted that plants with resource-acquisitive
leaf traits have relatively faster GRs than those with
resource-conservative leaves (Reich, 2014). As such, leaf
economics traits have been applied to predict growth at
genotypic, community, ecosystem, and global scales, often
using a subset of traits as direct proxies for plant growth
(Blonder et al., 2015; Grady et al., 2013).

Despite the intuitive appeal of these theories, experi-
ments that directly use traits to predict whole-plant
growth are surprisingly limited. Studies to date show
mixed results, including significant (Bongers et al., 2020)
and nonsignificant (Goud et al., 2019) trait–GR
relationships. Inconsistent results could be influenced by
environmental context (Maire et al., 2015; Wright et al.,
2005) or species interactions (Bongers et al., 2020) or
because studies compare plants at different scales—from
broadly divergent taxonomic and functional groups at the

TABL E 1 Traits and growth predictions of three classic

ecological strategy schemes (growth analysis [GA], Grime’s
competitive–stress tolerant–ruderal [CSR] triangle, leaf
economics spectrum [LES]), and additional traits considered in

this study.

Strategy
scheme Trait Acronym

Growth
predictions

GA Leaf mass fraction LMF +

Stem mass fraction SMF +

Root mass fraction RMF −

Specific leaf area SLA +

CSR
triangle

Average leaf size LS +, −

Leaf dry matter content LDMC −

Specific leaf area SLA +

LES Photosynthetic rate Amax +

Respiration rate Rd +

Specific leaf area SLA +

Leaf nitrogen content N +

Leaf phosphorus content P +

Leaf lifespan LL −

Additional
traits

Total leaf area LA +

Leaf carbon isotope ratio δ13C −

Leaf thickness Lth −

Plant height H +

Root clonality +

Seed mass SM +

Specific root length SRL +

Note: “+” and “−” indicate positive and negative correlations, respectively.
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community scale, to closely related plants within a clade,
to among plant individuals within a species (Anderegg
et al., 2018; Edwards et al., 2014; Messier et al., 2016).

In an effort to link these theoretical frameworks to
observed GR, we simultaneously tested these growth–trait
predictions (Table 1) using a diverse set of closely related
species in a multivariate phylogenetic analysis. Growing
species from the same genus under controlled, common
resource conditions in a growth chamber allowed us to
compare GRs and traits of interest within a similar func-
tional group (i.e., all C3, diploid, herbaceous, and perennial
angiosperms) that share a recent common ancestor and
yet display large variation in growth, habitat affinities, and
traits.

We measured leaf, stem, and root biomass to calcu-
late whole-plant GRs and measured 21 traits: leaf, stem,
and root biomass fractions and SLA for growth analysis,
CSR-associated traits, and leaf economic spectrum traits
(Table 1). The LES originally defined leaf N content,
phosphorus content, and gas exchange rates on a dry
mass basis, but it has become customary to consider both
mass-based and area-based traits (Lloyd et al., 2013;
Osnas et al., 2013). Although trait covariance is often
weaker with area-based normalizations, given the func-
tional dependence between leaf area and photosynthe-
sis, we included both mass- and area-based LES traits
together and in separate analyses.

We also considered seven additional traits that are
not used in these three classic approaches but play a
prominent role in the plant ecological literature. Some of
these traits are expected to predict plant growth because
they measure aspects of plant size, such as height, total
leaf area (LA), root clonality, and seed mass (SM). For
example, the total amount of LA available for photosyn-
thesis can positively correlate with biomass accumulation
(Goud et al., 2021; Weraduwage et al., 2015) and ecosys-
tem carbon exchange (Goud et al., 2017; Stark et al.,
2012; van Dijk et al., 2005). Root clonality may corre-
spond to GR through increased vegetative reproduction and
nutrient foraging ability (Keser et al., 2014; Klimešov�a &
Martínkov�a, 2004). The other traits are related to leaf metab-
olism and structural investments such as leaf thickness, leaf
carbon isotope ratio (δ13C), and specific root length (SRL).
Leaf thickness is often associated with a trade-off between
stress tolerance and rapid growth (Coneva & Chitwood,
2018; Nautiyal et al., 1994). Leaf carbon isotope ratio (δ13C)
is ameasure of the long-term difference between CO2 supply
and demand that integrates over the lifespan of the leaf and
can provide an integratedmeasure of carbon gain (Farquhar
et al., 1989; Goud& Sparks, 2018). Similar to SLA, SRL is the
ratio of root length to dry mass and is a measure of root eco-
nomics that integrates the trade-off between resource acqui-
sition and structural investment (Zhou et al., 2018).

