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Abstract—Path planning plays a vital role in ensuring the
efficient and safe operation of off-road autonomous ground
vehicles (AGVs). Current methods mostly focus on minimizing
the travel time or path length of AGVs and often overlook the
fact that the AGVs could fail in many ways during the operation
due to stochastic and rough terrain conditions. The objective
of this paper is to not only generate a proper path for the
vehicle but also ensure that the planned path is overall reliable
and safe for the vehicle with complex terrain conditions. To
achieve this goal, this paper develops a reliability-based mission
planning method for off-road AGVs subject to two failure modes
in terms of mobility (the maximum attainable speed and vehicle
vertical acceleration) induced by the uncertain ground properties
of the terrain. A physics-based vehicle dynamics simulation
model is first employed to predict vehicle mobility for any given
terrain conditions of a path. Mobility reliability of an AGV is
then analyzed using surrogate modeling methods considering
uncertainty sources in the off-road terrain conditions. After
that, the reliability constraints for the two failure modes are
integrated with the Rapidly-exploring Random Tree Star (RRT*)
algorithm to identify an optimal path, which is the shortest
path while satisfying the reliability requirements of the two
considered failure modes. Results of a case study demonstrated
the effectiveness of the proposed methods for path planning with
the consideration of uncertainty in the deformable terrain.

Index Terms—Mission mobility reliability, path planning, sur-
rogate modeling, RRT*.

I. INTRODUCTION

FF-ROAD autonomous ground vehicle (AGV) is gain-
Oing increased attention in recent years, due to their
promising potential in replacing human in harsh and/or bor-
ing working environments [1]-[3], such as transportation of
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supplies to battlefield [4], exploration of outer space [5],
and reducing human labor in agricultural industry [6]. Since
an AGV operates autonomously in the off-road environment,
mission/path planning [7]-[9] is of paramount importance
in guaranteeing the successful operation of the AGVs. An
effectively planned path can increase operational efficiency
(by minimizing the travel length and time) and reduce the risk
of failure of AGVs (via navigating the vehicles away from
obstacles).

Motivated by optimizing the operation performance of
AGVs, various mission/path planning methods have been
developed in recent years. The current path planning methods
can be roughly classified into two categories, namely, global
path planning and local path planning. Global path planning
[10]-[13] identifies a path for any given starting point and
end point based on certain global map information of a region
of interest. Local path planning [14]-[18] optimizes the route
locally in real-time according to the surrounding information
collected from AGV sensors, such as LiDAR, camera, etc.

While the current global and local path planning methods
have shown promising performance for on-road robots and
autonomous vehicles, their applications to off-road AGVs face
major barriers for several reasons. First, the widely used
sensing techniques for obstacle detection in local path planning
may fail to detect the obstacles in the complex off-road
environments. For instance, an off-road AGV may get stuck in
the soil and becomes immobile due to the deformable terrain,
such as sand, mud pond, and wet soil. Even if the vision-based
detection method is able to detect that the terrain is mud or
sand, it cannot tell if the vehicle will get stuck or not, purely
based on the sensing techniques. In that case, the obstacle
becomes undetectable for local path planning methods [19].
Second, the off-road environment is highly uncertain. Due to
the uncertainty in the soil properties, the mobility of a vehicle
is uncertain [20]. For a region with deformable terrain, the
vehicle might pass or get stuck. It implies that the problem is
probabilistic instead of deterministic. Both the current global
and local path planning methods for off-road vehicles or
robots lack the capability of addressing this challenging issue.
Third, most of the current global path planning methods
for on-road AGVs or robots focus on minimizing the travel
distance or time. For off-road AGVs, however, there are many
more factors beyond travel distance and time that need to be
considered due to the unstructured operation environment and
uncertainty sources in the terrain and soil maps.
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Aiming to address the above challenges in the mission
planning of off-road AGVs, significant efforts have been made
in recent years [21], [22]. A key technique, in tackling the issue
that obstacles sometimes are undetectable or the uncertainty in
vehicle mobility, is the physics-based modeling and simulation
(M&S) for vehicle mobility prediction. In the past decades,
various mobility models have been proposed, including semi-
empirical models and high-fidelity simulation models. Semi-
empirical models are from the simplified physics represented
by empirical equations and have a high computation efficiency.
For example, the NATO Reference Mobility Model (NRMM)
and its advanced version developed by the U.S. Army [23],
[24]. These models either use the vehicle cone index to eval-
uate the mobility on different soils or predict vehicle mobility
based on the mean maximum pressure [25]-[27]. Due to
model simplifications and assumptions, the empirical models
may have large errors in mobility prediction [28]. To address
this limitation, efforts have been made in recent years to
develop the next-generation NATO Reference Mobility Model
(NG-NRMM) using high-fidelity multi-physics simulations
[29], [30]. In parallel with the NG-NRMM effort, numerous
simulation models have also been developed. For instance, Xia
[31] developed a tire-terrain interaction model using the Finite
Element Method (FEM) to predict tire mobility. A nonlinear
multi-physics co-simulation model was proposed using FEM
and discrete element method to capture the coupled vehicle-
tire-terrain interactions and predict the vehicle mobility on
granular material [32].

Based on the physics-based M&S of off-road AGVs, ap-
proaches have also been developed in recent years to deal
with uncertainty in the mobility prediction model. For exam-
ple, Gonzalez et al. [33] predicted the mobility considering
uncertainty in terrain elevation using Kriging and Monto
Carlo simulation. Choi et al. [34] developed a reliability-based
stochastic mobility map using a dynamic Kriging method
to predict the mobility of AGVs. Compared with the deter-
ministic approach, it was shown that the stochastic approach
improves the reliability of path planning. However, these meth-
ods overlooked the space-dependency of the environmental
uncertainty [35], [36] that the AGVs encounter and cannot
be used to quantitatively understand the effects of terrain and
soil uncertainty on the results of path planning. To address
this issue, Jiang et al. [19] and some following works [37],
[38] proposed several reliability-based path planning methods
taking space-dependent uncertainty into account [39]-[41].

Although different methods have been developed for path
planning in the past decades, identifying a reliable and shortest
path for off-road AGVs is still a very challenging problem. An
AGYV could fail in the off-road environment in many different
ways, such as extreme acceleration, running out of power,
overturning, to name a few. Different failure modes require dif-
ferent analysis and prediction approaches. Current reliability-
based path planning methods, however, only consider mobility
from the AGV speed perspective through a quantity called
the speed-made-good which is a quasi-static response. In
rough terrain conditions, the AGV also suffers from extreme
vibration excitation. The rough terrain elevation could lead
to extreme dynamics behavior of AGVs and thereby cause

damage to the health of the components inside vehicles as
well as vehicle structures. Therefore, it is ultimately necessary
to consider the multi-dimensional mobility of AGVs in path
planning under uncertain off-road environment.

With a focus on global path planning, the objective of this
paper is to develop a reliability-based path planning method
for off-road AGVs by considering uncertainty sources in the
terrain conditions. In particular, two major failure modes,
including the maximum attainable speed and maximum ver-
tical acceleration, are investigated using physics-based mod-
eling and simulation. Based on the reliability assessment, a
reliability-based optimization model is formulated for path
planning by integrating the rapidly-exploring random tress star
(RRT#*) with the reliability constraints. The main contributions
of this paper can be summarized as follows:

o A reliability-based path planning method based on RRT*
with considering two failure modes due to uncertain
terrain conditions is proposed to ensure the success of
the mission.

