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Abstract—Reliability-based global path planning incorporates
reliability constraints into path planning to ensure that off-road
autonomous ground vehicles can operate reliably in uncertain
off-road environments. Current two-stage reliability-based path
planning methods involve separate stages for surrogate modeling
of mobility prediction and global path planning, resulting in a
large number of unnecessary mobility simulations that makes the
approaches computationally expensive. To tackle this challenge,
this work proposes a novel efficient reliability-based global path
planning approach, named ER-RRT#*, which couples adaptive
surrogate modeling with the rapidly-exploring random tree star
(RRT%*) algorithm. Firstly, a surrogate model for vehicle mobility
prediction is used to guide the exploration of random trees subject
to a mobility reliability constraint. Subsequently, the exploration
trees and reliability assessment are employed to inform mobility
simulations for the surrogate model refinement. These steps are
implemented iteratively and thereby drastically reducing the
required mobility simulations for path planning through the
integration of adaptive surrogate modeling with global path
planning. With a focus on the uncertainty in the slope map
and soil properties of deformable terrain, we demonstrate ER-
RRT* using a case study and compare it with the current two-
stage approach. The results show that ER-RRT#* is much more
efficient than the current method in both computational time
and the required number of mobility simulations for surrogate
model construction. In addition, the path identified by ER-RRT*
exhibits a comparable cost in distance to its counterpart obtained
using the two-stage method.

Index Terms—Reliability, path planning, uncertainty, off-road,
autonomous ground vehicle

I. INTRODUCTION

Path planning is critical for autonomous ground vehicles
and robotics [1]-[4]. It is used to find the shortest path from a
starting point to the goal point meeting specific safety and

This research was supported by the Automotive Research Center (ARC)
in accordance with Cooperative Agreement W56HZV-19-2-0001 U.S. Army
DEVCOM Ground Vehicle Systems Center (GVSC), Warren, MI, and in part
by the U.S. National Science Foundation under Grant CMMI-2301012. The
support is gratefully acknowledged (Corresponding author: Zhen Hu.)

Jianhua Yin and Zhen Hu are with the Department of Industrial and Manu-
facturing Systems Engineering, University of Michigan-Dearborn, Dearborn,
MI 48128, USA (E-mail: yin1991me @gmail.com, zhennhu@umich.edu).

Zissimos P. Mourelatos is with the Mechanical Engineering Depart-
ment, Oakland University, Rochester, MI 48309, USA (E-mail: moure-
lat@oakland.edu).

David Gorsich, Amandeep Singh and Seth Tau are with the U.S.
Army Combat Capabilities Development Command, Ground Vehicle Sys-
tems Center, Warren, MI 48397, USA (E-mail: {david.j.gorsich.civ, aman-
deep.singh2.civ, seth.a.tau.civ} @army.mil).

DISTRIBUTION A. Approved for public release; distribution unlimited.
OPSEC # 7179.

energy requirements. Two types of path planning methods
exist, namely online (local) path planning [5]-[7] and offline
(global) path planning [8]-[10]. Online path planning updates
the next position based on the perception of the surrounding
environment using sensors (e.g. Lidar, Radar, camera, etc.) in
a real-time manner [11]. Offline path planning determines the
optimal path in the target area before a mission begins, based
on prior environmental information.

One important application of path planning is in off-road
autonomous ground vehicles (AGVs). Deploying AGVs in
harsh and/or boring off-road working environments, such as
battlefields [12], outer space [13]-[15], or the agricultural
industry [16], could benefit from reducing fatalities and la-
bor cost. Although current online and offline path planning
methods have shown promising performance for robots and
autonomous vehicles working on well-structured roads using
proper path planning and control strategies [17]-[20], chal-
lenges still exist in their application to off-road AGVs. First,
sensor-perception-based online path planning could fail to
detect the obstacles in the working environment of off-road
AGVs. For example, sensors may not able to identify terrain
conditions, such as sand, mud pond, and wet soil [21]. Even
if a camera can detect the terrain condition, it cannot tell
whether the AGVs will lose mobility in the deformable terrain.
Second, the working environment of off-road AGVs is highly
uncertain, which leads to uncertainty in vehicle mobility [22].
For instance, the soil properties of a certain soil type in the off-
road environment are uncertain in nature. Even for the same
type of soil, soil properties such as the cohesive strength, and
friction coefficient can vary across locations and are unknown.
Since it is impossible to measure the soil properties at every
location, these parameters have to be modeled as uncertain
variables to describe the natural variability which leads to
uncertainty of the off-road AGV mobility. As a result, the
vehicle has a certain chance of losing mobility in a deformable
terrain. The area where the vehicle loses mobility is defined as
an obstacle that is probabilistic instead of deterministic due to
uncertainty. Without taking the uncertainty of vehicle mobility
into account in path planning, the resulting mission could have
a high chance of failure.

A. Path planning based on modeling and simulation

Physics-based modeling and simulation (M&S) can poten-
tially address the aforementioned challenges of path plan-
ning of AGVs in complex and uncertain off-road working
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environments for several reasons [23]-[25]. First, physics-
based high-fidelity M&S can predict various vehicle mobility
quantities for given terrain conditions before operating the
actual vehicle. In this way, whether the vehicle will lose
mobility (e.g., get stuck) on a mission can be predicted using
a physics-based method. Second, physics-based M&S allows
for the consideration of various uncertainty sources in path
planning to ensure the reliability of a planned mission. Since
offline global path planning is less computationally demanding
compared to online local path planning, it can be used with
physics-based mobility prediction. To quantify the influence
of various uncertainty in the working environment of off-road
AGVs, the computationally expensive high-fidelity M&S must
be executed numerous times (e.g., millions of times if the
direct Monte Carlo simulation (MCS) method is adopted).
The required computational effort could be prohibitive even
for M&S-based off-line global path planning. How to accu-
rately and efficiently predict vehicle mobility in the off-road
environment and in the presence of uncertainty remains a long-
standing research problem.