METHODS

Study system and plant growth conditions

We assessed growth–trait relationships across 30 closely
related yet functionally diverse milkweed species
(Appendix S1: Figure S1). Milkweeds (Asclepias spp.,
Apocynaceae) are herbaceous perennials that display
remarkable variation in morphology, ranging from desert
subshrubs with small, narrow leaves (e.g., A. linaria,
A. subulata) to large, highly productive plants of temper-
ate and subtropical wetlands with large, broad leaves
(e.g., A. curassavica, A. incarnata) (Woodson Jr., 1954).
Milkweeds vary widely in GR and traits when grown
under common garden conditions (Agrawal et al., 2009;
Goud et al., 2019). Seeds collected by colleagues or pur-
chased from native plant suppliers were germinated by
moistening and stratifying at 4�C for at least 10 days and
then at 28�C for 3 days. Seedlings were planted in 500-mL
plastic pots and grown in Metro Mix soil (Scotts-Sierra,
Marysville, OH, USA) in a walk-in growth chamber
(Conviron CMP 6050) for 6 weeks at 26�C during a 14-h
day and 24�C during a 10-h night with an average relative
humidity of 50%. Seedlings were fertilized on Day 10 and
Day 30 with a dilute fertilizer (N:P:K = 21:5:20) with a
N concentration of 150 ppm (mg L−1). Pots were spatially
rearranged every week to minimize potential effects of
spatial variation in light intensity within the chamber
(Poorter et al., 2012).

GR definitions and calculations

Whole-plant growth can be defined and measured in various
ways, including absolute GR and relative growth rate (RGR).
Absolute GR is calculated as the total oven-dried biomass
accrued over the number of days from seedling emergence
until the end of the experiment in grams per day−1 and
requires a single harvest. RGR is calculated either as the slope
of a linear regression model fitted to the natural logarithm
(ln) of whole-plant dry mass (M, in grams) over time or using
the classical GR formula RGR = (lnM2 − lnM1)/(t2 − t1),
where t = time (days) and the subscripts indicate sequential
sampling points (Evans, 1972). Either approach for RGR
requires multiple harvests, which can constrain replication.
Before proceeding with the single-harvest GR approach, we
grew seedlings in a separate experiment to assess relation-
ships between absolute and RGR calculations. We selected
four milkweed species that, based on previous growth cham-
ber experiments, represented the range of functional variation
across the 30 species: A. curassavica, A. incarnata, A. pumila,
and A. verticillata (Agrawal et al., 2009; Agrawal &
Fishbein, 2006; Goud et al., 2019). We measured total
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biomass (g) in three successive harvests spaced 15 days
apart (Appendix S1: Figure S2A) and calculated GR and
RGR using the regression slope approach and the classical
RGR formula. GR was positively associated with RGR
based both on the slope of the growth curve (exponential
R2 = 0.96; Appendix S1: Figure S2B) and the RGR formula
(exponential R2 = 0.99; Appendix S1: Figure S2C).
Therefore, we proceeded with GR for the purpose of our
main study.

Trait and biomass measurements

We sampled five replicate plants per species for trait and
growth measurements. SM was calculated before germina-
tion by dividing the total SM (g) by the number of seeds
used for germination (n = 30 seeds per species). We mea-
sured leaf gas exchange rates using a LICOR LI-6400 CO2

gas exchange analyzer (LICOR, Lincoln, NE, USA) on one
fully expanded leaf per plant at 36–41 days old. We mea-
sured rates of leaf dark respiration (Rd) and light-saturated
photosynthesis (Amax). Leaf dark respiration (Rd) was mea-
sured at zero light intensity (photosynthetically active radi-
ation, PAR = 0 μmol photons m−2 s−1). We generated light
response curves to obtain light-saturated photosynthesis
rates (Amax). Briefly, we equilibrated the leaf at ambient
light intensity (PAR = 1000), then worked up from dark
(PAR = 0) to high light (PAR = 2000) in steps of 200 PAR,
allowing the leaf to equilibrate for 1–2 min between
each light level. The light-saturated photosynthesis
rate was then calculated from the nonrectangular model
of the photosynthetic light response curve using nonlinear
least-squares regression (Marshall & Biscoe, 1980). Leaf
humidity inside the cuvette was maintained between
45% and 60%, and the cuvette temperature was maintained
at 25�C.

Plants were harvested at 42–45 days old, representing
prereproductive vegetative growth and to prevent roots
from becoming pot-bound. At the time of harvest, the
height of each plant was measured (H, cm), total leaf
number was recorded, leaves were removed from the
stems, and roots were separated and washed to remove soil.
For each individual, LA was measured using a LICOR
LI-3100 leaf-areameter. Average leaf area (leaf size, LS) was
calculated by dividing LA by the total number of leaves.
SRL was measured as the ratio of root length (cm) to dry
mass using subsamples of lateral roots (n = 10 per plant).
Root subsamples were identified under a dissecting micro-
scope and were predominantly first through second-order
roots, approximately 0.5 mm in diameter (Kramer-Walter
et al., 2016). Root clonality was measured as the number of
buds on roots, rhizomes, and caudices of each plant
(Pellissier et al., 2016).

Following fresh weight measurements of leaves, stems,
and roots, samples were oven-dried at 60�C for 48 h and
measured for dry mass (g). SLAwasmeasured as LA divided
by total oven-dried leaf mass (g). LDMC was measured
as oven-dry leaf mass (mg) divided by water-saturated
fresh mass (g). Leaf thickness (Lth) was estimated as
1/(SLA × LDMC) (Pérez-Harguindeguy et al., 2013).