« To overcome the challenges in computational cost caused
by the high-fidelity vehicle mobility simulation in relia-
bility analysis, different surrogate models are constructed
to efficiently predict different failure modes without
sacrificing accuracy. Specifically, an adaptive surrogate
modeling method is used for the prediction of vehicle
mobility reliability with respect to the speed-made-good
failure mode. A dynamic ensemble-based dynamic sur-
rogate modeling method is adopted to efficiently predict
vertical acceleration under rough terrain conditions.

o The efficiency of path planning with multiple reliability
considerations is improved by minimizing the worst case.
Since the incorporation of reliability constraints increases
the required computational effort for path planning, min-
imizing the worst-case can avoid unnecessary reliability
assessment, thereby reducing the computational effort.

The remainder of this paper is organized as follows. The
background of this study is reviewed in Section II. In Section
III, we present approaches for mobility reliability analysis with
respect to different mobility failure modes. Based on that,
Section IV discusses reliability-based path planning subject to
two reliability constraints. A case study is used to demonstrate
the proposed algorithms in Section V. Finally, conclusions and
future work are provided in Section VI.

II. BACKGROUND
A. M&S-Based Global Path Planning of Off-Road AGVs

Global path planning of off-road AGVs is to find the shortest
path in a certain area from a start point to a target point
while satisfying specific requirements. Physics-based M&S
plays a critical role in predicting the mobility and global path
planning of AGVs. As shown in Fig. 1, M&S-based global
path planning of AGVs in general consists of four main steps,
namely,

1) The terrain conditions in the target area are characterized
using topographic information (height map) and soil
information (soil map). The target area map could be
obtained either from satellite or other sources.
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terrain interaction
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4. Path planning based on
mobility information

Fig. 1. Illustration of physics-based path planning for off-road autonomous
ground vehicles.

2) The vehicle dynamics behavior is simulated consider-
ing the interaction between terrain conditions and the
vehicle.

3) The vehicle mobility is predicted at arbitrary locations
in the target area.

4) The results of mobility prediction are combined with
path planning algorithms to find the optimal path with
satisfying mobility requirements.

Several concepts are defined here and used for path plan-
ning. The target map is called a configuration space denoted
by . In the configuration space, the space with obstacles is
called obstacle space, denoted by €2,,. The space that AGVs
can fulfill the mission is called free space represented by
Q.. The arbitrary location in the configuration space has two
dimensions and is given by x = (x1,23). The start point
is also called the initial point represented by x;,;. The end
point is the target to achieve, which is denoted by x;,.. The
connection between any arbitrary nodes is called an edge. The
planned path of the mission is defined by I'.

B. Physics-based M &S

The mobility of an AGV is highly related to the vehicle
dynamics and terrain conditions as shown in Fig. 1. A gener-
alized formulation for the mobility model is given by

Y (x) =M (V,S(x)),xe€Q, (D

where Y (-) is the output or quantities of interest represent-
ing the vehicle mobility at location x, e.g., the maximum
attainable speed and maximum vertical acceleration, M (-, )
is the mobility model in general, which could be an empirical
model or a simulation model, V is a vector of vehicle-related
parameters, and S (-) = [S1(x),S2(x),..., S, (x)]" is a
vector representing the surrounding conditions of the vehicle
(e.g., slope and soil parameters).

With the mobility model, M&S is combined with the path
planning algorithm (RRT¥*) to identify the optimal path while
satisfying physical constraints.

C. RRT*

RRT* finds the optimal path by iterations of a growing tree
structure starting from X;,;. A random node (X,qnq € €2) is
generated using a sampling strategy. If X,qnd € Qop, Xrand
is rejected. The sampling process continues until a random
sample is in the free space; namely, X,qnq € §2y,. Then the
nearest node (X,s¢) t0 X,-qng in tree T is identified. If X454 1S
accessible to x,,s¢, meaning that there is no obstacle between
Xrand aNd Xpst, Xrand 18 inserted to the tree by connecting
Xpst and Xpgng. Otherwise, a new node X, is generated
using a steering function and added to the tree by connecting
it to X, 5¢. A collision check is performed to ensure that there
is no obstacle between X;,¢,, and X, 5. After X,q,, passes the
collision check, the rewiring operation is used to modify the
tree [42]. The above operations are executed iteratively until
the optimal path is found.

D. Challenges in Path Planning of Off-Road AGVs

Reliable path planning of off-road AGVs is challenging for
various reasons. Three of them are addressed in this work. The
first challenge is the highly uncertain working environment of
AGVs, which leads to a variation of AGV mobility as shown
in Fig. 2. In a certain region with deformable soil, an AGV
could have a certain probability of either passing or getting
stuck. Understanding the effect of uncertainty on mobility
performance is critical for path planning of off-road AGVs.

Another challenge is that AGVs could lose mobility in
another way, but current methods only consider mobility in
terms of the speed of AGVs, called speed-made-good reliabil-
ity. Except speed made good, a highly possible failure is the
vehicle and supplies being damaged due to extreme vibration.
Considering mobility reliability from different perspectives is
critical to ensure the success of a mission.

The third challenge is the computational efficiency [43].
The semi-empirical model is very efficient, but with large
prediction errors. On the other hand, the high-fidelity simu-
lation model is accurate but takes a very long time to run.
For path planning with reliability constraints, the constraint
evaluation needs thousands of simulations. If the high-fidelity
simulation model is used for M&S, it is computationally
prohibitive [44]. Modeling methods with high efficiency and
guaranteed accuracy are therefore needed for reliability-based
path planning.

To address these challenges, this work develops a path plan-
ning method with two reliability constraints by considering
uncertainty sources in the deformable terrain. An adaptive sur-
rogate model and a dynamic ensemble-based dynamic surro-
gate modeling method are used to efficiently assess reliability
from two different perspectives. The detailed methodology is
provided in the next two sections.
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Fig. 2. Uncertainty sources and its impact on AGV mobility.

III. MULTI-MODE RELIABILITY ANALYSIS OF OFF-ROAD
AGVs SUBJECT TO UNCERTAIN TERRAIN CONDITIONS

In this section, we first discuss how the uncertainty of terrain
conditions are simulated, following are the detailed discussions
of the two main failure modes of off-road AGVs induced by
the uncertain terrain conditions.

A. Uncertainty sources and modeling

As discussed previously, without accounting for the preva-
lent uncertainty in path planning could lead to a high risk
of failure of the off-road AGVs. Many failure modes could
happen, such as vehicle getting stuck on a path (Fig. 2),
vehicle overturning, running out of power, or goods damage
due to severe vertical acceleration. In this paper, we focus
on two main failure modes induced by uncertain terrain
conditions, namely the maximum attainable speed and the
maximum vertical acceleration. The uncertainty are from the
terrain- and soil-related parameters, including the height of
slope (h), soil properties such as Bekker coefficients (k4,
ke, By), soil cohesion (c), friction angle (¢y), and Janosi
shear displacement (J;) [45]. Since the properties of these
parameters are spatially correlated, we use Gaussian random
field to simulate the parameter uncertainty.

The spatial correlation between any arbitrary two locations
in the map is described by an auto-correlation function as

2
kiz = exp {— <¥) } ®)

where 6y is the correlation length along space; x;, X2 are two
arbitrary points in the map, and k5 is the correlation between
the two points.

Physics-based M&S

0 Uncertainty in AGV mobility
due to uncertainty in terrain,
soil, and vehicle parameters.

Uncertainty in mobility
S ——

—T

Fail

Success

In order to generate random realizations of the random fields
for reliability analysis, the truncated Karhunen-Loeve (K-L)
expansion [35] is employed as follows

Rp(x) =pn(x)+ > Vi ()&, 3)
i=1

where Ry (x) is a generated realizations (samples) of a random
field; 1 (x) is the mean function in terms of the spatial
coordinate x of the random field; m is the truncation number;
A; and ; (x) is the eigenvalue and eigenvector by performing
eigen-analysis of the correlation matrix, respectively; and &;,
i = 1,---,m are independent standard Gaussian random
variables.