Many studies have been carried out focusing on improving
the fidelity of the physics-based mobility model starting from
the 1960s. The current mobility models for M&S can be
roughly classified into two categories, namely semi-empirical
models and computational simulation models. Semi-empirical
models [26]-[28], for example the NATO Reference Mobility
Model (NRMM) [26], are built from experience and experi-
ments, which are very efficient to solve but may have large
errors in mobility prediction [29]. Computational simulation
models [30]-[32] have arisen and become popular in recent
years with the advancement of computational mechanics,
multi-physics analysis, and the improvement in computing
power. These simulation models are usually partial differential
equations solved by finite element method (FEM) or other
numerical methods, which have high fidelity. For instance,
vehicle mobility is predicted considering the coupled vehicle-
tire-terrain interactions solved by FEM and discrete element
method in Refs. [33], [34]. The U.S. Army and NATO
are making an effort to develop the next-generation NRMM
model, named NG-NRMM, by leveraging a high-performance
computing platform, numerical algorithms for high-fidelity
vehicle-terrain interactions, uncertainty quantification meth-
ods, and integration with GIS data and mapping software [30].
While the mobility simulation models are getting more and
more sophisticated and accurate, the required computational
power is also getting higher and higher.

B. Reliability-based path planning

Motivated by finding a reliable path under uncertain off-road
environments and overcoming the associated computational
challenges caused by high-fidelity mobility simulations, sev-
eral approaches have been developed using surrogate models,
which replace the original mobility simulation model with
a cheap yet accurate machine learning model. For instance,
Gonzalez et al. [25] combined Kriging surrogate model with
MCS to quantify the uncertainty of vehicle mobility caused
by uncertainty in terrain and soil parameters. A stochastic
mobility map was constructed using dynamic Kriging to

predict the reliability of an AGV in an area of interest
[35]. Jiang et al. [21] proposed a two-stage reliability-based
global path planning approach which considered uncertainty
in a more realistic manner and took the space-dependency
of the environment uncertainty into account [36]-[38]. Based
on the two-stage framework, several reliability-based path
planning approaches have been developed with more advanced
reliability considerations [23], [24].

C. Motivation

Although the current surrogate modeling methods show
promising potential in tackling the computational challenge
in reliability-based path planning using physics-based M&S,
they require a lot of computational effort to train an accurate
surrogate model. Sometimes, the required computational cost
is even prohibitive if reliability constraints are considered.
This is mainly attributed to the following reasons. First,
current methods find an accurate reliability map in the whole
target area before path planning. This process explores all the
locations on the map, in which some exploration might be
unnecessary since these areas may not be useful at all for
path planning. This will lead to huge computational cost waste,
especially when the target map is large. Second, the mobility at
the next step not only depends on the locations that the vehicle
passed but also on the future locations for dynamic problems.
There are too many combinations of the training paths which
makes it computationally too expensive to train an accurate
surrogate model that can fully represent the original physics-
based high-fidelity M&S. There is an urgent need to develop a
more efficient surrogate modeling method for reliability-based
global path planning.

D. Contributions

This paper meets the above need by creating a novel
reliability-based global path planning approach through the
coupling of adaptive surrogate modeling and rapidly-exploring
random tree star (RRT*) method. The proposed approach
finds the shortest path while satisfying mobility reliability
requirements by sequentially implementing surrogate model
refinement using active learning, reliability map updating, path
planning, and path validation. Different from the conventional
two-stage approaches, the proposed method does not need
to explore the whole map area which can reduce the com-
putational cost of generating a reliability map. The mobility
surrogate model and reliability map are updated recursively by
validating the sub-area around the path identified in each itera-
tion. The RRT* algorithm is coupled with the refinement of the
mobility surrogate and reliability map (obstacle map) updating
to more effectively utilize the computational resources. In
addition, the existing random trees from previous RRT* are
trimmed based on the updated obstacles in the map, so that
the trees from the previous iteration can be reused and served
as the initial random trees of current path planning instead of
starting a new exploration in every iteration using RRT*. As
shown in the numerical example provided in Section V, such
a coupling between adaptive surrogate modeling and RRT*
leads to a significant reduction in the computational cost for
global path planning.
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Fig. 1. An overview of the model-based approach to global path planning for off-road AGVs. (a) A geological map is characterized by satellites or geological
survey. (b) Slope map, soil map, and vehicle dynamics are parameterized based on geological information including the terrain slope, soil properties, and
vehicle-related parameters. (c) Path planning with physics-based modeling & simulation (M&S) is used to obtain a reliable path. Physics-based M&S is
employed to describe the interactions between vehicles and terrain for the prediction of vehicle mobility at different locations.

The contributions of this work are multi-fold and are
summarized below.

o An efficient reliability-based global path planning is
proposed via the coupling of adaptive surrogate modeling
and global path planning.

e Accounting for reliability constraint in path planning
in the proposed framework. The sequential updating of
the reliability map in subareas of interest reduces the
exploration effort and area without sacrificing accuracy.

o The efficiency of the overall algorithm is improved by
reusing the trees of RRT* from previous iterations instead
of starting a new exploration. This is especially attractive
when the map is large.

The remainder of the paper is organized as follows. The
work related to this study is reviewed in Section II. The general
elements of reliability-based global path planning are provided
in Sectiont III. In Section IV, the proposed coupled reliability-
based path planning approach is presented. A case study is
used to demonstrate the proposed approach in Section V. Last,
concluding remarks are given in Section VI.

II. PRELIMINARY
A. Model-based global path planning
Model-based global path planning finds the shortest path
given the map information and a physical model (vehicle

dynamics model). Fig. 1 presents an overview of model-
based global path planning. Several general concepts and their

symbols are defined here and are used throughout the paper
to explain the proposed method.

The target map is called the configuration space and is
denoted by 2. Arbitrary coordinates in €2 are represented as
x = (x1, x2), which are respectively the latitude and longitude
positions in the configuration space. The space with obstacles
that an AGV cannot pass in {2 is called an “obstacle space”
denoted by €. The space that an AGV can maintain its
mobility in €2 is called a “free space” and is denoted by Qgee.

Based on the above definitions, a generalized optimization
model for model-based path planning is given by

I" = argmin{L(I")}

S.t.

Xp € I'= Xini; Xend € I'= Xgoal M
X; € ereea vx; €T

Xgoal = {X S ereel ||X - Xgoal” < 5}a

where T'* is the optimal path, L(T") is the cost of a path which
is in the configuration space (I' € ), the starting point x( of
a path I' is the initial point x;,; of the mission, and the end
point Xcnq of I' is the goal xg4,1 Of the mission. Besides, all
coordinates x; on I' (Vx; € I') should be in the free space
Qfree. It is assumed that the goal Xgoa is found when the
distance between a location x in Qpee and Xgoa1 is less than
a threshold distance e.

The free space and obstacle space depend on the mobility
of vehicles. If a vehicle loses mobility at specific locations,
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the locations belong to obstacle space. On the other hand,
the location belongs to free space if the vehicle can maintain
mobility at the location. Due to the presence of deformable
terrain, the free and obstacle spaces are not explicitly known
and need to be predicted using a physics-based mobility
simulation model. Next, we discuss how to classify a location
as an obstacle or free-space based on physics-based analysis.