Isotope ratio mass spectrometry and elemental
analyses were performed at the Cornell University
Stable Isotope Laboratory. Carbon isotope ratios and
N percentage element of leaf material were measured
using a continuous-flow isotope ratio mass spectrometer
(Thermo Environmental Delta V Advantage) coupled to an
elemental analyzer (Carlo Erba NC2500). Isotope ratios
are expressed as δ values (per mil):

δ13C¼ Rsample=Rstandard − 1
� �

×1000 ‰ð Þ,

where Rsample and Rstandard are the ratios of heavy isotope
to light isotope of the sample relative to Vienna-Pee-Dee
Belemnite, the international standard for C. Leaf P content
was measured by dry ash analysis at the Cornell Nutrient
Analysis Laboratory (Jones, 2001). Leaf N and P were cal-
culated on both a leaf dry mass and leaf area basis.

Statistical analyses

All statistical analyses were performed in R version 3.5.3
(R Core Team, 2019). We assessed the relative ability of
each individual trait to predict GR using general linear
models (GLMs) and tested for the potential effects of
shared evolutionary history using phylogenetic generalized
least-squares (PGLS) regressions using the “pgls” function
of the caper package in R (Orme et al., 2012). All variables
were natural log-transformed to reduce nonnormality, and
individual regression models were developed using species
means. For the PGLS analyses, a maximum likelihood
phylogeny of 111 Asclepias species was pruned with the
retention of branch lengths to create a phylogram for the
30 species (Appendix S1: Figure S1). Briefly, the phylogeny
was estimated from three noncoding plastid genome
regions: rpl16 intron, trnCGCA–rpoB intergenic spacer, and
the contiguous trnSGCU–trnGUUC intergenic spacer/
trnGUUC intron (Fishbein et al., 2011). We estimated the
phylogenetic signal of GR and all traits by calculating
Pagel’s λ using the “phylosig” function in the picante R
package (Kembel et al., 2010). We included the SE of the
mean for each variable. A λ value of 1 indicates that trait
similarity among species is directly proportional to the
extent of shared evolutionary history, while a λ value of
0 indicates no relationship between shared ancestry and
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trait values. We tested for significance in phylogenetic sig-
nal using likelihood ratio tests (Pagel, 1999). For the PGLS
analyses, linear regression parameters were estimated from
the default λ = 1 Brownianmotionmodel.

We used Ward’s agglomerative clustering and princi-
pal component analysis using the “vegan” R package
(Oksanen et al., 2019) to classify the 30 species into distinct
groups, hereafter referred to as strategies. We grouped spe-
cies based on (1) growth analysis traits, (2) CSR traits,
(3) LES traits, and (4) all 21 measured traits. We then used
Kendall’s coefficient of concordance (999 permutations) to
identify how many strategies identified by Ward’s cluster-
ing were significantly distinct and which species were
significantly contributing to each strategy (Legendre &
Legendre, 2012). We also classified species using the CSR
method outlined in Pierce et al. (2016), where ratios of
C:S:R values were calculated based on leaf traits (size,
SLA, LDMC) for each species.

We used linear regression to assess relationships
between GR and the first two principal component axes
for each strategy scheme. Linear regression models were
directly compared using the Akaike information
criterion (AIC).

RESULTS

Growth–trait relationships across species

Across 30 milkweed species, individual plant GRs ranged
over 50-fold, from 0.005 to 0.258 g day−1 (Appendix S1:
Table S1). Overall, in phylogenetically controlled ana-
lyses (PGLS), three traits each individually explained over
50% of the variation in whole-plant growth among the
30 Asclepias species: LA, N content on a mass basis
(Nmass), and phosphorus content on an area basis (Parea).
In total, GR was positively associated with leaf carbon
isotope composition (δ13C), plant height (H), LA, LDMC,
leaf mass fraction (LMF), LS, area-based photosynthetic
rate (Aarea), and stem mass fraction (SMF). GR was nega-
tively associated with leaf N and P contents (N, P, area
and mass based). Growth was not associated with leaf
dark respiration (Rd, per mass or per area), leaf thickness
(Lth), mass-based photosynthetic rate (Amass), root
clonality, root mass fraction (RMF), SM, SLA, or SRL.
Accounting for shared evolutionary history did not
change these relationships, with the exception of LMF
(not significant in PGLS) and mass-based photosynthesis
(Amass; became significant in PGLS). Nine of the 21 traits
showed phylogenetic signal (λ value >0.70, p < 0.05):
plant height (H), leaf carbon isotope ratio (δ13C),
mass-based respiration and leaf N (Rmass, Nmass), LDMC,
leaf thickness (Lth), SM, and LMF and SMF (Table 2).

Plant strategies

To assess growth–trait relationships at the level of plant
strategies, we classified species into groups using diagnos-
tic traits of the three theories (Tables 1 and 3). Using
growth analysis traits, we identified three strategies pri-
marily defined by the relative allocation between above-
and belowground biomass (PC1 = 70%; Figure 1A).