In what follows, we explain the reliability analysis with re-
spect to two failure modes by considering uncertainty sources
in the terrain conditions.

B. Reliability Analysis for the Maximum Attainable Speed

In order to operate successfully in the off-road environment,
an AGV needs to maintain a certain minimum speed to avoid
getting stuck in the deformable terrain or for safety purpose
in the battlefield. Based on this consideration, the reliability
with respect to the maximum attainable speed is defined as

MMR, (T') = Pr{v,, (S (x)) > v, Vx €T},  (4)

where v, () is the maximum
ve is a speed threshold, “V” stands for “for all”,
and S(x) is a vector of terrain- and soil-related
parameters at the spatial location x. The considered
terrain- and soil-related parameters are S (x) =
(h (%) s ko () e (%) B (%) (%) , b (%) , Js ().

In this paper, the maximum attainable speed v, (S (x)) for
surrogate model construction is predicted using a high-fidelity
simulation software called PyChrono [46], [47]. Fig. 3 presents

attainable  speed,
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an example of the dynamic simulation of off-road AGV motion
in PyChrono.

A direct way of evaluating Eq. (4) is to propagate the
realizations of the random field through the PyChrono sim-
ulation model as illustrated in Fig. 2. However, such a
direct Monte Carlo simulation (MCS) is computationally
prohibitive. To address this challenge, an adaptive surrogate
model is adopted. The adaptive surrogate modeling method
has been proven that it can accurately find the failure bound-
ary with high efficiency [48]. We first generate N initial
training points by Latin Hypercube sampling denoted by
S = [Sl,Sg,...,SN}T. Their responses are obtained from
PyChrono as vy, = [Um1,Um2, .., Um N]T. Given the training
data, an initial Gaussian Process model (GP) is obtained as

i =f(S)" B+e(S), (5)

where v, is the predicted maximum attainable speed by
GP; f () and 3 are vectors representing basis functions and
corresponding coefficients, respectively; and € () is an error
term. The prediction by GP is not a single value but a normal
distribution; namely, 9, ~ N (1, (S), 02 (S)), where p, is
the mean prediction and o, is the standard deviation denoting
the prediction uncertainty.

In addition to the training data, we also generate a group
of input samples using MCS as Syics = {Si}ivMCS. The
corresponding predicted responses from the initial GP are
denoted as o), ~ N (ufj (8%), (o} (S’))2> Based on the
MCS samples, we then identify new training points for the
refinement of the GP model given in Eq. (5) by using the
following active learning function

_ |m (8) — vl
oy (81) 7
where S’ is a point from Sycs; The value of U (S?) indicates
the probability of misclassification. A lower value of U (S?)
means a higher probability that the sample is misclassified.

We therefore identify the samples of‘SMcs in the vicinity of
the failure boundary with lower U (S’) value, until all U (S’)

U (s (©)

i=1,..., Nvcs,

N:py

!

FHRY

Tine 663
ATF 33y
Torle 8 L w239 Toxle o B 05239
Toaxte 1R 2.4

Torle 1L s

Fig. 3.  An example of simulating movement of an AGV in off-road
environment in PyChrono.

) N
from Syicg are greater than 2; namely, min {S’}1 MES > 9,

Then, the active learning converges, and we have 95% confi-
dence that the samples are correctly classified.
The new training sample S* at each iteration is identified
by N
) MCs . (7)
The identified new training sample is added to the training
set to refine the GP model at each iteration. After the algorithm
converges, the safe and failure region of the AGV maximum
attainable speed is identified. MCS can be used to obtain the
vehicle mission mobility reliability in terms of the maximum
attainable speed (i.e. Eq. (4)) as

S* = arg min {U (S’)

1 Nunics
MMR, (T') ~ I,
U( ) MCS ; !

(8)
I, = 0, if mingecre,(x) <0
I, =1, if mingere,(x) >0 "

Now we have the first reliability constraint (MMR,,). Next,
we discuss the details of the second reliability constraint in
terms of the vertical acceleration.

C. Reliability Analysis with Respect to Vertical Acceleration

A major difference between the maximum attainable speed
and the vertical acceleration is that the former is only affected
by the terrain and soil properties at a specific spatial location
while the latter is dependent on not only the terrain and soil
at the current location, but also that of previous locations
that an AGV passes through. Because of this, a different
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Fig. 4. Effects of soil parameters on the vertical acceleration.
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reliability analysis method is required for the failure mode
of the vertical acceleration. Moreover, from the results of
PyChrono simulations, it is found that the vertical acceleration
is insensitive to the soil parameters but closely related to the
slope height. As shown in Fig. 4, given a path, different soils
are used to simulate the vertical acceleration behavior along
the path. It is shown that the soil type has a negligible impact
on the vertical acceleration.

Hence, we can simplify the vertical acceleration model as
a function of the terrain elevation as

a; = f(hishi1, - hiopsai1,ai9,+ ;ai—q), (9)
where a; is the vertical acceleration at spatial location x;,
h; = h(x;) is the elevation at x;,Vi = 1,--- ,p, and f (-) is
a nonlinear function. This model is also called a Nonlinear
Auto Regressive exogenous (NARX) model.

Due to the complicated off-road environment and the
nonlinear vehicle dynamics, there is no analytical solution
available for Eq. (9). In this section, we learn Eq. (9) using the
synthetic mobility data collected from PyChrono simulations,
and a recently developed dynamic ensemble of NARX Models
(DENA) method is employed to accomplish this task [49]. The
basic idea of DENA is first to train multiple NARX models
with different segments divided from the whole prediction
area using the Gaussian mixture model (GMM) [50]. Then,
the NARX models are ensembled dynamically over paths to
predict the vertical acceleration along the path.

More specifically, we first generate NV, paths for the off-
road AGV. The heights (terrain elevation) of the NV, paths
are denoted by hi, i = 1,2...,Np, § = 1,2,..., N,
where NNV, is the number of coordinates for -th path. Given
the path information, the vertical acceleration is obtained by
PyChrono simulation and is denoted by a§-, 1=1,2...,Np,

7 = 1,2,...,N;. We then convert the data into the NARX
format as

h! al

h? a’

Hr=| . . ) (10)

hVNr Nt

where Hp is the training data from the paths generated;
{h' e Rle}iVT are heights from the segments of the paths

with the length of p points; {a’ € Rlxq}ivT are the corre-
sponding vertical acceleration from the same segments of the
paths. Based on the first q points, we predict the next vertical
acceleration {al4+1)i € Rlﬂ}ivT. We let T = g+ 1, then the
corresponding prediction of the training points from Eq. (10)
is given by

a1

o2

A = (1)

aT‘]VT

Next, we partition all the training points and labels into
different segments using Gaussian mixture model (GMM)
to capture the dynamic behavior of AGVs in different dy-

namic regions. GMM approximates the join PDF of Hr as a
weighted sum of multivariate Gaussian components as below

Q
fHr) = Zwk¢(HT |y, 2 ),
=1

12)

where @ is the number of Gaussian components; wy, is the
weight of the k-th Gaussian component; p;, and ¥y is the
mean vector and the covariance matrix of the multivariate
Gaussian distribution, respectively; and ¢(-) is the PDF of the
multivariate Gaussian distribution.