B. Physics-based mobility simulation model

The physics-based vehicle mobility prediction model used
in this work is a high-fidelity multi-body dynamics simulation
model coupled with a deformable terrain mechanics model,
called PyChrono [39], [40]. Fig. 2 shows an example of a
moving AGV in the simulation of PyChrono.
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Fig. 2. An example of PyChrono simulation. The simulation includes vehicle
dynamics and vehicle-terrain interaction.

The mobility model is mathematically represented by multi-
ple coupled partial differential equations (PDEs). Since solving
the PDEs is not a contribution of this work, we present a
general form of mobility model instead of providing the PDEs.
The generalized mobility model is given by

Y(x) = M(C,S(x)),x € Q, 2)

where Y (x) represents the vehicle mobility (maximum attain-
able speed in this work) at location x in the map €); C is
a vector of vehicle-related parameters; and S(x) is a vector
of terrain-related parameters including terrain slope, soil bulk
density, soil friction coefficient, etc. (see Sec. V for details) at
location x.

Based on the physics-base mobility simulation, the free
space (0. and obstacle space (25 given in Eq. (1) are defined

as
{ereea if Y(X) 2 Ye,
€ ,V

x € Q. 3)
Qos, IfY(X) < ye

where y. is the threshold to determine whether the vehicle
loses mobility. As mentioned above, the mobility considered
in this paper is the maximum attainable speed. If the maximum
attainable speed is less than y., the vehicle will get stuck in
the deformable terrain (i.e., loss of mobility).

C. RRT*

RRT* is a sampling-based path planning algorithm using a
space-filling random tree technique. The tree grows starting
from the initial point X;,; until a path is found toward the
goal Xgoa1. A Tandom tree growing is a process of generating
a number of random samples in 2. The random samples are
accepted if X;and € Qee and rejected if X;ang € os. This
process is also called collision check. The nearest node X
to the accepted random node X,,y,q is identified. If there is no
obstacle between X4 and X;anq, then X,,nq is accessible to
Xnst- The random node X,..q is then inserted into the tree.
If x;anq cannot access Xpst, a steering function is used to
generate a new node Xy, Which is added to the tree by
connecting it to Xyg; after Xjew and Xys pass the collision
check.

Next, the most important feature of RRT* called rewiring
is used to modify the tree. The rewiring process consists of
four major steps as shown in Fig. 3. The numbers on the edges
used to connect two nodes are the distances between the paired
nodes. The four major steps are summarized as follows.
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Fig. 3. Illustration of the rewiring process of RRT*.

Step 1: finding the the neighbor nodes of xe, within a
sphere whose radius is defined by

1
IOg Niter > dim
r=y{——m™ ) 4)
( Niter

where v is a constant coefficient, nji, is the iteration number
of random sampling, and dim is the dimension of the configu-
ration space. Four neighbors are identified in the defined area
of Eq. (4) as shown in Fig. 3(a).

Step 2: identifying the parent node from the four neighbor
nodes. From X;j,; t0 Xpew, if the cost (distance) of a path that
passes one of the neighbors is the lowest, the neighbor node is
the parent node. According to Fig. 3(b), node 5 is the parent
node x,, with the lowest cost of 11.

Step 3: finding the child node x. from the other three
neighbor nodes. The path from x;,; to X. passing x, and
Xnew, the lowest cost is 12 when node 6 is the child node x..
Hence, we have the child node (node 6) as illustrated in Fig.
3(c).
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Step 4: rewiring the edges by removing the edges with
higher cost (9 — 4 and 4 — 6) and adding new edges (5 — 9
and 9 — 6). The rewired tree is shown in Fig. 3(d).

III. RELIABILITY-BASED PATH PLANNING
A. Problem formulation

As discussed previously, uncertainty prevails in AGV and
its working environment. The uncertainty sources lead to
uncertainty in vehicle mobility given Eq. (2). As a result,
the obstacle space and free space defined in Eq. (3) are also
uncertain. If a deterministic path planning approach is used to
find the optimal path, the mission has a certain chance to fail.
The reliability-based path planning, therefore, is introduced
to tackle this issue. Reliability-based path planning finds the
shortest path while satisfying certain reliability requirements,
named state mobility reliability (SMR) [21]. The mobility
reliability at a certain location x in the configuration space
is defined by

R(x) = Pr{Y(x) = M(C,S(x)) > y.}
= / fe,s(c,s(x))dcds, o)

Y (x)>ye
where fc s(c,s(x)) is the joint probability density function
(PDF) in terms of C and S(x). Based on the definition of

reliability, the reliability-based free space and obstacle space
are given by

eree; if R(X) Z Rlim7

X € , (6)
Qos, if R(x) < Ryim

in which Ry, is the reliability requirement. Accordingly, we

can rewrite Eq. (1) in a probabilistic manner resulting in the
reliability-based path planning model given by

™ = arg min{L(I')}

s.t.
xo €l = Xini; Xend € I'= Xgoal (7)
X, € ercca Vx; € I’
Qtree = {X|R(X) > Riim, Vx € Q}
Xgoal = {X S ereel ||X - Xgoal” < 5}~
However, evaluating Eq. (5) is computationally prohibitive,
if the high-fidelity mobility simulation model is used directly.
This is attributed to the fact that each reliability assessment

requires thousands of runs of the mobility prediction model
for any given location in the configuration space.

B. Surrogate Modeling

To address the computational challenge in reliability-based
path planning, a computationally cheap yet accurate surrogate
model is usually constructed to replace the original high-
fidelity mobility simulation model using machine learning
(ML) methods as

V(x) = Gu(C,8(x)), (8)

where Y (x) denotes the prediction of a ML method, and
G s (+) denotes the ML-based surrogate model.

Since the ML model is cheap to evaluate, the reliability
given in Eq. (5) can be approximated using Monte Carlo
Simulation (MCS) as follows [41]

Nmes N
_Zl 1(Y (%))

)
NII]CS

where Ny is the number of MCS samples and 1(Y (x)) is
an indicator function given by

. 1, V() >y

Then, the free space and obstacle space can be approxi-
mated using Egs. (6) and (9). The accuracy of the surrogate
model is critical for reliability-based path planning, and is
significantly affected by the data used for the training. How
to effectively construct an accurate surrogate model with a
limited number of training data from high-fidelity simulations
is an active research topic, in which active learning is one of
the popular ways to refine the surrogate model and to improve
the prediction accuracy of a surrogate model [42], [43].

