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Abstract 

Many well-known fracture criteria rely on a mode-independent parameter measured under pure 

mode 𝐼 loading conditions, called the critical distance, which is traditionally considered a material 

property representing the size of the fracture processing zone. Recent studies have unveiled the 

potential for significantly increased accuracy in fracture criteria by utilizing a mode-dependent 

critical distance in calculations. In response to this revelation, the concept of effective critical 

distance (ECD) was recently introduced and successfully examined in cracked components under 

in-plane and out-of-plane loading conditions, both theoretically and experimentally. In this work, 

for the first time, the concept of ECD is introduced for V- and U-shaped notches to form a new 

three-dimensional notch fracture criterion based on the maximum principal strain (MPSN). The 

fracture angle and the onset of fracture predicted by the proposed criterion are theoretically 

compared to other existing criteria, and experimentally, to the test data presented in the literature. 

It is shown that the developed criterion can more accurately predict the mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 

fracture behavior of V- and U-notched components which accentuates the profound significance 

of embracing the ECD concept in constructing three-dimensional fracture criteria. 
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1. Introduction 

Unlike cracks which are a sign of damage in the structures, notches are an important part of 

structural design because they are used for various purposes such as joining two parts, transferring 

load from one part to another, etc. Since stress concentration is high at the tip of a notch, it is 

expected that the crack starts propagating at this location and subsequently, causes fracture in the 

structure [1, 2]. In most applications, notches are usually subjected to mixed mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 loading 

conditions which is a combination of three basic modes of deformation known as mode 𝐼 

(opening), mode 𝐼𝐼 (in-plane shear), and mode 𝐼𝐼𝐼 (out-of-plane shear) loadings [3]. To prevent 

catastrophic incidents from happening, foreseeing the fracture behavior in structures is of utmost 

importance and has been the subject of many studies in the past decades. For instance, based on 

the ductility of the material which can affect the plastic zone size at the tip of the stress raisers [4-

12], several fracture criteria have been proposed by researchers to predict when and how crack 

nucleation and ultimately fracture happens. Brittle mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 fracture criteria are 

mathematical expressions that typically measure an energy/strain/stress parameter at a certain 

distance from the crack tip, called critical distance (rc), and the fracture is anticipated when the 

measured parameter at 𝑟 = 𝑟𝑐 reaches its critical value [13-39]. Several studies have been 

conducted over the years to increase the accuracy of the fracture criteria and/or make them 

applicable to both in-plane and out-of-plane loading conditions [3, 40]. In what follows, some of 

them are addressed briefly. 

Two famous stress-based fracture criteria are maximum tangential stress (MTS) [41] and 

maximum principal stress (MPS) for in-plane and out-of-plane fracture modes, respectively [42, 



43]. Point-stress (PS) criterion [44] is another stress-based fracture criterion which is an extension 

of the MTS criterion for investigating mixed-mode brittle fracture in cracked components. Since 

stress-based fracture criteria are relatively simpler than the other two criteria categories (i.e., 

energy- and strain-based), one approach to increase the accuracy is to add the effect of higher-

order terms (e.g., the T-stress) to the fracture model [35-40]. 

Energy-based criteria were initially limited to in-plane loading modes and among the early 

proposed criteria, one can refer to the energy release rate (ERR) [13] and the strain energy density 

(SED) [14] criteria. According to the mentioned criteria, crack propagation is expected in the 

direction where ERR reaches its maximum value and SED becomes minimum, respectively. Later, 

they have been extended to be used for analyzing out-of-plane fracture modes in cracked and 

notched components as well [15-20]. 

Even though strain-based criteria have never been as popular as the other two fracture criteria 

among the researchers, the well-known maximum tangential strain criterion (MTSN) [23], suitable 

for in-plane loading modes, falls into this category which its more precise version later was 

developed by adding the effects of the first nonsingular tangential strain term (i.e., T–strain) to it 

[22]. The precision of the extended criterion, named EMTSN, has been validated by conducting 

numerous tests with various brittle and quasi-brittle materials and geometries. Ultimately, it was 

shown that the EMTSN criterion is noticeably more accurate than many traditional criteria in 

predicting the onset of fracture and the fracture angle [24-29]. The competence of strain-based 

criteria in evaluating fracture behavior in specimens subjected to in-plane and out-of-plane loading 

conditions is not fully understood yet. Nonetheless, the development of appropriate fixtures for 

performing accurate three-dimensional fracture tests has drawn researchers’ attention to pursuing 

their research using different approaches [45- 48]. 



Due to the simpler forms of in-plane fracture models, the number of criteria developed under these 

conditions is far higher than the out-of-plane ones; some of the latter can be found here [17,18,49-

52]. This shows that complexity has always been a nuisance to researchers, and they have always 

tried to somehow circumvent it in developing their fracture theories and at the same time achieve 

more accuracy in their predictions. For example, as noted before, adding higher-order terms to the 

solution is one approach but not only it increases the computational cost, but also may cause losing 

the physical meaning of the problem hence, even a reasonable number of added higher-order terms 

are a matter of dispute among the researchers. The situation becomes even more dramatic when it 

comes to dealing with more complex material systems such as orthotropic or bi-materials [36, 53-

55]. Other recent efforts in this field include development of computational approaches to 

understand mixed-mode fracture behavior in notched (and cracked components) under mixed-

mode loading conditions. Examples are those developed using Peridynamics [56 – 60], phase-field 

[61 – 63], and finite element [64, 65] methods. While numerous works exist on computational 

modeling of fracture under three-dimensional loading conditions, a considerable portion lacks 

computational efficiency and is limited to in-plane loading conditions. In addition, alongside these 

computational approaches, theoretical analysis in this field retains a top-tier significance to 

advance the field by developing fundamental principles, concepts, and frameworks, thereby 

fostering a deeper understanding of underlying mechanisms and relationships in three-dimensional 

fracture mechanics of notched components. 

As mentioned earlier, the concept of critical distance plays an important role in developing various 

fracture criteria. Interestingly, even though the length of the critical distance significantly varies 

with the mode mixity, conventionally, it has been considered a mode-independent parameter 

measured only under pure mode I loading conditions and reckoned as a material property. 



Traditionally, the size of the critical distance can be formulated as 𝑟𝑐 =
𝛼

𝜋
(

𝐾𝐼𝑐

𝜎𝑡
)

2

where 𝜎𝑡 is the 

tensile strength of the material, 𝐾𝐼𝑐 is the mode I fracture toughness, and the coefficient 𝛼 can 

obtain any value from 0.5 to 2 depending on the chosen approach (e.g., line methods, point 

methods, etc.) [66-68]. 

Recent studies have shown [55, 69, 70] that by considering a mode-dependent critical distance 

(i.e., the effective critical distance (ECD)) in the fracture criterion, more precision can be achieved 

while maintaining physical crack tip characteristics. So far, the ECD has been combined with the 

maximum principal strain (MPSN) and the maximum tangential strain energy density (MTSED) 

criteria to construct two novel fracture criteria, namely, ECD-SN and ECD-MTSED [55, 69]. In 

both cases, which are for cracks only, the ECD proved to be tremendously effective in increasing 

the accuracy and relatively maintaining the simplicity of the solution [55, 69, 70]. However, the 

ECD concept has not yet been applied to notched components, a gap which will be addressed in 

the current investigation. 