After that, the probability that the ¢-th (j = 1,..., Np)
training point belongs to k-th (kK =1,...,Q) cluster is given
by

pr (Hri) = P (Hp, k |wg, g, Bi) (13)

where Hrp ; represent the i-th (j = 1,..., Np) training point
in Hp; pr, (Hr ;) denotes the probability that the training point
belongs to the k-th (k = 1,...,Q) cluster; and wy, py, X
are the learned parameters from GMM. The summation of the

probability py (Hy,), k=1,...,Q is I as
Q
> P (Hri kwe, py,, T) = 1. (14)
k=1

Now we can divide the whole training points Hp into Q)
groups. Each of the group is denoted by

Hg,k = {H|IC(HT,,',]<J) = 1, VH € HT}, k= 1,...,Q.

15)
Similarly, the corresponding predicted vertical accelerations

in Eq. (11) are divided into the same () groups, which is

denoted by

Ay ={Al.(Ar;,k)=1, VA€ Ar}, k=1,...,Q.
(16)
It is noted that a sample H and the corresponding A could
belong to multiple groups, which means the training points
of multiple NARX models could overlap. The samples and
corresponding labels of each group are a subset of Hr and
A7, respectively. The union of all subsets are Hy and A,

which is denoted by

Hr={H,;U---UH, o}, a7

Ar={A, U---UA,o}. (18)

Recall that every subset of training points is used to build
a NARX model. Each NARX model is denoted by

&k:gNX,k(haa)v k:172a"'7Qa (19)
where h = [ha, Pa—1,--.,ha—q] and a =
[@g—1,Qd—2,--.,a4—q] represent the height and vertical

acceleration first ¢ + 1 and ¢ steps, respectively; Gnx,x (-)
denotes the NARX model; and aj is the prediction at
coordinate d by k-th NARX mdoel. In this paper, the GPR
model is employed to learn g x x () based on data.

After all the NARX models are available, we assemble
them dynamically over prediction length to predict the vertical
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Fig. 5. Flowchart of Dynamic Ensemble of NARX model (DENA).

acceleration in a given path. The prediction at d coordinate by
assembled DENA model is given by [49]

Q
a(d)=> w(Hrak)jgnxk(ha), (20)
k=1
where w (Hrp 4, k) is denoted by
pr (H
w (Hy g, k) = é)k(A—T’d)7 1)
> k=1 b (Hr,q)
in which py (Hr 4) is obtained by
. | px(Hpq), if pp (Hra) > %
pr (Hr.a) = { 0, othervise 22)

where pi, (Hr 4) is solved by Eq. (13) using GMM.

Since Gaussian Process regression is used to fit the dynamic
behavior, we have ay, in Eq. (19) following a normal distribu-
tion as given below.

ax ~ N (pay,03,) (23)

where s, and o4, are the mean and standard deviation of
ay. By substituting Eq. (23) into Eq. (20), we have the mean
prediction and standard deviation of DENA as shown below.

Q
pa (d) =" w(Hr g, k) pa, (h,a), (24)
k=1
Q
oa(d) = \| Y _w? (Hyg,k)o? (ha). (25)
k=1

Once we have the DENA model constructed, the vertical
acceleration along any given path can be predicted recursively.
Fig. 5 summarizes the overall flowchart of DENA for off-road
AGYV vertical acceleration prediction.

As discussed previously, the severe vibration could cause
damage to the goods and supply inside the AGV as well as
some components of the AGV. Therefore, we set a threshold
for vertical acceleration. Once the vertical acceleration along
the path exceeds the threshold, the mission is assumed to be
failed. Mathematically, we have,

L,
n={g

where @ (x) is the predicted acceleration by DENA along the
planned path; ayj, is the threshold vertical acceleration.

if maxyxer a(x) < ag,

if maxyer a(x) > agp, (26)

The reliability in terms of vertical acceleration by MCS is
then computed by

1 Nucs
MMR, (T) ~ N > L.
=1

27)

Next, we discuss how to integrate the above presented
reliability constraints with the RRT* algorithm for reliability-
based path planning of off-road AGVs.

IV. PATH PLANNING SUBJECT TO TWO
TERRAIN-RELATED RELIABILITY CONSTRAINTS

A. Overview

Fig. 6 shows an overview of the proposed framework. As
shown in this figure, the proposed framework consists of three
main modules. The first and the second module focuses on
mobility reliability analysis of off-road AGVs with respect
to the maximum attainable speed and the maximum vertical
acceleration, respectively. The third module integrates the re-
liability constraints into RRT*-based path planning algorithm
to identify the path that is the shortest and satisfies the two
reliability constraints.

To account for these two failure modes in path planning of
off-road AGVs, the reliability-based path planning model is
formulated as:

min C(T)

s.t.

MMR, (T') > R,
MMR, (I) > R,
I'e er,

(28)

where I is the designed path; C (I") is the cost in terms of I’
to minimize; MMR,, (-) and MMR,, (-) represents the mission
mobility reliability in terms of the maximum attainable speed
and the vertical acceleration, respectively.

Next, we discuss how to integrate the reliability constraints
into the RRT* algorithm for path planning. We name the
proposed method as TRs-RRT*, which means RRT* with re-
liability constraints considering the uncertainty of deformable
terrain.

B. TRs-RRT*

As discussed in Sec. II-C, we first initialize a tree denoted
by T which contains all the nodes generated during the path
exploration. For the first step, only the start point x;,; and
the target x;. are in T. Next, we randomly generate a node
Xrand € §1fr and find the nearest node (x,s¢) in the tree to
X,rand- It 1s noted for the first random node, the nearest node
iS X;n;. The function used to find the nearest node is given by

Xnst = Nearest (T, Xpung) = arg vlilg% |Xrana — x|| . (29)

After the random node is found, a steering function is used
to generate a new node X, Which is denoted by

(30)

Xpew = steer (Xrand7 ant) s

where steer (-) denotes the steering function. Then, the relia-
bility MMR,, and MMR,, in Egs. (8) and (27) from x;,; to
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Fig. 6. Path planning subject to two terrain-related reliability constraints.

Xnew are checked. If the path satisfies the reliability targets,
the neighbor nodes within a radius are found and denoted by

Xnpor = Near (T7 Xnew) . (1)
The radius is defined by
1
log 9\ ¥™
r=9 ( 2 > ) (32)

where 7 is a constant defined according to the environment,
¢ is the number of iterations, and dim is the dimension of
configuration space.

After that, the best parent node for x,., is chosen from
X por With the lowest cost. The algorithm performs rewiring
to rebuild the path to x,.,. The above operations execute
iteratively until X,.,, arrives the region of the target point.
The detailed TRs-RRT* is provided in Algorithm 1.

C. TRs-B-RRT*

To further improve the efficiency of TRs-RRT*, we propose
the second algorithm called TRs-B-RRT* (where B’ means
binary operation) by using the GO/NO-GO map. The idea is to
reduce the search domain for path planning before reliability
analysis. As shown in Fig. 8, for the same location, the slope
angle of the AGV passed depends on the orientations. Different
orientations could result in different slope angles. For the
same slope, the AGV could lose mobility in specific moving
directions. Therefore, we use the worst case (the maximum
slope) in predicting the maximum attainable speed. A binary

Dynamic reliability assessment with

respect to vertical acceleration ,
~ -

T i

operation based on the worset case is used to divide the
configuration space into feasible and infeasible area. The min-
max approach also could provide higher robustness for path
planning.