When grouped by CSR traits, species distributed among
four strategies corresponding to competitive–ruderal (CR),
competitive–stress tolerant–ruderal (CSR), stress tolerant–
ruderal (SR), and stress-tolerant (S). Consistent with previ-
ous studies (Li & Shipley, 2017; Pierce et al., 2016), variation
in LS was orthogonal to variation in SLA and LDMC, with
differences among groups driven primarily by variation in
average LS (PC1 = 93%; Figure 1D).

For LES traits, we analyzed the area-based and
mass-based traits together and separately, as these are not
wholly independent, being statistically linked by SLA
(Osnas et al., 2013). In all three analyses, species were dis-
tributed among three strategies with variation in photosyn-
thesis rate (Amass, Aarea) and SLA being orthogonal to leaf N
and phosphorus (Appendix S1: Figure S3). In keeping with
the original LES definition, we present results from the
mass-based multivariate analysis (other analyses presented
in Appendix S1: Figure S3), where differences among
groups were driven primarily by variation in photosynthesis
rate (Amass) and SLA (PC1 = 75.7%) and secondarily by leaf
Nmass and Pmass (PC2 = 12%; Figure 1G). Variation in leaf
respiration rate (Rmass) contributed equally to PC1 and PC2
(Appendix S1: Table S2).

In addition to these well-established schemes, we clas-
sified species using all 21 traits measured in this study.
Using this approach, the 30 species distributed among four
groups (Figure 1J). Consistent with global trait analyses
(Dìaz et al., 2015), the first PC axis (52%) corresponded to
plant size-related traits: LA, average LS, plant height (H),
and biomass fractions (LMF, SMF, RMF). The second PC
axis (19%) corresponded to leaf economic and metabolic
traits, such as leaf carbon isotope ratio (δ13C), gas
exchange rates, leaf thickness (Lth), and nutrient contents
(N, P). We describe the four strategies identified from all
measured traits by their overall plant size (small, medium,
large) and primary biomass allocation (roots, leaves,
stems). The direction and strength of all trait loadings on
the PC axes are described in Appendix S1: Table S2.

Growth–trait relationships across plant
classification schemes

Across strategies, growth correlated most strongly with
the first principal component axis (PC1) of growth
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analysis (R2 = 0.91, p < 0.0001, AIC = −90; Figure 1B),
corresponding to variations in LMF and SMF. The second
strongest predictor was PC1 for all 21 traits combined
(R2 = 0.83, p < 0.0001, AIC = −72; Figure 1K), driven
primarily by variation in LA and plant height (H). Growth
also positively correlated with PC1 of CSR (R2 = 0.49,
p < 0.0001, AIC = −39; Figure 1E), corresponding to vari-
ation in average LS. Growth did not correlate with PC1 of
LES (p = 0.72, AIC = −17; Figure 1H), corresponding to
variation in photosynthesis and SLA. Growth negatively
correlated with PC2 of LES (R2 = 0.43, p ≤ 0.0001, AIC =

−36; Figure 1I), driven by mass-based leaf N and P con-
tents. Growth also negatively correlated with PC2 of
all measured traits (R2 = 0.22, p = 0.006, AIC = −26;
Figure 1L), driven primarily by variation in leaf carbon iso-
tope ratios and LES traits (Appendix S1: Table S2). Growth
was not predicted by PC2 of growth analysis (RMFs, SLA)

or CSR (SLA, LDMC) (both p > 0.05, −20 < AIC < −19;
Figure 1C,F). All trait loadings can be found in
Appendix S1: Table S2, and all statistical reporting for
growth correlations are in Appendix S1: Table S3.

DISCUSSION

In this work, we bridge classic ecological theory with cur-
rent trait-based approaches to better predict whole-plant
growth from functional traits. We tested predictions that
faster growing plant species will (1) allocate more biomass
to aboveground tissues (based on growth analysis), (2) have
larger leaves with larger SLA and lower dry matter con-
tents (based on Grime’s CSR triangle), or (3) have “acquisi-
tive” leaf traits defined by larger leaf gas exchange rates,
SLA, and N and P contents (based on the LES) relative to

TAB L E 2 Linear associations between 21 plant traits and growth rate (GR) using both general linear models (GLMs) and phylogenetic

least-squares regression (PGLS) for 30 Asclepias species grown under common conditions.