In this study, for the first time, the concept of the ECD is applied to the notched components (V- 

and U-shaped notches) to construct a novel three-dimensional fracture criterion capable of 

predicting fracture behavior under mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 loading conditions. Then, the results 

obtained from this approach are compared to those acquired from existing notch fracture criteria 

including mean stress criterion (MS), PS, and MTS [71- 74] criteria as well as the experimental 

data reported in the literature. Finally, the accuracy of each approach in predicting the experimental 

results is studied and discussed. The following sections consist of the theoretical framework 

(Section 2), which includes some general remarks about elastic stress fields around a notch tip 

followed by the development of the theory, and, results and discussion (Section 3), where the 



developed theoretical framework will be examined by the experimental data. Finally, the 

conclusion of this research is described in Section 4. 

2. Theoretical framework 

This section is dedicated to the theoretical part of the current study. First, the equations of the 

elastic stress fields near the tip of U- and V-notches are expressed in Section 2.1. These equations 

are used later in Section 2.2. to obtain the maximum principal strain around the notch tip under 

mixed-mode I/II/III conditions. Finally, a three-dimensional strain-based fracture criterion is 

developed in Section 2.2 for notched components using the concept of effective critical distances. 

2.1. Elastic stress fields for U- and V-notches  

The solution for the elastic stress fields in the neighborhood of sharp V- shaped notches was first 

proposed by Williams [75]. Later, a solution for U- and round-tip V-shaped notches under in-plane 

and out-of-plane loading conditions was developed by Filippi et al. [76] and Zappalorto et al. [77], 

respectively. According to [76, 77], the linear-elastic stress fields around a blunt V-notch under 

mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 loading can be written as 

{

𝜎𝜃𝜃
𝜎𝑟𝑟

𝜏𝑟𝜃

} =
𝐾𝐼rλ1−1

√2π
[{

𝑋θθ(𝜃)
𝑋𝑟𝑟(𝜃)

𝑋𝑟𝜃(𝜃)
}

(𝐼)

+ (
𝑟

𝑟0
)

µ1−𝜆1
{

𝑌θθ(𝜃)
𝑌𝑟𝑟(𝜃)

𝑌𝑟𝜃(𝜃)
}

(𝐼)

] +
𝐾𝐼𝐼rλ2−1

√2π
[{

𝑋θθ(𝜃)
𝑋𝑟𝑟(𝜃)

𝑋𝑟𝜃(𝜃)
}

(𝐼𝐼)

+ (
𝑟

𝑟0
)

µ2−𝜆2
{

𝑌θθ(𝜃)
𝑌𝑟𝑟(𝜃)

𝑌𝑟𝜃(𝜃)
}

(𝐼𝐼)

],       (1) 

 

𝜏𝑟𝑧 =
𝐾𝐼𝐼𝐼rλ3−1

√2π
[sin(λ3𝜃) + (

𝑟

𝑟3
)

µ3−𝜆3

sin(µ
3
𝜃)],                                     (2) 

 

𝜏𝜃𝑧 =
𝐾𝐼𝐼𝐼rλ3−1

√2π
[cos(λ3𝜃) + (

𝑟

𝑟3
)

µ3−𝜆3

cos(µ
3

𝜃)],                             (3) 

𝜎𝑧𝑧 = {
0                          plane stress

𝜈(𝜎𝑟𝑟 + 𝜎𝜃𝜃)     plane strain 
,                (4) 

where 𝐾𝐼, 𝐾𝐼𝐼, and 𝐾𝐼𝐼𝐼 are modes 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 notch stress intensity factors (NSIFs), respectively 

(note that the dimension of 𝐾 is not always MPa. √m). The angular functions 𝑋𝑖𝑗(𝜃) and 𝑌𝑖𝑗(𝜃) 



are given in Appendix A and 𝜇𝑖 (𝑖 ≡ 1, 2, 3) are reported in [76] as functions of 𝛼 (half of the 

notch opening angle, see Fig. 1). Needless to say, when notch opening angle is zero, the blunt V-

notch becomes a U-notch. The eigenvalues 𝜆𝑖 (𝑖 ≡ 1, 2) can be obtained by solving two 

characteristic equations: 

sin(λ1𝑞𝜋) + λ1 sin(𝑞𝜋) = 0, for mode 𝐼,            (5a) 

sin(λ2𝑞𝜋) − λ2 sin(𝑞𝜋) = 0, for mode 𝐼𝐼,             (5b) 

and 𝜆3 can be found as: 

𝜆3 =
𝜋

2(𝜋−𝛼)
=

1

𝑞
 .                 (6) 

The parameter 𝑟0 can be obtained as shown in Fig. 1 depending on notch tip radius 𝜌, and 𝑟3 can 

be estimated as 𝑟3 =̃ (1 − 𝜇3) 𝜌 [77]. 

 

Fig. 1. Schematic of a round-tip V-notch with associated polar coordinates and stresses. 

2.2. Development of ECD-SN criterion for notches: N-ECD-SN criterion 



The traditional version of the maximum principal strain criterion (MPSN) postulates that crack 

start propagating when the maximum principal strain (𝜀𝑝) reaches to its critical value (𝜀𝑐) at a fixed 

(i.e., mode independent) critical distance of 𝑟𝑐 from the crack front. This criterion has been 

modified recently in [55] by introducing a mode-dependent critical distance (effective critical 

distance: ECD) for cracks exposed to mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 displacement modes. Following the 

same approach for notches, we have 

𝜕𝜀𝑝

𝜕𝜃
|

𝑟=𝑟𝑐,   𝜃=𝜃0

= 0 , 
𝜕2𝜀𝑝

𝜕𝜃2 |
𝑟=𝑟𝑐,   𝜃=𝜃0

< 0,              (7) 

𝜀𝑝|
𝑟=𝑟𝑐,   𝜃=𝜃0

= 𝜀𝑐 ,                 (8) 

where 𝜃0 is the in-plane (𝑟 −  𝜃) kinking angle. Having known that the principal strains occur in 

𝜃 − 𝑧 plane [55], 𝜀𝑝 can be expressed by 

𝜀𝑝 =
𝜀𝜃𝜃+𝜀𝑧𝑧

2
+

1

2
√(𝜀𝜃𝜃 − 𝜀𝑧𝑧)2 + 4𝜀𝜃𝑧

2  ,            (9) 

considering the plane strain conditions (𝜀𝑧𝑧 = 0, 𝜎𝑧𝑧 = 𝜈(𝜎𝑟𝑟 + 𝜎𝜃𝜃)), we have 

𝜀𝑝 =
𝜀𝜃𝜃

2
+

1

2
√𝜀𝜃𝜃

2 + 4𝜀𝜃𝑧
2   ,              (10) 

where 

𝜀𝜃𝜃 =
1+𝜈

𝐸
[(1 − 𝜈)𝜎𝜃𝜃 − 𝜈𝜎𝑟𝑟],             (11) 

𝜀𝜃𝑧 =
1+𝜈

𝐸
𝜏𝜃𝑧 .                           (12) 

Assuming that the critical strain is independent of notch geometry (i.e., 𝜀𝑐 is a material property), 

we can express 𝜀𝑐 as [55]: 



𝜀𝑐 = (1 + 𝜈)(1 − 2𝜈)
𝜎𝑡

𝐸
 ,                                                                                                            (13) 

where 𝐸 and 𝜈 represent the Young’s modulus and the Poisson’s ratio of the material, respectively. 