In this case, we simply use the maximum slope to replace
the slope information in Eq. (5) in predicting the mobility in
terms of maximum attainable speed as below

= Om,wrst — Uth
=f (Smax7 S)Tﬁ +e (Smaxa S) — Uth,

where S;,q, 1S the maximum slope; S represents the other
parameters in S in Eq. (5), thereby, S = [0z, S]. Using state
mobility reliability (SMR) [19], we have the GO/NO-GO map

as follows.

ev,wrst

(33)

Qaqo = {X <29 |SMRU (X) >R, }, (34)

ONo-co = {x € Q[SMR, (x) < R, }, (35)

where Qco and Ono_go denote the feasible and infeasible
area in map, respectively, R, is the reliability target in terms
of maximum attainable speed, and SMR,, is obtained using
MCS as

N;
1 MCS I
§ v,Wrsty
Nues =

Iv,wrst = 0,if mingeq ev,wrst(x) <0
Iv,wrst = ]-7 ifminmEQ ev,wrst(x) 2 0

SMR, () ~
(36)
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Algorithm 1: TRs-RRT*

Algorithm 2: TRs-B-RRT*

Data: R,, R., Xini» X¢rs B, S;
Initialize: N <« InitializeNodes(2;,;),
E < InitializeEdge(0), T + (N,E),
1 =1;
Result: T = (N,E), I';
for © < Njier do
1=14+1;
Xrand < SampleFree;
Xpst < Nearest (T, Xrqnd);
Xpew $— Steer (Xrand7 ant);
if MMR, (Xnew; Xini, 1, S) > R, &
MMR, (Xnew, Xinis b, S) > R, then
Xnbor < Near (T7 Xnew);
Xparent — anor;
Cmin < COSt (Xiniy Xpm’enh xnew);
foreach x in X,,;, do
if MMR, (Xnew; Xini, 1, S) > R, &
MMR, (Xnews Xini, ) > Ry &
Cost (Xiniy, X, Xnew) < Cmin then
Xparent — X
Cmin < COSt (Xinia X, Xnew);
else
‘ break;
end

end
N — N U Xnews E — E U (Xnewy Xparent);
foreach x in X,,;,, do
Cnbor < Cost (Xinia Xparenta X);
if MMR, (Xnew, Xini, by S) > R, &
MMRa (Xneun Xini, h) > Ra &
Cost (Xiniys X, Xnew) < Cnbor then
‘ Cnpor < Cost (Xini7 X, Xnew);
else
‘ break;
end

end
E <+ (E\ {(Xaxpa’r'ent)}) U {(Xnewv X)};

else
‘ break;
end

end

After the GO/NO-GO map is available, we can use an obstacle
check function to avoid the unnecessary computational cost
before solving MMR,, and MMR,,. The obstacle check passes,
if there is no NO-GO area between the two nodes. The details
of TRs-B-RRT* are given in Algorithm 2.

In the next section, we use a case study to demonstrate
the proposed reliability-based path planning algorithm in com-
parison with the conventional RRT* without any reliability
considerations.

V. CASE STUDY

In this example, we use a 200 x 200 m target map to
demonstrate the proposed path planning method. The map is

Data: R,, R,, Xini,» X¢rs B, S;
Initialize: N <« InitializeNodes(2;,;),
E < InitializeEdge(0), T «+ (N,E),
=1,
Result: T = (N,E), I';
for : < Njier do
1=14+1;
Xrand < SampleFree;
Xpst < Nearest (T, X,qnd);
Xpew < Steer (Xrand7 ant);
if obstacleFree(X,st, Xnew) &
MMR, (Xnew, Xini, b, S) > R, &
MMR, (Xnew; Xini, 1, S) > R, then
Xnbor < Near (T, Xnew);
Xparent € Xobors
Cmin < COSt (Xinia Xparent» Xnew);
foreach x in X,,;, do
if obstacleFree(x, Xpew) &
MMR,, (Xnew, Xinis b, S) > Ry &
MMR, (Xnews Xini, ) > Ry &
Cost (Xinia X, X’new) < Cmin then
Xparent X
Cmin — Cost (Xini, X, Xnew);
else
‘ break;
end

end

N+ NuU Xnews E+~EU (Xnewa Xparent);

foreach x in X,,;,,- do

Cnbor < Cost (Xini7 Xparents X);

if obstacleFree(x, Xpew) &
MMR, (Xnewa Xinis S) >R, &
MMRG. (Xnewvxinia h) > Ra &
Cost (Xinis X, Xnew) < Cnbor then
‘ Cnbor < Cost (Xini7 X, Xnew);

else
‘ break;

end

end
E« (E\ {(Xaxparent)}) U{(Xnews X)};

else
‘ break;
end

end

obtained from the ARCGIS/ENVI database with uncertainty.
High-fidelity simulation by PyChrono is used to obtain the
training data for the construction of the two surrogate models.
The proposed TRs-RRT#* and TRs-B-RRT* are applied to
find the optimal path with required reliability targets. The
optimal path found is validated using PyChrono simulation.
The detailed map and soil parameter information and results
are provided below.
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TABLE I
STATISTICAL INFORMATION OF DIFFERENT SLOPE/SOIL PARAMETERS.

Slope/Soil ID  Height

Soil Parameters

h (m) ks ke B, c®) ¢; ()  J(m)
uw o m o m o uw o w o u o m o

1 1x10° 1,000 5x 10% 500 2.8 0.01 950 1 37.5 0.5 0.048 0.001

2 5x 108 1,500 1x 10% 750 2.6 0.05 800 2.5 35.0 1.0 0.04 0.002

3 1.3 045 1x 108 2,000 5x 107 2,500 2.2 0.1 650 5 32.5 1.5 0.036 0.002

4 5x 107 500 1x 107 1,500 2.2 0.02 500 10 30.0 1.0 0.032 0.003

5 1x 107 1,000 5x 10% 1,000 2.0 0.1 450 15 27.5 2.0 0.029 0.002

A. Map Information and Soil Properties

As discussed previously, uncertainty exists in the target area
due to the complex surrounding environment. We use the
Gaussian random field to model the uncertainty over space. A
realization of the random fields (height and soil parameters)
is shown in Fig. 7. Note that the map given in Fig. 7 has been
artificially modified in order to demonstrate the differences
between different path planning algorithms. TABLE I gives the
uncertainty parameters of the target map. We assume that five
different soils could exist in the target map. The properties of
each soil are described using six parameters, which are Bekker
coefficients (kg, k¢, By), soil cohesion (c), friction angle (¢ ),
and Janosi shear displacement (J,). All the soil parameters
together with height are represented by the Gaussian random
field with a correlation length of 30 m.

(a) Slope map

(b) Soil map

Fig. 7. Map of interest; (a) Height map and (b) Soil map.

3-D View

Fig. 8. Slope variation due to different moving directions.

B. Construction of Mobility Model

As discussed in Sec. III-B and Sec. III-C, we use adaptive
GP and DENA as surrogate models to predict the maximum
attainable speed and vertical acceleration, respectively. For
adaptive GP, we use 100 initial training points from Latin
Hypercube Sampling (LHS) to construct an initial GP model.
Active learning then refines the GP model iteratively until
satisfactory accuracy is achieved.

—o— Unin of Adaptive Surrogate
Threshold

Reliability

—s— U Function (100 initial samples)

—<— Variance Minimization (100 initial samples)
—— Global Surrogate (1300 samples)

20 30
Number of Iterations

(a)

40 50 0 20 40 60 80

Number of Iterations

(b)

100 120 140

Fig. 9. The results of adaptive GP and comparison with other methods.

The convergence history and accuracy of adaptive GP are
shown in Fig. 9. From Fig. 9(a), we see that after 45 iterations,
the minimum value of U from Eq. (6) is larger than 2. The
accuracy of adaptive GP is compared with the ground truth
by Monte Carlo Simulation (MCS) and variance minimization

pathl
——— path2
path3

20

15

paths

Fig. 10. The height contour and generated eight paths.
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Fig. 11. Comparison between DENA and GP-NARX.

method as shown in Fig. 9(b). It shows that the active learning
based adaptive GP converges faster with good accuracy.

