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Abstract

On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential
layer of safety assurance that could lead to more principled decision making by enabling sound risk
assessment and management. The safety and reliability improvement of ML models empowered by
UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes
decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial,
we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus
on neural networks and the applications of these UQ methods in tackling engineering design as well
as prognostics and health management problems. Toward this goal, we start with a comprehensive
classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we
provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regres-
sion, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing
on spectral-normalized neural Gaussian process. Established upon the mathematical formulations,
we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by
a toy regression example) to examine their strengths and shortcomings from different dimensions.
Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty
in classification and regression problems. Afterward, we discuss the increasingly important role of
UQ of ML models in solving challenging problems in engineering design and health prognostics.
Two case studies with source codes available on GitHub are used to demonstrate these UQ methods
and compare their performance in the life prediction of lithium-ion batteries at the early stage (case

study 1) and the remaining useful life prediction of turbofan engines (case study 2).
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Nomenclature

List of acronyms
ARD Automatic relevance determination
BNN Bayesian neural network

DL
DNN Deep neural network

Deep learning

ECE Expected calibration error
EI Expected improvement
ELBO Evidence lower bound
GAN
GPR Gaussian process regression
HMC Hamiltonian Monte Carlo

KL  Kullback—Leibler

MC  Monte Carlo

MCMC Markov chain Monte Carlo
MFVI Mean-field variational inference
ML
MSE
NLL
0O0OD
PDF
PHM
RUL

SNGP Spectral-normalized neural Gaussian pro-

Generative adversarial network

Machine learning

Mean squared error

Negative log-likelihood

Out of distribution

Probability density function
Prognostics and health management

Remaining useful life

cess
SVGD Stein variational gradient descent
UQ  Uncertainty quantification

VAE Variational autoencoder

VI Variational inference

List of mathematical notations

D ={(x1,y1),(x2,92), -, (xn,yn)} Training
data

D Number of features (dimensions) in a sin-
gle input x

€ A random noise variable following a zero-

mean Gaussian distribution

E[e] Expectation of e

k(x,x") Covariance function or kernel in GPR
depicting the covariance between function
outputs at x and x’

A Parameter to be optimized in the varia-

tional distribution ¢

[ Length scale parameter of a kernel
N Number of training samples

P Probability density

p(0) Prior distribution of ©

p(0|D) Posterior distribution of © given the
training data D

p(y|6,X) Likelihood function indicating the
probability of observing y given the pa-
rameters © and inputs X

q(0;\) A variational distribution parameterized
by A to approximate the posterior distri-
bution p(6|D)

ot Signal amplitude parameter of a kernel

e Standard deviation of a random noise
variable ¢

0 Set of tunable parameters in an ML model

0* Set of optimal parameters in an ML model

after tuning
X = {x1,%2, -+ ,xn} Inputs (or input points)

in a training dataset for BNN

X Matrix representation of inputs in train-
ing data, ie., Xy = [x1,...,xn5]T €
RN xD

X A single input, x € RV

Xy A test point

Y A single observation/target, y € R!

y ={v1,92, -+ ,yn} Observations/targets in a
training dataset to be predicted by an ML

model



Vi Matrix representation of target output in RN

training data, that is yy = [y1,. .. 7?JN]T €

1. Introduction

In recent years, data-driven machine learning (ML) models have become increasingly prevalent
across a wide range of engineering fields. Two application domains of interest to this tutorial are
engineering design and post-design health prognostics. The ML community has devoted significant
efforts toward creating deep learning (DL) models that yield improved prediction accuracy over
earlier DL models on publicly available, large, standardized datasets, such as MNIST [1], ImageNet
2], Places [3], and Microsoft COCO [4]. Among these DL models are deep neural networks (DNNs),
known for their ability to extract high-level abstracted features from large volumes of data auto-
matically achieved through multiple layers of neurons and activation functions in an end-to-end
fashion.

Despite record-breaking prediction accuracy on some fixed sets of test samples (i.e., images in
the case of computer vision), these neural networks typically have difficulties in generalizing to data
not observed during model training. Suppose test samples come from a distribution substantially
different from the training distribution, where most of the training samples are located. These test
samples can be called out-of-distribution (OOD) samples. Trained neural network models tend to
produce large prediction errors on these OOD samples. Despite considerable efforts, such as domain
adaption [5-7], aimed at improving the generalization performance of neural network models, the
issue of poor generalizability still persists. Another limitation that adds to the challenge is that
complex ML models, such as DNNs, are mostly black-box in nature. It is generally preferred to use
simpler models (e.g., linear regression and decision tree) that are easier to interpret unless more
complex models can be justified with non-incremental benefits (e.g., substantially improved accu-
racy). In recent years, the growing availability of large volumes of data has made complex models,
which are often significantly more accurate than simple models, the obvious better choice in many
ML applications where prediction accuracy is the priority. Consequently, black-box ML models that
are hard to understand are increasingly deployed, particularly in big data applications. Some efforts
have been made to address the lack of interpretability, with notable explanation algorithms such as
SHAP [8] and Grad-CAM [9] and a good review of interpretable ML [10]. Despite these recent ef-
forts, many complex ML models are still implemented as black-box models and cannot explain their
predictions to the end user for various reasons. This limitation makes it extremely intricate for the
end user to understand the decision mechanism behind a neural network’s prediction. Given these
two limitations (difficulties in extrapolating to OOD samples and lack of interpretability), it is vital
to quantify the predictive uncertainty of a trained ML model and communicate this uncertainty to
end users in an easy-to-understand way. To enhance algorithmic transparency and trustworthiness,
uncertainty quantification (UQ) and interpretation should ideally be performed together, with UQ
providing information on the confidence of complex machine learning models in making predictions.
This integration allows for a better understanding of often difficult-to-interpret models and their

predictions.



Let us first look at typical ways to express and communicate predictive uncertainty. A simple
case is with classification problems, where the probability of the model-predicted class can depict
model confidence at a prediction. For example, a fault classification model may predict a bearing
to have an inner race fault with a 90% probability /confidence. In regression problems, predictive
uncertainty is often communicated as confidence intervals, shown as error bars on graphs visualizing
predictions. For instance, we could train a probabilistic ML model to predict the number of weeks a
rolling element bearing can be used before failure, i.e., the remaining useful life (RUL). An example
prediction may be 120 + 15, in weeks, which represents a two-sided 95% confidence interval (i.e.,
~1.96 standard deviations subtracted from or added to the mean estimate assuming the model-
predicted RUL follows a Gaussian distribution). A narrower confidence interval comes from lower
predictive uncertainty, which suggests higher model confidence.

One clear advantage of UQ is that it helps end users determine when they can trust predictions
made by the model and when they need extra caution while making decisions based on these pre-
dictions. This is especially important when incorrect decisions can lead to severe financial losses
or even life-threatening outcomes. Towards this end, the integration of UQ in ML models, as well
as the sound quantification and calibration of uncertainty in ML model prediction, has a viable
potential to tackle a central research question the ML community confronts — safety assurance of
ML models [11-14]. In fact, the absence of essential performance characteristics (e.g., model robust-
ness and safety assurance) has emerged as the fundamental roadblock to limiting ML’s application
scope in risk-insensitive areas, while its adoptions in high-stakes, high-reward decision environments
(e.g., healthcare, aviation, and power grid) are still in the infancy stage primarily because of the
reluctance of end users to delegate critical decision making to machine intelligence in cases where
the safety of patients or critical engineering systems might be put at stake [15-18]. Towards the
translation of ML solutions in high-risk domains, UQ offers an additional dimension by extend-
ing the traditional discipline of statistical error analysis to capture various uncertainties arising
from limited or noisy data, missing variables, incomplete knowledge, etc. This development has
wide-ranging implications for supporting quantitative and precise risk management in high-stakes
decision-making settings, particularly concerning potential model failures and decision limitations of
ML algorithms. However, the evaluation of ML model performance on most benchmarking datasets
focuses exclusively on some form of prediction accuracy on a fixed test dataset; it rarely considers
the quality of predictive uncertainty. As a result, UQ of ML models is typically pushed to the
sidelines, yielding the centerlines to prediction accuracy. In reality, underestimating uncertainty
(overconfidence) can create trust issues, while overestimating uncertainty (underconfidence) may
result in overly conservative predictions, ultimately diminishing the value of ML.

More recently (approximately since 2015), there has been growing interest in approaches to
estimating the predictive uncertainty of deep learning models, for example, in the form of class
probability for classification and predicted variance for regression, as discussed earlier. The growing
interest can be attributed to failure cases where trained ML models produced unexpectedly incorrect
predictions on test samples while communicating high confidence in the predictions [19] and those

where models changed their predictions substantially in response to minor, unimportant changes



to samples (or so-called adversarial samples) [20]. Two pioneering studies that stimulated many
subsequent efforts created two widely used approaches to UQ of neural networks: (1) Monte Carlo
(MC) dropout as a computationally efficient alternative to traditional Bayesian neural network
[21] and (2) neural network ensemble consisting of multiple independently trained neural networks,
each predicting a mean and standard deviation of a Gaussian target [22]. Another notable early
study highlighted differences between aleatory and epistemic uncertainty and discussed situations
where quantifying aleatory uncertainty is important and where quantifying epistemic uncertainty
is important [23]. A common understanding in the ML community towards these two types of
uncertainty has been the following: aleatory uncertainty can be considered data uncertainty and
represents inherent randomness (e.g., measurement noise) in observations of the target that an ML
model is tasked with predicting; epistemic uncertainty can be treated as model uncertainty and
results from having access to only limited training data, which makes it not possible to learn a
precise model. As discussed in Sec. 2.1, aleatory and epistemic uncertainty could encompass more
sources and causes than the well-known data and model uncertainty.

The engineering design community has a long history of applying Gaussian process regression
(GPR) or kriging, an ML method with UQ capability, to build cheap-to-evaluate surrogates of
expensive simulation models for simulation-based design, dating back to the early 2000s [24—26].
GPR has an elegant way of quantifying aleatory and epistemic uncertainty and can produce high
uncertainty on OOD samples. However, the UQ capability of GPR is typically not used to detect
OOD samples or quantify the epistemic uncertainty of a final built surrogate. Rather, it is leveraged
in an adaptive sampling scheme to encourage sampling in highly uncertain and critical regions of
the input space (exploration) to minimize the number of training samples for either (1) building
an accurate surrogate within some lower and upper bounds of input variables (local or global sur-
rogate modeling) [27-29] or (2) finding a globally optimally design for some expensive-to-evaluate
black-box objective function [30, 31]. Additionally, little effort is made to evaluate the quality of
UQ for a trained GPR model, likely because the model makes predictions on samples within pre-
defined design bounds and does not need to extrapolate much (low epistemic uncertainty). Other
classical surrogate modeling methods, such as standard artificial neural networks and support vec-
tor machines, are generally less capable of quantifying predictive uncertainty, especially epistemic
uncertainty. These methods and GPR are typically used to build surrogates that act as “deter-
ministic” transfer functions and allow propagating aleatory uncertainty in input variables to derive
the uncertainty in the model output, known as uncertainty propagation [32]. The recent two years
have seen efforts applying DNNs to surrogate modeling for reliability analysis [33—-35]. Similarly,
these DNNs do not have built-in UQ capability and are typically used as deterministic functions
primarily for uncertainty propagation.

For over two decades, the prognostics and health management (PHM) community has used ML
methods with built-in UQ capability as part of the health forecasting/RUL prediction process. Early
applications include the Bayesian linear regression for aircraft turbofan engine prognostics [36], the
relevance vector machine, a probabilistic kernel regression model of an identical function form to the

support vector machine [37], for battery prognostics [38—40] and general purpose prognostics [41, 42],



tline.pdf

and GPR for battery prognostics [43-45]. UQ of ML models for PHM is perceived to have more
significance than that for engineering design, mainly due to (1) the more likely lack of sufficient
training data, given an expensive and time-consuming process to collect run-to-failure data for
training ML models for health prognostics, (2) the higher need to extrapolate to unseen operating
conditions in PHM applications, and (3) the higher criticality of consequences from incorrectly made
maintenance decisions. Two representative reviews of UQ work in the field of PHM can be found
in [46, 47]. Both reviews seem to focus on identifying uncertainty sources in health prognostics and
discussing ways to propagate these sources of uncertainty to derive the probability distribution of
RUL.
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Figure 1: Overview of the organization of the tutorial paper.

Within this paper, we seek to provide a comprehensive overview of emerging approaches for UQ
of ML models and a brief review of applications of these approaches to solve engineering design and
health prognostics problems. As for the ML models, our tutorial focuses on neural networks due to
their increasing popularity amongst academic researchers and industrial practitioners. In essence,
we look at methods to quantify the predictive uncertainty of neural networks, i.e., methods for UQ

of neural networks. This focus differs from the notion of “ML for UQ” where UQ of engineered



systems or processes becomes the primary task, and ML models are built only to serve the primary
purpose of UQ. Figure 1 shows an outline of this tutorial paper. Our tutorial possesses four unique
properties that distinguish it from recent reviews on UQ of ML models in the ML community [48-50],
computational physics community [51], and PHM community [46, 47], and a recent benchmarking

study assessing state-of-the-art UQ methods for neural networks in the PHM community [52].

e First, we give a detailed classification of uncertainty types, sources, and causes (Sec. 2.1)
and discuss ways to reduce epistemic uncertainty (Sec. 2.3). Our classification and discussion
complement the theoretical and data science-oriented discussions in the ML community and
provide more context for researchers and practitioners in the engineering design and PHM
communities. Additionally, we provide an easy-to-understand explanation of the process of
decomposing the total predictive uncertainty of an ML model into aleatory and epistemic

uncertainty, leveraging simple mathematical examples (Sec. 2.2).

e Second, we provide a tutorial-style description and a qualitative and quantitative comparison
of emerging UQ approaches developed in the ML community over the past eight years. This
tutorial-style description covers both methodologies (Sec. 3) and their implementations on real-
world case studies (Sec. 6). The tutorial style also applies to our discussion on methods and
metrics for assessing the quality of predictive uncertainty (Sec. 4), an increasingly important
exercise in UQ of ML models.

e Third, although our tutorial focuses primarily on UQ methods for ML models, it additionally
briefly covers a collection of recent studies that apply some of the emerging UQ approaches to
solve challenging problems in engineering design (Appendix B) and health prognostics (Sec. 5).
This review is meaningful because as the adoption of ML techniques in design and prognostics
rapidly increases, we also expect to see an increasing need for UQ of ML models. Note that
deep neural network architectures, originally created for computer vision tasks based on large
image datasets, can be readily adopted in engineering design tasks, such as surrogate modeling
for reliability analysis [28, 29] and generative designs [53-55], and PHM tasks, such as fault
diagnostics [56-60] and RUL prediction [61-63]. We hope to provide observations and insights
that can help guide researchers in the engineering design and PHM communities in choosing
and implementing the UQ methods suitable for specific applications. This unique and distinct
application area distinguishes our tutorial paper from a recent review paper on UQ of ML
models [51], which explored the use of ML with UQ for solving partial differential equations
and learning neural operators. Additionally, our tutorial paper complements a recent effort in

benchmarking UQ methods for neural networks on aircraft engine prognostics [52].

e Fourth, we share, on GitHub, our code for implementing several UQ methods on one toy
regression example (Sec. 3.5) and two real-world case studies on health prognostics (Sec. 6).
Our implementations have been thoroughly verified to have quality on par with high quality
implementations by the ML community. Some of our implementations are directly built on

top of code shared by the ML community. We anticipate our code will allow researchers and



practitioners in the engineering design and PHM communities to replicate results, customize
existing UQ methods to specific applications, and test new methods. Moving forward, we plan
to make continuous improvements to the codebase, e.g., by polishing lines of code and adding

new methods as they become available.

Our tutorial paper is concluded in Sec. 8, where we also discuss directions for future research.

2. Types and sources of uncertainty

This section first provides the definitions of different types of uncertainty and a summary of

their sources and causes, and then discusses the methods to decompose and reduce the predictive

uncertainty of ML models.

2.1. Aleatory and epistemic uncertainty

Uncertainty, in general, can be classified into two types: aleatory uncertainty and epistemic

uncertainty [64]. This classification of uncertainty originated in the engineering domain for risk and

reliability analysis [64] and is also applicable to the ML domain [19, 23]. The definitions and sources

of these two types of uncertainty are summarized as follows.

i.

ii.

Aleatory uncertainty: It stems from natural variability and is irreducible by nature [64].
This type of uncertainty captures the noise inherent in physical systems [65]. A typical example
of aleatory uncertainty is the noise in sensor measurements, which would persist even if more
data were collected. In ML, aleatory uncertainty represents the inherently stochastic nature
of an input, an output, or the dependency between these two [19]. Example causes of aleatory
uncertainty include variability of material properties from one specimen to another, variability
of response from different runs of the same experiment, variability in classes for classification
problems, and variability of the output for regression problems. This type of uncertainty
is usually modeled as a part of the likelihood function in a probabilistic ML model. The
predictions of the ML model is also probabilistically distributed [65]. This way of capturing
the observation uncertainty (sometimes termed data uncertainty) is leveraged by several UQ
methods, such as homoscedastic (Eq. (13)) and heteroscedastic (Eq. (30)) GPRs discussed in
Sec. 3.1 and neural network ensemble (Eq. (30)) discussed in Sec. 3.3.

Epistemic uncertainty: This type of uncertainty is attributed to things one could know
in principle but remain unknown in practice due to a lack of knowledge. It is reducible by
nature [64]. Common causes of epistemic uncertainty in the engineering domain include model
simplification, model-form selection, computational assumptions, lack of information about
certain model parameters, and numerical discretization. ML models generally have similar
epistemic uncertainty sources as engineering models. In particular, the epistemic uncertainty

in ML models can be further classified into the following two categories:

(a) Model-form uncertainty is due to the simplification and approximation procedures involved

in ML model construction. It is usually associated with the choices of model types, such



as the architectures and activation functions of neural networks and the model forms of

kernel functions in GPR models.

(b) Parameter uncertainty is associated with model parameters and arises from the model
calibration and training processes. Major causes of parameter uncertainty include a lack
of enough training data, inherent bias in the training data due to low data fidelity, and

difficulties in converging to optimal solutions faced by training algorithms.

Table 1 summarizes the common sources and associated causes of the above two types of un-
certainty in ML. When the test dataset falls outside the training data distribution, the ML model
predictions likely have high epistemic uncertainty since the performance of ML models is typically
poorer in extrapolation than in interpolation. When the test data in some regions of the input space
are associated with higher measurement noise, they can lead to higher aleatory uncertainty. Addi-
tionally, data of output used to train an ML model could deviate from the true values of the output.
When the error is caused by random noise of measurement, it will lead to aleatory uncertainty in
the output. However, when there is also bias in the data, the error causes additional epistemic
uncertainty. For instance, when the bias is caused by low data fidelity representing the data’s low
accuracy, this bias will result in epistemic uncertainty, which is reducible by adding high-fidelity

data for training.

Table 1: Types, sources, and causes of uncertainty in ML

Type Source Cause(s)
Observational uncertainty | Measurement noise (e.g., sensor
Aleatory uncertainty (model input and output) | noise in measuring inputs/outputs

of ML models)
Natural variability (model | Variability in material properties,

input) manufacturing tolerance, variability
in loading and environmental condi-
tions, etc.

Lack of predictive power | Dimension reduction, non-separable

(model input) classes in input space (classifica-
tion), etc.

Parameter uncertainty Limited training data, local op-

Epistemi taint .
pistemic uncertainty tima of ML model parameters, low-

fidelity training data*, etc.
Model-form uncertainty Choices of neural network architec-
tures and activation and other func-
tions, missing input features, etc.

* Data fidelity is the accuracy with which data quantifies and embodies the characteristics of the source [66].

Note that aleatory uncertainty could exist in the input, output, or both of an ML model. A
common practice of dealing with aleatory uncertainty in the inputs is propagating the uncertainty
to the output after constructing the ML model. The aleatory uncertainty in the output, however,
is more challenging to tackle, since it needs to be accounted for during the training of an ML model

(see more detailed discussion in Secs. 3.1 and 3.3). Uncertainty propagation of input aleatory



uncertainty to the output is not the focus of this paper. We mainly focus on accounting for aleatory
uncertainty in the output during the training of an ML model. Moreover, it is worth mentioning
that aleatory uncertainty and epistemic uncertainty often coexist, making it difficult to separate
them. Even though some efforts have been made in recent years to separate these two types of
uncertainty, for example, by using the variance decomposition method (see Sec. 2.2) that has been
extensively studied in the global sensitivity analysis field [67-69], a clean and complete separation
of these two types of uncertainty may only be possible for some cases when there are no complicated
interactions between aleatory and epistemic uncertainty sources. We are interested in separating
these two types of uncertainty often because we are usually concerned about when the “prediction
accuracy” of ML models becomes so low that model prediction cannot be trusted. These “break-
down” cases are typically associated with high epistemic uncertainty, the quantification of which
would help identify low-confidence predictions by the ML models and avoid making sub-optimal
or even incorrect decisions whose consequences could be very costly and even life-threatening in
safety-critical applications.

Suppose we cannot separate these two types of uncertainty and only look at their combination.
In that case, we only have access to the total predictive uncertainty of an ML model, which can be
used to measure the model’s confidence in predicting at a test point, given both noise sources in the
environment and the reducible uncertainty arising from a lack of training data. The total predictive
uncertainty is often what commercially available ML solutions produce as ML outputs (e.g., the
probability mass function of the predicted health class for health diagnostics and the variance of

the remaining useful life estimate for health prognostics).

2.2. Decomposition of predictive uncertainty
From the above discussion, we can intuitively and qualitatively tell the difference between
aleatory (irreducible) and epistemic (reducible) uncertainty. Some recent studies also attempted
to estimate these two types of uncertainty quantitatively. To this end, it is essential to decompose
the total predictive uncertainty into aleatory and epistemic components [70-72]. Let us consider the
simplest form of a probabilistic ML model, a linear regression model. This model is parameterized
by weights and biases, concatenated into a vector ©. Then, we can express this linear regression
model in the following form:
§(x) = f(x;0) =0"x+¢, (1)

where ¢ ~ N (0,021) is the Gaussian noise variable with I denoting an D x D identity matrix.
Note that applying an activation function to the linear term 0Tx introduces nonlinearity to the
regression model, making it a building block in a neural network.

If we make a Bayesian treatment of Eq. (1), we will start with a prior distribution p(6) over
model parameters © and then infer a posterior from a training dataset D, p(0|D). Essentially, we
build a Bayesian linear regression model, from which we can derive the predictive distribution of y

at a given training/validation/test point x via marginalization:

plylx, D) = / p(y/x, ©)p(8]D)de. ()

10



To make the discussion more concrete and easier to understand, we further assume that Eq.

(1) is a two-dimensional model (i.e., D = 2) and the posterior of 0 is jointly Gaussian: p(6|D) =

2
o 09,0,
N(po, o) with ug = [ue,, tte,]T and a covariance matrix Xg = 01 PO0LT02 | e predicted
1 2
p091 092 092
y then follows a Gaussian distribution given by:
p(y|x, D) = N (g, 21 + po,x2, 05,25 + 04,25 + 2p0og, 09,2172 + 0°). (3)

For classification problems, we typically use differential entropy as a measure of uncertainty [73];
for regression problems, a typical choice is variance of a Gaussian output [74]. Since we deal with
a regression problem, we use variance to measure uncertainty in this example. The total predictive

uncertainty is measured as the predicted variance
- _ 2.2 2 2 2
Urotal = Var(y|x, D) = 09,17 + OgyT2 + 2,00‘910'921'1l'2 +o”. (4)

The aleatory uncertainty can be measured as the variance of the Gaussian noise (intrinsic in the
data)

Z/la»leafcory = 02- (5)

Then, the epistemic uncertainty can be estimated by subtracting the aleatory uncertainty from

the total predictive uncertainty
Uepistemic = Usotal — U =05 7] + 05,25 + 2 (6)
epistemic total aleatory 09, L1 T 0, T2 POG,00,L1T2.

It can be seen from the above equation that the epistemic uncertainty is dependent on (1) the
posterior variances (agl and 032) and covariance (pog, 0g,) of the model parameters 0 and (2) values
of the input variables (z; and x3). The noise variance, which measures the intrinsic uncertainty in
the data, does not affect and has nothing to do with the epistemic uncertainty.

Using the law of total variance or variance-based sensitivity analysis [75], we can generalize Egs.