Trait

Associations with GR

Phylogenetic signal

Sign

GLM PGLS

R 2 t p R 2 F p λ LR p

LA + 0.56 5.97 <0.0001 0.61 44.22 <0.0001 0.18 0.79 0.37

δ13C + 0.35 3.88 0.001 0.36 15.68 0.0005 0.7 4.61 0.03

Rarea n.s 0.02 0.84 0.41 0.01 0.18 0.67 <0.001 0.001 0.98

Rmass n.s 0.01 0.64 0.53 0.004 0.13 0.73 0.93 8.56 0.003

LDMC + 0.1 2.11 0.05 0.17 5.85 0.02 0.64 3.81 0.05

LMF + 0.14 2.09 0.04 0.01 0.22 0.64 0.92 6.21 0.01

Narea − 0.27 3.18 0.004 0.2 6.98 0.01 0.45 1.10 0.29

Nmass − 0.38 4.13 0.0003 0.5 28.45 <0.0001 0.97 11.10 0.001

Parea − 0.51 6.24 <0.0001 0.55 51.79 <0.0001 0.06 0.13 0.72

Pmass − 0.26 3.17 0.004 0.19 6.49 0.02 0.03 0.02 0.88

LS + 0.24 2.25 0.04 0.31 12.76 0.001 <0.001 0.0002 0.98

Lth n.s. 0.06 1.33 0.2 0.05 1.44 0.24 0.74 5.51 0.02

Aarea + 0.23 2.86 0.008 0.32 13.06 0.001 0.49 0.05 0.97

Amass + 0.03 0.96 0.34 0.19 6.75 0.01 0.7 1.61 0.2

H + 0.47 5.02 <0.0001 0.36 15.43 0.0005 0.99 16.98 <0.001

Clonality n.s 0.01 0.34 0.73 0.03 0.93 0.34 <0.001 0.001 0.98

RMF n.s 0.08 1.57 0.13 0.01 0.18 0.67 0.5 1.85 0.17

SM n.s 0.01 0.49 0.63 0.04 1.11 0.3 0.99 10.90 0.001

SLA n.s 0.001 0.15 0.88 0.01 0.002 0.96 <0.001 0.001 0.98

SRL n.s 0.05 1.17 0.25 0.06 1.83 0.19 <0.001 0.001 0.98

SMF + 0.36 4.01 0.0004 0.17 5.77 0.02 0.95 17.66 <0.001

Note: Data are from species means (all df = 29). “Sign” indicates the direction of the significant correlation (positive, +, or negative, −). Phylogenetic signal
using Pagel’s λ is shown for each trait, with p < 0.05 indicating significant phylogenetic signal. Bold font indicates significance at p < 0.05. Trait acronyms are
defined in Table 1.
Abbreviations: LDMC, leaf dry matter content; LMF, leaf mass fraction; LR, likelihood ratio; n.s, not significant; RMF, root mass fraction; SM, seed mass; SLA,
specific leaf area; SRL, specific root length; SMF, stem mass fraction.
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slower growing plants. The results supported predictions
of growth analysis and CSR, but not LES. Remarkably,
although two LES traits did have strong predictive power
(N per leaf mass and phosphorus per leaf area, contribut-
ing to multivariate correlations, Figure 1), these traits were
predictive in the opposite direction to that derived from
LES theory such that more N and P predicted less growth.
Overall, differences in GR were driven more by
whole-plant (e.g., leaf area, SMF) than individual leaf-level

traits (e.g., leaf thickness, SLA). Combining organ-specific
and whole-plant traits provided a more integrated view of
plant strategies that was better able to predict growth.

For decades, plant mass fractions have been success-
fully applied to estimate variation in GR, and our study is
no exception. Indeed, growth analysis traits together were
the strongest predictors of whole-plant growth across
this diverse set of 30 milkweed species (Figure 1B).
Although theoretically and empirically appealing, the

TAB L E 3 Whole-plant growth rate (GR, g day−1) ± SE and strategic classifications for 30 Asclepias species grown under common

conditions, in order of increasing GR.