R(x) =~ 9

(10)

C. The existing methods and challenges

As shown in Fig. 4, the existing method employs a two-
stage strategy for reliability-based path planning. The first
stage is to train a very accurate surrogate model based on
high-fidelity simulations and model refinement using active
learning. After that, in the second stage, the optimal path is
identified using RRT* based on reliability analysis using the
trained surrogate model by accounting for uncertainty sources
in the mobility model. Even though it is much more efficient
than the original high-fidelity simulation model, such a two-
stage approach could still be computationally expensive for
two main reasons:

o The computational cost for training a very accurate sur-

rogate model could be very high, when the map is large
or there are a large number of input variables [44].

o The reliability map does not need to be accurate ev-
erywhere since it is highly possible that many areas of
the map will not be important at all for path planning.
Improving the accuracy of the reliability map in those
areas could be a waste of computational resources.

Motivated by improving the efficiency of model-based path
planning, we propose an efficient approach through the cou-
pling of adaptive surrogate modeling and path planning as
illustrated in Fig. 4. The main difference between the proposed
method and the existing method is that the adaptive surrogate
modeling and path planning are performed in a sequential and
mutually informed manner instead of in two stages. Next, we
introduce the proposed method in detail.

IV. COUPLING OF ADAPTIVE SURROGATE MODELING WITH
RRT*

Since the proposed method couples adaptive surrogate mod-
eling with RRT* for efficient reliability-based path planning,
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Fig. 4. Comparison of the existing two-stage method and the proposed method. The existing method uses a two-stage strategy which first trains an accurate
surrogate model based on which an optimal path is determined by RRT*. Proposed method couples surrogate refinement and path planning iteratively to

find the optimal path.

we named it efficient reliability-based RRT* (ER-RRT*). As
mentioned above, different from the conventional two-stage
approach, ER-RRT* couples the surrogate model refinement
with path planning. The surrogate model refinement is used
to improve the accuracy of the reliability map for reliability-
based path planning. The path planning algorithm RRT#* in
turn informs the refinement of the surrogate model. A unique
feature of the proposed method is that the refinement area of
the reliability map is only in the vicinity of the path identified
by RRT* instead of the whole map. This leads to a drastic
reduction in the computational effort for surrogate modeling
for reliabiltiy-based path planning. Moreover, to reduce the
overhead time, we propose a trim tree algorithm to use the
tree generated by RRT* from previous iterations instead of
starting a new search at each iteration.

Next, we introduce different elements of the ER-RRT*
algorithm, which include uncertainty modeling, pseudo path
planning based on surrogate modeling, surrogate model re-
finement informed by path planning, and tree updating.

A. Uncertainty Modeling

As discussed previously, uncertainty prevails in the working
environment of AVGs and vehicles themselves. In this work,
we only consider the uncertainty from the working environ-
ment (slope and soil) of the AGV. The uncertainty is space-
dependent and simulated by random fields [36], [45], [46].
The truncated Karhunen-Loeve (K-L) expansion is employed
to generate realizations of the random fields and is given by
[47]

Tn
s = n) + 003 Viei&, A
i=1
where s(x) is a realization of a random field S(x), u(x)
and o(x) are respectively the spatial-dependent mean and

standard deviation functions of the random field, x is the
spatial location, 7,, is the number of truncation terms, A;
and ¢;(x) are the eigenvalue and eigenvector from eigen-
analysis of a correlation matrix, respectively, and &; is the
i*" independent standard normal random variable.

The correlation matrix is obtained using the correlations of
a set of mesh nodes based on a correlation function which is
given by

k12 = exp {—||(x1 — x2) @ Ox||,}, (12)

where k5 is the correlation of two points, x; and xo are
two arbitrary points of the mesh nodes, and 6y is a vector of
correlation lengths, © represents the Hadamard (element-wise)
division, and ||-|2 represents the £2-norm operation. If we use
a uniform mesh (V,,, x N,,,) to mesh the configuration space,
the size of the correlation matrix is N2, x N2,.

B. Surrogate Modeling and Pseudo Path Planning

As discussed previously, the high-fidelity simulation by
PyChrono is time-consuming for obtaining the reliability map
since numerous runs of the simulations are needed. There-
fore, we construct a surrogate model using Gaussian Process
Regression (GPR) to replace the original PyChrono model.

First, we use Latin Hypercube Sampling (LHS) to generate a
group of training data for GPR training according to the range
of the uncertain parameters. The training samples of the inputs
are denoted by [S] = {s(}X, whose corresponding labels
(i.e., maximum attainable speed given in Eq. (2)) are obtained
by evaluating the PyChrono model and given by [Y] =
{y™M}N . We define the training data as D = {s() 4O}V

The GPR model is obtained using the training points and is
denoted by

§=G(s)[D=1(s)"B+¢, (13)
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where § is the predicted response by the GPR model, G(s)|D
means the GPR model in terms of the terrain-related pa-
rameters s given the training data D, f(-) is a vector of
basis functions, 3 is a vector of the coefficients of the
basis functions, and ( is a noise term following a Gaussian
process with the mean of 0 and the variance of o2, namely,
¢ ~ N (0,0?). To train the GPR model, we maximize the
likelihood of the prior distribution and posterior distribution
given the training data D. The prior distribution of the training
points is estimated by

[Y] ~ N (0, K([S],[S]) + 0°1,,) , (14)

where K ([S],[S]) is a N x N symmetric covariance matrix;
I,, is an N-dimensional unit matrix. The Matern kernel is
employed to obtain the covariance matrix [48]. Given a set of
new samples [S*], the joint prior distribution of the training

points and new points is given by
D , (15)

] (o]

where [Y*] is the prediction of GPR by evaluating [S*],
Ksg is the abbreviation of K ([S],[S]), Kss+ = Kdg. is the
covariance matrix between training points [S] and the new
points [S*], and Kg«s- is the covariance matrix of the new
points. After the training of the GPR model, the posterior
distribution of an arbitrary point is given by

§=G(8)[D ~ N (uy(s)|D, 03(s)|D)

Kss + 0’21n
Kss-

T
Kgg.
Kg-g-

(16)

where 4, (s) and o?.(s) are respectively the mean value and
variance of the prediction § of the GPR model.