(4) through (6) for uncertainty decomposition:

VCLT(y’X, D) = EGNp(G\D) [Var(y’X7 9)] + VarGNp(9|D) [E(y|X, 9)}7 (7)

Usotal ualeatory Z/{epistemic

where E(y|x,0) and Var(y|x,0) are the mean and variance of y at x for a given realization of
0. The first term on the right-hand side of Eq. (7), Egpep)[Var(y|x, 0)], computes the average
of the variance of y, Var(y|x,0), over p(0|D). This term does not consider any contribution of
parameter (0) uncertainty to the variance of y, as the expectation operation, Eo~p(o/D) [-], take out
the contribution of the variation in 6. It only captures the intrinsic data noise (¢) and therefore
represents the aleatory uncertainty. The second term, Varg.,op)[E(y|x, 0)], computes the vari-
ance of E(y|x,0) for ® ~ p(0|D). The expectation operation, E(y|x, 0), essentially takes out the

contribution by the data noise (¢). Therefore, this second term measures epistemic uncertainty. For

11



classification problems, similar expressions can be derived for the uncertainty metric of differential

entropy, as demonstrated in some earlier work (see, for example, [70-72]).
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Figure 2: An example of uncertainty decomposition using variance-decomposition based method.

Figure 2 shows an example of uncertainty decomposition using the above variance decomposition
method for a mathematical problem. The true model is a two-dimensional function as depicted in
the top-right graph of Fig. 2 and this function has the following closed form: y(x) = % (1.5 4+ 21)%+
4) x (1.5+z2) — w In this example, the true model is assumed to be unknown and needs
to be learned from training data using an ML model. Due to inherent sensor noise, observational
uncertainty is present in the output of the training data. It is modeled as a random variable
following a Gaussian distribution as e(x) ~ AN(0, 0.5]sin(y(x))|?). Based on 50 training samples, a
GPR model is constructed. The total predicted variance of the resulting ML model is shown in the
upper left graph of Fig. 2. This graph shows that the predicted variance is high for some regions and
low for others. Since both aleatory and epistemic uncertainty exists and only the total predictive
uncertainty is visualized, it is difficult to tell if the uncertainty (the total predicted variance) in a
certain region could be further reduced.

Decomposing the total predicted variance into variances due to aleatory uncertainty and epis-
temic uncertainty, respectively, as shown in the lower half of this figure, allows us to identify regions

with high aleatory uncertainty and those with high epistemic uncertainty. If a region with high
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epistemic uncertainty is the prediction region of interest, we can reduce the uncertainty to improve
the prediction confidence of the ML model (see the uncertainty reduction methods in Sec. 2.3).
However, if a region with high aleatory uncertainty and low epistemic uncertainty is the prediction
region of interest, it would be difficult to further reduce the total predictive uncertainty. In that
case, risk-based decision making needs to be employed to account for the irreducible aleatory uncer-
tainty when deriving optimal decisions (see, for example, decision-making scenarios in engineering

design, as discussed in Appendix B, and in PHM, as discussed in Sec. 5).

2.8. Reduction of epistemic uncertainty

As mentioned in Sec. 2.1, epistemic uncertainty is reducible. Suppose an ML model has low
prediction accuracy and confidence due to high epistemic uncertainty, resulting in sub-optimal or
even incorrect decisions. In that case, it is necessary to reduce the epistemic uncertainty. Commonly
used strategies for the reduction of epistemic uncertainty can be roughly divided into the following

two groups according to the source of epistemic uncertainty of interest.
(a) Reducing parameter uncertainty

i Adding more training data: Having access to limited training data usually leads
to uncertainty in ML model parameters. The model-parameter uncertainty is part of
epistemic uncertainty. It can be reduced by increasing the training data size, e.g., via data
augmentation using physics-based models [76] or simply by collecting and adding more
experimental data to the training set. Let us assume the added training data is as clean
as the existing data. In that case, the epistemic uncertainty component of the predictive
uncertainty becomes smaller, while the aleatory uncertainty is expected to remain at a
similar level. Suppose that, in a different case, the added training data contains more
noise than the existing data. In that case, we still expect lower epistemic uncertainty in
regions of the input space where the added data lie but higher aleatory uncertainty in

these regions.

ii Adding physics-informed loss or physical constraints for ML model training:
Incorporating physical laws as new loss terms or imposing physical constraints, such as
boundedness, monotonicity, and convexity for interpretable latent variables for ML model
training, may allow us to obtain a more accurate estimate of ML model parameters.
Although this physics-informed/constrained ML approach may not directly reduce epis-
temic uncertainty in ML predictions, it helps to reduce the training data size required to
build a robust ML model that produces accurate predictions across a wide range of input
settings. Specifically, enforcing principled physical laws into an ML model considerably
prunes the search space of model parameters as parameters violating these constraints are
discarded immediately. As a result, physical constraints contribute to reducing parameter
uncertainty to some extent by complementing the insufficient training data and narrow-
ing down the feasible region of these parameters. This benefit becomes especially relevant

when training data is lacking and has been reported in recent review papers in various
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engineering fields, such as computational physics [77], digital twin [78], and reliability
engineering [79], and in research papers published in recent special issue collections on
health diagnostics/prognostics [80] and the broader topic of reliability and safety [81]. For
over-parameterized ML models such as neural networks, it is possible to simultaneously
reduce bias and variance in the model parameters [82]. For simpler models such as GPR,
utilizing additional information such as gradient information [83], orthogonality [84], and
monotonicity [85] as constraints in kernel construction can also improve the prediction

accuracy.

iii Adopting better strategies for ML model training: If a better starting point can
be used when training an ML model, the optimization process may yield a more accurate
estimate of the model parameters. Similar to adding physics-informed loss terms, this
strategy can also indirectly reduce epistemic uncertainty. A popular example of this
strategy is transfer learning, where the model trained in one domain is used as a starting
point for training a model in another domain (e.g., transfer of weights and biases in selected
neural network layers) [86]. Another strategy is to use better optimization algorithms
when the number of parameters to be optimized is large. Global optimization in high-
dimensional search spaces is always challenging. Algorithms such as stochastic gradient
descent can have better convergence than traditional quasi-Newton methods in training
deep neural networks [87]. Reformulating model training with multiple loss terms as
minimax problems to adjust the focus of different loss terms can also improve convergence
[88].

(b) Reducing model-form uncertainty

i Identifying better input features: In practical applications, an important step in
training ML models is the selection of input features with strong predictive power accord-
ing to domain knowledge, expert opinions, or exploratory analysis [89, 90]. Identifying
input features with higher predictive power and using them as input features allows us to

reduce the model-form uncertainty of ML models.

ii Choosing better model architecture/kernel functions: All models are wrong, but
some are useful [91]. An appropriately chosen model architecture can better approximate
the true underlying function than many other model architectures. A commonly used
method is, therefore, to choose better model architecture or kernel function through tuning

or model validation. It can reduce model-form uncertainty to some degree.

iii Adding high-fidelity data: An obvious way to reduce model-form uncertainty caused
by bias in the training data is by adding high-fidelity data, thereby reducing the overall
epistemic uncertainty. Such strategies have been widely adopted in the ML field in the
context of multi-fidelity surrogate modeling/ML [92-95] and transfer learning [96].

Next, we use the two-dimensional example given in Fig. 2 to illustrate the process of reducing

epistemic uncertainty. As shown in Fig. 3, a group of training points is first generated from a known
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Figure 3: Types of uncertainty sources in ML models and the process of reducing epistemic uncertainty (i.e., methods
(b).i and (a).i described in Sec. 2.3).

mathematical function. Then, an ML model with only z; as the input feature is constructed based
on this group of training data. As shown in this figure, the resulting ML model (i.e., ML model 1)
has considerable epistemic uncertainty due to the combined effect of model-form uncertainty and
model-parameter uncertainty. In particular, the model-form uncertainty is caused by the fact that
the underlying model used to generate this dataset has two input variables (x1 and x2) while ML
model 1 only uses z1 as its input feature. Model-parameter uncertainty stems from the limited
number of training samples (i.e., 50 in this example). In order to reduce the epistemic uncertainty
(model-form uncertainty), we then include both z; and x5 as the input features, and another ML
model labeled ML model 2 is constructed using the same group of training data. As illustrated in
Fig. 3, adding input feature x5 (i.e., strategy (b).i as described above) substantially reduces the
epistemic uncertainty in regions within the training sample distribution. If we increase the size of
the training data to 100 (i.e., strategy (a).i), a third ML model (ML model 3) can be built based
on this larger training dataset. As expected, the epistemic component of the predictive uncertainty

is shown to decrease further due to the reduction of model-parameter uncertainty.

3. Methods for UQ of ML models

Data-driven ML models, most notably neural networks, have demonstrated unprecedented per-
formance in establishing associations and correlations from large volumes of data in high-dimensional

space via multiple layers of neurons and activation functions stacked together [97]. While ML has
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progressed on a fast track, it is still far away from fulfilling the stringent conditions of mission-
critical applications [15, 98], such as medical diagnostics, self-driving, and health prognostics of
critical infrastructures, where safety and correctness concerns are salient. In addition to safety and
reliability concerns, we are only able to collect a limited amount of data to train an ML model in a
broad range of applications due to practical constraints on physical experiments and computational
resources. To address some of these challenges, it is of paramount importance to establish princi-
pled and formal UQ approaches so that we can quantitatively analyze the uncertainty in ML model
predictions arising from scarce and noisy training data as well as model parameters and structures
in a sound manner. Accurate quantification of uncertainty in ML model predictions substantially
facilitates the risk management of ML models in high-stakes decision-making environments [99-102].

In particular, when dealing with input samples in the region of input space with low signal-to-
noise ratios or when handling the so-called OOD samples (input points sampled from a distribution
very different from the training distribution), most ML models are prone to produce erroneous
predictions [103]. If the uncertainty of an ML model can be quantified appropriately, it could lead to
more principled decision making by enabling ML models to automatically detect samples for which
there is high uncertainty. In fact, principled ML models are expected to yield high uncertainty (low
confidence) in their predictions when the ML model predictions are likely to be wrong [104, 105].
Having uncertainty estimates that appropriately reflect the correctness of predictions is essential to
identifying these “difficult-to-predict” samples that need to be examined cautiously, possibly with
the eyes of a domain expert. This section provides a detailed, tutorial-style introduction of state-of-
the-art methods for estimating the predictive uncertainty of data-driven ML models. As graphically
summarized in Fig. 4, these UQ methods are GPR (Sec. 3.1), Bayesian neural network (BNN) (Sec.
3.2), neural network ensemble (Sec. 3.3), and deterministic methods focusing on SNGP (Sec. 3.4).

3.1. Gaussian process regression

GPR can be viewed as a generalized Bayesian inference, extending from an inference about a
finite set of random variables to an inference about functions (each being an infinite-dimensional
vector of random variables) [106]. This generalized Bayesian inference works with a joint probability
distribution of a random function (i.e., an infinite-dimensional random vector) rather than a joint
distribution of a finite-dimensional random vector. Comprehensive and critical reviews are provided
by Rasmussen [106], Brochu et al. [107], and Shahriari et al. [31]. For complete details about GPR,

readers are referred to the seminal textbook by Rasmussen [106].

3.1.1. Basics of Gaussian process regression
a. Introduction to Gaussian process and Gaussian process prior.

A Gaussian process is a collection of random variables over some domain, where any finite subset
of these variables follows a joint (multivariate) Gaussian distribution. Intuitively, the Gaussian
process also defines a probability distribution for an unknown function, and this function comprises
a collection of (infinitely many) random variables. Let f(x) be the unknown function, where x € RP

is a D-dimensional input, then for any finite set of input (x) points of this function, for example,
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Figure 4: Graphical comparison of six state-of-the-art UQ methods introduced in Sec. 3. These methods are GPR
(method 1), BNN via MCMC or VI (method 2), BNN via MC dropout (method 3), neural network ensemble (method
4), DNN with GPR — DNN-GPR (method 5), and SNGP (method 6). In method 1, MVN standards for the multivariate
normal distribution, or equivalently, the multivariate Gaussian distribution used in the main text. In methods (5)
and (6), SN stands for spectral normalization.
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X; = [x1,...,xn5]T € RV*P their corresponding outputs f(X¢) = [f(x1),..., f(xn)]T € RY follow
a joint Gaussian distribution.

GPR starts from a Gaussian process prior for the unknown function: f(x) ~ GP(m(x), k(x,x"))
[106]. This Gaussian process prior is fully characterized by a (prior) mean function m(x) : R” — R
and a (prior) covariance function k(x,x’) : RP x R” ++ R. The mean function m(x) defines the

prior mean of f at any given input point x, i.e.,

m(x) = E[f(x)]. (8)

The prior mean of the Gaussian process is often set as zero everywhere, m(x) = 0, for the ease of
computing the posterior. If the prior mean is a non-zero function, a trick is subtracting the prior
means from the observations and function means (which we want to predict), thereby maintaining
the “zero-mean” condition. The covariance function k(x, x’), also called the kernel in GPR, captures
how the function values at two input points, x and x’, linearly depend on each other. It takes the

following form
k(x,x') = E[(f(x) —m(x)) (f(x') —m(x))]. (9)

When the prior mean is zero, the kernel fully defines the shape (e.g., smoothness and patterns)

of functions sampled from the prior and posterior.

b. Kernel (covariance function).
Probably the most commonly used kernel is the squared exponential kernel (a.k.a. the radial

basis function kernel and the Gaussian kernel), defined as

112
k(x,x') = 0% exp <—”X2l;"”) (10)
where the two kernel parameters, or two hyperparameters of the GPR model, are the signal am-
plitude oy (cr}% is called signal variance) and length scale [. O‘J% sets the upper limit of the prior
variance and covariance and should take a large value if f(x) spans a large range vertically (along
the y-axis). It can be observed that the covariance between f(x) and f(x’) decreases as x and x’
get farther apart. When x is extremely far from x’, they have a very large Euclidian distance, and
thus, k(x,x’) &~ 0, i.e., the covariance between their function values approaches 0. Therefore, when
predicting f at a new input point, observations far away in the input space will have a minimum
influence. When a new input is OOD, it has a very low covariance with any training point, meaning
that the training observations contribute minimally to reducing the prior variance of the function
value at the OOD point, leading to high epistemic uncertainty. This kernel-enabled characteristic
has important implications for the distance awareness property of GPR. On the other extreme, if
two input points are extremely close, i.e., x &~ x/, then k(x,x’) becomes very close to its maximum,
meaning f(x) and f(x’) have an almost perfect correlation. Function values of neighbors being
highly correlated ensures smoothness in the GPR model, which is desirable because we often want

to fit smooth functions to data.
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The squared exponential kernel in Eq. (10) uses the same length scale [ across all D dimensions.
An alternative approach is to assign a different length scale [4 for each input dimension x4, known
as automatic relevance determination (ARD) [108]. The resulting ARD squared exponential kernel
takes the following form

/ 2 1 Z (zd — m:i)Q
k(x,x') = o exp <_2212)’ (11)
d=1 d
where the (D + 1) kernal parameters are the D length scales, l1,...,lp, and the signal amplitude,
oy. The ARD squared exponential kernel is also known as the anisotropic variant of the (isotropic)
squared exponential kernel. Each length scale determines how relevant an input variable is to the
GPR model. If [; is learned to take a very large value, the corresponding input dimension x4 is
deemed irrelevant and contributes minimally to the regression. It is worth noting that the squared
exponential kernel is a special case of a more general class of kernels called Matérn kernels. See

Appendix A.1 for an extended discussion of kernels.

¢. Drawing random sample functions.

After defining a mean and a covariance function (kernel), we can draw sample functions from the
Gaussian process prior without any observations of the function output. We can also sample function
values from the Gaussian process posterior (i.e., the conditional Gaussian process conditioned on
observed data), an essential task in GPR. Let us look at sampling functions from a Gaussian
prior; a similar process can be followed to draw samples from a Gaussian process posterior. It is
practically impossible to generate a perfectly continuous function from the prior, simply because
this continuous function theoretically consists of an infinitely sized vector, which is not possible to
sample. Alternatively, we can sample function values at a finite, densely populated set of input
points and use these function values to reasonably approximate the continuous function. This
approximation is acceptable in practice, given that we only need to predict f at a finite set of input
points. Since a Gaussian process entails this finite collection of random variables (i.e., the f values
at the finite set of input points) follow a multivariate Gaussian distribution, we can conveniently
sample the function values from multivariate Gaussian.

Suppose we wish to sample function values at N, input points, xj,...,x} , from the prior.
These input points could become new, unseen test points in a regression setting, and we use a
subscript /superscript asterisk to distinguish them from training points. We start by defining an N,-
by-D matrix X, where each row contains an input point, i.e., X, = [x],... ,x}kv*]T. For simplicity,
we assume the multivariate Gaussian prior has zero means (m(x) = 0), so we only need to obtain
the covariances between the function values at these N, input points. Using the squared exponential

kernel, we can derive the following covariance matrix

k(xil(vxﬂf) o k(XT7X*N*)
Kx, x, = : : : (12)

k(xy,,x1) - k(Xy,,Xy,)

Now we can draw random samples of the function values at the N, input points X from
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Figure 5: Sample functions drawn a Gaussian process prior (a) and posterior (b). The GPR model uses the squared
exponential kernel with a length scale (I) of 1 and a signal amplitude (o¢) of 1, and a Gaussian observation model
with a noise standard deviation (o) of 0.1. The means are shown collectively as a solid blue line/curve, and ~95%
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GP(0, k(x,x’)) by sampling from the following multivariate Gaussian distribution: f, ~ N (0,Kx, x.).
Each sample (f,) consists of N, function values, i.e., f, = f(X,) = [f(x}),..., f(x}.)]". The most

umerical procedure to sample from a multivariate Gaussian distribution consists of

nerate random samples (vectors) from the multivariate (D-dimensional) standard
ion, M(0,I), and (2) transform these random samples linearly based on the mean
vector of the target multivariate Gaussian and the Cholesky decomposition of its covariance matrix
(see further details in Sec. A.2 (Gaussian Identities) of Ref. [106]). Figure 5(a) shows three sample

functions randomly drawn from a Gaussian process prior.

d. Making predictions at new points.
In practice, often, we only have noisy observations of f(x), for example, through the following

Gaussian observation model:
y=f(x)+e, (13)

where ¢ is a zero-mean Gaussian noise, i.e., ¢ ~ N'(0,02). The above additive Gaussian form will
also be commonly used for other UQ methods in the upcoming sections. The N noisy observations
can be conveniently written in a vector form: yy = [y1,...,yn]T € RY. Note that these observations
are sometimes called targets in a regression setting. In GPR, we want to infer the input (x) - target
(y) relationship from the noisy observations; we may also be interested in learning the input (x) -
output (f) relationship in some cases.

The Gaussian observation model in Eq. (13) portrays an observation as two components: a

signal term and a noise term. The signal term f(x) carries the epistemic uncertainty (see Sec.
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2.1) about f(x), which can be reduced with additional observations of f at a finite set of training
points (e.g., X1,...,xx). The noise term ¢ represents the inherent mismatch between signal and
observation (e.g., due to measurement noise; see Table 1), which is a type of aleatory uncertainty
(see Sec. 2.1) and cannot be reduced from additional observations. In some cases, observations may
be noise-free, corresponding to a special case where o, = 0. In other words, we have access to the
true function (f) output in these cases.

Now it is time to look at how to make predictions of function values f, for N, new, unseen
input points X, given a collection of training observations, D = {(x1,41), (X2,%2),- .., (Xn,yN)},
equivalently expressed as D = {X4,yt}. These predictions can be made by drawing samples from
the Gaussian process posterior, p(f|D). We denote the function values at the training inputs as
f. = f(X4) = [f(x1),..., f(xn)]T. Again, according to the definition of a Gaussian process, the
function values at the training inputs and those at the new inputs are jointly Gaussian (prior without

using observations), written as

[ i ] N (07 [ Kx, x, Kx, x. ]) 7 (14)
f, Kx, x, Kx,x,

where Kx, x, is the covariance matrix between the f values at the training points, expressed by
simply replacing X in Eq. (12) with X, Kx, x, is the covariance matrix between the training
points and new points (also called the cross-covariance matrix), Kx, x, = K;f(hx*, and Kx, x, is
the covariance matrix between the new points.

As shown in the Gaussian observation model in Eq. (13), we assume all observations contain an
additive independent and identically distributed (i.i.d.) Gaussian noise with zero mean and variance
o2. Under this assumption, the covariance matrix for the training observations needs the addition
of the noise variance to each diagonal element, i.e., y; ~ N (0,Kx, x, + 02T), where I denotes the
identity matrix of size N whose diagonal elements are ones and off-diagonal elements are zeros. It
then follows that the training observations (known) and the function values at the new input points

(unknown) follow a slightly revised version of the multivariate Gaussian prior shown in Eq. (14),

Yo | uarlo Kx, x, + 021 Kx, x, . (15)
f. ’ Kx, x, Kx, x,

Now we want to ask the following question: “given the training dataset D and new test points

expressed as

X, what is the posterior distribution of the new, unobserved function values f,7?”. It has been
shown that conditionals of a multivariate Gaussian are also multivariate Gaussian (see, for example,
Sec. 3.2.3 of the probabilistic ML book [74]). Therefore, the posterior distribution p(f.|D, X,) is
multivariate Gaussian. The posterior mean f, and covariance cov(f,) can be derived based on the

well-known formulae for conditional distributions of multivariate Gaussian, leading to the following:

f* = K;f(t,X* (th,Xt + O-?I)_lytv (16)
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and
cov(f,) = Kx, x. — Kx, x, (Kx, x, + 02I) 'Kx, x,. (17)

It is worth noting that this posterior distribution is also a Gaussian process, called a Gaussian
process posterior. So we have f(x)|D ~ GP(mpost(X), kpost (X, %)), where the mean and kernel

functions of this Gaussian process posterior take the following forms:
_ w7l 21\—1
mPOSt(X) - KXt,x(KXt,Xt + UEI) Yt (18)

and
kpost (%, %) = k(x,x') — Kx, o (Kx, x, + 021) 7' Kx, x'- (19)

It can be observed from Eqs. (16) and (17) that the key to making predictions with a Gaus-
sian process posterior is calculating the three covariance matrices, Kx, x,, Kx, x., and Kx, x,.
Difficulties in computation usually arise when performing a matrix inversion on a large covariance
matrix Kx, x, with many training observations. Much effort has been devoted to solving this
matrix inversion problem, resulting in many approximation methods, such as covariance tapering
[109, 110] and low-rank approximations [111, 112], mostly applied to handle large spatial datasets.
Another important issue associated with the matrix inversion is that the covariance matrix could
become ill-conditioned, most likely due to some training points being too close and providing re-
dundant information. Two common strategies to invert an ill-conditioned covariance matrix are (1)
performing the Moore—Penrose inverse or pseudoinverse using the singular value decomposition [30]
and (2) applying “nugget” regularization, i.e., adding a small positive constant (e.g., 1075) to each

diagonal element of the covariance matrix to make it better conditioned while having a negligible

2

effect on the calculation [113, 114]. Oftentimes, adding the variance of the Gaussian noise o7,

as
shown in Eqgs. (16) and (17), serves the purpose of “nugget” regularization.

Following the numerical procedure described in Sec. 3.1.1.c, we can generate random samples
of f from the Gaussian process posterior. For example, we can sample function values at the IV,
input points, xJ, ..., X} , by sampling from a multivariate Gaussian with mean f, and covariance
cov(f,). It is possible that the Cholesky decomposition needs to be performed on an ill-conditioned
posterior covariance matrix cov(f,). This issue can be tackled by applying “nugget” regularization
or adopting an alternative sampling procedure that centers around defining and sampling from a
zero-mean, unconditional Gaussian process, as described in Refs. [115-117]. Figure 5(b) shows three
sample functions drawn from a Gaussian process posterior after collecting 20 noisy observations of
a 1D sine function.

We have been looking at the posterior of noise-free function values. To derive the posterior over
the noisy observations, p(y«|D, X,), we add a vector of i.i.d. zero-mean Gaussian noise variables to
the f, posterior, producing a multivariate Gaussian with the same means (Eq. (16)) and a different
covariance matrix whose diagonal elements increase by o2 compared to the covariance matrix in Eq.
(17). Tt is also straightforward to make predictions on a noise-free Gaussian process using Egs. (16)

and (17). We can simply take out the noise variance term oI and use y, = f.. As is discussed in
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Appendix B, GPR with noise-free observations is widely used to build cheap-to-evaluate surrogates
of computationally expensive computer simulation models in engineering design applications such
as model calibration, reliability analysis, sensitivity analysis, and optimization. The observations in
these applications are free of noise because we have direct access to the true underlying function (i.e.,
the computer simulation model) that we want to approximate. In contrast, as will be discussed
in Sec. 5, many applications of GPR in health prognostics require the consideration of noisy
observations, as we often do not have access to the true targets (e.g., health indicator) but can only
obtain noisy measurements or estimates of these targets.