Substituting Eqs. (1) and (3) into Eqs. (11) and (12), and setting 𝑝𝑖 = 1 − 𝜆𝑖 and 𝑚𝑖 = 𝜇𝑖 − 𝜆𝑖, 

yields: 

𝜀𝜃𝜃 =
1−𝜈2

𝐸√2π
[

𝐾𝐼

𝑟𝑝1
(𝑋𝜃𝜃

𝐼 (𝜃) +
r𝑚1

r0
𝑚1

𝑌𝜃𝜃
𝐼 (𝜃)) +

𝐾𝐼𝐼

𝑟𝑝2
(𝑋𝜃𝜃

𝐼𝐼 (𝜃) +
r𝑚2

r0
𝑚2

𝑌𝜃𝜃
𝐼𝐼 (𝜃))] −

𝜐(1+𝜈)

𝐸√2π
[

𝐾𝐼

𝑟𝑝1
(𝑋𝑟𝑟

𝐼 (𝜃) +

r𝑚1

r0
𝑚1

𝑌𝑟𝑟
𝐼 (𝜃)) +

𝐾𝐼𝐼

𝑟𝑝2
(𝑋𝑟𝑟

𝐼𝐼 (𝜃) +
r𝑚2

r0
𝑚2

𝑌𝑟𝑟
𝐼𝐼(𝜃))],            (14) 

𝜀𝜃𝑧 =
𝐾𝐼𝐼𝐼(1+𝜈)

𝐸√2π
[𝑟−𝑝3 cos(𝜆3𝜃) +

𝑟𝑚3−𝑝3

𝑟0
𝑚3 cos (𝜇3𝜃)].           (15) 

Considering an effective critical distance of 𝑟𝑐,𝑒 (instead of the traditional constant 𝑟𝑐 that is 

measured under pure mode 𝐼 loading conditions) the onset of fracture should satisfy the following 

conditions: 

𝜀𝑝(𝑟𝑐,𝑒 , 𝜃0) =
𝜀𝜃𝜃

2
+

1

2
√𝜀𝜃𝜃

2 + 4𝜀𝜃𝑧
2 |

𝑟=𝑟𝑐,𝑒

𝜃=𝜃0

=
(1+𝜈)(1−2𝜈)

𝐸
𝜎𝑡 .          (16) 

For a given notch configuration (i.e., ρ, α), the effective critical distance, 𝑟𝑐,𝑒, can be expressed 

by a general function as: 

𝑟𝑐,𝑒 = ∏(𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼 , 𝐾𝐼𝑐 , 𝐾𝐼𝐼𝑐, 𝐾𝐼𝐼𝐼𝑐, 𝜎𝑡 , 𝜈, 𝜃0) .               (17) 

While an explicit closed-form solution may not be attainable to describe the function П, the 

expression for pure modes, shown in Fig. 2, can be obtained as follows: 



 

Fig. 2. Schematic of different modes of fracture near the tip of a blunt V-notch. 

 

A. Considering pure mode 𝐼 conditions (i.e., 𝐾𝐼𝐼 = 𝐾𝐼𝐼𝐼 = 𝜃0 = 0, 𝑟𝑐,𝑒 = 𝑟𝑐,𝐼): 

𝜀𝑝(𝑟𝑐,𝑒 , 𝜃0 = 0) = 𝜀𝜃𝜃(𝑟𝑐,𝐼 , 𝜃0 = 0) =
𝐾𝐼𝑐

𝐸√2π
[

(1−𝜈2)

𝑟𝑝1
(𝑋𝜃𝜃

𝐼 (0) +
r𝑚1

r0
𝑚1

𝑌𝜃𝜃
𝐼 (0)) −

𝜐(1+𝜈)

𝑟𝑝1
(𝑋𝑟𝑟

𝐼 (0) +

r𝑚1

r0
𝑚1

𝑌𝑟𝑟
𝐼 (0))]|

𝑟=𝑟𝑐,𝐼

,               (18) 

The Eq. (18) can be rewritten as: 

𝜀𝑝(𝑟𝑐,𝐼 , 0) =
𝐾𝐼𝑐

𝐸
(𝐴𝐼𝑟𝑐,𝐼

−𝑝1 + 𝐵𝐼𝑟𝑐,𝐼
𝑚1−𝑝1) = 𝜀𝑐 ,            (19) 

where, 

𝐴𝐼 =
(1−𝜈2)𝑋𝜃𝜃

𝐼 (0)−𝜈(1+𝜈)𝑋𝑟𝑟
𝐼 (0)

√2π
  ,             (20) 

𝐵𝐼 =
(1−𝜈2)𝑌𝜃𝜃

𝐼 (0)−𝜈(1+𝜈)𝑌𝑟𝑟
𝐼 (0)

𝑟0
𝑚1√2π

 .             (21) 



It is interesting to mention that for the special case of a U-notch (i.e., 𝛼 = 0), we get 𝜆1 = 0.5, 

𝜇1 = −0.5, and thus 𝑝1 = 0.5 and 𝑚1 = −1. Therefore, the Eq. (19) can be expressed in a simple 

form of: 

𝐴𝐼𝑟𝑐,𝐼
−0.5 + 𝐵𝐼𝑟𝑐,𝐼

−1.5 = (1 + 𝜈)(1 − 2𝜈)
𝜎𝑡

𝐾𝐼𝑐
 .                                                (22) 

B. Considering pure mode 𝐼𝐼 conditions (i.e., 𝐾𝐼 = 𝐾𝐼𝐼𝐼 = 0, 𝜃0 = 𝜃𝐼𝐼 ≠ 0, 𝑟𝑐,𝑒 = 𝑟𝑐,𝐼𝐼): 

𝜀𝑝(𝑟𝑐,𝐼𝐼 , 𝜃0) = 𝜀𝜃𝜃(𝑟𝑐,𝐼𝐼, 𝜃0) =
𝐾𝐼𝐼𝑐

𝐸
(𝐴𝐼𝐼(𝜃𝐼𝐼)𝑟𝑐,𝐼𝐼

−𝑝2 + 𝐵𝐼𝐼(𝜃𝐼𝐼)𝑟𝑐,𝐼𝐼
𝑚2−𝑝2) = 𝜀𝑐 ,            (23) 

where, 𝐴𝐼𝐼(𝜃𝐼𝐼) and 𝐵𝐼𝐼(𝜃𝐼𝐼) can be expressed as: 

𝐴𝐼𝐼(𝜃𝐼𝐼) =
(1−𝜈2)𝑋𝜃𝜃

𝐼𝐼 (𝜃𝐼𝐼)−𝜈(1+𝜈)𝑋𝑟𝑟
𝐼𝐼 (𝜃𝐼𝐼)

√2π
 ,           (24) 

𝐵𝐼𝐼(𝜃𝐼𝐼) =
(1−𝜈2)𝑌𝜃𝜃

𝐼𝐼 (𝜃𝐼𝐼)−𝜈(1+𝜈)𝑌𝑟𝑟
𝐼𝐼(𝜃𝐼𝐼)

𝑟0
𝑚2√2π

 .           (25) 

However, in Eq. (23), both 𝜃𝐼𝐼 and 𝑟𝑐,𝐼𝐼 are unknown. To find both unknown parameters, an 

additional equation is required. The second equation can be formed by satisfying Eq. (7), as: 

𝜕𝜀𝑝

𝜕𝜃
|𝑟=𝑟𝑐,𝐼𝐼

𝜃=𝜃𝐼𝐼

= 𝑟𝑐,𝐼𝐼
−𝑝2 𝜕𝐴𝐼𝐼(𝜃)

𝜕𝜃
+ 𝑟𝑐,𝐼𝐼

𝑚2−𝑝2 𝜕𝐵𝐼𝐼(𝜃)

𝜕𝜃
|

𝜃=𝜃𝐼𝐼

= 0 .          (26) 

Now, by solving Eqs. (23) and (26) simultaneously using the proper approach (e.g., Newton-

Raphson method) both 𝜃𝐼𝐼 and 𝑟𝑐,𝐼𝐼 can be found. 