To obtain the DENA model for vertical acceleration, we use
the training data collected from a deformable terrain of the
target map. The terrain is a realization of a Gaussian random
field. From the realization, we generate eight paths in which
the data (heights and vertical acceleration) of seven paths are
used to train the DENA model, and the data from the eighth
path is for test. Fig. 10 shows the 3-D terrain and paths.

Using the method discussed in Sec. III-C, the cluster number
@ is determined to be two and the optimal number of lags for
NARX models is identified as five. The test result of path
eight is given in Fig. 11. We compared the results of DENA
and GP-NARX. It shows that DENA can capture the dynamic
behavior of the vertical velocity better than GP-NARX.

C. Results of Path Planning

After the surrogate models are constructed, we can obtain
reliability in terms of maximum attainable speed and vertical
acceleration for any given path. The RRT* and reliability
constraints from surrogate models are combined for path
planning.

We evaluate four different methods, which are RRT* with
GO/NO-GO map (RRT*), RRT* with one reliability constraint
(R-RRT*), TRs-RRT*, and TRs-B-RRT*. The same evaluation
criteria are used for performance assessment, including the
length of the generated path, reliability in terms of maximum
attainable speed and vertical acceleration, and computation
time. The reliability is evaluated using MCS with 5,000
samples. The detailed results for different methods are pro-
vided below. Fig. 12 shows the paths obtained from different
methods.

From Fig. 12, we can observe that RRT* has the shortest
path as it does not consider any reliability constraints. TRs-
RRT#* and TRs-B-RRT* have similar paths visually. R-RRT*
considers the reliability in terms of maximum attainable speed.
After reliability analysis (as shown in Fig. 13), it is found that
the AGV has a high chance of losing mobility if it crosses the
bump as indicated in this figure. Since there is no reliability
consideration in RRT#, the identified path from RRT* (i.e.,
Fig. 12(a)) has a high risk of failure. This is the reason why
the path identified from R-RRT* (i.e., Fig. 12(b)) bypasses
the bump highlighted in Fig. 13, and is longer than the path
obtained from RRT* in Fig. 12(a).

In Fig. 12(c), TRs-RRT* chooses to avoid the valley as
illustrated in Fig. 14, which results in a longer path. This is

Fig. 12. Path planning by different methods; (a) RRT*; (b) R-RRT*; (c)
TRs-RRT#; and (d) TRs-B-RRT*.

because TRs-RRT* has more reliability considerations than R-
RRT*. As shown in Fig. 14, the terrain condition of the valley
is very bumpy, which could cause high vertical accelerations
of AGVs and damage the supplies or the vehicle. With more
reliability considerations, TRs-RRT* (i.e., Fig. 12(c)) identifies
a longer path than R-RRT* in Fig. 12(b).

To further compare different methods, MCS is used to
evaluate the reliability. For illustration, we only provide the
detailed simulation results of RRT*, which is shown in Fig. 15.
We assume the AGV losses mobility if the speed is lowers than
2 m/s and the AVG or the inside supply could be damaged
if the vertical acceleration exceeds 5 m/s?. It is obvious that
the AGV fails to maintain mobility for some simulations and
the AGV or the inside supply is damaged for most of the
simulations. The other methods are also evaluated using the
same MCS samples, but their figures are not provided due to
limited space.

TABLE 1II gives the results of different methods quantita-
tively. As expected, path identified from RRT* has the lowest
reliability which is consistent with the results in Fig. 15,
although it has the shortest path. R-RRT* has low reliability
in the vertical acceleration and it is more efficient than TRs-

Height Map

Fig. 13. Tllustration of a high-risk area of mobility loss.
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Fig. 14. Illustration of bumpy terrain condition.
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Fig. 15. The MCS results of RRT* with 5,000 samples.

TABLE I
COMPARISON OF DIFFERENT METHODS.

Length of Computation
Method the path (m) MMR, MMR, time (h)
RRT* 146.56 0.84 0 0.15
R-RRT* 225.24 0.96 0.58 1.12
TRs-RRT* 246.71 0.99 0.98 3.37
TRs-B-RRT*  248.31 0.99 0.97 2.5

RRT#* and TRs-B-RRT*. TRs-B-RRT* improves the efficiency
by decreasing computation time by 1.17 hours compared
with TRs-RRT* with only a bit of sacrifice in R,. Both
paths identified from TRs-RRT* and TRs-B-RRT* satisfy the
reliability requirement of 0.95.

VI. CONCLUSIONS

This paper proposes a reliability-based global path planning
approach for off-road autonomous vehicles (AGVs) based
on the Rapidly-exploring Random Tree Star (RRT*) method
while considering two reliability constraints due to prevalent
uncertainty in the deformable terrain. Since the high-fidelity
simulation model is computationally too expansive to use
for reliability analysis, two surrogate models including an
adaptative GP and a DENA-GP, are created based on the data
from limited high-fidelity simulations for reliability analysis
to improve the efficiency. We combine RRT* with the two
reliability constraints from the surrogate models, which result
in the proposed TRs-RRT* and TRs-B-RRT* path planning
algorithms. The case study shows that both TRs-RRT* and

TRs-B-RRT* can identify the optimal path in the map with
reliability targets achieved. TRs-B-RRT* is more efficient than
TRs-RRT* as the binary operation of GO/NO-GO map can
avoid infeasible locations before reliability analysis.

Even though TRs-B-RRT* is computationally cheaper than
TRs-RRT#, the required computational effort is too high for
real-time path planning due to the consideration of relia-
bility constraints. In addition, current simulation-based path
planning method replies on physics-based computational sim-
ulations using PyChrono. The discrepancy/model-form un-
certainty of PyChrono could affect the effectiveness of the
proposed method [51]. In our future work, three research
directions are planned, 1) to further reduce the required
computational time by integrating the proposed method with
advanced reliability analysis method, 2) to account for model-
form uncertainty of PyChrono in path planning, and 3) to apply
and validate the proposed method using field tests in the off-
road environment.

ACKNOWLEDGMENTS

This work was supported in part by the Automotive Re-
search Center (ARC) in accordance with Cooperative Agree-
ment W56HZV-19-2-0001 U.S. Army CCDC Ground Vehicle
Systems Center (GVSC), Warren, M1, and in part by the U.S.
National Science Foundation under Grant CMMI-2301012.
The support is gratefully acknowledged.

REFERENCES

[11 S. Ge, Y. Xie, K. Liu, Z. Ding, E. Hu, L. Chen, and F.-Y. Wang,
“The use of intelligent vehicles and artificial intelligence in mining
operations: Ethics, responsibility, and sustainability,” IEEE Transactions
on Intelligent Vehicles, vol. 8, no. 2, pp. 1021-1024, 2023.

[2] S. Ge, F-Y. Wang, J. Yang, Z. Ding, X. Wang, Y. Li, S. Teng,
Z. Liu, Y. Ai, and L. Chen, “Making standards for smart mining
operations: Intelligent vehicles for autonomous mining transportation,”
IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 413-416,
2022.

[3] Y. Huang, S. Z. Yong, and Y. Chen, “Stability control of autonomous
ground vehicles using control-dependent barrier functions,” IEEE Trans-
actions on Intelligent Vehicles, vol. 6, no. 4, pp. 699-710, 2021.

[4] J. E. Naranjo, M. Clavijo, F. Jiménez, O. Gomez, J. L. Rivera, and
M. Anguita, “Autonomous vehicle for surveillance missions in off-road
environment,” in 2016 IEEE Intelligent Vehicles Symposium (IV). 1EEE,
2016, pp. 98-103.