Now let us look back at the distance awareness property of GPR. Suppose a new input point
X, keeps moving away from the training distribution D. In that case, the Euclidean distance
between x, and any input point x; in D, i.e., dist(X4,%;),Vi = 1,..., N, constantly increases. All
elements in the cross-covariance matrix and, more strictly, the cross-covariance vector kx, x, =
[k(x1,%4), .., k(xn,%)]T quickly approach zero. Given that neither the training-data covariance
matrix Kx, x, nor the new-data covariance (variance in this case) k(x., X, ) experiences any changes,
the posterior mean f, will approach zero (i.e., the prior mean), and more importantly, the posterior
variance var(f,) will approach its maximum allowed value 01? . This observation of the GPR model
behavior is significant for UQ because it means that a GPR model naturally yields high-uncertainty

predictions for OOD samples falling outside of the training distribution.

e. Optimizing hyperparameters.

Suppose we choose the squared exponential kernel as the covariance function. In that case,
we will have three unknown hyperparameters that need to be estimated based on training data.
These parameters are the characteristic length scale (1), signal amplitude (o¢), and noise standard
deviation (o.), i.e., ® = [I, 0¢,0.]T. Estimating these hyperparameters can be regarded as training
a GPR model. As it is often difficult yet not much value-added to obtain the full Bayesian posterior
of 0, we typically choose to obtain a mazimum a posteriori probability (MAP) estimate of 0, a point
estimate at which the log marginal likelihood log p(y¢|X¢, ©) reaches the largest value. Assuming
the prior is uniform, the log marginal likelihood function of the posterior takes the following form
[106]:

1 _ 1 N
log p(yi| X+, 0) = =2 (yi (Kx, x, + 021)~'y1 —; log [Kx, x, + 021| = log (27),  (20)
Mode;gata fit Complexity penalty Constant

The first term on the right-hand side, the so-called “model-data fit” term, quantifies how well
the model fits the training observations. The second term, called the “complexity penalty” term,
quantifies the model complexity where a smoother covariance matrix with a smaller determinant
is preferred [106]. The third and last term is a normalization constant and indicates that the
likelihood of data tends to decrease as the training data size increases [31]. It should be noted
that the cost complexity of Eq. (20) is O(N?3) to compute the inverse of the covariance matrix
Kx, x, and the space complexity is O(N?) to store this matrix. Hyperparameter optimization
significantly influences the accuracy of GPR. See Appendix A.2 for an illustrated example on the
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effect of hyperparameter optimization.

3.1.2. UQ capability and some limitations of Gaussian process regression
GPR is capable of capturing both aleatory and epistemic uncertainty. For regression problems,

the posterior variance for a query or test point, shown in Eq. (17), is an elegant expression of the

2
£

uncertainty. If this noise variance is assumed to be a constant (learned from the observations), the

total predictive uncertainty. The variance of the additive white noise, o2, is a measure of the aleatory
GPR model is called a “homoscedastic” model. In contrast, a heteroscedastic GPR model represents
the noise variance as a function of the input variables x [118]. Assuming a squared exponential kernel
is used, the epistemic uncertainty is determined mainly by kx, x,, the covariance vector between the
training points and query point, as discussed at the end of Sec. 3.1.1.d. The farther away the query
point is from the training points, the smaller the elements of kx, x, and the larger the epistemic
uncertainty. Therefore, using a distance-based covariance (or kernel) function and according to
conditionals of a multivariate Gaussian, a GPR model produces low epistemic uncertainty at query
or test points close to observations used for training and high epistemic uncertainty at query points
far away from any training observation. This distance awareness property makes GPR an ideal
choice for highly reliable OOD detection for problems of low dimensions and small training sizes.
The aleatory and epistemic uncertainty components of the posterior variance determine how wide
the confidence interval of a model prediction at the query point should be, reflecting the total
predictive uncertainty.

Despite the highly desirable distance awareness property and OOD detection capability, GPR
does not always produce posterior variances that reliably measure the predictive uncertainty. The
reliability of UQ by GPR depends on many factors, such as the test point where a prediction is
made, the behavior of the underlying function to be fitted, and the choices of the kernel and hy-
perparameters. For example, a necessary condition for reliable UQ by a GPR model is properly
choosing its kernel and optimizing the resulting hyperparameters (e.g., the variance of the additive
white noise, 02, measures the aleatory uncertainty and should be optimized for accurate UQ). As
discussed earlier, GPR can detect OOD test points, especially those far from the training distribu-
tion. However, the high posterior variances at these “extreme” test points may still not accurately
measure the prediction accuracy. Specifically, as a test point moves away from the training distri-
bution, the posterior variance will start to “saturate” at its peak value, as discussed in detail in Sec.
3.1.1.d; in contrast, the prediction error at this test point may continue to rise due to an increasing
degree of extrapolation, and so should an “ideal” estimate of the predictive uncertainty. Although
GPR may not produce reliable UQ in such an extreme extrapolation scenario, it is important to take
a step back and keep in mind that extrapolating to an extensive degree goes against the purpose
for which GPR was originally introduced, i.e., interpolation [106, 119].

Standard GPR generally does not scale well to large training datasets (large N) because its
training complexity is O(N?3). This scalability issue originates from the computation of the inverse
and determinant of the N x N covariance matrix Kx, x, during model training (i.e., hyperparam-

eter optimization), as shown in Eq. (20). This scalability issue motivated considerable effort in
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examining local and global approximation methods to scale GPR to large training datasets while
maintaining prediction accuracy and UQ quality. Interested readers may refer to a recent review on
scalable GPR in [120]. Another limitation of GPR is its lack of scalability to high input dimensions
(high D). This limitation stems from two issues. First, training a GPR model in a high-dimensional
input space typically requires optimizing a large number of hyperparameters. This is because an
ARD kernel form often needs to be chosen to deal with high-dimensional problems. As a result,
the number of hyperparameters increases linearly with the number of input variables (e.g., a GPR
model with the ARD squared exponential kernel shown in Eq. (11) has (D + 2) hyperparameters).
A direct consequence is that a large quantity of training samples (high N) is needed to optimize the
many hyperparameters, leading to a large covariance matrix. As discussed earlier, inverting this
large covariance matrix and calculating its determinant have high computational complexity. Sec-
ond, maximizing the log marginal likelihood (see Eq. (20)) with a large number of hyperparameters
becomes a high-dimensional optimization problem. Solving this high-dimensional problem requires
many function evaluations, each involving one-time covariance matrix inversion and determinant
calculation. Attempts to improve GPR’s scalability to high-dimensional problems include (1) pro-
jecting the original, high-dimensional input onto a much lower-dimensional subspace and building a
GPR model in the subspace [121, 122], (2) defining a new kernel with a substantially smaller num-
ber of parameters identified with partial least squares [123], and (3) adopting an additive kernel in
place of a tensor product kernel in Eq. (11) [124]. More detailed discussions on scaling GPR to
high-dimensional problems can be found in a recent review [125].

As a final note, since this tutorial focuses on UQ of neural networks, it is relevant and interesting
to discuss connections between GPR and neural networks. Considerable efforts have been made to

establish such connections. Some of these efforts are briefly discussed in Appendix A.3.

3.2. Bayesian neural network

We will first introduce the non-Bayesian (frequentist) training of a DNN, and contrast it against
the Bayesian training used to form the BNNs. Consider a DNN f : R” — R with tunable parameters
0, and its prediction at an x is written as § = f(x;0). In non-Bayesian (frequentist) training, © are
treated as deterministic, but unknown, parameters (i.e. not random variables). An estimator for ©
can then be created from a training dataset D = {(x1,v1), (x2,%2), -+, (Xn,yn)} by minimizing a

loss function shown below:
0* = argmin £(0; D). (21)
0

For example, a commonly used loss function for regression problems is the mean squared error
(MSE) defined below:

N
o1
Oise = argmin E_; [ly: = £ (i3 ©)[[3. (22)

With the gradient of f accessible through back-propagation [126], the loss minimization is typi-
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cally solved numerically using stochastic gradient descent [127, 128]. Once 0* is found, prediction
at a new point x, can be made via g, = f(x4;0%). These predictions, however, are single-valued
and do not have quantified uncertainty.

A Bayesian training [129-131] of DNNs, also known as Bayesian deep learning [70, 108, 132—
134], produces a Bayesian neural network or BNN. The Bayesian approach views 6 as a random
variable with the goal to find the entire distribution of plausible 6 values that could have generated
the observed data D. Following Bayes’ rule, the prior probability density function (PDF) p(0)
(“before”-uncertainty in ©) is updated to the posterior PDF p(0|D) (“after”-uncertainty in ©)

conditioned on the training data D. Mathematically, we have:

_ p(D[®)p(6) _ p(y]6,X)p(6)
(D) p(yIX)

p(6/D) (23)
where we separate the training dataset D = {X,y} into their inputs X = {x;,x9,--+ ,xxy} and
corresponding outputs y = {y1,42, -+ ,yn}. Note that in the GPR section (Sec. 3.1), X; and X,
denote matrices comprising input points and y; and y, denote vectors consisting of observations. In
this BNN section, X and y denote sets of input points and observations, respectively, to be consistent
with the literature on Bayesian inference and BNN. In the above, p(y|0,X) is the likelihood and
p(y|X) is the marginal likelihood (model evidence). The Bayesian problem and the BNN entail
solving for the posterior p(0|D). We further discuss each term in the Bayes’ rule in Eq. (23) below.

The prior p(0) can be formed in an informative or non-informative manner. The former allows
one to inject domain knowledge and expert opinions on the probable values of 0, formally through
the methods of prior elicitation [135]. However, these methods are difficult to use on DNN param-
eters © due to their abstract and high-dimensional nature. The latter generates a prior following
guiding principles for desirable properties (e.g., Jeffreys’ prior [136], maximum entropy prior [137]).
In practice, isotropic Gaussian is often adopted for their convenience, but caution must be taken to
consider their pitfalls and appropriateness as BNN priors [138].

The likelihood p(y|6, X) commonly follows a data (observation) model with an additive indepen-
dent Gaussian noise (similar to Eq. (13) in the GPR case): y; = f(x;;0) + ¢, where ¢ ~ N(0,02).

In the implementation, we often work with the log-likelihood, which is computed as:

N N

1

logp(y|0,X) = > logp(y:]6,%;) = —N log(v270.) — 252 > lyi — f(xi; 0)]13. (24)
=1 € 4=1

We can see that finding the mode of the Gaussian (log)-likelihood above (i.e. the © that maxi-
mizes Eq. (24)) is equivalent to the MSE minimization in Eq. (22); hence, 03gg is also known as
the maximum likelihood estimator. Furthermore, adding a regularization term to Eq. (22) serves
the role of a prior, and in a similar fashion, a regularized loss minimization is also known as a
maximum a-posteriori (MAP) estimator (e.g., L2-regularization is the MAP with a Gaussian prior,
L1-regularization is the MAP with a Laplace prior).

The marginal likelihood p(y|X) in the denominator of Eq. (23) is a (normalization) constant
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for the posterior that integrates the numerator: p(y|X) = [p(y|0,X)p(0)d0. As it requires a
non-trivial integration, this term is highly difficult to estimate. Fortunately, Bayesian computation
algorithms are often designed to avoid the marginal likelihood altogether; we will describe examples
of these algorithms in the upcoming sections.

Lastly, once the Bayesian posterior p(6|D) is obtained, the posterior uncertainty can be propa-
gated through the BNN at a new point x, via, for example, MC sampling. Importantly, we draw the
distinction between the posterior-pushforward and posterior-predictive distributions. The posterior-
pushforward is p(g«|x«, D) = p(f (x4; 0)|%4, D). It describes the uncertainty on g, (i.e. the “clean”
prediction from the DNN) as a result of the uncertainty in 0. In contrast, the posterior-predictive
is p(y«|xs, D) = p([f (x4;0) + €] |x4, D), it describes the uncertainty on y, (i.e. the noisy observed
quantity). Hence, the former incorporates epistemic parametric uncertainty, while the latter fur-
ther augments aleatory data uncertainty to the new prediction. The two distributions can be easily
confused with each other, with the danger of improper UQ assessments where one might incorrectly
expect the posterior-pushforward uncertainty to “capture” the noisy observation data.

In the following sections, we introduce several major types of Bayesian computational methods
for solving the Bayesian posterior: Markov chain Monte Carlo or MCMC (posterior sampling),

variational inference (posterior approximating), and MC dropout.

3.2.1. Markov chain Monte Carlo

The classical method for solving the Bayesian problem is to sample the posterior distribu-
tion using Markov chain Monte Carlo (MCMC) [139, 140]. MCMC establishes a Markov chain
{9(")}, n € N from a transition kernel (i.e. proposal distribution) such that the chain converges to
the posterior p(0|D) regardless of its initial position 0(?). Most importantly, ergodicity theorems
ensure that the empirical average of MCMC samples, N% ij;l h(G(”)), converges to the posterior
expectation Egp[h(0)] almost surely. The most fundamental MCMC is the Metropolis-Hastings
(MH) algorithm [141, 142], which forms the basis of many advanced MCMC variants. Hamiltonian
Monte Carlo (HMC) [143, 144], an advanced type of MCMC with improved mixing properties, is
more commonly used for BNNs. Drawing intuition from physics, HMC introduces an auxiliary
momentum variable to form a system of Hamiltonian dynamics that can generate trajectories fol-
lowing the high-probability regions of the posterior (the so-called typical set). However, the effect of
concentration of measure brings the typical set to become more singular with increasing dimension,
and even HMC has only been exercised for © that is hundreds-dimensional [108, 145, 146]. This is
still orders of magnitude shorter than modern DNNs that can easily have millions, even billions,
of tunable parameters. While MCMC methods are theoretically appealing due to their asymptotic
convergence to the true posterior, the Markov chains can be very difficult to mix for high dimensions

in practice. As a result, they see limited usage in BNNs.

3.2.2. Variational Inference
A more scalable approach to the Bayesian inference problem can be found through variational
inference (VI) [147, 148]. In contrast to MCMC sampling, the idea of VI is to approximate the

posterior within a parametric family of distributions (e.g., a family of Gaussian distributions). In
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this section, we will start by defining the optimization problem that describes the best posterior
approximation, then introduce some examples of numerical algorithms to solve the VI problem.

Denoting a variational distribution (for approximating the posterior) using ¢(6; \) parameterized
by A, VI seeks the best posterior-approximation ¢(0; \*) that minimizes the Kullback-Leibler (KL)
divergence between ¢(0;\) and p(0|D), that is:

N = arginin Dk [q(6;))[|p(8D)]. (25)

A popular choice for the variational distribution is the independent (mean-field) Gaussian:
q(0; ) = Hszl q(Ok; Ap) = Hszl N (Ok; i, 02), where K is the total number of parameters in
the DNN. The independence structure allows the joint PDF to be factored into a product of uni-
variate Gaussian marginals, and so the variational parameters are A = {ug,or}, k = 1,..., K that
encompasses the mean and standard deviation of each component of 0, for a total of 2K variational
parameters. As a result, mean-field simplifies to a diagonal global covariance matrix (instead of
dense covariance) in the approximate posterior, and it is unable to capture any correlation among
the 0y’s. More expressive representations of ¢(0;\) are also possible, for example via normalizing
flows [149] and transport maps [150] that parameterize the mapping from the posterior random
variable O to a standard normal reference random variable.

Given the variational distribution ¢(0;\), Eq. (25) can be further simplified as follows:

N = arg;nin Dxr [q(8;7) [|p(0]D)]

= argmin E, o, [m ¢(8;2) —In <W>}

= arg;nin Dxr [q(8;0) [[p(0) ] — Eqeo:n) [In p(y[0, X)], (26)

— Evidence Lower Bound (ELBO)

where going from the second to the third equation, the log-denominator’s contribution Ey gy [Inp(y[X)] =
In p(y|X) is omitted since it is constant with respect to both A and © and its exclusion does not
change the minimizer. The resulting expression in Eq. (26) is the negative of the well-known Ewvi-
dence Lower Bound (ELBO). The first term of ELBO acts as a regularization to keep ¢(0;\) close

to the prior. The second term of ELBO involves the log-likelihood of generating the observed data
under DNN parameters 6 ~ ¢(0; \); hence it measures the expected model-data fit.

In general, it is impossible to evaluate the ELBO analytically, and Eq. (26) must be solved
numerically. The simplest approach is to use MC sampling to estimate the ELBO, which only
entails sampling 6 ~ ¢(0; \). Often, further simplifications can be made by analyically computing
the first term, which involves only the prior and variational distribution. Furthermore, the gradient
of ELBO with respect to A may be derived (e.g., see [134] for Gaussian ¢) or obtained through
automatic differentiation, allowing one to take advantage of gradient-based optimization algorithms
(e.g., stochastic gradient descent) to solve Eq. (26).

The Stein variational gradient descent (SVGD) [151] is another VI variant offering a flexible
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particle approximation to the posterior distribution. SVGD leverages the relationship between
the gradient of the KL divergence in Eq. (25) to the Stein discrepancy, the latter which can be
approximated using a set of particles. An update procedure can then formed to iteratively ascent
along a perturbation direction GfH — Gf + q@*(ef), where Gf, it = 1,...,Np, denotes the i-th
particle at the ¢-th iteration, €, is the learning rate, and the perturbation direction is defined as:

NP
5(0) = ;p ; [k(8},0) Vg In (8} | D) + Vi k(85,0)] (27)
with k(-,) being a positive definite kernel (e.g., radial basis function kernel in Eq. (10)) Notably,
the gradient of the log-posterior in the above equation can be evaluated via the sum of gradients
of log-likelihood and log-prior, since the gradient of the log-marginal-likelihood with respect to ©
is zero. The overall effect is an iterative transport of a set of particles to best match the target
posterior distribution p(0|D). Building upon the SVGD, advanced methods of Stein variational
Newton [152, 153] that makes use of second-order (Hessian) information, and projected SVGD [154]

that finds low dimensional data-informed subspaces, have also been proposed.

4

Figure 6: Illustration of Bayesian posterior obtained from (left) MCMC, (middle) SVGD, and (right) mean-field
Gaussian VI for a simple low-dimensional Bayesian inference test problem.

Figure 6 compares the different Bayesian posteriors obtained from a simple low-dimensional
Bayesian inference test problem using MCMC, SVGD, and mean-field Gaussian VI. MCMC and
SVGD provide sample/particle representations of the posterior distribution, while VI produces an
analytical Gaussian approximation of the PDF. Both MCMC and SVGD are able to capture non-
Gaussian and correlated structure, although SVGD is more restrictive in the number of particles it
can use due to higher memory requirement. However, SVGD and VI are more scalable to higher 6
dimensions than MCMC.

We note that another variant of VI can arise from the reverse KL divergence Dk, [p(0|D) || g(0; \) |
(in contrast to the Dxr, [¢(0; A) || p(8]|D) ] from Eq. (25)). Notable algorithms from this formulation
include expectation propagation [155], assumed density filtering [156], and moment matching [157];
in particular, expectation propagation has been shown to be quite effective in logistic-type models

in general.
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3.2.8. MC dropout

Although the Bayesian approach offers an elegant and principled way to model and quantify
the uncertainty in neural networks, it typically comes with a prohibitive computational cost. As
introduced earlier, MCMC and VI are two commonly used methods to perform Bayesian inference
over the parameters of neural network. However, Bayesian inference with MCMC and variational
inference in DNNSs suffers from extremely time-consuming computational burden and poor scalabil-
ity. Specifically, in the case of MCMC, estimating the uncertainty of neural network prediction with
respect to a given input requires to draw a large number of samples from the posterior distributions
of thousands or even millions of neural network parameters and propagate these samples through
the neural network [158]. Compared with MCMC, VI is much faster and has better scalability as
it recasts the inference of posterior distributions of neural network parameters as an optimization
problem. However, VI unfortunately doubles the parameters to be estimated for the same neu-
ral network. In addition, it is intricate to derive and formulate the optimization problem, much
less optimization regarding the high-dimensional problem consumes a large amount of time before
convergence [21].

Beyond MCMC and VI, further scalability can be achieved through the MC dropout method.
Initially proposed as a regularization technique to prevent the overfitting of DNNs [159], MC dropout
has been shown to approximate the posterior predictive distribution under a particular Bayesian
setup [21]. Procedurally, MC dropout follows the same deterministic DNN training in Eq. (21),
except that it forms new sparsely connected DNNs from the original DNN (see method 3 in Fig. 4)
by multiplying every weight with an independent Bernoulli random variable. Hence, each weight
has some probability of becoming zero (i.e., the weight being dropped). These Bernoulli random
variables are re-sampled (i.e., a new, randomized sparse DNN is formed) for every training sample
and for every forward pass of the model. At test time, the prediction at a new point x, can also be
repeated with multiple forward passes each with a new, randomized sparse DNN resulting from the
dropout operation. An ensemble of predictions can thus be obtained to estimate the uncertainty.
Practical implementation of MC dropout in probabilistic programming languages is often realized
by adding a dropout layer after each fully-connected layer.

The connection from MC dropout to a Bayesian setup is detailed in [21, 160]. Those works
show that the loss function following the dropout procedure corresponds to a single-sample MC
approximation to the VI objective (i.e., the ELBO in Eq. (26)), where the variational posterior of the
DNN weights is a Bernoulli mixture of two independent Gaussians of fixed covariance. Furthermore,
the prior of each DNN weight is assumed to follow a standard normal distribution, and the likelihood
is based on the additive Gaussian noise model in Eq. (24). Established upon such a setup, in MC
dropout, the variational distribution ¢ (0;\) for approximating the posterior distribution p(6|D)
becomes a factorization over the weight matrices W; of the layers 1 to L. Mathematically, the

variational distribution ¢ (0;\) takes the following multiplicative form:
L

q(8;)) = [J ot (W), (28)
=1
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where gni, (W) denotes the density associated with the weight matrices W of layer 4, and under
MC dropout, it emerges as a Gaussian mixture model consisting of two independent Gaussian

components with a fixed and identical variance, as shown below [21, 160]:

qmM;, (Wl) = pi/\/ (Mi,O'2Ii) + (1 — pi) N (0, 0'211') . (29)

First Gaussian Second Gaussian

In the above, M; is the mean of the first Gaussian, which is a vectorization of n;_1 X n; values
pertaining to the weight matrix W of size n;_1 X n; (n; denotes the number of units in the i-th
layer; when ¢ = 0, it denotes the number of inputs), o is the standard deviation parameter specified
by the end user, I; is the identity matrix, N denotes the normal distribution, and p; (p; € [0,1])
is the dropout rate associated with the set of links connecting two consecutive layers of the neural
network. Under this VI perspective, MC dropout corresponds to optimizing A = M;, while both o
and p; have fixed user-chosen values and are not part of the variational parameter set.

In the MC dropout implementation, for each element of W;, we sample a v according to a
Bernoulli distribution with a prescribed dropout rate p;, that is v ~ Bernoulli(p;). If the binary
variable v = 0, it indicates that link connecting the i-th and (i + 1)-th layers is dropped out. This
operation corresponds to choosing one of the two Gaussians from the mixture model in Eq. (29),
and hence MC dropout can serve as an approximation to the Bayesian posterior in BNNs.

A major advantage of MC dropout is that it is very straightforward to implement, requiring
only a few lines of modification to insert the z’s to an existing DNN setup and often conveniently
available as a dropout layer in many programming environments. Furthermore, its ease of imple-
mentation is agnostic of the neural network architecture, and can be readily adopted for many
polular types of neural networks such as convolutional neural network (CNN) and recurrent neural
network (RNN) [160, 161]. Another major advantage of MC dropout is its low computational cost
and high scalability since its training procedure is effectively identical to an ordinary, non-Bayesian
training of DNNs but with randomized sparse networks. These appealing properties collectively
contribute to the growing popularity of MC dropout in practice.