Strategy

Species GR GA CSR LES All traits

17 A. longifolia 0.013 ± 0.003 Root SR Acq/cons Small, root

11 A. hirtella 0.014 ± 0.003 Root SR Acq/cons Small, root

6 A. cryptoceras 0.017 ± 0.001 Root SR Acq/cons Small, root

1 A. amplexicaulis 0.018 ± 0.001 Root CSR Acq/cons Small, root

22 A. solanoana 0.021 ± 0.002 Root CSR Acq/cons Small, root

30 A. viridis 0.024 ± 0.002 Leaf CR Acq/cons Medium, leaf

26 A. sullivantii 0.029 ± 0.008 Leaf CR Acq/cons Medium, leaf

3 A. asperula 0.032 ± 0.004 Root CSR Acq/cons Small, root

29 A. verticillata 0.040 ± 0.003 Stem S Acq/cons Medium, stem

4 A. brachystephana 0.045 ± 0.006 Leaf SR Acq/cons Medium, leaf

18 A. mexicana 0.045 ± 0.005 Stem S Acq/cons Medium, stem

14 A. latifolia 0.047 ± 0.010 Leaf CR Conservative Medium, leaf

21 A. pumila 0.048 ± 0.005 Leaf S Acquisitive Medium, stem

15 A. linaria 0.048 ± 0.004 Leaf S Acq/cons Medium, stem

2 A. arenaria 0.051 ± 0.008 Root SR Acq/cons Small, root

23 A. speciosa 0.053 ± 0.014 Leaf CR Conservative Medium, leaf

28 A. tuberosa 0.060 ± 0.010 Leaf S Acq/cons Medium, leaf

8 A. engelmanniana 0.060 ± 0.007 Root SR Conservative Medium, stem

16 A. linearis 0.064 ± 0.005 Stem SR Acquisitive Medium, stem

19 A. perennis 0.072 ± 0.005 Stem CR Conservative Large, leaf and stem

5 A. californica 0.075 ± 0.005 Leaf CR Conservative Medium, leaf

13 A. labriformis 0.076 ± 0.004 Leaf CSR Acq/cons Medium, leaf

10 A. fascicularis 0.082 ± 0.008 Stem SR Conservative Large, leaf and stem

9 A. eriocarpa 0.094 ± 0.005 Leaf CR Conservative Large, leaf and stem

24 A. subulata 0.098 ± 0.010 Stem S Acquisitive Medium, stem

25 A. subverticillata 0.101 ± 0.009 Stem SR Conservative Large, leaf and stem

27 A. syriaca 0.111 ± 0.012 Leaf CR Conservative Large, leaf and stem

12 A. incarnata ssp. incarnata 0.134 ± 0.015 Stem CR Conservative Large, leaf and stem

7 A. curassavica 0.136 ± 0.007 Stem CR Conservative Large, leaf and stem

20 A. incarnata ssp. pulchra 0.205 ± 0.016 Stem CR Conservative Large, leaf and stem

Note: Growth analysis (GA) strategies defined by species’ predominant biomass fraction (root, stem, leaf); CSR by competitive (C), stress tolerant (S),
ruderal (R), or their combination. Leaf economic spectrum (LES) strategies defined as resource acquisitive (acq) or conservative (cons). Strategies identified

from 21 measured traits are defined by relative plant size (small, medium, large) and predominant biomass fraction (root, stem, leaf).
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F I GURE 1 (Left) Biplots of principal component analysis (PCA) of 30 Asclepias species grouped by the defining traits of

three classic ecological theories: (A) growth analysis, (D) Grime’s competitive–stress tolerant–ruderal (CSR) triangle, (G) leaf
economics spectrum (LES), and (J) a combined suite of all 21 measured traits. Species groups are represented as convex based

on Ward’s agglomerative clustering defined by trait similarity. (Center) Associations between growth rate (GR, natural

log-transformed) and PC1 (B, E, H, K) and (right) between GR and PC2 (C, F, I, L). Lines of best fit are included when the slopes

were significantly different from zero (Appendix S1: Table S3). The trait variables with the highest eigenvector scores on PC1 and

PC2 are presented from left to right for each axis. Data are species means. Trait abbreviations are in Table 1. Species names are in

Table 3.
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major shortcoming of growth analysis is feasibility—it is
typically not practical to obtain the necessary RMF that is
critical for growth analysis.

Alternatively, the CSR triangle has been a classic pre-
dictor of plant strategic variation for decades, but quanti-
tative metrics were not developed until recently (Pierce
et al., 2016). Recent studies showed promising applications
of CSR defined by leaf traits to better describe functional
diversity (Dayrell et al., 2018) and species interactions
(Zanzottera et al., 2020) within (Astuti et al., 2018; Vasseur
et al., 2018) and across (Dayrell et al., 2018; Pierce et al.,
2016; Zanzottera et al., 2020) species. In this novel applica-
tion of CSR to predict whole-plant growth, we found strong
growth–trait relationships across milkweed species driven
primarily by variation in average LS with minimal contri-
butions from LDMC and SLA (Figure 1F,J). An advantage
of LS is that it can be measured on attached leaves and does
not require destructive sampling of leaf material, which is
essential in studies requiring repeated measures over time
or in vulnerable/at-risk plant populations where leaf mate-
rial should not be removed from focal plants (Davidson
et al., 2021).

LA and plant height are also traits that can be sam-
pled nondestructively. Here, variation in LA was by far
the strongest and most consistent individual predictor of
plant growth across all species individually (R2 = 0.60;
Table 2) and in multivariate plant strategies (associated
with PC1; Figure 1F,H; Appendix S1: Table S2). When all
21 traits were considered together, plant height was the
second-best predictor of growth (associated with PC1;
Figure 1F,H; Appendix S1: Table S2). Although aspects of
plant size such as leaf area and height may be expected
to correlate with GRs, this should not be assumed for all
species because there are cases where plant size does not
correlate with GR (e.g., succulence; Ogburn & Edwards,
2010). Indeed, in ourmultivariate analysis using all 21 traits,
we identified plant strategies with variable relationships
between leaf area, height, and GR. Specifically, two strate-
gies with similar growth and leaf area differed in height,
suggesting that leaf area may be most predictive for plants
that invest primarily in photosynthesizing leaf biomass,
while plant height may be most effective for plants
investing in more structural stem biomass. These results
are consistent with previously observed positive associa-
tions between ecosystem productivity and leaf area (Goud
et al., 2017; Litton et al., 2008) and height (Goud,
Touchette, et al., 2022; Westoby, 1998).