Equations (23) and (26) can be rewritten for U-notches by putting 𝜆2 = 0.5 and 𝜇2 = −0.5. That 

is: 

{
𝐴𝐼𝐼(𝜃𝐼𝐼)𝑟𝑐,𝐼𝐼

−0.5 + 𝐵𝐼𝐼𝑟𝑐,𝐼𝐼
−1.5 = (1 + 𝜈)(1 − 2𝜈)

𝜎𝑡

𝐾𝐼𝑐
  ,                      

𝑟𝑐,𝐼𝐼
−0.5 𝜕𝐴𝐼𝐼(𝜃𝐼𝐼)

𝜕𝜃𝐼𝐼
+ 𝑟𝑐,𝐼𝐼

−1.5 𝜕𝐵𝐼𝐼(𝜃𝐼𝐼)

𝜕𝜃𝐼𝐼
= 0                     ⟹ 𝜃𝐼𝐼 , 𝑟𝑐,𝐼𝐼       

                                                (27) 



C. For pure mode 𝐼𝐼𝐼 conditions (i.e., 𝐾𝐼 = 𝐾𝐼𝐼 = 𝜃0 = 0, 𝑟𝑐,𝑒 = 𝑟𝑐,𝐼𝐼𝐼) 

𝜀𝑝(𝑟𝑐,𝐼𝐼𝐼, 0) = 𝜀𝜃𝑧 =
(1+𝜈)

𝐸

𝐾𝐼𝐼𝐼𝑐𝑟𝑐,𝐼𝐼𝐼
−𝑝3

√2π
[1 + (

𝑟𝑐,𝐼𝐼𝐼

𝑟3
)𝑚3] = 𝜀𝑐 ,          (28) 

substituting Eq. (13) into Eq. (28), gives 

𝑟𝑐,𝐼𝐼𝐼
−𝑝3 +

𝑟𝑐,𝐼𝐼𝐼
𝑚3−𝑝3

𝑟3
𝑚3 =

(1−2𝜈)√2π

𝐾𝐼𝐼𝐼𝑐
𝜎𝑡 .             (29) 

For a U-notch, 𝜆3 = 0.5, 𝜇3 = 0.41, 𝑝3 = 0.5, and 𝑚3 = −0.09, thus we have: 

𝑟𝑐,𝐼𝐼𝐼
−0.5 + 𝑟3

0.09(𝑟𝑐,𝐼𝐼𝐼
−0.59) =

(1−2𝜈)√2π

𝐾𝐼𝐼𝐼𝑐
𝜎𝑡 .            (30) 

The twisting angle 𝜑0 (i.e., out-of-plane fracture angle) under mixed-mode conditions (any 𝜃0) 

can be obtained by [50]: 

𝜑0 =
1

2
tan−1 [

2𝜀𝜃𝑧

𝜀𝜃𝜃
]|

𝜃=𝜃0

=
1

2
tan−1 [

2𝜏𝜃𝑧

(1−𝜈)𝜎𝜃𝜃−𝜈𝜎𝑟𝑟
]|

𝜃=𝜃0

.          (31) 

Ultimately, according to [55, 69], the effective critical distance 𝑟𝑐,𝑒 under mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 

loading conditions can be defined by (see Appendix A in [69] for details) 

𝑟𝑐,𝑒 = √(𝛽𝐼𝑟𝑐,𝐼)
2

+ (𝛽𝐼𝐼𝑟𝑐,𝐼𝐼)
2

+ (𝛽𝐼𝐼𝐼𝑟𝑐,𝐼𝐼𝐼)
2
 ,           (32) 

where 

𝛽𝑗 =
√𝜔𝑗

√𝜔𝐼+𝜔𝐼𝐼+𝜔𝐼𝐼𝐼
  ,  𝜔𝑗 =

𝐾𝑗

𝐾𝑗𝑐
 , 𝑗 ≡ 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 .           (33) 

By substituting the solutions of 𝑟𝑐,𝑖 (𝑖 ≡ 𝐼, 𝐼𝐼, 𝐼𝐼𝐼) for notches from Eqs. (19), (23), (26), and (28) 

into Eq. (32), 𝑟𝑐,𝑒 can be obtained under the given mixed-mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 conditions. Thus, the onset 



of mixed mode 𝐼/𝐼𝐼/𝐼𝐼𝐼 fracture can be computed by Eq. (16) using 𝑟𝑐,𝑒 calculated in Eq. (30), 

where the required in-plane fracture angle 𝜃0 is found by 

𝜕

𝜕𝜃
[𝜀𝜃𝜃 + √𝜀𝜃𝜃

2 + 4𝜀𝜃𝑧
2 ]|

𝑟=𝑟𝑐,𝑒

𝜃=𝜃0

= 0  ⟶ 𝜃0    .                       (34) 

Substituting the computed kinking angle 𝜃0 from Eq. (34) into Eq. (31) provides us with the 

corresponding out-of-plane fracture angle 𝜑0. 

3. Results and discussion 

In this section, the fracture toughness and the fracture angle of U- and V- notches obtained from 

the proposed criterion are theoretically compared to the data acquired from various well-known 

fracture criteria (e.g., MTS, MS, PS, etc.), and experimentally, to test and predict the data reported 

in the literature.  

To this end, normalized mode 𝐼𝐼 (i.e., 𝑝𝑐) and mode 𝐼𝐼𝐼 (i.e., 𝑞𝑐) fracture toughness parameters are 

defined in Eq. (35). Also, a traditional processing zone size for U- and V-notches (i.e., 𝑟𝑐,𝑣) is 

presented in Eq. (35a).  

𝑟𝑐,𝑣 = 𝑟0 +
1

2𝜋
(

𝐾𝐼𝑐

𝜎𝑡
)

2

, 
                                                                 (35a) 

𝑝𝑐 = (
𝐾𝐼𝐼𝑐

𝐾𝐼𝑐
)𝑟𝑐,𝑣

𝜆2−𝜆1,                                                                  (35b) 

𝑞𝑐 = (
𝐾𝐼𝐼𝐼𝑐

𝐾𝐼𝑐
) 𝑟𝑐,𝑣

𝜆3−𝜆1 . 
                                                                 (35c) 

Moreover, to plot fracture angle curves, the mode mixity parameters 𝑀𝐼/𝐼𝐼
𝑒 , 𝑀𝐼/𝐼𝐼𝐼

𝑒 , and 𝑀𝐼𝐼𝐼/𝐼𝐼
𝑒 , 

respectively for mixed-mode 𝐼/𝐼𝐼, 𝐼/𝐼𝐼𝐼, and 𝐼𝐼𝐼/𝐼𝐼, are defined in Eq. (36): 

𝑀𝐼/𝐼𝐼
𝑒 =

2

𝜋
𝑡𝑎𝑛−1[(

𝐾𝐼

𝐾𝐼𝐼
)𝑟𝑐,𝑣

𝜆1−𝜆2] ,                                                                 (36a) 

𝑀𝐼/𝐼𝐼𝐼
𝑒 =

2

𝜋
𝑡𝑎𝑛−1[(

𝐾𝐼

𝐾𝐼𝐼𝐼
)𝑟𝑐,𝑣

𝜆1−𝜆3],                                                                 (36b) 



𝑀𝐼𝐼𝐼/𝐼𝐼
𝑒 =

2

𝜋
𝑡𝑎𝑛−1[(

𝐾𝐼𝐼𝐼

𝐾𝐼𝐼
)𝑟𝑐,𝑣

𝜆3−𝜆2].                                                                 (36c) 

The plots of mixed-mode fracture toughness as well as in-plane and out-of-plane fracture angles 

can be created theoretically in terms of normalized fracture toughness values and mode mixity 

parameters (very similar to Appendix B in [22] for cracks). Due to the lack of experimental data 

for the mixed-mode 𝐼𝐼/𝐼𝐼𝐼 fracture toughness and in-plane (𝜃0) and out-of-plane fracture angle 