MC dropout also has some limitations. One disadvantage is that the quality of the uncertainty
generated by MC dropout is highly dependent on the choice of several hyperparameters [162—-164],
such as the dropout rate and number of dropout layers. Thus, these hyperparameters need to be
fine tuned. Along this front, we also have similar findings in Section 3.5 that MC dropout exhibits
poor stability to the dropout rate, training epochs, and the number of trainable network parameters
(see Appendix D for more details). Regardless of the instability, the uncertainty produced by MC
dropout exhibits a consistent difficulty in detecting OOD instances. Note that other approximation
inference methods, such as MFVI, have a pathology that is slightly different from MC dropout
with respect to the soundness of the quantified uncertainty, see Section 3.5 for more details. As
highlighted by Foong et al. [165], the pathology of UQ in approximation methods is solely attributed
to the restrictiveness of approximating family, while exact inference methods, such as MCMC, do
not have such a problem. Another disadvantage of MC dropout is that users do not have the

option to inject their prior knowledge by specifying the prior or likelihood function because there
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is no mechanism for MC dropout to integrate such information—as a result, MC dropout can
only represent a narrow spectrum of Bayesian problems. A further side effect of this limitation
is that users may be hindered from critically thinking about the prior and likelihood altogether,
which may lead to claims of a Bayesian solution without actually having a Bayesian problem setup.
Finally, some researchers [166] have argued that MC dropout is not Bayesian because the variational

distribution fails to converge to ground-truth posterior distribution on closed-form benchmarks.

3.8. Neural network ensemble

Ensemble learning is a well-established technique to prevent overfitting and mitigate the poor
generalizability of ML models [167]. An essential step in constructing ensemble models is to train
multiple individual models independently and aggregate predictions from these individual models
to derive the final prediction. When building an ML model ensemble, it is of paramount importance
to retain a high degree of diversity among the individual models to achieve desirable performance
improvement [168]. Such diversity can be achieved through a broad spectrum of means that can
be grouped into two principal categories: (1) randomization approaches, such as bagging (a.k.a.
bootstrapping), where ensemble members are trained on different bootstrap samples of the original
training set or a random subset of original features [169]; and (2) boosting approaches: boosting
learns from the errors of previous iterations by increasing the importance of those wrongly predicted
training instances, thus sequentially and incrementally constructing an ensemble [170].

In the context of deep learning, building an ensemble of neural networks entails independently
training multiple neural networks with an identical architecture. Due to the easiness of implemen-
tation, neural network ensemble has been pervasively used to characterize the uncertainty of neural
network predictions [78, 171]. In particular, well-calibrated uncertainty estimates tend to yield
higher uncertainty on OOD data than on samples sufficiently similar to the distribution of training
data. On this front, the uncertainty of a neural network ensemble is principled to some extent in
the sense that this ensemble is inclined to produce higher uncertainty estimates (e.g., entropy in
the case of classification problems) for OOD instances [22]. The appealing feature of neural net-
work ensembles in producing higher uncertainty for OOD instances has been actively exploited s a
prevailing means to detect dataset shifts in the ML community because the data collected under a
shifted environment typically displays salient patterns that are substantially different from the data
that the ensemble neural networks are trained with [22, 101, 172].

3.8.1. Aleatory uncertainty: training each network individually

We consider a popular configuration of neural network ensemble where each individual neural
network in an ensemble outputs two quantities denoting the predicted mean i (x;) and variance
52 (x;) with respect to an input x; in its final output layer (see Fig. 4 for an overview on the
architecture of the individual neural network). In this configuration, the predictive distribution of
each network is often assumed to be Gaussian; therefore, the final output layer is sometimes called
Gaussian layer. Such a configuration enables characterizing observational noise of aleatory nature

associated with target values.
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Let us take a closer look at the aleatory uncertainty, more specifically, the observational noise
pertaining to each target observation. The simplest case is that we assume the same amount of
noise or aleatory uncertainty for every input x;, also known as homoscedasticity or homogeneity of
variance in statistics (similar to the homoscedastic case for GPR discussed in Sec. 3.1). To represent
the relationship between input x; and observation y;, we can use the Gaussian observation model
given in Eq. (13), substituting x with x; and y with y;. In this model, a random noise term &, often
modeled as a zero-mean Gaussian noise, shifts the target away from the true value f(x;) to the
observed value y;. In this simplest case, the variance of random noise ¢ takes the same value o2 for
every input and is thus a constant. Although we could learn o. together with the neural network
parameters 0, this simplest case may not be realistic as some regions of the input space may have
larger measurement noise than other regions.

A more realistic case is one where the noise variance depends on x;. The basic idea is to tailor
aleatory uncertainty to each input, making the uncertainty input-dependent. This heteroscedastic
case is also briefly discussed in Sec. 3.1 where heteroscedastic GPR is the focus of the discussion.

The observation model now becomes the following:

yi = f(xi) +e(xi), (30)

where the variance of the noise term ¢ (x;), o2 (x;), is now a function of x;. It turns out that a
neural network can be trained to learn the mapping from x to crg [22, 23]. It then follows that
we can train a neural network with parameters © that learns to predict both the mean u (x;) and
variance o2 (x;) of the target for each input x;. This neural network has two outputs, predicted
mean i (x;; 0) and variance 52 (x;;0), which fully characterise a Gaussian predictive distribution,
ie., i~ N (fi (xi;0),5° (x;;0))

Before optimizing the network parameters 0, we need to define a proper scoring rule that mea-
sures the quality of predictive (aleatory) uncertainty. For regression problems, a typical choice of
a proper scoring rule is the likelihood function p (y;| x;;0) whose logarithmic transformation takes
the following form [22, 173]:

logd?(xi50) (s — i (x;:0))°

logp (yi| xi;0) = 9 ~ T op0 (x:: 0) — constant. (31)
T

Given a training dataset consisting of NV input-output pairs, D = {(x1,v1), (X2,¥2), -, (Xn,yN) },
© can be optimized by minimizing the following negative log-likelihood (NLL) loss on the entire
training data, which is equivalent to maximizing the negative counterpart of the likelihood function

in Eq. (31), after being summed up over all N training samples.

N . .
£(0) = Z log5? (x;0)  (yi — i (x5 0))° (32)

- > T %2(xz0) |

where the constant term in Eq. (31) is omitted for brevity because it has nothing to do with the

optimization of ©.
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3.83.2. Epistemic uncertainty: using an ensemble of independently trained networks

As discussed in Sec. 3.3.1, the neural network ensemble approach captures aleatory uncertainty
by training a neural network that produces a Gaussian output (or another type of probability dis-
tribution) for each input. This modeling process improves over traditional deterministic approaches
that only produce a point estimate. Plus, the network-predicted variance varies according to the
input, making it possible to capture input-dependent observational noise. One limitation is that
minimizing the loss function in Eq. (32) yields a single vector of network parameters. Therefore, the
resulting neural network cannot capture the uncertainty related to the network parameters because
all parameters are deterministic. This treatment becomes an issue when only limited training data
are available. These cases are more realistic than having abundant training data, and when train-
ing data are of limited quantities, epistemic uncertainty is high and cannot be ignored. One widely
used way to capture epistemic uncertainty is to assume and estimate uncertainty in the parame-
ters of a neural network model, also known as model parameter uncertainty or network parameter
uncertainty.

After tuning the neural network parameters 0, at the time of prediction, each individual neural
network generates a pair of outputs (jz (xx),0 (xx)) with respect to an unseen instance x,, where
0 (xx) explicitly quantifies the aleatory uncertainty in model prediction arising from the random
noise ¢ (-) associated with the target value. Next, to quantify the epistemic uncertainty associated
with the neural network parameters 0, we can build an ensemble of neural networks, for example,
by adopting the randomization strategy (random parameter initialization and mini-batch sampling)
that attains a diverse set of neural networks. Suppose the neural network ensemble is composed
of M individual neural networks, then the ensemble model produces M pairs of (1, (X«),0m (X«))
(m=1,2,---, M) for the given input x,. The M pairs of predictions (fim, (X«),0m (X)) can be
viewed as a mixture of Gaussian distributions. Thus, we can use a single Gaussian distribution to
approximate the mixture of Gaussian distributions as long as the mean and variance of the single
Gaussian distribution are the same as the mean and variance of the mixture. Assuming that each
individual neural network in the ensemble carries an equal weight, we have the mean and variance

of the ensemble-predicted single Gaussian distribution as:

M
fi(%:) = 57 2 Jim (%)

m

=1
() = 55 (6% () + B2 (0) — ().

m=1

(33)

In the ensemble of neural networks, both the aleatory and epistemic uncertainty can be measured
in a straightforward way. Specifically, the aleatory uncertainty arising from the noise associated with
the observation y is reflected in the variance &, (x.) predicted by each individual neural network.
In contrast, the epistemic uncertainty associated with the network structure and parameters is
manifested mainly as the difference with respect to i, (x.) of the M neural networks because
each individual neural network is initialized with a random set of weights and biases and trained

with a random mini-batch data for the gradient descent algorithm. Such randomness introduces
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a sufficient amount of diversity among the individual models. Thus, the difference between the
individual mean predictions fi,, (x.) that dominates the epistemic uncertainty characterizes the
structural and parametric uncertainty pertaining to the neural network.

An interesting question about neural network ensembles is why training multiple neural networks
of an identical architecture independently with just random initializations can capture epistemic
uncertainty. The answer lies in that training a neural network with a large number of parameters
(e.g., weights and biases) is an extremely intricate large-scale optimization problem in a high-
dimensional space, and stochastic gradient descent-based algorithms oftentimes converge to different
sets of parameter values © that are locally optimal [174]. As mentioned earlier, network training
involves two sources of randomness: (1) random parameters initialization at the beginning of model
training and (2) random perturbations of the training data to produce mini-batches of data in
stochastic gradient descent As a result, the locally optimal parameters © vary from one trained
neural network to another. Suppose M independent training runs give rise to M different local
minima for the network parameters, which then lead to the creation of M individual members of
an ensemble, as shown in Eq. (33). From the optimization perspective, the randomness in the
initialization of neural network parameters and the sampling of mini-batch data encourages the
optimization algorithm to explore different modes of the function space of a neural network. As a
result, the predicted means of these M networks may differ substantially in some regions of the input
space, while the predicted variances may still be similar, resulting in high epistemic uncertainty.
These regions are typically located outside the training data distribution. Test samples falling into
these regions are called OOD samples (as previously defined in Sec. 1), where ensemble predictions

must be taken cautiously and are often untrustworthy.

3.4. Deterministic methods

A recent line of effort attempted to estimate the predictive uncertainty of neural networks using
deterministic UQ methods. These methods require only a single forward pass on a neural network
with deterministic parameters (weights and biases) to produce probabilistic outputs (e.g., predicted
mean and variance for regression). A resulting benefit that makes these methods uniquely attractive
is high computational efficiency (test time), particularly suitable for safety-critical applications
with stringent real-time inference requirements (e.g., high-rate structural health monitoring and
prognostics [175] and autonomous driving [176]). Examples of these deterministic methods include
deterministic uncertainty quantification (DUQ) [177], deep deterministic uncertainty (DDU) [178§],
deterministic uncertainty estimation (DUE) [179], and spectral-normalized neural Gaussian process
(SNGP) [180, 181]. This section first discusses distance awareness in the hidden space, which is
a fundamental property of many deterministic methods, then provides a brief overview of how
distance-aware feature representation (hidden layers) and uncertainty prediction (output layer) are
achieved in SNGP.

3.4.1. Feature collapse and hidden-space reqularization
The idea fundamental to many recently developed deterministic methods is (input) distance-

aware representations in the latent (or hidden) space, achieved by regularizing the learned latent
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representations of a neural network such that distances between points in the input space are
preserved in the hidden space. The need for distance-aware latent representations comes from a
recently reported phenomenon called feature collapse [177], where some OOD points in the input
space are mapped through feature extraction to in-distribution points in the hidden space, leading
to overconfident predictions at these OOD points. Feature collapse must be combatted for feature
representations in the hidden space to be useful for epistemic uncertainty estimation and OOD
detection. One option is imposing a bi-Lipschitz constraint on the feature extractor (i.e., a neural
network excluding its output layer). The term “bi-Lipschitz” means a two-sided constraint on the
Lipschitz constant of a feature extractor that determines how much distances in the input space
contract (small Lipschitz, feature collapse) and expand (large Lipschitz, small changes in input
resulting in drastic changes in latent features).

We now briefly describe the math pertaining to a bi-Lipschitz constraint. Suppose we take any
two input points x and x’ from a training dataset and let h,,(-) denote a function mapping an
input into latent features (i.e., right after the activation function in the last hidden layer of a neural
network). A bi-Lipschitz constraint on the mapping function h for any training input pairs looks
like:

Lip™|1x = X/|linput < |[Ann(x) = han (X)) |nidden < Lip"|[x = X/[|inpus- (34)

where Lip®® and Lip" are, respectively, the lower and upper bounds imposed on the Lipschitz
constant of the feature extractor hy,(-), and || - ||input and || - [|nidden are, respectively, the distance
metrics chosen for the input and hidden spaces. Setting the lower bound Lip™ ensures that latent
representations are distance sensitive, i.e., if x and x’ are relatively far apart in the input space,
they also have a relatively large distance in the hidden space. This sensitivity regularization allows
the feature extractors to preserve input distances and directly counteracts the feature collapse issue
by preventing OOD points from overlapping with in-distribution feature representations. Setting
the upper bound Lip"" ensures that hidden representations are smooth, i.e., small distance changes
in the input space do not result in drastically large distance changes in the hidden space. This
smoothness enforcement leads to feature extractors that generalize well and are robust to adversarial
attacks. As for the distance metric, the Euclidean distance dist(-,-) is often a good choice for
measuring distances between input points and even those between hidden representations, except
for image-like data. The Euclidean distance has recently been adopted as the distance metric in
several deterministic UQ methods [177, 180, 181].

The feature-space regularization via a bi-Lipschitz constraint shown in Eq. (34) can be imple-
mented during model training by applying either of the following two methods: (1) gradient penalty,
originally introduced for training generative adversarial networks (GANs) [182] and then adopted
for deterministic uncertainty estimation [177], and (2) spectral normalization, originally proposed
again for training GANs [183] and then adopted for deterministic uncertainty estimation [178-181].
In the rest of this subsection, we will briefly go over the application of spectral normalization in
SNGP. We will also discuss the use of GPR as the output layer by SNGP to produce an uncertainty

estimate based on distances in the “regularized” hidden space.
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3.4.2. Spectral normalization for distance preservation in hidden space
The algorithm of SNGP enforces the lower bound of the Lipschitz constant in Eq. (34) simply
by using network architectures with residual connections (e.g., residual networks) while imposing
the upper bound using spectral normalization. Briefly, for each hidden layer, spectral normalization
first calculates the spectral norm of the weight matrix W (i.e., the largest singular value of W),
denoted as ||[W]|z, and then normalizes W using its spectral norm as:
— v W
W = W ()
where 7 is the upper bound of the spectral norm (i.e., |[W||2 < ), also called the spectral norm
upper bound, which effectively enforces an upper bound on the Lipschitz constant of the mapping
function in the hidden layer. The weight matrix needs to be spectral-normalized only when its
spectral norm exceeds the upper bound, i.e., when ||W||2 > 7 [180]. Introducing the spectral norm
upper bound gives rise to the flexibility to balance the expressiveness and distance awareness of the
resulting spectral-normalized feature extractor. Specifically, when ~ takes a small value (y < 1),
the feature extractor tends to contract toward identity mapping, thereby limiting the ability of
the feature extractor to learn complex nonlinear mapping, critically important for achieving high
prediction accuracy on the training distribution; when ~ is large (7 > 1), the feature extractor
is allowed to expand and be more expressive but may not preserve input distances. However, in
reality, this flexibility may become a limitation against adoption, as v needs to be carefully tuned

to balance accuracy/generalizability and distance awareness.

3.4.8. Gaussian process regression output layer for distance-aware prediction

As discussed in Sec. 3.4.2, the feature extraction layers of a neural network can be encouraged
to preserve distances in the input space through a combination of residual connections and spectral
normalization. Now we can make the predictive uncertainty of this neural network (input) distance-
aware by replacing the last (output) layer with a GPR model that takes the learned hidden features
as the input. Let us start by using the squared exponential kernel in Eq. (10) as the base kernel. We
replace the input points x and x’ with their “distance-aware” feature representations in the hidden
space, hpy(x;0) and hyy,(x';0), where hy,( - ;0) denotes the feature extraction part of a neural
network parameterized by 0, i.e., the neural network up to the last hidden layer. The resulting

kernel takes the following form:

(36)
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When the neural network is a DNN (e.g., with > 5 hidden layers), the above kernel can sometimes be
called a deep kernel. The prior and posterior derivations follow the standard procedures described in
Secs. 3.1.1.c and 3.1.1.d. Essentially, we perform a GPR in the learned, distance-preserving feature

space instead of the input space. The resulting GPR model yields the posterior variance of a test
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input x, based on its Euclidean distances from all training points in the hidden space, leveraging
the distance awareness property of GPR, extensively discussed in Secs. 3.1.1.b and 3.1.1.d, to make
the output layer distance aware. Intuitively speaking, let us suppose x, keeps moving away from
the training distribution. The value of the hidden-space kernel between any training input x; and
X, knn (X4, X« ), Will become smaller and smaller given the distance preservation property of hpy(+).
At some point, this kernel value will quickly approach zero. As a result, the posterior variance at
x, will keep increasing and eventually approach its maximum value an. This scenario suggests the
distance awareness property of SNGP makes it an ideal tool for OOD detection.

To make inference computationally tractable, SNGP applies two approximations to the GPR
output layer: (1) expanding the GPR model into simpler Bayesian linear models in the space of
random Fourier features and (2) approximating the resulting posterior via Laplace approximation
[180]. It is noted that another deterministic UQ method named DUE also uses spectral normal-
ization plus residual connections to encourage a bi-Lipschitz mapping to the hidden space and
GPR in the output layer. The only major difference is that DUE uses variational inducing point

approximation for GPR in place of the random Fourier feature expansion [179].

3.4.4. Discussion on deterministic UQ methods

Deterministic methods run only a single forward pass for UQ and are computationally more
attractive than BNN and neural network ensemble. These deterministic approaches also thrive
at OOD detection thanks to their distance awareness property. However, they typically cannot
separate aleatory and epistemic uncertainty. Additionally, they may require modifications to the
network architecture (e.g., adding residual connections to enforce the Lipschitz lower bound in SNGP
[178, 180]) and training procedure (e.g., to accommodate spectral normalization) with additional
hyperparameters (e.g., the spectral norm upper bound =, length scale [, and signal amplitude oy).
Finally, it was reported that deterministic methods such as SNGP may produce substantially lower-
accuracy UQ (e.g., higher values of the ECE defined in Sec. 4.1.3) than more mature methods such
as MC dropout and neural network ensemble [184, 185]. Findings from these recent benchmarking
studies call for more effort to investigate the calibration performance of deterministic approaches
and, in particular, to evaluate how accurately the predictive uncertainty can be used as a proxy for

model accuracy for in-distribution, around-distribution, and OOD data.

3.5. Toy example

Following the above discussions on several popular methods for UQ of ML models, we now con-
sider a toy 2D regression problem to compare the performance of these UQ methods quantitatively.
The functional relationship between y and x underlying this toy example takes the following form:
y(x) = %((1.5 +21)?+4) x (1.5422) —sin W To train an ML model, we randomly generate
800 samples from the following two bivariate Gaussian distributions, with 400 samples randomly

drawn from either distribution, and use these 800 samples as the training data.

N([ 8 ] | [ 04 —0.32 ]) | N([ —92.5 ] | [ 04 —0.32 ]) | (37
3.5 ~0.32 04 —92.5 032 0.4
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Figure 7: The uncertainty maps by five different methods for UQ of ML models on the toy 2D regression problem.
These methods are Gaussian process regression — GPR (a), MFVI — mean-field variational inference (b), Monte Carlo
dropout — MC dropout (c), neural network ensemble (d), deep neural network with Gaussian process regression —
DNN-GPR (e), Spectral-normalized Neural Gaussian Process — SNGP (f). The two clusters colored in purple represent
the training data, while the cluster colored in red indicates a cluster of OOD instances. The background in each 2D
plot is color-coded according to the predictive uncertainty by the corresponding UQ method, with yellow (blue)
indicating high (low) uncertainty.

These training samples form two separate clusters with no overlap in between, as shown in Fig.
7. As can be observed in both Eq. (37) and Fig. 7, the two clusters have an identical variance-
covariance matrix and differ significantly only in the mean vector. We now apply the previously
introduced UQ methods on the 800 training samples. For those methods requiring neural networks,
the UQ methods are built on a backbone of similar residual neural network architectures with four
64-neuron residual layers. For example, in the case of neural network ensemble, a Gaussian layer is
inserted at the end of a residual neural network; while in the case of MC dropout, dropout with a
rate of 0.2 is applied at the end of each residual layer.

To test the UQ performance of different ML models, we generate a uniform meshgrid consisting
of 40,000 (= 200x200) samples with 21 and z2 spanning in the range [—15, 15]. Next, an uncertainty
heap map is constructed to visualize the predictive uncertainty of each trained ML model within
the domain. Figure 7 shows the uncertainty heat maps obtained by the five different UQ methods
on this toy problem. At a quick glance, both GPR and SNGP exhibit a desirable behavior in

producing high quality predictive uncertainty: the predictive uncertainty is quite low for samples
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in the proximity of the in-distribution/training data (dots in pink color). At the same time, both

T moves far

GPR and SNGP generate high predictive uncertainty when test sample point [z, 2]
away from the training data clusters. As a result, both GPR and SNGP successfully assigned high
uncertainty to the 200 OOD samples (dots in red color at the bottom left of Fig. 7) - which are
randomly generated to test the OOD detection capability of different UQ techniques.

Unlike GPR and SNGP, the other four UQ methods have a relatively poor performance in quan-
tifying predictive uncertainty. As can be observed in Fig. 7 (c-e), MC dropout, deep ensemble, and
DNN-GPR assign low uncertainty for samples that are quite far away from the training data. As a
consequence, these three UQ techniques are likely to fail to detect the 200 OOD samples whose pre-
dictions are associated with relatively low uncertainty, as shown in the bottom-left corners of Fig. 7
(c), (d), and (e). Besides the lack of ability in OOD detection, these three UQ techniques share an-
other feature in common: their uncertainty output is more sensitive to the (hypothetical) boundary
that separates the two clusters of training data, while they exhibit a substantially faulty behav-
ior when establishing the decision boundary (trustworthy vs. untrustworthy region) around each
cluster of training data itself. More specifically, for a given test sample, the predictive uncertainty
generated by these three UQ techniques has a low sensitivity to how distant is a test sample’s dis-
tribution with respect to the training data. Regarding the mean-field variational inference (MFVI),
its predictive uncertainty gets increased in accordance with the distance away from the two train-
ing clusters, however, MFVI assigns nearly an identical uncertainty for the data between the two
training clusters as they are near the data, which contradicts with our anticipation. This suggests
that MFVI suffers from the lack of in-between uncertainty due to the approximation to Bayesian
inference, and such finding is also confirmed by Foong et al. [165]. Consequently, the predictive
uncertainty by these UQ techniques is unprincipled because their quantified uncertainty does not
match our expectation that uncertainty should clearly distinguish in-domain and out-domain data.

The significant difference in the uncertainty heat map across different UQ methods is primarily
attributed to their distance awareness capability. MC dropout, deep ensemble, and DNN-GPR. do
not have the ability to properly quantify the distance of an input sample away from the training
data manifold. Instead, the predictive uncertainty at an input sample quantified by MC dropout,
deep ensemble, and DNN-GPR seems to be established upon the distance of the input sample from
a decision boundary separating the two clusters of training data. Therefore, it is not surprising
to see all these three UQ methods assign low uncertainty to the 200 OOD samples even though
they are quite far from the training data. Distinct from MC dropout and deep ensemble, GPR,
DNN-GPR, and SNGP are equipped with a good sense of awareness with respect to the distance
between an input sample and the training data manifold. As a result, they are comparatively more
principled in the sense that the uncertainty is much higher for the input sample that lies far from
the training data. Finally, even though both DNN-GPR and SNGP have GPR as the output layer,
DNN-GPR is free from determining what information to discard in the hidden space, while SNGP
imposes a spectral normalization on the latent representation of the input sample, thus making the
output layer distance sensitive in the hidden space. In a broad context, the sound UQ by GPR and
SNGP substantially facilitates the identification of OOD samples, establishing a trustworthy region
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in the input space where ML predictions are reliable.