LA and height are not considered in growth analysis,
LES, or CSR theories; however, height is a key component
of plant size and has been used to differentiate among
plant functional diversity and ecological strategies at local
(Westoby, 1998) and global scales (Dìaz et al., 2015).
Importantly, LA and height can be remotely sensed, which

is particularly useful where it is not feasible to directly
measure traits for all individuals (e.g., forest canopies) or
for repeated measurements that require nondestructive
sampling (Davidson et al., 2021; Goud et al., 2017).

Leaf economics spectrum (LES)

The LES has attracted considerable attention and is often
turned to as the primary approach to understand plant func-
tional diversity (Dìaz et al., 2015). However, the work
presented here suggests that LES traits do not predict
within-clade differences in plant growth; resource-acquisitive
leaf traits were negatively associated with growth, and SLA
was not predictive of growth at the scales that we investi-
gated.Wenote that, although ourmultivariate analysis of five
out of six LES traits yielded strong predictive power for GR
(PC1 and PC2 combining to 60% of the variation, Figure 1),
the fact that these associationswere not in the expected direc-
tion and that these traits can be challenging to measure sug-
gest caution should be exercised in using the LES framework
to predict growth within clades. The best application of LES
traits to predict growth may be in comparing broadly diver-
gent plant groups (e.g., angiosperms vs. gymnosperms),
rather than being generalizable across all scales of biological
organization (Anderegg et al., 2018).

Species groups identified by LES traits did not adhere
to a linear spectrum of increasing leaf economics or nutri-
ent concentrations with increasing growth. Rather, each
multivariate grouping expressed a mixture of “acquisitive”
and “conservative” trait values. For example, some plants
with resource conservative leaves (e.g., small, thick leaves
with low nutrient content) grew considerably faster than
species with the opposite set of resource acquisitive traits
because these plants were taller and had larger overall leaf
area. Similarly, species with the largest GRs had lower
foliar N and P and similar rates of leaf gas exchange than
other, less productive species. Lower leaf N concentra-
tions in fast-growing species may be reflective of nutrient
limitations imposed by the experimental pot size.
Although we took precautions to avoid nutrient limita-
tions that could affect growth, pot studies will always
carry the possibility that the growing environment itself
influenced plant growth. Current thinking, however, sug-
gests that, although pot size limitations can influence
growth and photosynthetic rates, other anatomical and
physiological traits are less affected (e.g., N content, bio-
mass allocation) and that potentially fast-growing species still
grow faster than inherently slow-growing ones (Lambers &
Poorter, 1992). Moreover, the values we observed for leaf
gas exchange and nutrient contents were in the range
reported for these species in other controlled studies
(Agrawal et al., 2009; Agrawal & Fishbein, 2006) and
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under field conditions (Agrawal et al., 2008; Mitchell
et al., 2020).

In contrast to predictions, leaf gas exchange rates
(photosynthesis, respiration) were not strong predictors
of growth (Figure 1, Appendix S1: Table 2). When all
21 traits were considered, the four plant strategies identi-
fied had similar average photosynthetic and respiration
rates, suggesting that the area available for photosynthe-
sis (i.e., LA, LS) is more important for growth than
instantaneous gas exchange rates in milkweeds. As a
complement to instantaneous gas exchange rates, we
measured leaf carbon isotope ratios (δ13C). Contrary to
expectations, the fastest growing plants were the most
enriched in δ13C, which is typically associated with
slower rates of leaf metabolism (Ellsworth et al., 2017;
Farquhar et al., 1989; Goud et al., 2019). However, fast
growth in combination with leaves relatively enriched in
δ13C have been observed for other herbaceous plants
(e.g., Asteraceae) when growth is achieved through
adjusting biomass allocation rather than variation in
individual leaf productivity (Goud et al., 2021). In support
of this idea, milkweed species achieved faster growth by
producing numerous large leaves and tall stems rather
than adjusting leaf physiological performance. Together,
results for instantaneous leaf-level gas exchange rates
and δ13C suggest that the influence of leaf metabolism is
often overwhelmed by differences in total plant leaf area
and, therefore, does not consistently scale to whole-plant
growth (Agrawal et al., 2009; Goud et al., 2021).

Both leaf N and P are predicted to positively correlate
with growth due to the functional need for N and P in
photosynthesis (Walker et al., 2014; Wright et al., 2004).
However, nonlinear or insignificant relationships are fre-
quently reported (Feng & Dietze, 2013; Goud, Touchette,
et al., 2022; Midgley et al., 2004). Here, growth was nega-
tively associated with leaf N and P (Figure 1G–I;
Table 2), which has been observed for other herbaceous
species grown under common conditions (Poorter
et al., 1990). Interestingly, this negative relationship in
milkweeds was driven by species from arid environments
(e.g., Asclepias brachystephana, Asclepias mexicana) with
higher N and P content yet lower GRs. Higher leaf N
without an accompanying increase in photosynthesis and
growth is common for many plants from dry or high irra-
diance environments that retain leaf N and P (Field
et al., 1983; Maire et al., 2015; Wright et al., 2001) and
can operate at a higher leaf N, with the high leaf N serv-
ing to economize on water use during photosynthesis
(Schrodt et al., 2015; Wright et al., 2003). Further, not all
N is used for photosynthesis, and recent estimates indi-
cate that herbaceous plants may invest less than 50% of
their leaf N to photosynthesis, with the remaining N
invested in compounds that support structural and

defensive functions (Ghimire et al., 2017). Thus, positive
linear relationships between leaf N, P, and growth are
clearly not universal.