(𝜑0) in the literature, herein, the authors have decided to solely present the theoretical results 

obtained from the proposed method in Figs. 3 and 4. In Fig. 3a, the mixed-mode 𝐼𝐼/𝐼𝐼𝐼 fracture 

toughness is plotted where the V-notch opening angle (2α) and the notch tip radius (ρ) are equal 

to 120° and 0.5 mm, respectively. Also, the Poisson’s ratio (ν) and the relative fracture toughness 

values (𝑝𝑐, 𝑞𝑐) are chosen arbitrarily. Fig. 3b depicts the variation of mixed-mode 𝐼𝐼/𝐼𝐼𝐼 fracture 

toughness for the same notch tip radius but different notch opening angles. Since under the mixed-

mode 𝐼𝐼/𝐼𝐼𝐼 loading conditions both in-plane and out-of-plane fracture angles occur, they are 

plotted in Fig.4a and b, respectively. In this figure, the V-notch opening angle and the notch tip 

radius are constant, but the Poisson’s ratio varies. As can be seen in Fig. 4, by raising Poisson’s 

ratio, the out-of-plane fracture angle increases but the in-plane fracture angle decreases. 

 

 

 

 

 

 



(a) 

 

(b) 

 

Fig. 3. Mixed-mode 𝐼𝐼/𝐼𝐼𝐼 fracture toughness variations computed by the N-ECD-SN criterion 

proposed in the current work: a) for 2𝛼 = 120°,  𝜌 = 0.5𝑚𝑚 and arbitrary values of 𝑝𝑐, 𝑞𝑐, and 𝜐, b) 

for 𝜌 = 0.5 𝑚𝑚, 𝑝𝑐 = 1, 𝑞𝑐 = 0.6,  𝜐 = 0.25 and different values of the notch opening angle 2𝛼. 

 

(a) 

 

(b) 

 
Fig. 4. Theoretical effects of mode mixity and the Poisson’s ratio on the fracture angles under mixed-

mode 𝐼𝐼/𝐼𝐼𝐼 conditions computed by the N-ECD-SN criterion (for 2𝛼 = 120°,  𝜌 = 0.5𝑚𝑚): a) out-of-

plane fracture angle, b) in-plane fracture angle. 

Fig. 5 compares the test data for the mixed-mode 𝐼/𝐼𝐼𝐼 fracture toughness of round bars made of 

graphite and weakened by a V-notch to the theoretical results obtained from the PS and the 



proposed criterion (N-ECD-SN) for two different notch opening angles. As illustrated in this 

figure, the N-ECD-SN criterion by far outperforms the PS criterion.  

(a) 

 

(b) 

 
Fig. 5. Mixed-mode 𝐼/𝐼𝐼𝐼 fracture test data for V-notched graphite round bars [3, 78] (notch tip radius 

of 𝜌 = 2𝑚𝑚 and different notch opening angles 2𝛼) together with the theoretical predictions of PS and 

N-ECD-SN criteria: a) 2𝛼 = 120°,  and b) 2𝛼 = 30°. 

 

The theoretical data on mixed-mode 𝐼/𝐼𝐼 fracture toughness and kinking angle for U-notched 

graphite specimens are compared to the experimental data for two different notch tip radii in Fig. 

6. According to this figure, for both notch tip radii, the prediction curves of MTS and MS criteria 

are almost identical to each other, and they underestimate the actual fracture toughness and 

overestimate the experimental kinking angle. However, the curve obtained from the proposed 

criterion is skewed towards the test data and passes among them like a trend line and clearly shows 

higher accuracy.  



(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 6. Theoretical mixed-mode 𝐼/𝐼𝐼 fracture curves by the MTS, MS, and N-ECD-SN criteria together 

with the experimental results for U-notched graphite specimens: mixed-mode 𝐼/𝐼𝐼 fracture toughness for 

a) 𝜌 = 0.5𝑚𝑚, b) 𝜌 = 4𝑚𝑚; in-plane I/II fracture angle versus different mode mixities for c) 𝜌 =
0.5𝑚𝑚, and d) 𝜌 = 4𝑚𝑚 [79]. 

 

Out-of-plane 𝐼/𝐼𝐼𝐼 Fracture toughness and fracture angle of U-notched PMMA specimens for two 

different notch tip radii are illustrated in Figs. 7a, b and Figs. 7c, d, respectively. Regarding the 

fracture curves (Figs. 7a, b), it can be seen that the N-ECD-SN criterion evidently gives better 

prediction than the PS and MS criteria. Concerning the fracture angle and according to Fig. 7c and 



d, all criteria give a good prediction but the curve from the proposed criterion seems more 

promising. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 7. Theoretical mixed-mode 𝐼/𝐼𝐼𝐼 fracture curves by the MS, PS, and N-ECD-SN criteria together 

with the experimental results for U-notched PMMA specimens: mixed-mode 𝐼/𝐼𝐼𝐼 fracture toughness 

for a) 𝜌 = 1𝑚𝑚, b) 𝜌 = 2𝑚𝑚; out-of-plane 𝐼/𝐼𝐼𝐼 fracture angle versus different mode mixities for c) 

𝜌 = 1𝑚𝑚, and d) 𝜌 = 2𝑚𝑚 [80]. 

 

 

 



Fig. 8, shows the out-of-plane mixed-mode 𝐼/𝐼𝐼𝐼 fracture behavior of V-notched specimens made 

of Polystyrene for two different notch tip radii. According to [81, 82] for brittle and quasi-brittle 

materials subjected to mode 𝐼𝐼𝐼 dominant loading conditions, a more accurate theoretical 

prediction can be obtained by using a modified critical distance of 𝑑𝑐,𝑣 = 𝑟0 + 𝑑𝑐 where like before 

𝑟0 is the space from the origin of the coordinate system behind the notch tip to the notch tip itself 

and 𝑑𝑐 is the critical distance measured from the notch tip, calculated by  

𝑑𝑐 =
2

𝜋
(

𝐾𝐼𝐼𝐼𝑐

𝜎𝑡
)

2

.               (37) 

As shown in Fig. 8a, the MS criterion underestimates but the N-ECD-SN criterion gives a good 

average of the test data. The same interpretation of fracture toughness can be applied to Fig. 8b 

denoting higher precision of the ECD-based criterion. Figs. 8 c, d show the twisting angle of the 

same specimen for both cases of 𝜌 = 0.5 and 2 mm, and once again, the proposed criterion shows 

more accuracy than PS and MS criteria. 

It is worth noting that for a crack problem, which represents a special case of a U-notch when the 

notch tip radius is zero, the N-ECD-SN criterion should yield identical theoretical predictions to 

the ECD-SN criterion [55], as both criteria rely on the maximum principal strain component. 

Therefore, the criterion proposed in the current study offers a more comprehensive version of the 

previously developed ECD-SN criterion, specifically tailored for V- and U-shaped notches under 

mixed-mode I/II/III loading conditions. 



(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 8. Theoretical mixed-mode 𝐼/𝐼𝐼𝐼 fracture curves by the MS, PS, and N-ECD-SN criteria together 

with the experimental results for V-notched Polystyrene specimens with the notch opening angle of 2𝛼 =
30°: mixed-mode 𝐼/𝐼𝐼𝐼 fracture toughness for a) 𝜌 = 0.5 𝑚𝑚, b) 𝜌 = 2 𝑚𝑚; out-of-plane 𝐼/𝐼𝐼𝐼 fracture 

angle versus different mode mixities for c) 𝜌 = 0.5𝑚𝑚, and d) 𝜌 = 2𝑚𝑚 [82]. 