3.6. Summary

Table 2: A qualitative comparison of state-of-the-art UQ approaches covered in this tutorial

Gaussian Bayesian neural network Neural Deterministic method
Quantity of process Variational MC network DNN
interest i ariationa -

regression MCMC inference dropout ensemble GPR SNGP
Quality of UQ
(e.g., measured . High- . Medium- . . .
by calibration High mediam?® Medium low High Medium High
curve)
Computational . b . High- . .
cost (training) High High medium Low Low High High
Con}putatlonal High® Low ngh— Medium Medium- Low Low
efficiency (test) medium low
Ability to detect Strong-
00D samples Strong Weak Weak Weak Moderate moderate Strong
Scalability to Low Low Medium High High High High
high dimensions v & & & &
Effort to convert
a deterministic Not . High- . High- High-
to a probabilistic | applicable High medium Low Medium medium medium
model
Ability to
distinguish
aleatory and Yes Yes Yes No Yes No No
epistemic
uncertainty
Basis of UQ Analytical Sampling Sampling Sampling Hybrid Analytical | Analytical
Stability of
quantified
uncertainty to High High High Low Medium High High
parameter
initialization

# Accuracy is largely affected by the quality of the assumed prior.

P Efficient only for problems of low dimensions (typically < 10) and small training data (typically < 5000 points).

The numerical example in Sec. 3.5 demonstrates the performance difference among different UQ

methods with an emphasis on OOD detection. Comprehensive comparison of these UQ methods may

help better guide users to select appropriate UQ methods for specific ML applications. To this end,

we construct a table (Table 2) to qualitatively compare these methods along multiple dimensions,

such as the quality of UQ, computational costs in training and test, etc. In the first place, regarding

the calibration accuracy of these UQ methods, GPR and SNGP generally outperform other alternate

UQ methods, which is also confirmed in the previous numerical example. For the computational

cost associated with training an ML model, implementing a Bayesian neural network via MCMC or

variational inference incurs a relatively higher computational cost than MC dropout, as MC dropout

consumes nearly the same amount of computational time as training a regular neural network. In
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terms of scalability, it is well-known that GPR suffers from the curse of high dimensionality, so
training and testing GPR models may be computationally very expensive for high-dimensional
problems. The other three UQ methods (neural network ensemble, DNN-GPR, and SNGP) are
computationally cheaper than GPR, MCMC, and variational inference. We have similar findings
regarding the computational burden of these UQ methods at test time.

An important function of UQ built atop the original deterministic ML model is to serve as a
safeguard to detect OOD samples for the purpose of increasing the reliability of ML models. In
this regard, SNGP achieves similar performance as the gold standard GPR, while the remaining
UQ methods may perform poorly in detecting OOD samples. Besides strong OOD detection capa-
bility, SNGP also exhibits a desirable feature in scalability, while such a feature is missing in GP.
However, compared to GP, SNGP requires an additional effort to turn a deterministic ML model
into a probabilistic counterpart for UQ, while GPR is born with the capability of UQ. As for the
uncertainty decomposition, GPR, Bayesian neural network, and neural network ensemble all have
some capability to quantify aleatory and epistemic uncertainty separately, while such a capability
may be lacking in the MC dropout version of Bayesian neural network as well as in DNN-GPR
and SNGP. Next, both GPR and SNGP estimate the predictive uncertainty of ML models in an
analytical form. In contrast, the other UQ methods draw Monte Carlo samples to approximate the

uncertainty, which is a major performance barrier if critical applications require real-time inferences.

4. Evaluation of predictive uncertainty

Let us now shift our focus to the performance evaluation of probabilistic ML models. A unique
property of these models is that they do not simply produce a point estimate of y and instead
output a probability distribution of y, p(y), that fully characterizes the predictive uncertainty. This
unique property requires that the performance evaluation examines both the prediction accuracy,
e.g., the RMSE or mean absolute error calculated based on the mean predictions for regression,
and the quality of predictive uncertainty, e.g., how accurately the predictive uncertainty reflects the
deviation of a model prediction from the actual observation. In what follows, we will discuss ways

to assess the quality of predictive uncertainty.

4.1. Calibration curves and metrics

A standard approach to assessing the quality of predictive uncertainty is creating a calibration
curve, also called a reliability diagram [186—188]. We will first give a detailed walkthrough of creating
calibration curves for regression and classification and then present UQ performance metrics that

can be derived from a calibration curve.

4.1.1. Calibration curves for regression

Let us assume, in a regression setting, that we have a validation/test set of N input-output
pairs, D = {(x1,y1),(X2,%2), -, (Xn,yn)}. Given a trained probabilistic ML model (e.g., an
ensemble of probabilistic neural networks or simply called a neural network ensemble as discussed

in Sec. 3.3) parameterized by 0, let y; = f(x;;0) denote the predicted outcome for the i-th

42



validation/test sample x;, i« = 1,--- ,N. Without loss of generality, let us further assume that

the probabilistic output 7; follows a Gaussian distribution, characterized by a Gaussian probability

density function, p (Ji; ue (x;) , 0e (X)) = — )¢ (que(xi)» with the predicted mean ug (x;) and

oo (xi oo (x:)
standard deviation og (x;). For a given confidence level ¢ € [0, 1], we can easily derive a two-sided

100c¢% confidence interval for the Gaussian random variable y; as:

CIf = |10 (2:) = 211e 00 (%i) , 1o () + 213200 (%) (38)

h . e
where z1+. denotes the (%)t quantile of the standard normal distribution, i.e., z14c = &1 (%),
2 2

with ®(-) denoting the cumulative distribution function (CDF) of the standard normal distribution.

The probability of a random realization of y; falling into CIf equals ¢, expressed as

Me(»”?i)'f‘z%ae(xi) R R Z%
/ P (Ui o (xi) , 00 (X4))dys = ) / ¢ ()dr = c. (39)
m

o(i)—2z14c00(xi) = Ui —mg (%) —Z14ec
2 o9(x;)

If we choose to use a CDF P; to characterize the probability distribution of 7; that may not

follow a Gaussian distribution, we can write out the 100¢% confidence interval for any arbitrary

CIf = [3—1<1;c),ﬁ‘1<1gc)}, (40)

where P, ! (¢) = inf (7; : P (@) > c). Here, P! is an inverse of the CDF P;, also called a quantile
function, and becomes ®~! for the standard normal distribution. Alternatively, we can derive a
one-sided confidence interval CIf = [—oo, P! (o)].

Ideally, the UQ of this ML model should yield a 100c% confidence interval that contains the
observed y for approximately 100¢% of the time. For example, if ¢ = 0.95, then y; should fall into

distribution type,

a 95% confidence interval CI?%, one- or two-sided, for nearly 95% of the time. In other words,
we expect that approximately 95% of the N validation/test samples have their observed y values
fall into the respective 95% confidence intervals. The fraction of validation/test samples for which

the confidence intervals contain the observations can be called observed confidence (¢) or sometimes
N

accuracy, expressed as ¢ = ~ > I(y; € CIf), where I (prop) is an indicator function that takes the
i=1

value of 1 if the proposition prop is true and 0 otherwise. If we plot observed confidence against
expected confidence (c) over [0, 1], we will create a calibration curve, sometimes called a reliability
diagram (see an example in the right-most plot of Fig. 9). This calibration curve shows how well
predictive uncertainty is quantified, and a perfect UQ should yield a calibration curve that overlaps
with the diagonal line (y = x). If the observed confidence is higher than expected at some ¢ values,
the model is said to be underconfident at these confidence levels; otherwise, the model is deemed
overconfident. In predictive maintenance practices, reliability /maintenance engineers often prefer
underconfident predictions over overconfident predictions, as overconfident predictions are more
likely to trigger maintenance actions that are either unnecessarily early or too late. If 90% or 95%

is chosen as the confidence level, it is preferred that the observed confidence (or accuracy) is very
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close to or slightly higher than 90% or 95%.
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Figure 8: An example dataset with eight training samples (solid red circles) and 100 test samples (hollow red circles),
plotted with the underlying one-dimensional function and fitted GPR model. Shown for the fitted GPR model is the
poterior mean function (solid blue curve) and a collection of 95% confidence intervals (light blue shade) for the noisy
observations (y.) at new/test points. These test points are equally spaced between -5 and 5 along the x-axis.

Let us now do a step-by-step walkthrough of how a calibration curve is created using a toy
example. This .Frgrﬁ)}gélgejfavnglaﬂj t@ %%II a.tﬁld:nfrm the same 1D function and
Gaussian observatton model’ used to—generate Figs. 5'and AL25 in Sec. 3.1.1. The observation
model consists of a sine function corrupted with a white Gaussian noise term, y = sin(0.9z) + ¢
with e ~ N (0,0.12). As shown in Fig. 8, we fit a GPR model to the eight training data points
and test this model on 100 test points. It can be seen from the figure that the regressor reports
high uncertainty at test points that fall outside of the x ranges where training samples exist. If we
compare the in-distribution test samples (i.e., whose x values fall into [—-3, —1) or [2,4)) with the
OOD samples ithin [-5,-3), [-1,2), or [4,5)), we observe higher predictive

uncertainty o here the model’s predictions are more likely to be incorrect.

Creating a ca toy example consists of three steps.

Step 1: We start by choosing K confidence levels between 0 and 1, 0 < ¢; < co < --- < cg < 1.
In this example, we choose 11 (K = 11) confidence levels equally spaced between 0 and
1,1i.e.,0,0.1,---,0.9, 1 (see Step 1 in Fig. 9).
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Step 2: We then compute for each expected confidence level c; the observed confidence as:
N
Z y; € CIY). (41)

As mentioned above, CI; = [Pz-_l (%) ,PZ-_1 (%)] for a two-sided confidence interval
and CI¢ = [—oo0, P! ()] for a one-sided confidence interval. Step 2 in Fig. 9 shows an

example of how to implement Eq. (40) for ¢g = 0.5.

Step 3: We finally plot the K pairs of expected vs. observed confidence, {(c1,¢1), -+, (¢k,Cx)},
which gives rise to a calibration curve. In the toy example, we have 11 pairs of (c;,¢;)

plotted to form a discrete calibration curve in Step 3 in Fig. 9.

Step 1: Identify Step 2: Compute Step 3: Plot observed vs.
confidence levels observed confidence expected confidence
€1 €y €3 €4 C5 €6 C7 Cg CoCppCyy —— Repeat forcj—c;; ——
3 1+ VY Y Y YV Yy v Y ] # of accurate g _
S } Accurate WM'{ predictions = - o-Calibration &
- 038 05 Inaccurate " H ! <08 Ideal Ry
S -- § = K4
§O.6 o Observed 4} } . § 0.6 , K
D04 " #W 6755445 T goa //
2 0.5 M > ”
0.2 1 f Lo _ 502
2 A M'ﬁ # of inaccurate 2 -
O 0 predictions O 0&
0 02 04 06 08 1 0 20 40 60 80 100 0 02 04 06 08 1
Expected confidence Sample index (sorted) Expected confidence

Figure 9: Illustration of three-step procedure to create a calibration curve for toy regression problem shown in Fig. 8.

Suppose we are interested in assessing the regression model’s UQ quality at the confidence level
of 90%. In that case, we can observe from the calibration curve drawn in Step 3 that the Gaussian
pf&:gessesgmmeetwsetgdaal irationicurviespdfe confidence we expect the regressor to have
(c10 = 90%) is lower than the observed (empirically estimated) confidence (¢19 = 95%) or simply
c10 < ¢19. More specifically, the actual proportion of times that the model’s 90% confidence interval
contains the ground truth (i.e., the model is correct) is higher than the expected value (i.e., 90%).
Being underconfident also means that the model tends to produce higher-than-true uncertainty in its

predictions, which is often more desirable in safety-critical applications than having an overconfident

nderstand how a calibration curve behaves as a test window varies, we expand the
ta from [—5, 5], as shown in Fig. 8, to [—15, 15], as shown in Fig. 10, while keeping
the same number of test samples (i.e., 100). As shown in Fig. 10, the new test dataset includes much
more OOD samples that fall outside the range of [—5, 5]. The calibration curve on this new dataset
is plotted alongside the one on the original dataset in Fig. 11. Let us compare the new (red) and
original (blue) calibration curves. We can observe that having more OOD test samples degrades the
quality of UQ by moving the calibration curve further away from the ideal line. This observation

is not surprising because high quality UQ (i.e., producing predictive uncertainty that accurately
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Figure 11: Comparison of calibration curves for two different ranges of test data for the toy 1D mathematical problem.
Test samples are equally spaced between -5 and 5 (the same as Figs. 8 and 9) and between -15 and 15, respectively,

for the two test ranges.
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making predictions on the new test dataset with more OOD samples. Our explanation for this
observation is that as a test sample x; moves farther away from the training data, the prediction
error may increase drastically (i.e., the model-predicted mean may deviate substantially more from
the true observation), but the predictive uncertainty by a UQ method may start to saturate at a
certain distance away from the training distribution (see, for example, the flat confidence bounds
in Fig. 10 when z; € [-15,—6] U [7, 15]), making it more difficult for a probabilistic prediction to
be accurate (i.e., the predictive confidence interval at z; contains the ground truth y;). Essentially,
in some cases, the predictive uncertainty cannot catch up with the prediction error as a test sample
moves further away from a training distribution. In that case, it is critically important to establish
boundaries in the input space within which predictive uncertainty cannot be trusted. Very little

effort has been devoted to trustworthy UQ, and more effort is urgently needed on this front.

4.1.2. Calibration curves for classification

Creating calibration curves for classification models involves a multi-step procedure that dif-
fers from that for regression models. Let us use a binary classifier as an example. Similar
to the regression setting, we also have access to a validation/test set of N input-output pairs,
D ={(x1,91), (x2,y2), -+, (xn,yn)}. In a binary classification setting, the output takes the value
of either 0 or 1, i.e., y € {0,1}. Creating a calibration curve for this classification setting involves

three steps.

Step 1: The first step is to discretize the observed confidence ¢ into some number (K) of bins of
width 1/K. For example, if K = 10, we then have ten intervals of observed confidence,
[0,0.1],(0.1,0.2],---, (0.9, 1.0].

1

Step 2: We then compute for each bin B; = (cj — ﬁ, ¢+ 5%

] the observed confidence as

yil (fo (xi) € Bj)

M=

; (42)

O
I

M=

. 1]I(f9 (xi) € Bj)

where fg (x;) outputs the probability of y; = 1.

Step 3: The final step is to plot the predicted vs. the observed confidence for class 1 for each bin
B;.

4.1.8. Calibration metrics

Several calibration metrics can be defined based on a calibration curve (see an example in Fig. 9).
For example, a simple metric can be the area between the calibration curve and the identity line,
sometimes called the miscalibration area, which interestingly shares a similar concept with the
area metric or u-pooling metric commonly used in the validation of computer simulation models
[189]. Another calibration metric that is more widely used is the so-called expected calibration

error (ECE), originally proposed for classification [190] and later extended for regression [191].
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Note though that the extension in [191] focused on deriving calibration curves and did not propose

an ECE definition under regression settings. The ECE can be defined as the weighted average
K

difference between a calibration curve and the ideal linear line, ECE = ) wj |¢; — c;|, where the
j=1

weight w; can be set as either a constant (i.e., 1/K) or proportional to the number of samples

N N

falling into each bin, i.e., w; o< > I(y; € CIF) for regression and w; o< Y I(fe (x;) € B;) for
i=1 i=1

binary classification [191]. Figure 12 illustrates the calibration-ideal differences as error bars on the

calibration curve obtained for the toy 1D mathematical problem shown in Fig. 8. Assuming equal
weights (wq = wg =, -+,

which means the observe

(L s s s S B S B R B~
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Figure 12: Calibration curve for the toy 1D mathematical problem shown in Fig. 8. This figure builds on the calibration
curve shown in Step 3 of Fig. 9 and also includes the differences between calibrated and ideal (red error bars) used to
calculate the ECE for this example.

figures/calibration_with_error_bars.pdf

4.1.4. Recalibration
If the calibration curve deviates significantly from the identity function (perfect calibration), a
recalibration may be needed to bring the calibration curve closer to the linear line. For example,

this recalibration can be

metric approach called Platt scaling, which modifies the
non-probabilistic predict inary classifier (e.g., a neural network or support vector
classifier) using a two-parameter, simple linear regression model and optimizes the two model pa-
rameters by minimizing the NLL on a validation dataset [188, 192]. It is straightforward to extend
Platt scaling to multi-class settings, for example, by expanding the simple linear regression model
to a multivariate linear regression model [193]. Another simple extension is temperature scaling,
a single-parameter version of Platt scaling [193], which was shown to be effective in re-calibrating
deterministic neural networks capable of UQ [178]. Another approach to recalibrating classification
models is training an auxiliary regression model on top of the trained machine learning predictor,

again using a validation dataset [191]. A popular choice of the auxiliary regression model is an iso-
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tonic regression model, where a non-parametric isotonic (monotonically increasing) function maps
probabilistic predictions to empirically observed values on a validation set. Recalibration using iso-
tonic regression was originally proposed for classification [187, 188] and then extended to regression
[191]. It found recent applications in the PHM field, such as battery state-of-health estimation
[194].

Both Platt scaling and isotonic regression require a separate validation dataset of a decent size
(typically 20-50% of the training dataset) to either optimize scaling parameters (Platt scaling) or
build a non-parametric regression model (isotonic regression), while in reality, such a decent sized
validation dataset may not be available. A comparative study of re-calibration approaches was

performed in [193], where temperature scaling was found to be the most simple and effective.

4.1.5. Connecting UQ calibration with model validation

It is worth noting the connection between UQ calibration and the u-pooling method. U-pooling
is a method for validating computer simulation models and has been well-established in the model
validation community [189, 195]. The u-pooling method aims to test whether all experimental
observations, often made under multiple experimental conditions and sparse under each condition,
come from the probability distributions predicted by a computer simulation model for the respective
experimental conditions. If each observation comes from the corresponding predictive distribution,
the CDF values of the experimental observations, “pooled” together from all physical experiments,
should follow a standard uniform distribution. Briefly, the u-pooling method first calculates the
CDF value or u value of each observation, u;, based on the predictive CDF by a computer simulation
model, then plots the empirical CDF of u, where u is along the x-axis and CDF is along the y-
axis, and finally computes the area difference between the empirical CDF of u and the CDF of the
standard uniform distribution (diagonal line). The smaller the area difference, the more accurate
(in a probabilistic sense) the computer simulation model.

Plotting a UQ calibration curve like the ones in Fig. 11 but for one-sided confidence intervals
could also start by calculating the predictive CDF values (u values in the u-pooling method) of all
test samples, ug,--- ,uy. Then, the observed confidence ¢ (y-axis) for any expected confidence ¢

(x-axis) can be calculated as the fraction of the CDF values that are smaller or equal to ¢, i.e.,
c=% % I(u; < ¢). The differences are that (1) the empirical CDF plot in the u-pooling method
shows Z]Vl eventually spaced empirical CDF values on the y-axis, while the number of expected
confidence levels on the x-axis of a UQ calibration plot is manually selected; and (2) for each
empirical CDF (y-axis for u-pooling) or expected confidence (x-axis for UQ calibration) value c,
the u-pooling method plots the corresponding percentile of u, i.e., the 100" percentile of u based
on the dataset of N u values, while UQ calibration plots the corresponding fraction of the u values
that are no greater than c¢. Additionally, the u-pooling method strictly starts by looking at u
values. It then derives their empirical CDF values. In contrast, UQ calibration, to some degree,
has a reverse process where it begins with manually choosing expected confidence levels and then
calculates fractions of probabilistically accurate predictions (observed confidence values). However,

the fraction calculation can use the u values, as mentioned earlier.
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Before concluding on the connection between UQ calibration (ML community) and the u-pooling
method (model validation community), we want to note that the u-pooling method could also be
applied to assess the quality of the UQ of an ML model, with a different objective of measuring the
degree to which each observation comes from the probability distribution predicted by the ML model,
which differs from the objective of UQ calibration to test how underconfident or overconfident the
ML model is. Similarly, the area metric or “u-pooling” metric can be used to measure the mismatch

between predictive distributions and observations in a global sense [189].

4.2. Sparsification plots and metrics

Another method to assess the quality of predictive uncertainty is by creating the so-called sparsi-
fication plot [196]. A sparsification plot can be used to examine how well the predictive uncertainty
of an ML model can serve as a proxy of the actual model prediction error, which is unknown without
access to the ground truth. Creating a sparsification plot on a validation/test dataset consists of
three steps. These three steps will be explained using the toy 1D regression problem from Sec. 4.1.1
(see Fig. 8).

Step 1: Given an uncertainty metric (e.g., variance for regression, entropy for classification),
all samples in the validation/test dataset are sorted in descending order, starting with
those with the highest predictive uncertainty. In the toy example, the 100 test samples
are ranked according to the GPR model-predicted variance, with the first few samples

having the largest predicted variances.

Step 2: A subset of samples (e.g., 2% of the validation/test dataset) with the highest uncertainty
is gradually removed, leaving an increasingly smaller dataset whose samples have lower
predictive uncertainty than those removed. In the toy example, the sample removal
process involves 50 iterations, each of which takes out 2% of the remaining test samples

with the highest predictive uncertainty.

Step 3: Given an error metric (e.g., RMSE, mean absolute error), the prediction error is computed
on the remaining samples each time a subset of high uncertainty samples is removed in
Step 2. The toy example uses the RMSE as the error metric, computed by comparing

the GPR model-predicted means with the actual (noisy) observations.

Step 4: The final step is to plot the error metric vs. fraction of removed samples for the combi-
nations obtained in Steps 2 and 3. Figure 13 shows the sparsification plot (dashed blue

curve) for the toy example.

The resulting sparsification plot (see, for example, Fig. 13) visualizes how the prediction error
changes as a function of the fraction of removed samples. If predictive uncertainty is a good proxy
for prediction error, the error metric on a sparsification plot should decrease monotonically with the
fraction of removed high-uncertainty samples, as is the case in Fig. 13. If ground truth is available,
an ideal error curve (oracle) can be derived by ranking all samples in the validation/test dataset

in descending order according to the actual prediction error. The oracle for the 1D toy regression
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Figure 13: Sparsification curve and oracles for the toy 1D mathematical problem shown in Fig. 8.
sparsification_plot.pdf
problem is shown as a solid gray curve in Fig. 13, where we can observe a small difference between
the calculated and ideal error curves. If predictive uncertainty is a perfect representation of model
prediction error, the calculated error curve and oracle will overlap on the sparsification plot. On
the other extreme, random uncertainty estimates that do not reflect prediction error meaningfully
would result in an almost _constant error on the remaining samples, i.e., a (close to) flat error curve.

An example of the spars nder random uncertainty estimates is shown in Fig. 13

Revised
the dash-dotted red curve). In this extreme case, a flat

for the 1D toy regressio
curve suggests that UQ provides little information about identifying problematic samples (e.g.,
OOD samples and those in regions of the input space with high measurement noise) whose model
predictions may contain large errors.

Prior UQ studies in the ML community used plots similar to the sparsification plot to examine
model accuracy as a function of model confidence [22, 197]. The only difference may be the label used
for the x-axis, sometimes explicitly called confidence threshold for classification [22] and regression
[197], instead of fraction of removed samples. Per-sample model confidence was derived as the
probability of the predicted label for classification [22] and the percentage of validation/test samples
whose variances are higher than the validation/test sample of interest [197]. However, estimating
the per-sample model confidence from the per-sample predictive uncertainty without access to the
ground truth is difficult and remains an open research question.

Since the model prediction error of one UQ approach on a validation/test sample most likely
differs from that of a different approach, the ideal error curve (oracle) is likely to differ among
UQ approaches. To compare these approaches, we can first calculate the difference between the
sparsification and oracle for each fraction of removed samples, named sparcification error. Then, we
can compute two sparsification metrics: (1) the Area Under the Sparsification Error curve (AUSE),
i.e., the area between the actual error curve and its oracle [198], and (2) the Area Under the Random
Gain curve (AURG), i.e., the area between the (close-to) flat random curve and the actual error

curve. The lower the AUSE, the better the predictive uncertainty (derived from UQ) represents
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the actual prediction error (unknown). The higher the AURG (assuming the error curve shows a

monotonically decreasing trend), the better UQ is compared to no UQ.