As discussed in Sec. IV-A, the random field is used to
describe the uncertainty of slope and soil parameters s =
[31,52,...,sm]T. The uncertain parameters can be rewriten
as s(x) = [s1(x),52(x), ..., Sm(x)]T since they are space-

dependent variables. Hence, we have maps of §(x) by map-
ping the spatial-dependent input s(x) using Eq. (13), where
§(x) ~ N (py(s(x)),02(s(x))) The size of §j(x) is the same
as the mesh size in Sec. IV-A. Fig. 5 illustrates the spatial-wise
mapping between soil properties and the predicted vehicle

mobility.

Fig. 5. Illustration of spatial-wise mapping between soil property random
realizations and the predicted vehicle mobility maps

As mentioned previously, the AGV mobility of interest in
this paper is the speed-made-good [21]. Specifically, a speed

threshold y. is employed to determine whether the AGV loses
mobility. We assume that the AGV loses mobility if the speed
at a certain location is less than the threshold.

However, the predictions by the GPR surrogate model may
not be accurate in some places due to the limited number of
training data. This inaccurate prediction can be informed by
the surrogate model uncertainty (i.e., epistemic uncertainty).
Problems could be introduced if we directly use the above
criterion to determine if the AGV fails or not. Hence, we
define a pseudo-obstacle event and a pseudo-free event below.
The pseudo-obstacle event (©) for any given slope and soil
parameters s and after considering surrogate model uncertainty
is defined as follows.

O(s)

N Pr{y(s) > yelpy(s) <ye} < x ¢,

Accurately classified

= Hy (S) < Ye

Obstacle condition

a7)

where Y is the classification accuracy requirement. Recall that
9(s) from GPR is a random variable due to model uncertainty,
Pr{g(s) > ye|py(s) < y.} means the probability that g(s) >
ye given the mean value /i, (s) of g(s) is less than y.. It means
that only if we have very high confidence that the obstacle is
accurately classified, we considered it as an “obstacle”.

The corresponding pseudo free event (F) is given by

(18)

As mentioned above, for given s, the GPR prediction
follows a Gaussian distribution and thus we have

Pr{(s) > weluy(s) <y} =1-@ (y—m) .

ay(s)
’ (19)
The above equation is equivalent to
U(s) = ‘“y(s)ye > [0 (x) - (20)
oy(s)

In this paper, we use x = 0.05 (i.e.,
can then rewrite Eqgs. (17) and (18) as

P(x)| = 2). We

Os) =4 ms)<ye N Uls)=2 5, (D
—— ——
Obstacle condition Accurately classified
and
F(s)={py(s) > ye U U(s) < 2}. (22)

We define an indicator function for the pseudo-free event
for given s as

1, F(s)is true,
R . (23)
O

(s) is true,
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For a given spatial location x, due to uncertainty in slope
and soil parameters, the probability that this location is
pseudo-free (i.e., pseudo reliability) can be computed as

(Rp(x)|D) = / 17(5) fs e (5)ds
Nimes
]l]:(S(Z))v

i=1

X (24)

chs

~
~

where N, is the number of MCS samples used to approxi-
mate the integration.

Based on the above equations, we then define the pseudo-
free and pseudo-obstacle spaces on the map as

(ereeu)) = {X|(RF(X)|D) > Rlim}v

. 25)
(Q6s|D) = {x|(Rr(x)|D) < Riim}-
Since (Rr(x)|D) > R(x), we have
X E (ereeID); VX € Qfree
... If e Qree’R Z Rim7
X € Oires, Rix) 2 By 26)

(Rp(x)|D) > R(x) > Rijm,
Thus, x € (eree\D).

We, therefore, have the following relationship between the
pseudo spaces and the true spaces

Qtree € Qpree and Qs € o

27)

Fig. 6 shows a pseudo reliability map obtained using Eq.
(24) by substituting the coordinates of the configuration space.

~ |>q =2 &N -+

Reliability Map
Fig. 6. Reliability map generation by MCS

Once the pseudo spaces are available, the optimal path
(IT'*|D) can be identified using the RRT* algorithm in Sec.
II-C. The detailed procedure of RRT* is given in Algorithm
1. The optimization model of path planning at this stage is
given by

(T*|D) = argminpeq{L(T'|D)}
s.t.
Xp € I'= Xini; Xend € I'= Xgoal
A (28)
X; € er667 VXZ‘ el
Qfree = {X|Rp(x)|D > Riim, Vx € Q}

Xgoal = {X S ercc| ||X - Xgoal” S €}~

Algorithm 1: RRT*
Data: €, Qos7 Xini, Xgoal, Nmax;
Initialize:: T < InsertNode(T, (), Xin;);
Result: T, T ; /+x I'" — Optimal Path =*/

1=1;
while i < Ny do
1=1+1;

Xyand ¢ RandomSampling();

Xnst < FindNearestNode(T, X;and);

Xnew Steer(xnsh Xrand);

if ObstacleFree(Xpew, (2os) then
Xnbor < FindNeighborNodes(T, Xpew, ) ;

/* See Eq. (4) for r =/

x, < ChooseParent(Xnbor, Xnew, Xnst )
T <+ InsertNode(T, X, Xnew);
T + Rewire(T, Xp, Xnew, Xnbor)}

else

‘ break;
end

end

C. Surrogate Model Refinement Informed by Path Planning

According to Eq. (25), the pseudo-free space may include
obstacles that are not detected by the surrogate model. Hence,
we need to verify if the obtained optimal path is reliable
or not. In other words, we need to check if the optimal
path passes obstacles and use that information to enable
targeted refinement of the mobility surrogate model. The path
verification is equivalent to verifying if the accuracy of the
current surrogate model (i.e., the GPR model) is satisfied. We
use the model uncertainty and the U-function in Eq. (20) to
check if the GPR model is accurate enough along the optimal
path.

We first extract the coordinates of I'*|D which are denoted
by {X1,...,X4}. Then, we can find the corresponding random
samples at {Xi,...,X,} by locating the coordinates in the
configuration space. All the random samples form a sample
pool (MCS population) from which the optimal sample is
chosen in active learning. The sample pool is denoted by

, , T
P = [5OGO @)
where {s()(%;)}Xmes denotes all samples at %;,5 = 1,...,p,
{1 (%)} s given by
1)~ 1) =
517 (%)) s’ (%)
{9}y =
STR) s (%)
(30)

Therefore, the total number of samples is N7 = p X Np,¢s and
P € RNtxm,
By evaluating P using Eq. (13), we have

H ) ~ N (05, 260 %)

where ¢ = 1,..., Ny represents the index of a MCS sample,
and 5 = 1,..., q represents the index of a location on the path.