 

4. Conclusion 

By combining the concept of the effective critical distance (ECD) and the maximum principal 

strain (MPSN) criterion, the new criterion of N-ECD-SN is developed which is suitable for 

predicting the three-dimensional fracture behavior in components weakened by V- or U-shaped 

notches. To verify the accuracy of the proposed criterion, the results obtained by the N-ECD-SN 



criterion are compared to the theoretical data acquired by means of various well-known fracture 

criteria together with the experimental data reported in the literature. In this study, U-notched 

specimens made of graphite and PMMA are considered in which the former is subjected to mixed-

mode 𝐼/𝐼𝐼 and the latter is under mixed-mode 𝐼/𝐼𝐼𝐼 loading conditions. It is revealed that the N-

ECD-SN criterion gives a closer prediction of the test data than the MTS, MS, and PS criteria in 

all cases. Regarding V-notches, several specimens made of graphite and polystyrene, subjected to 

mixed-mode 𝐼/𝐼𝐼𝐼 loading conditions are studied. This work showed the predicted fracture angles 

and fracture toughness by the N-ECD-SN criterion are closer to the experimental tests than the 

ones obtained from MPS and MS criteria. This denotes the superiority of the suggested criterion 

once again. Moreover, as a good practice and due to the absence of experimental data for 

specimens weakened by V-notches under 𝐼𝐼/𝐼𝐼𝐼 loading conditions in the literature, the fracture 

behavior of such components is theoretically examined by using the N-ECD-SN criterion for 

different values of 𝑝𝑐, 𝑞𝑐, 𝜐, and the notch opening angle too. According to the current research, 

the reason behind the higher accuracy of the N-ECD-SN criterion in comparison to its conventional 

counterparts is that other commonly used criteria such as MTS, MS, MPS, etc. solely consider the 

length of the processing zone under pure mode 𝐼 loading conditions and neglect its variation when 

the loading mode changes. However, the N-ECD-SN criterion refrains from doing so and includes 

the change in the length of the damage zone corresponding to each mode in the solution which is 

more realistic and closer to the physics of the problem. Finally, it is worth mentioning that while 

the proposed criterion has been validated using experimental data for graphite, polymethyl 

methacrylate, and polystyrene, it can also be applied to a wide range of isotropic materials such as 

rocks. Additionally, it can be further improved for anisotropic materials like anisotropic rocks. 



However, further mixed-mode I/II/III experiments on notched components are necessary for 

broader validation in the future. 
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Appendix A 

(a) V-notch stress field angular functions for mode I and II [76, 77]: 

{

𝑋𝜃𝜃

𝑋𝑟𝑟

𝑋𝑟𝜃

}

𝐼

=
1

1+𝜆1+𝜒𝑏1
(1−𝜆1)

[{

(1 + 𝜆1)cos (1 − 𝜆1)𝜃
(3 − 𝜆1)cos (1 − 𝜆1)𝜃
(1 − 𝜆1)sin (1 − 𝜆1)𝜃

} + 𝜒𝑏1
(1 − 𝜆1) {

cos (1 + 𝜆1)𝜃
−cos (1 + 𝜆1)𝜃

sin(1 + 𝜆1)𝜃
}],  

{

𝑌𝜃𝜃

𝑌𝑟𝑟

𝑌𝑟𝜃

}

𝐼

=
𝑞

4(𝑞−1)[1+𝜆1+𝜒𝑏1
(1−𝜆1)]

[𝜒𝑑1
{

(1 + µ1)cos (1 − µ1)𝜃
(3 − µ1)cos (1 − µ1)𝜃
(1 − µ1)sin (1 − µ1)𝜃

} + 𝜒𝑐1
{

cos (1 + µ1)𝜃
−cos (1 + µ1)𝜃

sin(1 + µ1)𝜃
}],  

{

𝑋𝜃𝜃

𝑋𝑟𝑟

𝑋𝑟𝜃

}

𝐼𝐼

=
1

1−𝜆2+𝜒𝑏2(1+𝜆2)
[{

(1 + 𝜆2)sin (1 − 𝜆2)𝜃
(3 − 𝜆2)sin (1 − 𝜆2)𝜃
(1 − 𝜆2)cos (1 − 𝜆2)𝜃

} + 𝜒𝑏2
(1 + 𝜆2) {

sin(1 + 𝜆2)𝜃
−sin (1 + 𝜆2)𝜃
cos(1 + 𝜆2)𝜃

}],  

{

𝑌𝜃𝜃

𝑌𝑟𝑟

𝑌𝑟𝜃

}

𝐼𝐼

=
1

4(µ2−1)[1−𝜆2+𝜒𝑏2
(1+𝜆2)]

[𝜒𝑑2
{

(1 + µ2)sin (1 − µ2)𝜃
(3 − µ2)sin(1 − µ2)𝜃
(1 − µ2)cos (1 − µ2)𝜃

} + 𝜒𝑐2
{

−sin (1 + µ2)𝜃
sin (1 + µ2)𝜃

−cos(1 + µ2)𝜃
}],  

 

(b) Table A1: Mode I eigenvalues for various notch opening angles (2𝛼) [76, 77]: 

χd1
 χc1

 χb1
 µ1 λ1 2α (deg.) 

0 4 1 -0.5  0.5                  0 

0.0632 3.7907              1.0707               -0.456               0.5014               𝜋
6⁄  

0.0828 3.572               1.1656               -0.4319             0.5050               𝜋
4⁄  

0.0960 3.2832              1.3123               -0.4057             0.5122               𝜋
3⁄  

0.1046 2.5057              1.8414               -0.3449             0.5448               𝜋
2⁄  



0.0871 1.5150              3.0027               -0.2678             0.6157               2𝜋
3⁄  

0.0673 0.9933              4.1530               -0.2198             0.6736               3𝜋
4⁄  

0.0413 0.5137              6.3617               -0.1624             0.7520               5𝜋
6⁄  

 

(c) Table A2: Mode II eigenvalues for various notch opening angles (2𝛼) [77, 67]: 

χd2
 χc2

 χb2
 µ2 λ2 2α (deg.) 

0 -12 1 -0.5 0.5                     0 

-0.3506 11.3503               0.9212                 -0.4465 0.5982                  𝜋
6⁄  

-0.4510 10.1876                0.8140                 -0.4118 0.6597                  𝜋
4⁄  

-0.4788 -8.3946                0.6584                 -0.3731 0.7309                  𝜋
3⁄  

-0.2436 -2.9382                0.2189                  -0.2882 0.9085                  𝜋
2⁄  

0.5133 4.5604                  -0.3139                   -0.1980 1.1489                  2𝜋
3⁄  

1.1362 8.7371                    -0.5695                   -0.1514 1.3021                   3𝜋
4⁄  

1.9376 12.9161                    -0.7869                  -0.1034 1.4858                  5𝜋
6⁄  

 

References 

[1] Majidi HR, Razavi SM, Torabi AR. Application of EMC‐J criterion to fracture prediction 

of U‐notched polymeric specimens with nonlinear behaviour. Fatigue Fract Eng Mater 

Struct 2019 Jan;42(1):352-62. 

[2] Torabi AR, Shahbazian B. Semi-analytical estimation of the effective plastic zone size at 

U-notch neighborhood in thin sheets under mixed mode I/II loading. Eng Fract Mech 2020 

Nov 1;239:107323. 

[3] Saboori B, Ayatollahi MR, Torabi AR, Berto F. Mixed mode I/III brittle fracture in round-

tip V-notches. Theor Appl Fract Mech 2016 Jun 1;83:135-51. 