4.8. Negative log-likelihood

Given a training dataset D and a validation/test data point x, we can look at calculating the
probability of observing its target value y using the predictive probability density function of the
target, expressed as p(y|x, D). We can repeat this process to get the probability of observing the
target value for each sample in the validation/test dataset. Multiplying these predictive probabilities
gives rise to a predictive likelihood. Taking a logarithmic transformation yields a predictive log-
likelihood, which is a good measure of the goodness of fit of the probabilistic ML model to the
validation/test data. The larger the log-likelihood, the better the model-data fit. Often, the negative
counterpart of a log-likelihood, named NLL, is used in place of log-likelihood as the loss function or
part of the loss function when training a probabilistic ML model. An example of the NLL has been
given in Eq. (32) as the loss function for training a prababilisitic neural network in a neural network
ensemble, as discussed in Sec. 3.3.1. It has been widely accepted that log-likelihood, or equivalently
NLL, is a good measure of a probabilistic model’s quality of fit [199]. NLL can be viewed as an
indirect measure of model calibration [193] and is often used alongside calibration metrics to assess
the quality of predictive uncertainty (see, for example, three recent methodological studies on UQ
of ML models in [180, 181, 200]).

4.4. Accuracy vs. UQ quality

An interesting finding about UQ of ML models was reported in [193], where NLL was found to
behave inconsistently with traditional accuracy measures, such as the RMSE or mean absolute error
for regression, during model training. It appeared that NLL and accuracy could become conflicting
at some point during the training process when neural networks could learn to be more accurate at
the cost of lower quality in UQ, as reported for classification problems in [193]. This finding may
help explain the observation in [201] that wide and deep neural networks trained with very limited
regularization sometimes generalize surprisingly well [193]. Specifically, the inconsistency between
NLL and accuracy provides evidence that (1) these large-scale models exhibiting good generalization
performance may still suffer from the common overfitting issue, and (2) overfitting occurs only for a
probabilistic error metric (e.g., NLL), not a classification error metric (e.g., classification accuracy)
for classification or an error metric calculated based on mean predictions (e.g., RMSE or mean
absolute error) for regression. Nonetheless, it is still important to understand how well a model
does probabilistically by looking at UQ quality metrics, such as calibration metrics (Sec. 4.1),
sparsification metrics (Sec. 4.2), and NLL (Sec. 4.3). Therefore, we strongly recommend academic
researchers and industrial practitioners examine their ML models’ performance in terms of both
accuracy and UQ quality rather than focusing solely on accuracy metrics such as classification
accuracy or RMSE. A seemingly highly accurate ML, model may still have difficulties extrapolating
to OOD samples, and it is crucial to estimate model confidence accurately through high quality
UQ. We can now connect this discussion to an important statement in Sec. 2.3, i.e., all models are

wrong, but some are useful [91].
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5. UQ of ML models in prognostics

As stated in Sec. 1, our tutorial has an additional, secondary role, i.e., reviewing recent studies
on engineering design and health prognostics applications of emerging UQ approaches. To make
this tutorial focused, we place our review of engineering design applications in Appendix B and
only present the review of health prognostics applications in the main text of this tutorial (i.e., the
present section). We believe such an arrangement will provide the additional benefit of creating
a methodological transition into the two case studies in Sec. 6 that are both related to health

prognostics.

5.1. Uncertainty-aware ML for prognostics and health management

5.1.1. Prognostics and the role of UQ

PHM is an engineering field that focuses on developing techniques and tools to establish ef-
fective maintenance strategies that balance system availability and performance with operational
requirements and maintenance costs [202, 203]. PHM comprises the main tasks of detecting the
initiation of a fault (fault detection), distinguishing between different types of fault and isolating
the root cause (fault diagnostics), and predicting the RUL (referred to as prognostics [202, 204]).
Notoriously, prognostics represents the most challenging task among the three main tasks of PHM
[14]. Effective prognostics enables just-in-time maintenance [205, 206], which holds the promise
of significantly reducing maintenance costs and system downtime while prolonging the lifetime of
industrial and infrastructure assets, thereby increasing system availability. Besides its potential in
terms of cost savings, effective prognostics also enables more environmentally sustainable operations
of industrial and infrastructure assets by lowering the frequency of replacement and reducing the
consumption of spare parts and resources [203]. To be useful in mission- and safety-critical applica-
tions, successful prognostics approaches should be capable of not only predicting the RUL but also
quantifying the associated uncertainty [207]. Knowledge of the associated uncertainty quantified
in a principled manner allows users to conscientiously optimize the schedule of interventions and
machine downtime with confidence rather than blindly relying upon the deterministic predictions
of broadly applied black-box ML algorithms. In reality, inaccurate predictions of the end of life
or RUL due to low quality UQ can have catastrophic consequences in safety-critical applications.
For example, when an ML model makes overconfident predictions, it could either over- or under-
predict the end of life and RUL. Significant overpredictions can lead to unexpected safety failures,
while substantial underpredictions can lead to a shortened useful lifespan of components. Ensuring
reliable uncertainty estimates from data-driven algorithms is essential to mitigate these problems
and optimize safety and cost-effectiveness in maintenance operations. This involves preventing dis-
ruptive events by avoiding delayed replacements and minimizing costs by preventing premature

maintenance actions, such as replacements or repairs.

5.1.2. The potential of DL for PHM
Recently, deep learning (DL) methods have become more prevalent in PHM applications. One of

the major advantages offered by DL techniques in PHM is the ability to automatically analyze sensor
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data, learn important features that characterize the system’s health status, and track its changes
over time until reaching the end of life. Industrial asset prognostics using DL can be implemented
in two ways: directly predicting the RUL from sensor data or forecasting the future evolution of
the system’s health status until a pre-defined threshold is reached. The first approach, referred to
as direct mapping [14], requires a dataset that links sensor readings to corresponding RUL target
labels and is treated as a regression task. The second approach, called time series forecasting
[14], involves identifying condition indicators that change in a predictable manner as the system
deteriorates under different operational modes. These indicators may either be predetermined
as strongly correlated with the machine’s health and hence, interpretable, such as the internal
resistance and capacity of a lithium-ion battery [208] or may be derived implicitly. A health indicator
integrates several condition indicators into a single value, providing the user with information about
the component’s health status. The threshold for the health indicator, which may be subject to
noise, also needs to be derived or learned. The importance of UQ in both approaches lies in the
need to avoid unexpected safety-critical failures due to too-late replacements and to minimize costs
by avoiding too-early replacements. UQ is, therefore, crucial to provide meaningful estimations and
ensure accurate predictions in DL-based industrial asset prognostics. While quantifying the total
predictive uncertainty (e.g., as a single variance value) already provides essential information for
decision making, distinguishing between aleatory and epistemic uncertainty is equally important
for prognostic applications. Particularly, considering that faults/failures are rare in safety-critical
applications, epistemic uncertainty substantially impacts model performance due to the challenges

in collecting representative run-to-failure datasets for training.

5.1.8. Uncertainty-aware DL in prognostics

Modern DL techniques can often not be directly interpreted by humans. The black-box nature of
DL models is clearly at odds with the need for trustworthy prognostic algorithms. U(Q can remediate
this drawback, and its integration in DNNs is the subject of an exciting - yet constantly evolving -
research field in the DL community [48, 134, 209-213], as discussed in Secs. 3.2-3.4. While a large
number of research studies have focused on developing ML and DL approaches for providing point
estimates of the RUL ([202, 203, 214] and the references therein), uncertainty-aware models, despite
their great relevance, have not yet significantly impacted the research in this field.

In data-driven prognostics, the models’ predictions are inevitably affected by various sources
of uncertainty. These sources of uncertainty include model-form uncertainty, insufficient repre-
sentative historical data for model training, as well as errors in measurement and communication
transmission, among others (refer to Table 1). While ML and DL approaches have been increasingly
applied for prognostics, most developed algorithms did not quantify the associated uncertainty. This
limitation, among other factors, has prevented such approaches from being practically deployable
in real mission- and safety-critical applications. UQ plays a vital role in enabling ML and DL
to deliver high value in practical health prognostics applications. By instilling greater confidence
in the predictions and streamlining the integration of the results into maintenance planning and

scheduling, UQ reinforces user trust and enhances the effectiveness and safety of these applications
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[46, 202, 207, 215-217].

5.2. Uncertainty evaluation metrics for prognostics

While UQ for prognostics already significantly benefits from the standard UQ performance eval-
uation metrics commonly applied in other disciplines as well, such as NLL, the MSE, the RMSE,
or the mean absolute percentage error (MAPE), the specificity of the prognostics problem often
requires a set of customized metrics. One of the particularities of RUL predictions is for example
that the closer the predictions progress to the end of life, the more certain the models should behave
when making estimations about the predicted end of life. Therefore, the performance evaluation
metrics should take such behavior into consideration and provide quantitative evaluation for it.

Metrics, such as MSE or MAPE, do not take into account the statistical distribution of the RUL
predictions around the ground-truth values. To account for such statistical deviations, a number of
more informative probabilistic metrics have been introduced for applications in prognostics. Most
of these metrics are built under the assumption that predicting the RUL at the initial time steps of
the machine operation, is much harder and, as progressively additional information is acquired, the
prediction task also gets simplified thanks to the fact that the severity of the fault increases and
the corresponding symptoms tend to become more pronounced as the system approaches the end
of life.

In the seminal work of Saxena et al. [218], the authors introduce four performance evaluation
metrics for prognostics - meant to be measured sequentially - assessing different aspects of the RUL
prediction problems, namely: the Prognostic Horizon, the a-A performance, the Relative Accuracy,
and the Convergence (Fig. 14). While these performance evaluation metrics have mainly targeted
physics-based prognostic methods, they are also applicable to DL-based UQ approaches. In the
following, we briefly review their definitions and rationales. We refer interested readers to the
original paper for more details. In essence, Prognostic Horizon is defined as the difference between
the time step when the predicted RUL first meets the specified performance criteria and the time
index for the end of life. The performance criteria are met if the predicted RUL value falls within
an area determined by the ground-truth RUL value plus/minus a certain pre-selected confidence
interval (called «). The metric can be easily adapted to cases where the output of the model is
probabilistic. In that case, the criterion is met if the probability of the predicted RUL falling within

the previously defined area is larger than /3, an additional parameter to be chosen a priori (Fig. 14).
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Figure 14: (Left) Prognostic Horizon (PH): here [w(r(k))}gt indicates the probability that the distribution of the
prediction r at time k falls within the confidence region [r* (k) —a™,7*(k)+a ] (grey area), and 3 is a pre-determined
threshold; (Middle) a-A metric calculated at kx, and k»x,: same notation as before, note that the confidence bounds
around the ground-truth shrink as the end of life is approached; (Right) Relative Accuracy calculated at kx;: Ax,
indicates the difference between the median of the predictive distribution and the ground-truth value.

The a-A metric is very similar to the Prediction Horizon but it differs in two aspects: first, it is
binary, if the criterion is met at a certain time step, its value will be one, otherwise 0. Second, the
confidence bounds around the ground-truth RUL are now a function of the predicted RUL and, as
a result, will tend to shrink as the machine approaches the end of life.

The relative accuracy is simply calculated as one minus the relative error of the model with
respect to the ground truth at a certain time step. In particular, the relative error is computed
by taking the ratio between the absolute difference between ground truth and a properly-chosen
central tendency point estimate of the predicted RUL distribution, and the ground truth RUL value.
The central tendency point estimate of the prediction distribution is arbitrary and depends on the
statistical properties of the predictive distribution (Gaussian, mixture-of-Gaussians, multi-modal,
etc.). Finally, the Convergence acts as a meta-metric to measure how quickly each of the above

metrics improves over time.

5.8. Discussion

Meaningful uncertainty estimates are crucial for ensuring the safe and reliable deployment of
DL models in real-world applications, especially for safety-critical assets. This is essential to build
trust in the models and ensure their effectiveness. This is because, in practice, decision making in
the context of industrial applications involves a complicated trade-off between risky decisions and
large potential economic benefits. DL has undoubtedly advanced the field by offering a valuable set
of tools to efficiently learn from data and automate the entire prognostics process. Nevertheless,
this is only one part - yet very significant - of the challenges arising in prognostics. ML and DL
techniques need to be as trustworthy and reliable as possible, and for this reason, effective UQ and
its integration into existing techniques remain an essential desideratum.

In previous research studies, MC dropout has been by far the most widely employed strategy for
tackling UQ of neural networks, especially DNNs. There are likely two reasons for this: first, the
interpretation of MC dropout is very intuitive; and second, it requires only a minimal modification
to existing architectures, namely activating dropout layers at training time. Nevertheless, as shown

in multiple studies [22, 219, 220], the UQ performance of MC dropout is not always satisfactory,
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and more advanced solutions should be explored. Fortunately, the fields of UQ and Bayesian DL are
constantly progressing, and applications of the resulting techniques to prognostics are an important
research area to be further explored [48, 134, 209-213].

In addition, uncertainty-aware ML methods have been mainly used in the context of prognostics
for RUL prediction. While this is arguably the most important end goal in this field, several other
avenues could be investigated in the future. An example is, for instance, anomaly detection. In
this setting, uncertainty can be used to detect abnormal health states in the machine operation by
evaluating the level of confidence of the model corresponding to that time step. The assumption
is that a high level of epistemic uncertainty associated with a certain input will be indicative of
test data points that are less representative of the training data distribution. Hence, such data
will probably correspond to unusual health states, assuming the training data are collected from a
machine operating in a nominal regime.

To conclude, a crucial criterion for any UQ technique used in prognostics is the ability to accu-
rately disentangle aleatory and epistemic uncertainty. These two measures contain distinct types

of information and, therefore, must be interpreted separately to ensure appropriate analysis.

6. Case studies for benchmarking — Code Sharing on GitHub

In this section, we benchmark the performance of several UQ methods in two engineering appli-
cations: (1) early life prediction of lithium-ion batteries and (2) RUL prediction of turbofan engines.
In both case studies, we built UQ models with publicly available datasets and compared the models’
performance. To ensure a fair comparison, these UQ models are built with nearly identical back-
bone architectures wherever applicable. These two case studies are widely used in the literature
due to their broad significance in safety-critical applications and, therefore, a comprehensive under-
standing of the performance of different UQ methods helps to identify the right model to deploy in
a particular application. A code walk-through is provided for the first case study to demonstrate
the practical implementation of UQ methods. We acknowledge that there could be several other
ways of implementing the same UQ models using different sets of libraries. In this discussion, we
try to limit ourselves to using only TensorFlow and Keras libraries for building the neural network

models.

6.1. Case study 1: Battery early life prediction
In this section, we explore the utility of various UQ for ML model methods to tackle the early

life prediction of lithium-ion batteries. The dataset used in this case study consists of run-to-failure
data from 169 LFP/graphite APR18650M1A cells with a nominal capacity of 1.1Ah [221, 222].
The goal of this case study is to predict, with confidence, the remaining cycle life of lithium-ion
cells based on data collected only in the first 100 cycles. This early life prediction is a challenging
problem as most cells do not exhibit significant levels of degradation during the first 100 cycles.
Therefore, it is important for researchers to associate each prediction with an uncertainty estimate.

The code for this case study can be found at our Github page. In this section, we take the
opportunity to provide a brief walk-through of the code while discussing the following UQ methods:
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(1) neural network ensemble, (2) MC dropout, (3) GPR, and (4) SNGP. The goal of this study is to
compare several UQ methods with comparable prediction accuracy based on the current literature.
The neural network-based models, namely neural network ensemble, MC dropout, and SNGP, are

built on a ResNet with a similar backbone architecture as shown in Fig. 15.
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Figure 15: UQ model architectures with ResNet backbone used in case study 1. The ResNet block for each model is
defined by the blue box.

6.1.1. Dataset overview

The 169 LFP cell dataset is a combination of the 124-cell dataset provided by Severson et al.
[221] and the 45-cell dataset provided by Attia et al. [222]. These 169 cells are divided into three
subsets as described in Table 3, where the partition for training, primary test, and secondary test
datasets is consistent with that of Severson et al. [221], and the dataset from Attia et al. [222]
is used as the tertiary test dataset. The 169 LFP cells underwent different fast-charge protocols
and storage time, but they had identical discharging conditions, which in turn led to a diverse set
of capacity trajectories as illustrated in Fig. 16. Similar to the existing literature, we assume a
cell to have reached the end of life when its capacity reaches 80% of the nominal value (cutoff of
0.88Ah). A more detailed description of the battery cycling tests and raw data can be found at
https://data.matr.io/1/.

The cycle-to-cycle evolution of voltage as a function of discharge capacity V(Q) is often captured
when conducting the experiments. However, the authors of the original dataset Severson et al. [221]
hypothesize and prove that the inverse relationship, where the discharge capacity as a function of
voltage Q(V') during the early cycles carries sufficient information to accurately predict the cycle

life. We adopt a similar strategy of using AQi00—10(V) = Qi00(V) — Q10(V) as the input to our
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Table 3: Summary of LFP battery dataset

Type No. of cells
Training 41
Primary test 43
Secondary test 40
Tertiary test 45
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Figure 16: Normalized capacity curves for the four datasets mentioned in Table 3.
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UQ models. Similar to Severson et al. [221], we find that the cycle life is significantly correlated

with Var(AQioo—10(V)) as shown in Fig. 17.

6.1.2. Neural Network Ensemble

We first develop a neural network ensemble model (NNE) following the discussion from Sec.

3.3. Particularly, we develop a neural network learning framework following the work by Lakshmi-

narayanan et al. [22]. Each individual model of the ensemble consists of a Gaussian layer as the

final layer, and the Gaussian layer outputs a predicted mean p and variance o for a given input x.

Parameters © of the neural network are trained to minimize the NLL loss function defined in Eq.

(31) earlier, which corresponds to the implementation below:

def custom_loss(variance):

def nll_loss(y_true, y_pred):

return tf.reduce_mean (0.5*tf.math.log((variance)) +

0.5xtf.math.divide (tf.math.square(y_true - y_pred),
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Figure 17: Correlating cycle life with Var(AQ1oo—10(V)).

NLL loss in Eq. ()

In the code below, the Gaussian layer uses two kernels and biases to characterize p and o by

splitting the output of the previous layer (traditionally a fully connected layer with one dimension).

Note that the kernel shape should be compatible with the number of hidden units in the previous

dense layer.

class GaussianLayer (Layer):
def build(self, input_shape):

self .kernel_1 = self.add_weight (shape=(10,

self .kernel_2 = self.add_weight (shape=(10,

# (define bias_1 and bias_2)

self .output_dim) ,...)

self .output_dim) ,...)

Two kernels + biases to split the output

def call(self, x):
output_mu = K.dot(x, self.kernel_1) + self.bias_1 e — positive
output_var = K.dot(x, self.kernel_2) + self.bias_2

output_var_pos = K.log(l + K.exp(output_var)) + 1e-06 |

return [output_mu, output_var_pos] Output mean and variance

Finally, a neural network model is constructed by appending the Gaussian layer to a simple

ResNet model. The architecture for each individual model of the neural network ensemble is shown
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in Table 4.

Table 4: Individual model of the neural network ensemble

Layer Output Shape No. of Parameters
Input [(None, 1000)] 0

Fully connected (None, 100) 100100

Fully connected (None, 50) 5050

Fully connected (None, 50) 2550

Fully connected (None, 50) 2550

Fully connected (None, 50) 2550

Fully connected (None, 10) 510

Gaussian layer [(None, 1), (None, 1)] 22

Total trainable parameters 113332

In total, we independently trained 15 models by randomizing the initialization of model weights
in addition to shuffling the training samples. The size of the neural network ensemble is determined
based on the elbow method - see Fig. 18 for more details. Each individual model is trained for 300

epochs (based on validation split/validation loss to test for overfitting).

6.1.3. MC Dropout

In this section, a simple MC dropout model is developed following the method described in
Section 3.2.3. The only differences between the implementation of the MC dropout and the neural
network ensemble are (1) the inclusion of dropout layers with dropout being active during the pre-
diction phase and (2) having a single deterministic output as the final output. Note that the dropout
layer can also be introduced in other UQ methods, for example, in neural network ensembles, to
mitigate overfitting. However, dropout is typically not activated during the prediction phase in such
models. In the case of MC dropout, the output varies from one prediction run to another, where a
certain percentage of neural network weights from the trained model are randomly dropped out at
the prediction phase. The code snippet below showcases our implementation of the dropout layers
within the ResNet block as shown in Fig. 15.

for _ in range(num_res_layers): # for each residual block
x = Dense (50, activation = actfn) (x)
x1 = Dense (50, activation = actfn) (x)
x = x1 + x
x = Dropout(rate = 0.10) (x) <
mu = Dense(l, activation = actfn) (x) Single output (RUL)
model = Model (feature_input, mu)

The MC dropout model architecture and trainable parameters are similar to Table 4 except for
the presence of dropout layers with a 10% dropout rate. During the prediction phase, the trained
MC dropout model is run 15 times with dropout enabled (the ensemble size was determined based
on the elbow method - see description for Fig. 18). An ensemble of all the individual deterministic

RUL predictions produces the RUL prediction with uncertainty quantified.
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6.1.4. Spectral Normalization Gaussian Process (SNGP)

Next, we implement the SNGP model discussed in Section 3.4 with the core idea of preserving
distance awareness between training and test/OOD distributions when producing the uncertainty
for each prediction. This is achieved by: (1) applying spectral normalization to the hidden layers
of the neural network and (2) replacing the final layer with a Gaussian process layer. This is a
single-model method with high performance in OOD detection.

Following Liu et al. [180] and a corresponding tutorial of TensorFlow, as shown below, we first
define a model class FC_SNGP inherited from the class of TensorFlow model. In this model class, we
wrap some dense layers with the spectral normalization layer, where the normalization threshold has
a constant value of spec_norm_bound. The RandomFeatureGaussianProcess layer with RBF kernel
serves as the Gaussian process layer.

import official.nlp.modeling.layers as nlp_layers

Spectral Normalization wrapper
class RN_SNGP (tf.keras.Model):

applied to Dense layer

self .dense_layersl = nlp_layers.SpectralNormalization(

self .make_dense_layer (100) ,norm_multiplier=self.spec_norm_bound)

def make_output_layer (self, no_outputs):
"""Uses Gaussian process as the output layer."""
return nlp_layers.RandomFeatureGaussianProcess (no_outputs,

gp_cov_momentum=-1,**self.kwargs)

The value of gp_cov_momentum in the above figure decides if the calculated covariance is exact or
approximated. A positive value of gp_cov_momentum updates the covariance across the batch using
a momentum-based moving average technique, whereas a value of -1 calculates the exact covariance.
Since the calculation of covariance could be affected by the batch size, it is recommended that the
covariance matrix estimator be reset during each epoch. This can be done using Keras API to
define a callback class and then appending it to FC_SNGP. Finally, we train an SNGP model with
the ReLU activation function and spec_norm_bound = 0.9.
class ResetCovarianceCallback(tf.keras.callbacks.Callback):

def on_epoch_begin(self, epoch, logs=None):
"""Resets covariance matrix at the beginning of the epoch."""

if epoch > O0:

self .model.regressor.reset_covariance_matrix ()

6.1.5. Gaussian Process Regression
At last, a standard GPR model with RBF kernel is trained using the scikit-learn Python package.
The hyperparameters of the GPR models, such as length scale, are optimized using grid search

during model fitting.
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6.1.6. Evaluation/Results

In this section, we exploit the following metrics to quantitatively examine the uncertainty quan-
tification performance of all the models: (1) root mean square error (RMSE), (2) average NLL
defined in Eq. (31), (3) expected calibration error (ECE) as defined in Section 4.1.3, and (4) cal-
ibration curve introduced in Section 4.1.1. Since both neural network ensemble and MC dropout
require an ensemble of individual models, it is essential to determine the ensemble size. Ideally, it is
preferred that an ensemble has as many individual models as possible so that all the potential varia-
tions get manifested during the prediction stage. In other words, an ensemble benefits from models
that undergo diverse learning paths and this would effectively capture the variations in predictions.
However, beyond a certain ensemble size, the learning becomes increasingly less diverse and only
trivially contributes to the ensemble at the expense of increased computational cost. Therefore,
inspired by the elbow method, we systematically vary the ensemble size for constructing the neural
network ensemble and MC dropout models while capturing the training RMSE and ECE as shown
in Fig. 18. RMSE and ECE are chosen to strike a trade-off between accuracy and uncertainty
quantification capabilities. Based on this study, we choose an ensemble size of 15 for both neural

network ensemble and MC dropout.
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Figure 18: Determining the ensemble size for neural network ensemble and MC dropout. The selected ensemble size
for this case study is determined by the green vertical line.