€1y
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We now use active learning to optimally choose a new
sample. Substituting s, (s”(%;)) and o,(s¥)(%;)) into Eq.
(20), we have U(s(”(%;)). The optimal new training point is
identified by

s*= min {U(s9(%;))}. (32)

s(d)(%;)€eP
The corresponding response §* of s* is obtained by the high-
fidelity model in Eq. (2), Then, the new optimal training
point is added to the current training data and the updating
of training data is denoted by

D= {DU[s",§]}. (33)

Next, we retrain the GPR model using the updated training
data following the procedures in Egs. (13)-(16). The active
learning and model updating iteration stops until

min  U(s"(%;)) > 2,

(34)
s()(%;)eP
or the iteration number exceeds the maximum allowed iteration
(AL,ax)- We have the updated GPR model G(s) upon the end
of active learning.
The updating of the reliability map and obstacle map is
straightforward by simply following the procedure in Sec.

IV-B using the updated GPR model.

D. Convergence Criterion & Tree Updating

After the path verification/surrogate model refinement stage,
we have the updated GPR model G(s)|D. Now, we discuss
how to determine if the surrogate model is accurate enough for
path planning and when to stop the refinement of the surrogate,
also known as the convergence criterion. As discussed in Sec.
IV-C, we have locations of the optimal path I'* given by
{X1,...,X4}. We evaluate the samples P from Eq. (29) of I'*
using the updated GPR model, whose responses are denoted
by

Y — |:{y(z) (il)}’f\i!ics7 cel { ( }chs:| (35)
where 50 ~ N (11, (s9(%;)), 02D (%)), j = 1....a.
i=1,..., Nycs.

The estimated reliability at location X;,j = 1,..., ¢ is given
by
ch<
R(%) ~ + 1, ( s(0) xj))) (36)
mcs i=1

where the indicator function 1, (uy(s(i)(ij))) is given by

) (% Lo py(s9(%))) > ve
1, (My(s( )(Xj))) = {0, 1y (3 (X5)) < ye .

Due to surrogate model prediction uncertainty, there is un-
certainty in the estimated mobility reliability given in Eq. (36).
As mentioned previously, the U function given in Eq. (20) can
be used to quantify the accuracy of obstacle classification.
Therefore, we use a U-map to indicate the accuracy of the
reliability estimate, which is given by

(37

Nimcs
> 1 (U6V&,)).

i=1

1
Nrncs

(38)

where Py (%;) is defined as the percentage that U(s()(%k;))
is smaller than 2 (i.e., percentage of samples that may have
a risk of mis-classification) to describe the reliability uncer-
tainty in the configuration space, and the indicator function
Iy (U(s"(%;))) is given by

s (%,

<
0, UD(,)>2
If the reliability at X; is greater than Ry, and the cor-
responding uncertainty is less than a threshold Py jim, we

can confidently say that X; is not an obstacle, which is
mathematically given by

Xj € Qree {R(Xj) > Riim & Py(X;) < Pyjim}.  (40)

According to Eq. (27), Qfee C eree. This means that the
path identified from the pseudo path planning (i.e., Eq. (28))
should be shorter or equal to the underlying true optimal path
(L(T*|D) < L(T'*)). If it is shorter than the underlying true
optimal path, the path from the pseudo path planning would
pass at least one obstacle. Or in other words, if the path
from the pseudo path planning (i.e., I'*|D) does not pass any
obstacles, the path can be considered as an approximate of
the underlying true optimal path (i.e., I'*). Therefore, after
verifying that all locations {X1,...,X,} € I'*|D of the path
identified from the pseudo path planning (i.e., Sec. IV-B) are in
the free space, we can say that the proposed method converges.
Namely, the convergence criterion is given by

{R(i]) > Riim & PU(ij) < PU,lim}, Vf(] S (F*"D) 41

Otherwise, the iteration continues until the above criterion is
met.

Algorithm 2: Trim tree

Data: T, Q’ Qos’ Xini> Xgoal » / * Qos -
pesudo-obstacle map */
Initialize:: T\,i, < InsertNode(Tim, 0, Xini );
Result: T;
foreach x in T do
Xnst < FindNearestNode(Ttyim, X);
Xnew — Steer(Xnst, X);
if ObstacleFree(Xpew, 2os) then
Xnbor < FindNeighborNodes(Ttirm, Xnew, )
; /* See Eq. (4) for r x/
x, < ChooseParent(Xnbor, Xnew, Xnst )
Tirim < InsertNode(Trim, Xp, Xnew);
Ttrim — ReWire(Ttrima Xps Xnew) anor);
else
‘ break;
end
T = Ttrim;

Updated

end

As discussed previously, we make use of the tree (T)
generated by RRT* instead of starting a new exploration
every time. Since some of the nodes and branches of T from
previous RRT* might fail to pass the obstacle-free check at the
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i Form the sample Refine GPR model i L | Yy map
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: Evaluate P with . by RRT* from RRT* |
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| .
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|- ! ~ corresponding to : I [

: Find the 9 Uppin from P ) Vo o Converge No .
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1

i END verification and AL > Almax : Yes

: return the updated :

: GPR model to e ; Final path END

1 4 1

Fig. 7. Flowchart of ER-RRT*. a. Creation of an initial surrogate model based on the initial training data; b. Generation of reliability information throughout
the target map based on the initial GPR model; c. Identification of the initial optimal path using RRT*; d. Verification of path reliability; e. Check if the
algorithm converges or not; f. Updating of the reliability map based on the updated GPR model from path verification; g. Removal of branches of the current
tree that are not safe. Detailed descriptions of steps {a, b, ¢}, {d}, {e, f, g} are given in Section IV-B, Section IV-C, and Section IV-D, respectively.

TABLE I
DISTRIBUTIONS OF SLOPE AND SOIL PARAMETERS.

ID (Slope or Soil) Slope Soil Parameters

Slope (° ) kg ke By c (Pa) P (°) J (m)

" o n o w o w o uw o w o w o
1 36 2 1x10° 1,000 5x 108 500 2.8 0.01 950 1 37.5 0.5 0.048 0.001
2 175 1 5x10% 1,500 1x10% 750 2.6 0.05 800 2.5 35.0 1.0 0.04 0.002
3 20 2.5 1x10% 2,000 5x 107 2,500 2.2 0.1 650 5 32.5 1.5 0.036 0.002
4 40 1.5 5x107 500 1x 107 1,500 2.2 0.02 500 10 30.0 1.0 0.032 0.003
5 60 3 1x107 1,000 5x 10 1,000 2.0 0.1 450 15 27.5 2.0 0.029 0.002
6 56 1.5 5x10% 2,000 1x10% 2,000 1.8 0.01 300 5 25.0 0.5 0.024 0.001

updated reliability map and obstacle map, we need to remove
those nodes and branches before the next iteration of the path
planning.