[51 Q. Liu, L. Zhao, Z. Tan, and W. Chen, “Global path planning for
autonomous vehicles in off-road environment via an A-star algorithm,”
International Journal of Vehicle Autonomous Systems, vol. 13, no. 4, pp.
330-339, 2017.

[6] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of field robotics, vol. 26, no. 8,
pp- 651-668, 2009.

[7]1 S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[8] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-
road autonomous driving with avoidance of static obstacles,” IEEE
transactions on intelligent transportation systems, vol. 13, no. 4, pp.
1599-1616, 2012.

[91 A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” Motion and
operation planning of robotic systems, pp. 3-27, 2015.

[10] S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan,
F. Zhu et al., “Motion planning for autonomous driving: The state of the
art and future perspectives,” IEEE Transactions on Intelligent Vehicles,
2023.


zhennhu
Highlight


SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

Z. Zang, J. Song, Y. Lu, X. Zhang, Y. Tan, Z. Ju, H. Dong, Y. Li,
and J. Gong, “A unified framework integrating trajectory planning
and motion optimization based on spatio-temporal safety corridor for
multiple agvs,” IEEE Transactions on Intelligent Vehicles, pp. 1-12,
2023.

D. Zhu and S. X. Yang, “Bio-inspired neural network-based optimal
path planning for UUVs under the effect of ocean currents,” [EEE
Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 231-239, 2021.
A. Pal, A. Bhattacharya, and A. K. Chakraborty, “Planning of ev
charging station with distribution network expansion considering traffic
congestion and uncertainties,” IEEE Transactions on Industry Applica-
tions, 2023.

C. Cai and S. Ferrari, “Information-driven sensor path planning by
approximate cell decomposition,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 39, no. 3, pp. 672-689, 2009.
A. Yazici, G. Kirlik, O. Parlaktuna, and A. Sipahioglu, “A dynamic path
planning approach for multirobot sensor-based coverage considering
energy constraints,” IEEE transactions on cybernetics, vol. 44, no. 3,
pp. 305-314, 2013.

N. Ayoub, M. Asad, M. Aslam, Z. Gao, E. U. Munir, and R. Tobji,
“MAHEE: Multi-hop advance heterogeneity-aware energy efficient path
planning algorithm for wireless sensor networks,” in 2017 IEEE Pacific
Rim conference on communications, computers and signal processing
(PACRIM). IEEE, 2017, pp. 1-6.

H. Ma, F. Meng, C. Ye, J. Wang, and M. Q.-H. Meng, “Bi-Risk-RRT
based efficient motion planning for autonomous ground vehicles,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 722-733, 2022.
H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous
trajectory planning and tracking using an mpc method for cyber-physical
systems: A case study of obstacle avoidance for an intelligent vehicle,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4273—
4283, 2018.

C. Jiang, Z. Hu, Z. P. Mourelatos, D. Gorsich, P. Jayakumar, Y. Fu, and
M. Majcher, “R2-RRT*: reliability-based robust mission planning of off-
road autonomous ground vehicle under uncertain terrain environment,”
IEEE Transactions on Automation Science and Engineering, vol. 19,
no. 2, pp. 1030-1046, 2021.

Z. Hu, Z. P. Mourelatos, D. Gorsich, P. Jayakumar, and M. Majcher,
“Testing design optimization for uncertainty reduction in generating off-
road mobility map using a bayesian approach,” Journal of Mechanical
Design, vol. 142, no. 2, 2020.

P. Jayakumar and D. Mechergui, “Efficient generation of accurate mo-
bility maps using machine learning algorithms,” US ARMY TARDEC
WARREN United States, Tech. Rep., 2019.

R. Gonzalez, P. Jayakumar, and K. Tagnemma, “Generation of stochastic
mobility maps for large-scale route planning of ground vehicles: A case
study,” Journal of Terramechanics, vol. 69, pp. 1-11, 2017.

M. McCullough, P. Jayakumar, J. Dasch, and D. Gorsich, “The next
generation NATO reference mobility model development,” Journal of
Terramechanics, vol. 73, pp. 49-60, 2017.

E. Petrick, Z. Janosi, and P. Haley, “The use of the nato reference
mobility model in military vehicle procurement,” SAE Technical Paper,
Tech. Rep., 1981.

J. Hetherington, “The applicability of the MMP concept in specifying
off-road mobility for wheeled and tracked vehicles,” Journal of terrame-
chanics, vol. 38, no. 2, pp. 63-70, 2001.

D. Rowland, “Tracked vehicle ground pressure and its effect on soft
ground performance,” in Proceedings of the 4th International ISTVS
Conference April, 1972, pp. 24-28.

J. Wong, “On the role of mean maximum pressure as an indicator of
cross-country mobility for tracked vehicles,” Journal of terramechanics,
vol. 31, no. 3, pp. 197-213, 1994.

J. Wong, P. Jayakumar, E. Toma, and J. Preston-Thomas, “A review of
mobility metrics for next generation vehicle mobility models,” Journal
of Terramechanics, vol. 87, pp. 11-20, 2020.

M. Bradbury, J. Dasch, R. Gonzalez, H. Hodges, A. Jain, K. Jagnemma,
M. Letherwood, M. Mccullough, J. Priddy, B. Wojtysiak et al., “Next-
generation NATO reference mobility model (NG-NRMM),” Tank Au-
tomotive Research, Development and Engineering Center (TARDEC),
Warren, MI, 2016.

M. McCullough, P. Jayakumar, J. Dasch, and D. Gorsich, “Developing
the next generation NATO reference mobility model,” US ARMY
TARDEC WARREN United States, Tech. Rep., 2016.

K. Xia, “Finite element modeling of tire/terrain interaction: Application
to predicting soil compaction and tire mobility,” Journal of Terrame-
chanics, vol. 48, no. 2, pp. 113-123, 2011.

(32]

[33]

[34]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

A. Recuero, R. Serban, B. Peterson, H. Sugiyama, P. Jayakumar, and
D. Negrut, “A high-fidelity approach for vehicle mobility simulation:
Nonlinear finite element tires operating on granular material,” Journal
of Terramechanics, vol. 72, pp. 39-54, 2017.

R. Gonzilez, P. Jayakumar, and K. Iagnemma, “Stochastic mobility
prediction of ground vehicles over large spatial regions: a geostatistical
approach,” Autonomous Robots, vol. 41, no. 2, pp. 311-331, 2017.

K. Choi, P. Jayakumar, M. Funk, N. Gaul, and T. M. Wasfy, “Framework
of reliability-based stochastic mobility map for next generation NATO
reference mobility model,” Journal of Computational and Nonlinear
Dynamics, vol. 14, no. 2, 2019.

J. Yin, D. Shen, X. Du, and L. Li, “Distributed stochastic model
predictive control with taguchi’s robustness for vehicle platooning,”
IEEE Transactions on Intelligent Transportation Systems, 2022.

D. Shen, J. Yin, X. Du, and L. Li, “Distributed nonlinear model pre-
dictive control for heterogeneous vehicle platoons under uncertainty,” in
2021 IEEE International Intelligent Transportation Systems Conference
(ITSC). 1EEE, 2021, pp. 3596-3603.

Y. Liu, C. Jiang, Z. P. Mourelatos, D. Gorsich, P. Jayakumar, Y. Fu,
M. Majcher, and Z. Hu, “Simulation-based mission mobility reliability
analysis of off-road ground vehicles,” Journal of Mechanical Design,
vol. 143, no. 3, 2021.