Table 5 reports the RMSE, NLL, and ECE across different UQ methods for the dataset described
in Table 3. The variation in Table 5 results from 10 end-to-end independent runs. Note that the
results may not be the best that each method could offer as all these methods are built on a backbone
of a simple ResNet architecture except for GPR. It is likely that different UQ methods would require
different architectures to obtain the best results. From Table 5, we observe that the GPR model
perfectly fits the 41 training data points with an RMSE of zero and an extremely low NLL. However,
GPR exhibits poor generalization when learning, as can be seen in the large RUL prediction error
as well as high uncertainty at testing. In particular, for the secondary and tertiary test datasets
that are known to be significantly different from the training dataset, the performance of GPR gets

even worse. Secondly, the non-ensemble SNGP model performs much better in generalization when
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Table 5: Performance comparison across UQ methods for the 169 LFP cell dataset in terms of MSE + standard
deviation

NNE | MC | SNGP | GPR
Dataset RMSE (cycles) |
Train 68.1£22.1  69.4+16.8  34.8£14.7 0.0+0.0

Primary test | 137.3£20.9 149.9+18.4 148.1+16.2 141.1+0.0
Secondary test | 205.1+27.4 194.1+£15.1 249.3+33.6 319.040.0
Tertiary test | 183.9+46.9 195.0429.1 258.9£60.3 406.54+0.0
NLL |
Train 4.7+0.3 8.61+2.6 5.6£0.02 -3.8£0.0
Primary test 5.440.2 14.3+6.5 5.7£0.03 5.7+0.0
Secondary test 5.7+0.2 6.9£1.3 6.1+£0.2 6.0£0.0
Tertiary test 5.740.1 9.241.7 5.9£0.1 6.440.0
ECE (%) 4
Train 29.8+£3.7 15.246.8 42.543.0 49.940.0
Primary test 10.545.0 24.445.3 21.5+2.3 6.9£0.0
Secondary test 13.54£5.7 9.5+4.6 12.74+4.6 10.4£0.0
Tertiary test 9.84+4.5 22.6+3.4 9.3+4.4 8.040.0

compared to GPR. The presence of neural network layers helps condense crucial information in the
hidden space which is further enhanced by the spectral normalization wrapper. But we generally
found in this case study that SNGP tends to generate unnecessarily large uncertainty for each
prediction, thus resulting in a large NLL and ECE. Third, among the two ensemble-like models, the
neural network ensemble performs slightly better than MC dropout in terms of accuracy but exhibits
a substantial advantage in UQ over MC dropout. We observe that the MC dropout predictions are
generally overconfident with a low uncertainty estimate oryy, for each prediction. This low 6rur
leads to large NLLs along with increased run-to-run variation. In the case that there is a larger
O0rUL, small changes in jigyr, do not significantly affect the run-to-run variation. On the other
hand, when 6gryr, is small, run-to-run variation of NLL becomes more sensitive to the changes in
frut, around the true RUL. Note that the dropout rate hyperparameter of the MC dropout model
significantly affects the model performance. A low dropout rate would lead to almost identical
models within the ensemble, leading to very low predictive uncertainty and, thus, an overconfident
model. On the contrary, a larger dropout rate could cause significant differences between different
runs, thereby increasing uncertainty while compromising accuracy. Lastly, the better UQ ability
of the neural network ensemble can be primarily attributed to the ability of each individual model
within the ensemble to provide aleatory uncertainty, which during the ensemble process provides a

more holistic picture of uncertainty.
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Figure 19: RUL prediction error curves with cells sorted based on true RUL values.

Next, we visualize the prediction error with respect to a single end-to-end run for neural network
ensemble and SNGP in Fig. 19. To better depict prediction accuracy and the uncertainty estimate
pertaining to each prediction, we plot the error curve associated with each cell in the dataset by
their RUL in ascending order. As can be observed, regarding the training data, the mean RUL
predictions of both SNGP and neural network ensemble models highly align with the true RUL
prediction. In the case of the primary and secondary test datasets, a few instances of discrepancy
between the mean RUL prediction and ground truth arise. However, these models fail to capture
the true RULs of the tertiary test dataset, which is well known to be significantly different from
the other three datasets. Another interesting observation across the first three considered datasets
is that SNGP tends to yield a large uncertainty estimate for almost all predictions. As a result,
SNGP is underconfident in most cases. In contrast, the neural network ensemble model produces
significantly lower prediction uncertainty than SNGP. Only in the case of the tertiary test dataset,
both neural network ensemble and SNGP associate large dryr, to most of the batteries.

In what follows, we construct the calibration curve based on each model’s performance on the

four datasets. As illustrated in Fig. 20, the shaded area of each curve characterizes the run-to-run
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Figure 20: Calibration curves for the four models on all the datasets of the 169 LFP cell dataset. The shaded area
captures the run-to-run variation of all the models.

variation over 10 independent trials. First, since the GPR model fits the training data perfectly (zero
RMSE), the observed confidence is 100% and does not change with the expected confidence level.
For the other datasets, GPR seems to be the closest to the expected line leading to the least ECE
(see Table 5). Next, we observe that both GPR and SNGP are relatively stable irrespective of model
initialization leading to low run-to-run variation. On the other hand, models like neural network
ensemble and MC dropout exhibit higher run-to-run variation (with MC dropout having the highest
run-to-run variation), especially when considering OOD datasets like the tertiary dataset. These
observations regarding model stability are in line with our qualitative comparison of UQ models
summarized in Table 2. Lastly, MC dropout is generally overconfident across all the datasets, as
reflected in the relatively low uncertainty associated with each RUL prediction. Different from MC
dropout, neural network ensemble, and SNGP are consistently underconfident. Considering the
safety-critical nature of early life prediction of batteries, underconfident models are desirable as

they allow end users to stay on the safe side.
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6.2. Case study 2: Turbofan engine prognostics

In this section, similar to Case Study 1, we evaluate the performance of multiple UQ methods
in predicting the RUL of nine turbofan engines that operate under varying conditions. To carry
out our analysis, we utilize the New Commercial Modular Aero-Propulsion System Simulation (N-
CMAPSS) prognostics dataset [223], which has been recently open-sourced. Specifically, we use
the sub-dataset DS02, which has been used in several previous works, see Refs. [224-226]. Our
objective is to predict the target RUL by employing a set of multivariate time series as inputs. In
addition to providing a point estimate of the RUL, our aim is to quantify the uncertainty associated
with the RUL prediction with the UQ methods surveyed in this paper. The code for this case study
is available on our Github page. The primary goal of this study is to pedagogically compare various
UQ methods that exhibit similar prediction accuracy based on the current literature. We do not

make any claims that the discussed methods outperform the existing literature’s models.
6.2.1. Dataset overview

Table 6: Overview of the input variables. These condition monitoring signals include both scenario descriptors (first 6
rows) and measured physical properties (last 14 rows). The symbol used for each variable corresponds to its internal
name in the CMAPSS dataset.

Variable No Symbol Description Unit
1 alt Altitude ft
2 XM Flight Mach number -
3 TRA Throttle-resolver angle %
4 T2 Total temperature at fan inlet °R
5 Nf Physical fan speed rpm
6 Nc Physical core speed rpm
7 Wi Fuel flow pPps
8 T24 Total temperature at LPC outlet  °R
9 T30 Total temperature at HPC outlet  °R
10 T40 Total temp. at burner outlet °R
11 T48 Total temperature at HPT outlet °R
12 T50 Total temperature at LPT outlet  °R
13 P15 Total pressure in bypass-duct psia
14 P2 Total pressure at fan inlet psia
15 P21 Total pressure at fan outlet psia
16 P24 Total pressure at LPC outlet psia
17 Ps30 Static pressure at HPC outlet psia
18 P30 Total pressure at HPC outlet psia
19 P40 Total pressure at burner outlet psia
20 P50 Total pressure at LPT outlet psia

This case study comprises a collection of run-to-failure trajectories for a fleet of nine aircraft
engines that operate under authentic flight conditions [223]. We use the open-source code presented

in Ref. [227] to download and preprocess the data. For every RUL prediction time step, the input
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to the UQ model is a 20-dimensional vector that represents the measured physical properties of
the engine as well as the scenario descriptors characterizing the engine’s operating mode during the
flight. At each time step, the UQ model produces RUL and its associated uncertainty as outputs.
Table 6 provides an overview of the input variables used in the model. As we adopted a purely
data-driven approach, we did not utilize the virtual sensors or the calibration parameters that are
available in the N-CMAPSS dataset [223, 228].

Consistent with Ref. [228], we split the entire dataset into a training dataset, which comprises
the time-to-failure trajectories of six units (i.e., units 2, 5, 10, 16, 18 and 20), and a testing dataset,
which includes the trajectories of three units (i.e., units 11, 14 and 15). Figure 21 illustrates
the distributions of the flight conditions across all units and provides an example of a flight cycle
obtained by traces of the scenario-descriptor variables for unit 10. Finally, to address the memory
consumption concerns associated with the size of the dataset, we downsampled the data by a factor

of 500 by using the code from Ref. [227], thus resulting in a sampling frequency of 0.002 Hz.
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Figure 21: (Left) The flight envelopes simulated for climb, cruise, and descend conditions were estimated using
kernel density estimation based on measurements of altitude, flight Mach number, throttle-resolver angle, and total
temperature at the fan inlet. The densities of these measurements are shown for three representative training units
(v = 2, 10, and 18) and two test units (v = 14 and 15). (Right) A typical flight cycle for unit 10 with traces of
the scenario-descriptor variables depicting the climb, cruise, and descend phases of the flight, covering different flight
routes operated by the aircraft, where altitude was above 10,000 ft.

6.2.2. Evaluation/Results

For the sake of clarity and consistency, in this case study, we have used the same code structure/-
functions from the previous case study. However, we have excluded GPR from our evaluation due
to the large size of the dataset and the well-known scaling issues associated with this UQ method.
For further implementation details, we refer the reader to the detailed descriptions in the previous

case study or to the code implementation on GitHub.
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The performance of NNE, MC, and SNGP on the three test units is compared in Table 7 using
RMSE, NLL, and ECE metrics. Overall, NNE seems to outperform MC and SNGP in terms of
all the metrics considered, with SNGP providing slightly better performance than MC. Figure 22

shows that all the three models are able to capture the decreasing trend of the RUL over time,

but they encounter difficulties at the beginning of the trajectory, i.e., at the onset of degradation.

Interestingly, NNE appears to address this issue by assigning higher uncertainty corresponding to

such points.

Table 7: Comparison of the error metrics across different UQ methods on the N-CMAPSS dataset

NNE | MC | SNGP
Dataset RMSE (cycles) |
Train 7.1£0.1 10.2+£0.1 8.7+0.7
Unit 11 8.5£0.5 10.0£0.3 8.9£1.8
Unit 14 7.4+£0.2 11.5+£0.1 9.3£1.4
Unit 15 | 4.8£0.3 8.2£0.2 6.8£1.2
NLL |
Train 2.0+£0.0 3.7+£0.1  4.440.7
Unit 11 2.3+0.1 3.0£0.1 4.8£1.8
Unit 14 2.240.0 4.240.2 4.441.3
Unit 15 1.8£0.0 2.8#0.1 3.1£0.6
ECE (%) |
Train 6.2+0.8 12.8+1.2 9.6+2.7
Unit 11 | 15.1£2.5 19.6£1.5 15.9%+7.3
Unit 14 | 5.8+1.0 25.1£1.2 13.0+3.5
Unit 15 | 14.9£2.7 11.5+£1.6 8.5£3.0
Test unit: 11 Test unit: 14
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Figure 22: RUL prediction error curves for the N-CMAPSS dataset.

The calibration curves presented in Fig. 23 suggest that the methods used in this study tend to

produce over-confident predictions, particularly for unit 11. This overconfidence can have serious

implications for safety in prognostics. While MC exhibits overconfidence across all test units, NNE

performs best on unit 14 and SNGP on unit 15, displaying a calibration curve that is closer to

the ideal. Overall, NNE generally outperforms other UQ models as demonstrated by its accurate

predictions (i.e., low RMSE and NLL scores). Furthermore, NNE’s calibration curve is more closely
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aligned with the ideal leading to low ECE values.
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Figure 23: Calibration curves for the three models on all the datasets. The shaded area captures the run-to-run
variation of all the models.

As a final remark, we would like to acknowledge that the present results could be improved by
optimizing the hyperparameters of each model individually, i.e., the number of layers and nodes, the
dropout rate, the number of ensemble components, and the type of activation functions. However,
the present study serves as a solid foundation for investigating the UQ capabilities of the analyzed

methods in challenging and realistic case studies.

7. Other topics related to UQ of ML models

7.1. Physics-informed ML and its synergy with UQ and probabilistic ML

Physics-informed ML, and more broadly methods of scientific ML, has been developed to alleviate
the challenge of training data scarcity and to improve the predictive capability of ML models by
combining physics-based and data-driven modeling. Such a hybrid strategy is especially valuable
for domains where training data is difficult or expensive to obtain, and where the modeling and
downstream decision-making consequences are high (e.g., pertaining to health, safety, and security).
In essence, physics-informed ML develops techniques to enable a seamless combination of physics-
based models and observation data, or the embedding of physical and domain knowledge into
data-driven ML models. Prior work on physics-informed ML can be broadly grouped into seven
classes [14]: (1) impose physical knowledge as soft constraints in the loss functions of an ML model
such as neural networks, for example the works of physics-informed neural networks (PINNs) [229-
231]; (2) combine first-principle simulation data with experimental data to construct an augmented
training dataset [232, 233]; (3) train an ML model with first-principle simulation data, then fine-
tune the trained ML model with experimental data [96, 234], which is often referred to as transfer
learning; (4) build an ML model in parallel with a physics-based model, and using the ML model to
learn missing/unmodeled physics from experimental data [235, 236]; (5) use ML models to enhance
physics-based models such as in delta or residual learning [237-239] and reduced-order modeling
for building models with lower complexity and degrees of freedom for rapid and reliable model
evaluations [240-242]; (6) use neural networks to predict the input or parameters of a physics-based

model [243-246]; and (7) enforcing physical models in the architecture design of neural networks,
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such as architectures dedicated to specific physics and engineering problems [247, 248] and utilizing
a large amount of simulation data to emulate the dynamics of physical systems, such as deep
operator networks [249] and Fourier neural operator [250]. A more detailed summary of these seven
physics-informed ML categories can be found in Part 1 of our recent review on digital twins [14].
As mentioned in this review, the above list of seven categories is not exhaustive by any means, and
many other approaches for combining data and physics have been developed over the past decade.
Comprehensive reviews dedicated to physics-informed ML are also available in Refs. [77, 251].

Regardless of the specific means of incorporating physical knowledge into ML. modeling, param-
eter and model-form uncertainty inevitably persist due to the imperfect knowledge of physics, and
assumptions and approximations made to simplify the problem setup during the modeling process.
In the case of uncertainty of physical parameters (e.g., uncertain parameters in a PDE), the cor-
responding probability distribution of solution variables can be generated with those parameters
as inputs to neural network representations of the solution field [252] or utilizing generative ad-
versarial networks [253]. However, these approaches do not consider the uncertainty induced by
the use of physics-informed ML model itself (e.g., uncertainty due to the use of a neural network).
For neural networks, the commonly used MC dropout helps increase robustness of training associ-
ated with randomization of the network architecture, while BNNs more directly seek to quantify
the parameter uncertainty of the neural network (e.g., for its weight and bias terms). Moreover,
physics-constrained BNNs [82, 254] have been developed to address the uncertainty in PINNs. We
direct interested readers to two recent review papers for a more comprehensive, in-depth discussion
on UQ for physics-informed ML [51, 255], with emphasis on PINNs [51, 255] and deep operator
networks [51].

7.2. Probabilistic Learning on Manifolds (PLoM)

Another ML approach that naturally captures the uncertainty of data while simultaneously per-
forming dimension reduction is the Probabilistic Learning on Manifolds (PLoM) [256]. PLoM builds
a generative model from an initial set of data samples by identifying a manifold where the unknown
probability measure concentrates. The learning procedure starts by scaling the training data via
principal component analysis (PCA) followed by performing a density estimation (e.g., Gaussian
kernel density estimation) on the training data in the PCA space. Then, an It6 stochastic differential
equation is established as a sample-generating mechanism whose invariant distribution matches the
probability density just estimated. In order to ensure the generated samples coalesce around a low-
dimensional manifold, additional structure is injected by forming a reduced-order “diffusion-maps
basis” induced by an isotropic diffusion kernel to help constrain the sample coordinates. Putting
everything together, new samples consistent with the training data distribution can be generated
on a low-dimensional manifold by numerically solving the It6 equations through a discretization
scheme.

With its ability to find low-dimensional manifolds, PLoM is particularly suitable for dimension
reduction of high-dimensional datasets. Its strength and focus thus differs from ML constructs such

as GPR and BNN that are more directly concerned with function approximation and regression
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tasks. To be effective, PLoM generally requires a sufficiently large quantity of data samples that can
reasonably reveal the underlying distribution geometry. This also differs from GPR and BNN that,
by design, engender a larger degree of uncertainty in the model (e.g., by falling back towards their
prior uncertainty) when less data is available. Nonetheless, PLoM has been demonstrated to work
well even in settings with relatively small datasets, especially if additional constraining from relevant
governing PDEs is available [257]. Lastly, the generative model resulting from PLoM can be highly
versatile and used for a range of applications beyond sample generation and surrogate modeling,
such as density estimates of statistics of interest [258], optimization under uncertainty [259], and

design using digital twins [260], as some examples.

7.8. Interpretability of ML models for dynamic systems

Data-driven system identification plays a vital role in structural health monitoring, system fail-
ure prognostics, design and control as well as risk assessment of dynamic systems. In the past
decades, various approaches have been developed to accomplish this task. Some representative
examples include autoregressive models, autoregressive—moving-average models, nonlinear autore-
gressive moving average with exogenous inputs models, the Volterra series gray-box tooling method,
and ML-based methods emerging in recent years [78, 261]. While these black-box or grey-box mod-
els show promising performance in various applications, they are often criticized for their lack of
interpretability.

As introduced earlier, significant efforts have been devoted to addressing the challenge of in-
terpretability in ML models. Among the techniques that stand out are SHAP, Grad-CAM, and
other methods. Notably, over the past decade, there has been a remarkable stride in enhancing
the interpretability of ML models through the integration of data, genetic programming, and spar-
sity. This fusion has led to the formulation of evolution equations that are not only simplistic but
also parsimonious. Several approaches have been proposed to construct interpretable ML models,
particularly symbolic regression, which has been applied with different techniques [262]. A pivotal
advancement in this realm is the emergence of the Sparse Identification of Nonlinear Dynamics
(SINDy) technique, which has become a cornerstone in addressing this issue. Initially proposed
by Brunton et al. [263], SINDy aims to uncover the underlying partial differential equations gov-
erning nonlinear dynamic systems. This discovery is accomplished even in the presence of noisy
measurement data [264, 265].

What sets SINDy apart is its ability to exploit the dominance of only a handful of terms in
shaping the behavior of nonlinear dynamic systems. This is achieved by encouraging sparsity in
the data-driven identification of governing equations, leveraging an extensive library of potential
function bases. From the model interpretation point of view, the sparsity promoting the discovery of
governing equations of dynamic systems results in parsimonious and interpretable models that strike
a sound balance between regression accuracy with model complexity. In particular, the parsimonious
model is achieved by employing sparsity-promoting regularization techniques [263, 266], such as
LASSO regression, also known as L1 regularization, using sparsifying priors, hard thresholding with

Pareto analysis. The resulting parsimonious representations through sparsity lead to interpretable
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models with good generalization to unseen data. Besides, the sparsity in the resulting function basis
offers valuable insights into the management of model selection uncertainty in the context of hybrid
dynamical systems [267]. For instance, hybrid SINDy employed the Akaike information criterion
score on out-of-sample validation data to match the SINDy model with a specific regime in a hybrid
dynamical system, from which the switching point of the hybrid system can be found [267].

The elegance and clarity inherent in the models derived through SINDy are of particular impor-
tance when considering ML model interpretability. Building upon the foundational work of Brunton
and Kutz, a multitude of SINDy variants have emerged, finding applications even in UQ contexts. A
remarkable instance worth highlighting is the approach introduced by Hirsh et al. [266], wherein the
SINDy approach is extended into a Bayesian probabilistic framework. This novel approach, termed
Uncertainty Quantification SINDy (UQ-SINDy), accounts for uncertainties in SINDy coefficients
arising from observation errors and limited data. The central innovation lies in the integration of
sparsifying priors, specifically the spike and slab prior and the regularized horseshoe prior, into
the Bayesian inference of SINDy coefficients. By unifying UQ with SINDy variants, this approach
not only heightens the interpretability of ML models but also facilitates the quantification of the

prediction’s confidence level.

7.4. PCE and its relationship with GPR and connection with ML
A key role for both GPR (see Sec. 1 and Appendix B) and polynomial chaos expansion (PCE) is

building surrogate models for solving engineering design problems. The need for surrogate modeling
stems from the multi-query nature of uncertainty propagation and design optimization, which often
require many repeated simulation runs (e.g., 103 — 10%) to assess the behavior of output responses
under different realizations of input design variables and simulation model parameters. This process
may become prohibitively expensive for high-fidelity models where each simulation may require
hours to days. One strategy to accelerate these computations, as explained in Appendix B.1, is
to build a cheap-to-evaluate surrogate of the computationally expensive simulation model—i.e. to
trade model fidelity for speed. The surrogate model, sometimes called metamodel or response
surface, is often an explicit mathematical function (e.g., as in GPR and PCE), allowing for rapid
predictions at different input realizations.

Having presented GPR in detail in Sec. 1 and Appendix B, we briefly introduce PCE here. PCE
was originally proposed in the 1930s to model stochastic processes using a spectral expansion of
multivariate Hermite polynomials of Gaussian random variables [268]. These Hermite polynomial
basis functions are orthogonal with respect to the joint probability distribution of the respective
Gaussian variables. PCE was later applied to solve physics and engineering problems [269] and
extended to non-Gaussian probability distributions, giving rise to the generalized PCE [270]. Since
the input variables of a PCE are naturally formulated to follow certain probability distributions,
PCE has been a convenient and popular tool for conducting UQ. However, PCE has not been
employed much for UQ of ML models, since most ML models are already relatively inexpensive
to evaluate; rather, PCE brings more value for enabling UQ of expensive computer simulation

models. In that case, a PCE surrogate model is built to approximate the original simulation model,
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where the PCE’s expansion coefficients can be computed, for example, non-intrusively by projection
(numerical integration via quadrature or simulation) [271] or regression (least squares minimization
of the fitting error) [272].

One major challenge faced by PCE is the curse of dimensionality, where the number of model
parameters (and in turn training samples of the simulation model) increases exponentially with the
input dimension (i.e., the number of input random variables). Several algorithmic techniques have
been developed to alleviate this issue through truncation schemes that can identify a sparse set
of important polynomials to be included. Two notable methods for introducing sparsity are the
Smolyak sparse constructions (and their adaptive versions) [273-275], and variants of compressive
sensing (such as least angle regression and LASSO) [276-278]. Such effort has been made in the
context of surrogate modeling [276-279] and reliability analysis [280-283]. A comprehensive review
of sparse PCE is provided in Ref. [284].

Historically, PCE and GPR (or kriging) have been studied separately and mostly in isolation,
although both methods have produced many success stories in surrogate modeling. Recently, at-
tempts have been made to combine PCE and kriging, resulting in PCE-kriging hybrids [285]. The
basic idea is to use PCE to represent the mean function m(x) of the Gaussian process prior (see
Eq. (8)) that captures the global trend of the computer simulation model (i.e., f(x)). The GPR
formulation with a non-zero, non-constant mean function is called universal kriging, which differs
from ordinary kriging where the mean function is set as a constant (e.g., zero). When combined
with kriging in this manner, PCE serves the purpose of a deterministic (non-probabilistic) mean
(trend) function. Such PCE-kriging hybrids have found applications to uncertainty propagation
in computational dosimetry [286] and damage quantification in structural health monitoring [287].
More broadly, while PCE is typically not used for UQ of ML models, it may be combined with other
ML techniques (e.g., kriging [285] and radial basis functions [288]) to produce hybrid PCE-ML mod-
els with improved prediction accuracy over standalone PCE surrogates. On a final note, although
PCE is typically not categorized as an ML technique, it was reported to offer surrogate modeling
accuracy on par with state-of-the-art ML techniques such as regression tree, neural network, and

support vector machine [289].