Synthesis and speculation

Although SLA is a component of all three theories and one
of the most commonly reported plant functional traits,
growth did not correlate with SLA across species or strate-
gies. SLA represents the investment in leaf area per unit leaf
mass, reflecting a potential trade-off between productivity
(i.e., area available for carbon capture) and structural
investment (i.e., mass of proteins, carbohydrates, and cell
walls). Inconsistent or insignificant correlations between
SLA and growth or growth proxies (e.g., leaf gas exchange)
are commonly reported (Midgley et al., 2004; Poorter &
Evans, 1998; Reich et al., 1994). Thus, although SLA may
correlate with growth across broadly divergent species,
inconsistencies at finer taxonomic scales are likely driven
by covariation with other morphological traits (e.g., LDMC,
leaf thickness) and environmental conditions that are
largely independent of GR variation (Edwards et al., 2014).

There is increasing interest in whether associations
between growth and functional traits generally apply across
scales (Walker et al., 2017). Particularly for LES traits, an
emerging literature has considered cross-scale relationships.
At large taxonomic (e.g., from Arabidopsis to Sequoia) and
spatial (e.g., cross-continental ecosystems) scales, patterns
of LES trait covariation appear strong and relatively con-
sistent (Dìaz et al., 2015; Enquist et al., 2007; Wright
et al., 2005). However, at finer scales (e.g., within-genus,
within-habitat), patterns are far less consistent and some-
times contrary to theory (Agrawal, 2020; Anderegg et al.,
2018; Blonder et al., 2015; Grady et al., 2013; Mason &
Donovan, 2015), as we also found here for milkweeds.
This is not necessarily surprising since trait relationships
are often only predictive at the largest scales, where both
the range of expression and fundamental biological attri-
butes are revealed (Agrawal, 2020; Anderegg et al., 2018;
Enquist et al., 1999, 2007).

In this study, size-related morphological traits consis-
tently predicted whole-plant growth, while leaf economic
and metabolic traits did not. Although we found specific
traits to be predictive of growth, we caution against using
single traits because their relevance as a consistent pre-
dictor of growth is likely to be highly clade-specific. For
instance, Asclepias are herbaceous perennials; would we
expect similar growth–trait relationships for annual
plants, trees, or ferns? If plants adhere to a globally con-
sistent spectrum of form and function defined by organ
size and leaf economics, as put forth by Dìaz et al. (2015),
then perhaps we would expect consistency across clades.
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However, there is ample evidence to suggest that trait
coordination is taxon-dependent (Anderegg et al., 2018;
Garnier, 1991; Ji et al., 2020; Lambers & Poorter, 1992).
Additionally, Asclepias as a clade is mostly adapted to liv-
ing in open habitats (Woodson Jr., 1954), and we expect
that resource allocation will differ depending on general
niche adaptations (e.g., sun vs. shade) and plant life his-
tory, notably annual versus perennial or woody versus
herbaceous growth form. Still, the generality of plant size
and CSR-related traits (average LS, LDMC, and SLA)
appear promising across scales. On the one hand, the
exclusion of root and wood traits represents a shortcom-
ing; however, these leaf traits are applicable across vascu-
lar and nonvascular plants alike. Practically speaking,
these traits can be measured relatively quickly and inex-
pensively, facilitating use from both databases and
large-scale field sampling.

The species we studied were distributed along multi-
variate axes defined by traits, including LES, irrespective
of variation in GR. In other words, plant size may define
growth differences, while economics and metabolism
may better differentiate between variation in plant ecol-
ogy (i.e., niche preferences) and life history such as phe-
nology (Goud et al., 2021). This finding is consistent with
global analyses that found diversity in plant form and
function to fall along two major axes of variation related
to plant size and leaf economics (Dìaz et al., 2015).
Indeed, not all ecological strategies are directly related to
GR. For example, strategies largely defined by secondary
metabolism, such as pollination and defense syndromes,
focus on traits that often show little direct connection
with GR (e.g., flower color, toxic secondary compounds).
Therefore, although some traits, and LES traits in partic-
ular, may not predict variation in growth as expected,
they do capture other important axes of plant functional
diversity (Agrawal & Fishbein, 2006). Evolutionarily con-
served traits within clades are an important driver of dif-
ferences that promote biodiversity. Ultimately the extent
of clade specificity in which traits or suites of traits pre-
dict growth will be highly revealing, not only in terms of
scaling generalities but also in terms of clade-specific
traits or strategies that modify expectations.
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