Y. Liu, C. Jiang, X. Zhang, Z. P. Mourelatos, D. Barthlow, D. Gorsich,
A. Singh, and Z. Hu, “Reliability-based multivehicle path planning
under uncertainty using a bio-inspired approach,” Journal of Mechanical
Design, vol. 144, no. 9, p. 091701, 2022.

S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378-
400, 2001.

M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “Path planning for
motion dependent state estimation on micro aerial vehicles,” in 2013
IEEE international conference on robotics and automation. 1EEE, 2013,
pp- 3926-3932.

N. A. Melchior and R. Simmons, “Particle RRT for path planning with
uncertainty,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation. 1EEE, 2007, pp. 1617-1624.

I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using RRT*
based approaches: a survey and future directions,” International Journal
of Advanced Computer Science and Applications, vol. 7, no. 11, 2016.
J. Yin, Z. Hu, Z. P. Mourelatos, D. Gorsich, A. Singh, and S. Tau,
“Efficient reliability-based path planning of off-road autonomous ground
vehicles through the coupling of surrogate modeling and rrt*,” I[EEE
Transactions on Intelligent Transportation Systems, pp. 1-16, 2023.

J. Yin and X. Du, “High-dimensional reliability method accounting
for important and unimportant input variables,” Journal of Mechanical
Design, vol. 144, no. 4, 2022.

A. Gallina, R. Krenn, M. Scharringhausen, T. Uhl, and B. Schifer,
“Parameter identification of a planetary rover wheel—soil contact model
via a bayesian approach,” Journal of Field Robotics, vol. 31, no. 1, pp.
161-175, 2014.

R. Serban, M. Taylor, D. Negrut, and A. Tasora, “Chrono:: Vehicle:
template-based ground vehicle modelling and simulation,” International
Journal of Vehicle Performance, vol. 5, no. 1, pp. 18-39, 2019.

A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleis-
chmann, M. Taylor, H. Sugiyama, and D. Negrut, “Chrono: an open
source multi-physics dynamics engine,” in International Conference on
High Performance Computing in Science and Engineering. Springer,
2015, pp. 19-49.

J. Yin and X. Du, “Active learning with generalized sliced inverse
regression for high-dimensional reliability analysis,” Structural Safety,
vol. 94, p. 102151, 2022.

Y. Liu, D. Barthlow, Z. P. Mourelatos, J. Zeng, D. Gorsich, A. Singh,
and Z. Hu, “Mobility prediction of off-road ground vehicles using a
dynamic ensemble of NARX models,” Journal of Mechanical Design,
vol. 144, no. 9, p. 091709, 2022.

G. J. McLachlan and K. E. Basford, Mixture models: Inference and
applications to clustering. M. Dekker New York, 1988, vol. 38.

C. Jiang, Z. Hu, Y. Liu, Z. P. Mourelatos, D. Gorsich, and P. Jayakumar,
“A sequential calibration and validation framework for model uncertainty
quantification and reduction,” Computer Methods in Applied Mechanics
and Engineering, vol. 368, p. 113172, 2020.



SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

Jianhua Yin (Member) received the B.E. and M.S.
degree in Geotechnical Engineering from Chang’an
University (2014), Xi’an and Nanjing University
(2017), Nanjing, respectively, in China. He received
the Ph.D. degree in School of Mechanical Engi-
neering, Purdue University, West Lafayette, in 2022.
He is currently a research fellow at the University
of Michigan. His current research interests include
uncertainty quantification, machine learning, and in-
telligent vehicles & transportation.

Lingxi Li (Senior Member) received his Ph.D. de-
gree in Electrical and Computer Engineering from
the University of Illinois at Urbana-Champaign in
2008. Since August 2008, he has been with Indiana
University-Purdue University Indianapolis (IUPUI)
where he is currently professor in electrical and com-
puter engineering. Dr. Li’s current research focuses
on the modeling, analysis, control, and optimiza-
tion of complex systems, intelligent transportation
systems, connected and automated vehicles, active
safety systems, human-machine interaction, digital
twins and parallel intelligence. He has authored/co-authored over one book
and 130+ research articles in refereed journals and conferences, and received
two U.S. patents. Dr. Li received a number of awards including five conference
best paper awards, 2021 IEEE ITSS Outstanding Application Award, 2017
Outstanding Research Contributions Award, 2012 T-ITS Outstanding Editorial
Service award, and several university research/teaching awards. He is currently
serving as an associate editor for five international journals.

Zissimos P. Mourelatos is currently a Distinguished
Professor of Mechanical Engineering at Oakland
University. He has served as the Chair of the Me-
chanical Engineering Department (2010-2014), and
the John F. Dodge Chair of Engineering (2012-
2016) at Oakland University. Before joining Oakland
University, he spent 18 years at the General Motors
Research and Development Center. He received his
Ph.D. from the University of Michigan in 1985.
Dr. Mourelatos conducts research in the areas of
design under uncertainty, Reliability-Based Design
Optimization, vibrations and dynamics. Dr. Mourelatos has published over
240 journal and conference publications. Dr. Mourelatos is a Fellow of ASME
and SAE.

Yixuan Liu received B.E. degree in energy and
power system engineering from Xi’an Jiao Tong
University, Xi’an, China, in 2016, Master’s de-
gree in mechanical engineering from University of
Michigan-Dearborn, Dearborn, Michigan, USA, in
2017, and Ph.D. degree in industrial and system
engineering from University of Michigan-Dearborn,
Dearborn, Michigan, USA, in 2022. His current
research interests include vehicle simulation and
modeling, vehicle mobility reliability analysis, un-
certainty quantification, and machine learning.

14

David Gorsich is the Army’s Chief Scientist of U.S.
Army Combat Capabilities Development Command
(CCDC) Ground Vehicle Systems Center (GVSC).
He received his Ph.D. in applied mathematics from
MIT. His current research interests are vehicle dy-
namics and structural analysis, reliability based de-
sign optimization, underbody blast modeling, terrain
modeling and spatial statistics. Dr. Gorsich has pub-
lished more than 150 conference and journal articles.
Dr.Gorsich was named a SAE Fellow in 2008 and a
ASME Fellow in 2020. He has served on the SAE
Technical Standards Board, been the chair for the SAE International Standards
Committee for Ground Vehicle Reliability and also on the SAE Board of
Directors.

Amandeep Singh is the Branch Chief at US Army,
GVSC Vehicle Dynamics and Mobility M&S team.
He has over twenty-seven years of technical lead-
ership and research experience in vehicle dynam-
ics, mobility, and reliability working at Government
and automotive industry. He received his MS from
Clemson University in 1995, and PhD from Oakland
University, Michigan in 2010, both in Mechanical
Engineering. He is a registered Professional Engi-
neer with the State of Michigan.

Seth Tau is a Mechanical Engineer at the U.S. Army
Combat Capabilities Development Command (DE-
VCOM) Ground Vehicle Systems Center (GVSC).
He received his Master’s degree in mechanical en-
gineering, in 2019, and his Ph.D. in mechanical
engineering, in 2021, both from The Pennsylvania
State University. His current research interests in-
clude vehicle dynamics and mobility, autonomous
vehicle planning algorithms, machine learning, and
uncertainty quantification.

Zhen Hu received B.E. degree in mechanical engi-
neering from Central South University, Changsha,
China, in 2008, Master’s degree in mechatronics
engineering from Huazhong University of Science
and Technology, Wuhan, China, in 2011, and Ph.D.
degree in mechanical engineering from Missouri
University of Science and Technology, Rolla, MO,
USA, in 2014. His current research interests include
vehicle mobility reliability analysis, design under
uncertainty, uncertainty quantification, Bayesian in-
ference, and additive manufacturing.