[4] Shi SQ, Puls MP. A simple method of estimating the maximum normal stress and 

plastic zone size at a shallow notch. Int J Pres Ves Pip 64 (1995) 67–71. 



[5] Caputo F, Lamanna G, Soprano A. An analytical formulation for the plastic deformation 

at the tip of short cracks. Procedia Eng 10 (2011) 2988–2993. 

[6] Fan M, Yi DK, Xiao ZM. Generalized Irwin plastic zone correction for a Griffith crack 

near a coated-circular inclusion. Int. J. Damage Mech. 24 (2014) 663–682. 

[7] Torabi AR, Shahbazian B, Mirsayar M, Cicero S. A Methodology to Determine the 

Effective Plastic Zone Size Around Blunt V-Notches under Mixed Mode I/II Loading and 

Plane-Stress Conditions. Metals 2021 Jun 29;11(7):1042. 

[8] Zhou XP, Shou YD, Berto F.  Analysis of the plastic zone near the crack tips under 

the uniaxial tension using ordinary state-based peridynamics. Fatigue Fract Eng 

Mater Struct 41 (2017) 1159–1170. 

[9] Torabi AR, Shahbazian B. Notch tip plastic zone determination by extending Irwin’s 

model. Theor Appl Fract Mech 2020 Aug 1;108:102643. 

[10] Pratap CR, Pandey RK.  Effect of geometry and finite root radius on plastic zone 

and tip opening displacement, Eng Fract Mech 19 (1984) 849–861. 

[11] Yi H, Jingjie C, Gang L. A new method of plastic zone size determined based on maximum 

crack opening displacement. Eng Fract Mech 2010;77:2912–8. 

[12] Kang KJ, Beom HG. Plastic zone size near the crack tip in a constrained ductile layer under 

mixed mode loading. Eng Fract Mech 2000;66(3):257–68. 

[13] Hussain MA, Pu SL, Underwood J. Strain energy release rate for a crack under combined 

mode I and mode II. In Fracture analysis: Proceedings of the 1973 national symposium on 

fracture mechanics, part II 1974 Jan. ASTM International. 



[14] Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J fract 

1974;10(3):305-21. 

[15] Berto F, Lazzarin P, Livieri P. On the second non-singular stress term of the V-notch 

solution: a new engineering solution. Int J fract 2013 May;181(1):83-98. 

[16] Zhao Y. Griffith's criterion for mixed mode crack propagation. Eng Fract Mech 

1987;26(5):683-9. 

[17] Chang J, Xu JQ, Mutoh Y. A general mixed-mode brittle fracture criterion for cracked 

materials. Eng Fract Mech 2006;73(9):1249-63. 

[18] Bidadi, J., Aliha, M. R. M., & Akbardoost, J. Development of maximum tangential strain 

(MTSN) criterion for prediction of mixed-mode I/III brittle fracture. International Journal 

of Solids and Structures, 2022; 256, 111979. 

[19] Sih GC, Cha BC. A fracture criterion for three-dimensional crack problems. Eng Fract 

Mech 1974;6(4):699-723. 

[20] Sih GC. A review of the three-dimensional stress problem for a cracked plate. Int J Fract 

Mech 1971;7(1):39-61. 

[21] Wang Q, Feng YT, Zhou W, Cheng Y, Ma G. A phase-field model for mixed-mode fracture 

based on a unified tensile fracture criterion. Comput Methods Appl Mech Eng 2020; 

370:113270. 

[22] Mirsayar MM. Mixed mode fracture analysis using extended maximum tangential strain 

criterion. Mater Des 2015; 86:941-7. 



[23] Chang KJ. On the maximum strain criterion—a new approach to the angled crack problem. 

Eng Fract Mech 1981;14(1):107-24. 

[24] Mirsayar MM, Berto F, Aliha MR, Park P. Strain-based criteria for mixed-mode fracture 

of polycrystalline graphite. Eng Fract Mech 2016; 156:114-23. 

[25] Mirsayar MM. T-strain effects in kinked interfacial fracture of bonded composites. Theor 

Appl Fract Mech 2019; 104:102381. 

[26] Mirsayar MM. On the low temperature mixed mode fracture analysis of asphalt binder–

Theories and experiments. Eng Fract Mech 2017; 186:181-94. 

[27] Mirsayar MM. On fracture analysis of dental restorative materials under combined tensile-

shear loading. Theor Appl Fract Mech 2018; 93:170-6. 

[28] Mirsayar MM, Park P. Mixed mode brittle fracture analysis of high strength cement mortar 

using strain-based criteria. Theor Appl Fract Mech 2016; 86:233-8. 

[29] Mirsayar MM, Razmi A, Aliha MR, Berto F. EMTSN criterion for evaluating mixed mode 

I/II crack propagation in rock materials. Eng Fract Mech 2018; 190:186-97. 

[30] Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse 

shear. J Basic Eng 1963; 85, 519–527. 

[31] Shen, Z., Yu, H., Guo, L., Hao, L., Zhu, S., & Huang, K. (2023). A modified 3D G-criterion 

for the prediction of crack propagation under mixed mode I-III loadings. Engineering 

Fracture Mechanics, 281, 109082. 

[32] Liu S, Chao YJ, Zhu X. Tensile-shear transition in mixed mode I/III fracture. Int J Solids 

Struct 2004;41(22-23):6147-72. 



[33] Sajjadi SH, Salimi-Majd D, Ghorabi MO. Development of a brittle fracture criterion for 

prediction of crack propagation path under general mixed mode loading. Eng Fract Mech 

2016;155:36-48. 

[34] Tai YH, Brown MW, Yates JR. A new solution for 3D crack extension based on linear 

elastic stress fields. Eng Fract Mech 2011;78(8):1602-13. 

[35] Smith DJ, Ayatollahi MR, Pavier MJ. The role of T‐stress in brittle fracture for linear 

elastic materials under mixed‐mode loading. Fatigue Fract Eng Mater Struct 

2001;24(2):137-50. 

[36] Wang X, Lewis T, Bell R. Estimations of the T-stress for small cracks at notches. Eng Fract 

Mech 2006 Feb 1;73(3):366-75. 

[37] Meliani MH, Azari Z, Pluvinage G, Matvienko YG. The effective T-stress estimation and 

crack paths emanating from U-notches. Eng Fract Mech 2010 Jul 1;77(11):1682-92. 

[38] Ayatollahi MR, Dehghany M. On T-stresses near V-notches. Int J Fract 2010 

Sep;165(1):121-6. 

[39] Mirsayar MM. On fracture of kinked interface cracks–The role of T-stress. Mater Des 

2014; 61:117-23. 

[40] Ayatollahi MR, Saboori B. T-stress effects in mixed mode I/II/III brittle fracture. Eng Fract 

Mech 2015; 144:32-45. 

[41] Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse 

shear. J Basic Eng 1963;85:519–27.  



[42] Schöllmann M, Richard HA, Kullmer G, Fulland M. A new criterion for the prediction of 

crack development in multiaxially loaded structures. Int J Fract 2002; 117(2):129–41.  

[43] Liu S, Chao YJ, Zhu X. Tensile-shear transition in mixed mode I/III fracture. Int J Solids 

Struct 2004;41(22–23):6147–72. 

[44] Ayatollahi MR, Torabi AR. Brittle fracture in rounded-tip Vshaped notches. Mater Des 

2010;31:60–7. 

[45] Razavi SM, Berto F. A new fixture for fracture tests under mixed mode I/II/III loading. 

Fatigue Fract Eng Mater Struct 2019;42(9):1874–88. 

[46] Ayatollahi MR, Saboori B. A new fixture for fracture tests under mixed mode I/III loading. 

European J Mech-A/Solids 2015;51:67–76. 