To achieve this target, we design a trim tree algorithm using
the functions of RRT*. The detailed procedure of trim tree is
provided in Algorithm 2.

In summary, a flowchart of the proposed method is provided
in Fig. 7. In the next section, we use a case study to
demonstrate the proposed method.

V. CASE STUDY

We use a 50 x 50 m map extracted from the ARCGIS/ENVI
database to demonstrate the proposed method (ER-RRT*). We
compare ER-RRT* with the current two-stage approach to

illustrate the advantages of ER-RRT*. The detailed experiment
setup of the case study and the results are provided below.

A. Experiment Setup

The target map (configuration space) consists of slope and
soil information which are represented by the slope map and
soil map. For illustration, an example of the slope map and
soil map is provided in Fig. 8. Different colors in the map
represent the different slopes and soil types. There are six
different slopes and six types of soil exist on the map. Each soil
type is characterized by six soil properties, including Bekker
coefficients (ky, k., By,), soil cohesion (c), friction angle (®),
and Janosi shear displacement (J). Since uncertainty exists
in both the slope map and the soil map, we use normal
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(a) Slope Map

(b) Soil Map

Fig. 8. The slope & soil map extraction

distributions to describe the uncertainty. TABLE I gives the
detailed distribution parameters of slope and soil properties.
As discussed previously, the uncertainty is space-dependent
and we use the random field to simulate the uncertainty of
different parameters. Except for the distributions of different
parameters, the correlation length is another important param-
eter to generate the realizations (samples) of a random field.
The detailed correlation lengths of different parameters are
provided in TABLE II. The correlation length is represented
by a two-dimensional vector since there are two directions on
the map. The two elements of a vector represent the correlation
length respectively in x; and zo direction. A smaller value
means a larger variation across the configuration space.

TABLE I
CORRELATION LENGTH OF DIFFERENT PARAMETERS IN TWO DIRECTIONS.

1D Slope Soil Parameters

glggfh Slope (°) kg ke  Bn, c®Pa) ®(C) J(m)
I [3.3,3.0] [40,39] [33,32] [27,28] [27,28] [27,28] [33,32]
2 [3.4,3.6] [42,43] [28,33] [23,27] [23,27] [28,33] [28,33]
3 [4.3,2,2] [41,41] [28,27] [20,25] [28,27] [28,27] [20,25]
4 [3.6,4.4] [41,39] [31,29] [26,24] [31,29] [31,29] [26,24]
5 [3.5,5.1] [40,42] [33,32] [27,21] [33,32] [33,32] [40,42]
6 [2.8,5.0] [38,37] [27,27] [26,28] [27,27] [26,28] [38,37]

B. Results

1) The first iteration: Following the procedure in Fig. 7,
we generate 50 initial training samples using LHS whose
corresponding labels (maximum attainable speed) are obtained
from PyChrono simulations. Based on the data, an initial
surrogate model is created using Gaussian Process regression.
Recall that the AGV loses mobility once the speed is below a

speed threshold. The threshold y, is 2m/s. Next, MCS is used
to obtain the reliability map and obstacle map for the following
pseudo path planning. The number of MCS samples (N,cs)
can be determined by

1 — Pr(x)

COVer =\ Py N

(42)

where COVp, is coefficient of variation of MCS, and Py (x)
is the probability of failure. The smaller the COVp,, the
higher the accuracy of MCS and the computational cost. The

probability of failure is easily obtained by
Pi(x) =1— Rp(x). (43)

In this case study, the minimum reliability requirement
along the identified path is 0.9, which means the maximum
probability of failure is 0.1. According to Eq. (42), we use
3,600 MCS samples to achieve a COVp, = 0.05.

By evaluating the MCS samples using the initial GPR, we
have the mean predictions and their standard deviations. Then,
an uncertainty map (U-map) is generated using Eq. (38) as
discussed in Sec. IV-B. The U-map is shown in Fig. 9.

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025

0.000

Fig. 9. The U-map generated using the initial GPR model

The U-map indicates the degree of uncertainty in the
configuration space with the current surrogate model. Since
we do not want to miss the free space due to uncertainty,
we use Eq. (24) to generate the pseudo-reliability map. It is
found that there is no obstacle identified (the pseudo-reliability
is 100% across the map). Based on the pseudo-reliability map,
we use the RRT* in Algorithm 1 to identify the first pseudo
path which is shown in Fig. 10.

The figure shows that there is no obstacle detected by the
initial GPR model. The path identified is close to a straight
line from the starting point to the goal. Although the path is
short, it may not be reliable. We next verify the path using the
method in Sec. IV-C. Following the procedure in Eqgs. (29)-
(33), we first extract the coordinates (locations) of the path
and their corresponding samples to form the sample pool P.
Then, the sample pool is evaluated by the GPR model and an
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0 10 20 30 40 50

Fig. 10. Initial path obtained by ER-RRT*

optimal new sample is chosen from the sample pool for each
iteration of the active learning. The new samples are added to
the training data to refine the GPR model. We set the maximum
number of allowable iterations of the active learning as 2. After
the active learning, the updated reliability map and obstacle
map with the current path is shown in Fig. 11.

50

40

30 A

20 A

0 10 20 30 40 50

Fig. 11. Verification of the initial path using active learning with updated
obstacle map

The locations of the added samples are marked as triangles
in Fig. 11. It is also observed that some of the obstacles are
detected by the updated GPR model. The current path passes
through obstacles as shown in Fig. 11, which means the current
path is not reliable and we keep searching of the required path.
As discussed in Sec. IV-D, we make use of the current tree
by trimming the nodes and branches using Algorithm 2. The

trimmed tree is shown in Fig. 12 and serves as the initial tree
of the next pseudo plan planning.

50

Fig. 12. Trim the tree from the first iteration

2) The second iteration: Based on the initial status in Fig.
12, we use RRT* to perform path planning of the second
iteration. Fig. 13 presents the path identified in the second
iteration based on the current obstacle map and the uncertainty
map. Compared with the uncertainty map in the previous
iteration (Fig. 9), the area that the path from the second
iteration traverses is less uncertain.