[47] Zeinedini A. A novel fixture for mixed mode I/II/III fracture testing of brittle materials. 

Fatigue Fract Engng Mater Struct 2019;42(4):838–53. 

[48] Ayhan AO, Demir O. A novel test system for mixed mode-I/II/III fracture tests–Part 1: 

Modeling and numerical analyses. Eng Fract Mech 2019;218:106597. 

[49] Deng X, Sutton MA, Zuo J, Wang L. Mixed-mode fracture analysis of airframe materials. 

In: Proceedings of the fifth Joint NASA/FAA/DoD conference on aging aircraft, 

Kissimmee, FL September 2001;10–13. 

[50] Pook LP. Comments on fatigue crack growth under mixed modes I and III and pure mode 

III loading. Multiaxial Fatigue, ASTM STP 853. Philadelphia: American Society for 

Testing and Materials 1985;249–263. 



[51] Richard, H. A., Schramm, B., & Schirmeisen, N. H. Cracks on mixed mode loading–

theories, experiments, simulations. International Journal of Fatigue, 2014; 62, 93-103. 

[52] Ayatollahi MR, Saboori B. Maximum tangential strain energy density criterion for general 

mixed mode I/II/III brittle fracture. Int J Damage Mech 2015;24(2): 263–78. 

[53] Mirsayar MM. A generalized criterion for fatigue crack growth in additively manufactured 

materials–build orientation and geometry effects. Int J Fatigue 2021; 145:106099. 

[54] Mirsayar MM. Maximum principal strain criterion for fracture in orthotropic composites 

under combined tensile/shear loading. Theor Appl Fract Mech 2022; 118:103291. 

[55] Mirsayar MM. On the effective critical distances in three-dimensional brittle fracture via a 

strain-based framework. Eng Fract Mech 2021; 248:107740. 

[56]     Li, S., Lu, H., Huang, X., Qin, R., & Mao, J. Sensitivity analysis of notch shape on brittle 

failure by using uni-bond dual-parameter peridynamics. Engineering Fracture 

Mechanics, 2023; 291, 109566. 

[57]    Yang, D., He, X., & Deng, Y. An effective correspondence-based peridynamics-FEM 

coupling model for brittle fracture. International Journal of Mechanical Sciences, 2024; 

264, 108815. 

[58]   Mirsayar, M. A generalized model for dynamic mixed‐mode fracture via state‐based 

peridynamics. Fatigue & Fracture of Engineering Materials & Structures, 2023; 46(1), 

244-258. 



[59]  Liu, R., Xue, Y., & Li, S. (2023). A three-dimensional (3D) micro-potential-based 

peridynamics model for deformation and fracture in solid materials. Engineering Fracture 

Mechanics, 282, 109180. 

[60]   Kumar, A., Ravi-Chandar, K., & Lopez-Pamies, O. The revisited phase-field approach to 

brittle fracture: application to indentation and notch problems. International Journal of 

Fracture, 2022; 237(1-2), 83-100. 

[61]    Yue, Q., Wang, Q., Zhou, W., Rabczuk, T., Zhuang, X., Liu, B., & Chang, X. (2023). An 

efficient adaptive length scale insensitive phase-field model for three-dimensional fracture 

of solids using trilinear multi-node elements. International Journal of Mechanical 

Sciences, 253, 108351. 

[62]    Li, C., Fang, J., Wan, Y., Qiu, N., Steven, G., & Li, Q. (2023). Phase field fracture model 

for additively manufactured metallic materials. International Journal of Mechanical 

Sciences, 251, 108324. 

[63]        Wu, J. Y., Huang, Y., Zhou, H., & Nguyen, V. P. Three-dimensional phase-field modeling 

of mode I+ II/III failure in solids. Computer Methods in Applied Mechanics and 

Engineering, 2021; 373, 113537. 

[64]     Mukhtar, F. M., Alves, P. D., & Duarte, C. A. (2020). Validation of a 3-D adaptive stable 

generalized/eXtended finite element method for mixed-mode brittle fracture 

propagation. International Journal of Fracture, 225(2), 129-152. 

[65]   Shi, F., Wang, D., & Yang, Q. An XFEM-based numerical strategy to model three-

dimensional fracture propagation regarding crack front segmentation. Theoretical and 

Applied Fracture Mechanics, 2022; 118, 103250. 



[66] Taylor D. The theory of critical distances. Eng Fract Mech 2008;75(7):1696-705. 

[67] Susmel L, Taylor D. The theory of critical distances to predict static strength of notched 

brittle components subjected to mixed-mode loading. Eng Fract Mech 2008 Feb 1;75(3-

4):534-50. 

[68] Susmel L. The theory of critical distances: a review of its applications in fatigue. Eng Fract 

Mech 2008;75(7):1706-24. 

[69] Mirsayar MM, Shahbazian B. An energy-based criterion for mixed-mode I/II/III fracture 

considering effective critical distances. Eng Fract Mech 2022 Sep 1;272:108674. 

[70] Shahbazian B, Mirsayar MM, Aliha MR, Darvish MG, Asadi MM, Haghighatpour PJ. 

Experimental and theoretical investigation of mixed-mode I/II and I/III fracture behavior 

of PUR foams using a novel strain-based criterion. Int J Solids Struct 2022 Dec 

15;258:111996. 

[71] Riazi, R., Torabi, A. R., Amininejad, S. H., & Sabour, M. H. Combined tension–shear 

fracture analysis of V-notches with end holes. Acta Mechanica, 2015; 226, 3717-3736.  

[72] Seweryn A. Brittle fracture criterion for structures with sharp notches. Eng Fract Mech 47 

(1994) 673–681.  

[73] Ayatollahi MR, Torabi AR. Brittle fracture in rounded-tip V-shaped notches. Mater Des 

31 (2010) 60–67.  

[74] M.R. Ayatollahi, A.R. Torabi. Tensile fracture in notched polycrystalline graphite 

specimens. Carbon 48 (2010) 2255–2265. 

[75] Williams ML. Stress singularities resulting from various boundary conditions in 



angular corners of plates in extension. J Appl Mech 19 (1952) 526–528. 

[76] Filippi S, Lazzarin P, Tovo R.  Developments of some explicit formulas useful to 

describe elastic stress fields ahead of notches in plates. Int J Solids Struct 2002 Aug 

1;39(17):4543-65.  

[77] Zappalorto M, Lazzarin P, Filippi S. Stress field equations for U and blunt V-shaped 

notches in axisymmetric shafts under torsion. Int J Fract 2010 Aug;164:253-69. 

[78] Berto F, Campagnolo A, Ayatollahi MR. Brittle fracture of rounded V-notches in isostatic 

graphite under static multiaxial loading. Phys Mesomech 2015 Oct;18:283-97. 

[79] Torabi AR, Fakoor M, Pirhadi E. Fracture analysis of U-notched disc-type graphite 

specimens under mixed mode loading. Int J Solids Struct 2014 Mar 15;51(6):1287-98.  

[80] Saboori B, Torabi AR, Ayatollahi MR, Berto F. Experimental verification of two stress-

based criteria for mixed mode I/III brittle fracture assessment of U-notched components. 

Eng Fract Mech 2017 Sep 1;182:229-44. 

[81] Saboori B, Ayatollahi MR, Torabi AR, Berto F. Mixed mode I/III brittle fracture in round-

tip V-notches. Theor Appl Fract Mech 2016 Jun 1;83:135-51. 

[82] Saboori B, Torabi AR, Mohammadian SK. Experimental and stress-based theoretical 

studies on mixed mode I/III fracture of round-tip V-notched Polystyrene specimens. Theor 

Appl Fract Mech 2018 Jun 1;95:283-305. 