50

40 1

30

20 A

10 A

Fig. 13. The second path obtained by ER-RRT* based on the trimmed tree

We verify the path at the current iteration using the same
approach as discussed in the first iteration. After two active
learning iterations, the GPR model is updated. Using the
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updated GPR model, we have the updated obstacle map as
shown in Fig. 14(a) with the path from the second iteration.
Fig. 14(b) shows the path with the updated reliability map.
Two random samples as indicated by orange triangles were
added in the vicinity of two obstacles as shown in the figure,
and the path from the current iteration passes the obstacles.

20 30
(a) Path verification (b) Pr map

Fig. 14. Verification of the second path with updated obstacle map and Py
map

We trim the current tree again using Algorithm 2. The
trimmed tree with the updated obstacle map is shown in Fig.
15. Compared with the tree in Fig. 14, the nodes and branches
are trimmed successfully.

50

40 1

30

20 4

10

Fig. 15. Trimmed tree of the second iteration

3) Final path: Due to limited space, we only show the
details of the first two iterations to illustrate the improvement
of the reliability map and obstacle map, and the convergence
process of ER-RRT*. After two more iterations, we have the
final path as shown in Fig. 16. It is observed that the path
identified does not pass any obstacle and is reliable.

We also plot the probability of failure map and the uncer-
tainty map in Fig. 17. The figure shows that the area that
the path traverses through is safe with a low probability of
failure. Although the uncertainty is not reduced everywhere
in the map as shown in Fig. 17(b), the uncertainty has no

Fig. 16. The final path and obstacle with four iterations

impact on the identified optimal path. It indicates that the
high-fidelity simulation data is used to reduce uncertainty
mainly in important regions and thus the proposed ER-RRT*
substantially reduces the computational cost for path planning.

(a) Pr map

(b) U-map

Fig. 17. The final Py-map and U-map

4) Comparison study: We now quantitatively compare ER-
RRT#* with the two-stage method and investigate the influence
of the maximum allowable active learning iterations on ER-
RRT*.

The results of different methods are shown in TABLE III.
The two-stage method is the most time-consuming (11.10
h) requiring 469 active learning (AL) iterations to obtain an
accurate surrogate model. In addition, the path obtained from
the two-stage method is not the shortest one, which may be
caused by the random nature of the RRT* method. It has
been observed that increasing the maximum allowable active
learning iterations results in a reduction in computational
time, while decreasing the number of path-planning iterations.
This is because an iteration of path planning takes more
time than an iteration of active learning in this case. As the
maximum allowable active learning iterations increase, the
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required computational time also increases. Both the two-stage
and the ER-RRT* methods identify paths with similar lengths,
with a slight difference. This is because these methods are
developed based on RRT* which uses random sampling to
generate the paths.

TABLE III
COMPARISON OF DIFFERENT METHODS AND THE INFLUENCE OF
MAXIMUM ALLOWED ACTIVE LEARNING (AL) ITERATION.

Method Max AL Actual AL Path planning Computation Path
iteration  iteration iteration time (h) length (m)

Two-stage 1,000 469 1 11.10 63.34
ER-RRT* 1 3 4 0.26 62.21
ER-RRT* 2 6 4 0.33 63.48
ER-RRT* 5 10 3 0.21 58.43
ER-RRT* 10 10 2 0.16 60.23
ER-RRT* 1,000 166 1 0.73 58.21

The computation time of the two-stage method is 11.10 h
which is about 14 times longer than that of the proposed ER-
RRT* method (0.73 h), if the maximum-allowable number
of AL iterations is 1,000. However, the actual number of
AL iterations of the two-stage method is 469 which is only
about three times the number of AL iterations used in ER-
RRT* (166). Intuitively, the number of AL iterations should
be proportional to the computation time. The reasons causing
these counter-intuitive results are as follows.

o With more samples from active learning added to the
training data, a longer time is needed to train a GPR
model.

o The two-stage method requires a larger sample pool
which means much more samples are evaluated by the
GPR model at each AL iteration, thereby a longer com-
putation time for each active learning iteration in the two-
stage method.

To investigate the impact of various uncertainty sources
on path planning, the proposed method (ER-RRT¥) is also
compared with two other cases: one that does not take into
account uncertainty related to slope and soil parameters, and
another that does not consider uncertainty associated with the
surrogate model (Fig. 18). For the case where uncertainty
related to the slope and soil parameters is not considered,
we use the mean values of these parameters from Table I
to create a deterministic obstacle map. An optimal path is
then identified based on this map. Fig. 18 shows the path
in the true obstacle map. It indicates that the deterministic
obstacle map without considering uncertainty in the slope
and soil parameters fails to detect all potential obstacles. The
resulting path is therefore unsafe and passes through obstacles
in the true obstacle map. The second case assumes that the
surrogate model is accurate after training. A path with a
higher risk is identified because some of the obstacles are not
identified by the surrogate model. Therefore, it is critical to
consider the environmental uncertainty of AGVs to identify
potential obstacles and reduce the risk of failure during a
mission. The surrogate model constructed by GPR with a
limited number of training data may not be accurate in the
whole space, which leads to prediction errors and an inaccurate

obstacle map. Hence, refining the surrogate model informed
by model uncertainty is necessary for accurate and reliable
path planning.

50

40

20 4

® Obstacle

= Without considering uncertainty of slope and soil parameters

ER-RRT* Tree

Without considering surrogate model uncertainty

Fig. 18. Comparison study of the identified paths with and without consid-
ering different uncertainty sources.

Several case studies were conducted to test the proposed
ER-RRT* algorithm, and their results align with the findings
presented in the paper. Due to limitations in space, we have
only included one typical example with all the necessary
details in the paper. This is intended to assist readers in
understanding and applying the method more easily.

VI. CONCLUSION

This work proposes an efficient path planning method,
named ER-RRT#*, for off-road autonomous ground vehicles
operating in uncertain working environments. This method
couples the adaptive surrogate modeling technique with the
rapidly-exploring random trees star algorithm. The results of
the case study led to the following conclusions.

o ER-RRT* can successfully identify a reliable path after

several iterations of path planning and path verification.

« ER-RRT* is much more efficient than the current two-
stage method.

o The maximum number of allowable active learning iter-
ations at the path verification is related to the number of
path planning iterations. Reducing the maximum allow-
able number could lead to an increase in the number of
iterations for path planning.

ER-RRT* results in a larger cost due to a longer path
for satisfying the reliability constraint. The locations where
the reliability does not meet the requirement are treated as
obstacles. Therefore, more locations are identified as obstacles
than the approach without considering uncertainty. Besides,
more computational time is needed if uncertainty is considered
in the slope and soil parameters. However, ER-RRT* is still
much more efficient than the current two-stage reliability-
based path planning approach.
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