8. Conclusion and outlook

This tutorial aims to cover the fundamental role of UQ in ML, particularly focusing on a detailed
introduction of state-of-the-art UQ methods for neural networks and a brief review of applications in
engineering design and PHM. It possesses four salient characteristics: (1) classification of uncertainty
types (aleatory vs. epistemic), sources, and causes pertaining to ML models; (2) tutorial-style
descriptions of emerging UQ techniques; (3) quantitative metrics for evaluation and calibration of
predictive uncertainty; and (4) easily accessible source codes for implementing and comparing several
state-of-the-art UQ techniques in engineering design and PHM applications. Two case studies are
developed to demonstrate the implementation of UQ methods and benchmark their performance in
predicting battery life using early-life data (case study 1) and turbofan engine RUL using online-

accessible measurements (case study 2). Our rigorous examination of the state-of-the-art techniques
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for UQ, calibration, and evaluation and the two case studies offers a holistic lens on pressing issues
that need to be tackled along the future development of UQ techniques in terms of scalability,
principleness, and decomposition given the increasing importance of UQ in safeguarding the usage
of ML models in high-stakes applications.

It is important to note that the case studies presented in this paper are not optimized in terms of
their hyperparameters, and it is reasonable to expect that optimizing them would yield even better
performance results. The primary objective of this paper is to offer a user-friendly platform for
individuals seeking to comprehend the analyzed methods and to encourage them to enhance and
suggest new ones.

Essentially, UQ acts as a layer of safety assurance on top of ML models, enabling rigorous
and quantitative risk assessment and management of ML solutions in high-stakes applications. As
UQ methods for ML models continue to mature, they are anticipated to play a crucial role in
creating safe, reliable, and trustworthy ML solutions by safeguarding against various risks such as
OOD, adversarial attacks, and spurious correlations. From this perspective, the development of UQ
methods is of paramount significance in expanding the adoption of ML models in breadth and depth.
The accurate, sound, and principled quantification of uncertainty in ML model prediction has great
potential to fundamentally tackle the safety assurance problem that haunts ML’s development.
Towards this end, several long-standing challenges encompassing the UQ development need to be

addressed by the research community:

1. The need for a unified and well-acknowledged testbed to comprehensively examine the per-
formance of the diverse and expanding set of UQ methods in uncertainty quantification, cal-
ibration (and recalibration), decomposition, attribution, and interpretation. Although some
recent efforts were devoted to developing standardized benchmarks for UQ [290], most of these
efforts primarily emphasized conventional performance metrics, such as prediction accuracy
metrics and UQ calibration errors. However, other key performance aspects (e.g., uncertainty
decomposition and uncertainty attribution) essential to ensuring high quality UQ have rarely
been investigated. The lack of these key elements emerges as a significant challenge to the
sound development of the UQ ecosystem. Hence, there is an imperative demand calling for
establishing UQ testbeds with community-acknowledged standards to facilitate comprehen-
sive testing and verification of the behavior of uncertainty generated by different UQ methods,
especially on edge cases. Establishing such testbeds with the support of synthetic data gener-
ation is expected to tremendously benefit the long-term and sustainable development of UQ
methods for ML models.

2. The need for principled, scalable, and computationally efficient UQ methods to enable high
quality and large-scale UQ. As summarized in Table 2, each method covered in this tutorial
has its own strengths and shortcomings. Although numerous efforts have been made to elevate
the soundness and principleness of UQ methods of ML models, the existing methods still suffer
from a common but critical deficiency: a lack of (limited) theoretical guarantee in detecting

OOD instances. It is thus imperative to investigate further along this direction to fill the
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loophole. Emerging deterministic methods such as SNGP exhibit a strong OOD detection
capability due to distance awareness. In addition, the computational efficiency of UQ methods
needs to be further improved to satisfy the need for real-time or near real-time decision making
in a broad range of safety-critical applications (e.g., autonomous driving and aviation). Thus,
more research efforts need to be invested in enabling three key essential features of high quality

UQ: principleness, scalability, and efficiency.

. ML models have shown promising potential in addressing long-standing engineering design
problems in recent years. Especially for GPR, its applications in engineering design have
resulted in a family of adaptive surrogate modeling methods for reliability-based design opti-
mization, robust design, and design optimization in general. These ML-based design methods
have revolutionized engineering design in various applications, including but not limited to
design and discovery of new materials, design for additive manufacturing, and topology opti-
mization. Despite these revolutionary advances, extending these methods to larger-scale and
more complicated problems becomes increasingly urgent. To this end, various DNN-based
methods have been investigated in engineering design to overcome the limitations of classical
ML methods, such as the GPR-based approaches. Even though the emerging DNN-based
methods show promise in addressing computational challenges in high-dimensional engineer-
ing design problems, their potential as efficient surrogates or accelerated optimizers has not
yet been fully realized. The UQ methods for ML models presented in this paper will play
a key role in fully releasing the power of DNNs in engineering design by enabling adaptive
DNNSs in the context of active learning to reduce the required quantity of training data with-
out sacrificing the accuracy in surrogate modeling, reliability analysis, and optimization, (2)
accelerated design optimization for large-scale systems, and (3) efficient and accurate UQ in
engineering design accounting for various sources of aleatory and epistemic uncertainty (e.g.,

input-dependent aleatory uncertainty).

. The PHM community has long recognized the importance of estimating the predictive uncer-
tainty of prognostic models. These prognostic models can be built based on supervised ML
or more traditional state-space models (see, for example, the Bayes filter in one of the earliest
studies on battery prognostics [38]). As discussed in Sec. 5.3, in the PHM field, UQ of ML
models has been predominantly applied to the task of predicting the RUL of a system or com-
ponent. The focus of UQ in this context is to provide a probability distribution of the RUL
rather than a single point estimate. While UQ in the PHM field has primarily been focused
on RUL prediction, there is a growing interest in applying UQ to other tasks, such as anomaly
detection, fault detection and classification, and health estimation. Many of the UQ methods
discussed in detail in Sec. 3 can also be readily applied to these classification and regression
tasks in the PHM field. Looking ahead, we identify three research directions along which pos-
itive and significant impacts could be made on the PHM field surrounding UQ of ML models.
First, decomposing the total predictive uncertainty into its aleatoric and epistemic components

is highly desirable and sometimes essential, as noted in Sec. 5.3. Such a decomposition has
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several benefits, for example, highlighting the need for improved sensing solutions with lower
measurement noise to reduce aleatory uncertainty and identifying areas where further data
collection or model refinement efforts may be necessary to reduce epistemic uncertainty. More
work is needed to develop UQ methods with built-in uncertainty decomposition capability and
create procedures to assess the accuracy of uncertainty decomposition. Second, prognostic
studies involving UQ mostly evaluate UQ quality subjectively and qualitatively by looking at
whether a two-sided 95% confidence interval of the RUL estimate gets narrows with time and
contains the true RUL, especially toward the end of life. As discussed in a general context in
Sec. 4.4, we call for consistent effort among PHM researchers and practitioners to quantita-
tively evaluate their ML models’ UQ quality using some of the metrics introduced in Sec. 4,
such as calibration metrics (Sec. 4.1), sparsification metrics (Sec. 4.2), and NLL (Sec. 4.3).
Ideally, UQ quality assessment should also become standard practice when building and de-
ploying ML models in PHM applications, just as prediction accuracy assessment is currently
standard practice. Third, both UQ and interpretation serve the purpose of improving model
transparency and trustworthiness, as noted in Sec. 1. An under-explored question is whether
UQ capability can help improve interpretability and vice versa. For example, interpretability
can provide insights into the most important input features for making predictions. Such an
understanding could allow distance-aware UQ models to define their distance measures based

only on highly important features, potentially improving the UQ quality.

. Model uncertainty quantification for label-free learning is another future research direction.
Obtaining labels by solving implicit engineering physics models is usually costly. Label-free
machine learning embeds physics models in a cost function or as constraints in the model
training process without solving them. As a result, labels are not required. Physics-informed
neural network (PINN) is one such label-free method [77, 231]. This method has gained much
attention because it makes the regression task feasible without solving the true label. In ad-
dition, the physical constraints prevent the regression from severe overfitting in conventional
neural networks, especially when data are limited. Since labels are not available, the quantifi-
cation of prediction uncertainty of the machine learning model is extremely difficult. Even the
prediction errors at the training points are unknown. Due to this reason, the GPR method
has not been used for label-free learning since the prediction of a GPR model requires labels
at the training points. A proof-of-concept study has been conducted for quantifying epistemic
uncertainty for physics-based label-free regression [291]. This method integrates neural net-
works and GPR models and can produce both systematic error (represented by a mean) and
random error (represented by a standard deviation) for a model prediction. The method, how-
ever, has not been extended to time- and space-dependent problems where partially different
equations are involved. There is a need to develop generic uncertainty quantification methods

for label-free learning.
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Appendix A. Some further discussions on Gaussian process regression

Appendiz A.1. An extended discussion on kernels

The class of Matérn kernels represents a very general class of covariance functions, of which the
squared exponential kernel is a special case. It offers a broad class of kernels with varying values of
a smoothness parameter v > 0 that controls the smoothness of the resulting approximation of the
underlying function [106]. The Matérn covariance between the function outputs at two points are
described as [106]

k(x,x") = U?F(V)IQV_I (J;?dist (X,X')) K, (?dist (x,x')) (A1)

where I'(+) is the Gamma function, dist(x,x’) is the Euclidean distance between points x and x/,
ie., dist(x,x') = |x—x/| = \/Zgzl(a:d — 2/)?, and K, is the modified Bessel function of the second

kind and order v. A larger value of v results in a smoother appropriated function. When v — oo,

the Matérn kernel becomes the squared exponential kernel. Another special case worth mentioning
is when v = 1/2, the Matérn kernel is equivalent to the absolute exponential kernel (sometimes also

called the Ornstein-Uhlenbeck process kernel), which can be expressed as

k(x,x') = 0% exp (—d“t(lxx)> (A.2)

GPR using this Matérn 1/2 kernel yields rather unsmooth (rough) functions sampled from the
Gaussian process prior and posterior. Additionally, observations do not inform predictions on input
points far away from the points of observations, leading to poor generalization performance of the
resulting GPR model. Two other special cases of the Matérn kernels are v = 3/2 and v = 5/2.
The resulting Matérn 3/2 kernel and Matérn 5/2 kernel are not infinitely differentiable, unlike the
squared exponential kernel, but at least once (Matérn 3/2) or twice differentiable (v = 5/2). These
two kernels may be useful in cases where intermediate solutions between the unsmooth Matérn 1/2
kernel and the perfectly smooth squared exponential kernel are needed to approximate functions
that are expected to be somewhat smooth yet not perfectly smooth.

The Matérn kernel in Eq. (A.1) has a single length scale [ and is of an isotropic form. Like the
ARD squared exponential kernel shown in Eq. (11), an anisotropic variant of the Matérn kernel

can be defined by introducing D length scales, each depicting the relevance of an input dimension.

The resulting ARD Matérn kernel has a slightly modified term, Eé):l (md;fily, in place of the
d

original term, - Zle(lzd—xg)Q (i.e., diSt(lX’X,) in Eq. (A.1)). For D-dimensional input x € X C R,
an anisotropic kernel is composed of (D + 1) hyperparameters, oy, l1,...,Ip.

To illustrate the concept of kernels, Fig. A.24 compares GPR models built using multiple com-
monly used kernels in a 1D example. As demonstrated in this figure, the squared-exponential
kernel produces the smoothest GPR, whereas Matérnl/2 produces the roughest GPR (where the

samples drawn from the posterior are equivalent to a Brownian motion). The intuition is that the
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Figure A.24: Comparison of GPR models built using multiple kernels: squared-exponential (v — oo), Matérnl/2
(v=1), Matérn3/2 (v = 2)), Matérn5/2 (v = 2), with the same eight training data points, along with five samples
randomly drawn from the posterior.

larger the v value, the smoother the underlying function. Specifically, when v = 1/2, the Gaussian
process sampled from posterior with this kernel (Matérnl/2) corresponds to a Brownian motion
(or equivalently, a Wiener process), whereas v — oo smoothens the sampled Gaussian process be-
cause the posterior mean is infinitely differentiable (i.e., C>°) [106]. The noiseless ground truth,
f(x) = sin(0.9z), is plotted as dot-dashed magenta lines. Each noisy observation used for training
is obtained based on the following observation model: y = f(z) + €, where the Gaussian noise
e ~ N(0,0.1%). Eight training observations are plotted as black dots, and five samples randomly
drawn from the GPR posterior are plotted as dotted purple lines.

Appendiz A.2. Parametric study on effect of hyperparameter optimization

Figure A.25 illustrates the effect of [, o¢, and 0. on the Gaussian process posterior of observations
v« (each being function output f plus noise ¢) for the 1D toy example used in Fig. 5. In each of the
four cases considered, the values of the three hyperparameters and log marginal likelihood (see Eq.
20) are shown right below the regression plot. In all four cases, the observation (y.) posterior has

the same mean curve as the function (f,) posterior but a slightly larger variance at any input point

2

2, as discussed in Sec. 3.1.1.d. The length scale determines

due to the non-zero noise variance o
how quickly the correlation between the function values at two input points decays as they become
farther away. Too small of an [ value (e.g., I = 0.1 in Fig. A.25) leads to an approximation
that varies too quickly horizontally and yields too wide of uncertainty regions between training
points. The signal amplitude o¢ depicts the maximum vertical variation of functions/observations
drawn from the Gaussian process. A larger oy value (e.g., of = 3 in Fig. A.25) results in a larger
maximum width of the confidence interval for a test point between or away from training points.
It is an important hyperparameter for quantifying epistemic uncertainty, although it is difficult to
derive an optimum value solely based on training data. The signal standard deviation o. controls
the amount of (input-independent) noise in the observations. Too small of a o, value (e.g., oo = 0.05
in Fig. A.25) results in an approximation that fails to capture the observational noise (aleatory

uncertainty).

Appendix A.8. Connections with neural networks and recent development

Efforts to draw connections between GPR and neural networks dated back more than two

decades, with the first study showing the equivalence between a Gaussian process and a fully-

113



>0
At
2+ 1 2F 1
3 . 3 -
e —— O¢ e O¢
S5 4 3 2 -1 0 1 2 3 4 5 S5 4 3 2 1 0 1 2 3 4 5
X X
0 =[Loso]"=[1, 1, 0.1]%, logp(y;|X,, 8) = —1.6 0 =[lo;0.]" =[0.1, 1, 0.1]F, log p(y;|X,, ) = —21.4
l F l F
3t 3
2 2

[ O¢

5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 -1 01 2 3 4 5
X X
0 =[Logo.]" =1, 3, 01T, logp(y;|X,, 8) = —9.7 0 =[l,010,]" =[1, 1, 0.05]T, log p(y;|X,, 8) = —23.0

Figure A.25: Effect of hyperparameters on the Gaussian process posterior for the 1D toy example used in Fig. 5.
Note that the confidence intervals shown collectively as light blue shade are derived from the posterior of (noisy)
observations (function output plus noise); they are slightly wider than the confidence intervals for the underlying
function shown in Fig. 5 due to the added Gaussian noise (see the discussion below Egs. (18) and (19) in Sec.
3.1.1.d).

connected neural network with a single, infinite-width hidden layer and an i.i.d. prior over the
network parameters (weights and biases) [292]. This equivalence is significant because using a
Gaussian process prior over functions allows one to perform Bayesian inference in its exact form

on neural networks using simple matrix operations (see the familiar formulae for Gaussian process
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posterior in Egs. (16) and (17)) [293]. One obvious benefit is that one does not need to resort to iter-
ative, more computationally expensive training algorithms, such as gradient descent and stochastic
gradient descent, or approximate Bayesian inference methods for Bayesian neural networks (see Sec.
3.2). As deep learning has been gaining popularity in recent years, significant extensions were made
to draw such connections for standard DNNs [294] and DNNs with convolutional filters, or so-called

deep convolutional neural networks [295, 296].

Hidden
layer

Figure A.26: A single-hidden-layer neural network where the number of hidden units Ng could approach infinity,
ie., Nu — oo. W? and b° conveniently denote the Ny x D matrix of input-to-hidden weights and the vector of

Nu input-to-hidden biases. Simiﬁg;u rlé Sﬂfg(i)ﬁ glle ieﬁpd d é\ﬁ_hlévgmwpﬁ dfights, again, for notational

convenience purposes.

Let us now briefly review the early work in [292]. We consider a fully-connected neural network
with one hidden layer, illustrated in Fig. A.26. To get to each hidden node h;, 1 < j < Ny, where
Ny is the number of hidden units, we first apply a linear transformation of input point x and then
a nonlinear operation usin nction 9 (-) : RP — R. The resulting j-th hidden unit
takes the following form: [y process .
hj(x) = v (b? +> w%m) ; (A.3)

d=1

where ng denotes the input-to-hidden weight from x4 to h; and b? is the input-to-hidden bias for
h;. To get to the output node y (assuming zero observation noise for simplicity, i.e., y(x) = f(x)),
we apply another linear transformation of the hidden units with hidden-to-output weights and a

bias

Nu
y(x) ="+ wihj(x), (A.4)
j=1
where wjl- denotes the hidden-to-output weight from h; to y, and b! is the hidden-to-output bias.
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We assume (1) the prior of the hidden-to-output weights wjl. and bias b follows independent
zero-mean (often Gaussian) distributions with variances being 02, and of, respectively, and (2)
the input-to-hidden weights ng and biases b? are i.i.d. It follows that the network output y(x) in
Eq. (A.4) is a summation over (Ny + 1) i.i.d. random variables [292]. Based on the Central Limit
Theorem, when Ny — o0, i.e., when the width of the hidden layer approaches infinity, y(x) will
follow a Gaussian distribution. This Gaussian prior holds regardless of the distribution types of the
(Ng + 1) random variables in the sum. Let us move on to look at any finite set of input points,
X1,...,XnN,. As Ny — oo, their network outputs, 71, ..., yn,, will be jointly Gaussian, according to
the multidimensional Central Limit Theorem. It means that the joint distribution of the network
outputs at any finite collection of input points is multivariate Gaussian, which exactly matches the
definition of a Gaussian process discussed in Sec. 3.1.1.a. Thus, (x) ~ GP(mun(X), knn(x,X')), a
Gaussian process with the mean function myy(-) and covariance function kyy(-). Since the hidden-
to-output weights w! and bias b! have zero means, my, = E[y(x)] = 0. The covariance function

J
can be derived based on i.i.d. conditions and takes the following form:

Ny
knn(x,x') = E [J(x)y(x)] = o + ZJ?UJE [hj(x)h;(x")] = oh + Nuo2, E [hj(x)h;(x")], (A.5)
=t w2 Clxx')
where the prior variance O'?Ul of each hidden-to-output weight is set to scale carefully as w?/Ny for
some fixed “unscaled” variance w? and C(x,x’) need to be evaluated for all x in the training set
and all X’ in the training and test sets. C(x,x’) has an analytic form for certain types of activation
functions such as the error function (or Gaussian nonlinearities) [106, 293], one-sided polynomial
functions [297], and ReLU (rectified linear unit) [294]. As a result, infinitely wide Bayesian neural
networks give rise to a new family of GPR kernels. An interesting and attractive property of
these neural networks is that all network parameters are often initialized as independent zero-mean
Gaussians, some with properly scaled variances, and the kernel parameters (e.g., “unscaled” prior
variances of weights and prior variances of biases) may be the only parameters that need to be
optimized.

What has been discussed in this subsection represents a category of approaches for combining
the strengths of GPR (exact Bayesian inference, distance awareness, etc.) with those of neural
networks (feature extraction from high-dimensional inputs (large D), ability to model nonlinearities,
etc.). These approaches explore the direct theoretical relationship between infinitely wide neural
networks and GPR. Another category of approaches uses GPR with standard kernels (such as the
squared exponential kernel in Eq. (10)) whose inputs are feature representations in the hidden
space learned by a neural network [179-181, 298]. These approaches are often called deep kernel
learning. The network weights, biases, and GPR kernel parameters can be jointly optimized end-to-
end, which is straightforward to implement using gradient descent or stochastic gradient descent.
These approaches excel in OOD detection thanks to the distance awareness property of GPR and
offer a solution to improving the scalability of GPR to high-dimensional inputs. A drawback is

that overparameterization associated with a DNN (e.g., a deep convolutional neural network) may
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make the network prone to overfitting. Another issue is feature collapse [177], which needs to be
carefully addressed to preserve input distances in the hidden space. This issue will be discussed along
with a representative approach in this category called spectral-normalized neural Gaussian process
(SNGP) in Sec. 3.4. A third category of approaches aims to mimic the many-layer architecture of
a DNN by stacking Gaussian processes on top of one another in a hierarchical form [299-302]. The
resulting deep Gaussian processes are probabilistic ML models with the UQ capability brought in
by GPR and the added flexibility to learn complex mappings from datasets that can be small or
large. However, the performance gains over standard GPR comes at a cost: exact Bayesian inference
by deep Gaussian processes can be prohibitively expensive due to the computationally demanding
need to compute the inverse and determinant of the covariance matrix. Therefore, almost all deep
Gaussian process approaches adopt appropriate inference techniques for efficient model training

that use only a small set of the so-called inducing points to build covariance matrixes [300-302].

Appendix B. UQ of ML models in engineering design

Appendiz B.1. Needs of ML models in engineering design

In recent years, the rapid advancement of high-performance computing and data analytics tech-
niques has made ML a game changer for engineering design. In particular, ML enables engineers and
designers to relax simplifications and assumptions that are usually needed in conventional design
paradigms [303, 304], accelerate the design process by shortening the required design cycles [305],
and handle the design of highly complex systems with large numbers of design variables [306, 307].
These benefits provided by data-driven ML models are particularly appealing for simulation-based
engineering system design, which usually entails costly simulations.

As shown in Fig. B.27, ML revolutionizes engineering design mainly through three categories of
ML-enabled capabilities: feature extraction, surrogate modeling, and optimization. Approaches in
each of these three categories have been applied to solve challenging engineering design problems
in various applications, such as discovery and design of engineering materials [308, 309], design for

reliability [310], energy system design [311], and topology optimization [312], to name a few.

i. Feature extraction: Extracting informative features from massive volumes of raw data is
a representative use case of ML in engineering design. In this regard, ML, particularly deep
learning, has become more and more prevalent in engineering design due to its salient charac-
teristic of automatically extracting feature representations from high-dimensional data in its
raw form. Specifically, in the context of engineering design, the powerful representation learn-
ing ability has been frequently utilized in two types of design activities, namely (1) dimension
reduction, which is to reduce the dimensionality of design problems, and (2) generative design,

which is to generate candidate designs subject to certain design constraints [313-315].

(a) For dimension reduction, autoencoder, as an unsupervised learning technique, has been
commonly adopted to learn efficient codings and compressed knowledge representations

from unlabeled data [313]. More specifically, an autoencoder consists of an encoder and
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Figure B.27: ML-enabled techniques in engineering design and applications.

a decoder: the encoder transforms high-dimensional data into a low-dimensional repre-
sentation through a “bottleneck” layer of neurons, while the decoder recovers the high-
dimensional data from the low-dimensional code. The encoder and decoder are trained
together to minimize the discrepancy between the original data and its reconstruction.
Due to their powerful representation capacity, autoencoders and their variants (e.g., sparse
autoencoders and variational autoencoders (VAEs)) have been actively employed to ex-

tract important features, supporting diverse engineering design tasks [316].

(b) For generative design, researchers have investigated ML approaches to aid the design
process through automatic design synthesis. In short, generative design is an iterative
process of using algorithms to facilitate the exploration of thousands of design variants
as guided by the parameters outlined in the study setup to approach an optimal design
that meets the performance target. Towards this end, ML has contributed substantially
to automating the process of generative design, which is often referred to as automatic
design synthesis in the design community. In essence, automatic design synthesis is to
learn a generative model from existing designs and then generate new designs meeting
design requirements (e.g., performance targets and cost constraints) based on the compact
representations of training data in the hidden space. In particular, VAEs and GANs are

two popular classes of ML algorithms for generative design [317].

ii. Surrogate modeling: It is a process of using ML models as emulators of computationally
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expensive computer simulation models in engineering design [24]. With the development of
computational mechanics and advanced numerical solvers, computer simulations are getting
increasingly sophisticated. The high-fidelity computer simulations allow us to accurately pre-
dict complicated physical phenomena without performing large numbers of expensive physical
experiments, thereby accelerating the design of engineering systems to meet mission-specific re-
quirements. Although high-fidelity simulations significantly enhance our predictive capability,
they present notable challenges to engineering design due to the high computational demand
and burden often associated with them. ML models play a vital role in addressing this chal-
lenge by maintaining the same predictive capability level as high-fidelity simulations while
significantly reducing the computational effort required to make high-fidelity predictions [318].
The basic idea of ML-enabled surrogate modeling is to replace an expensive-to-evaluate high-
fidelity simulation model with a much “cheaper” mathematical surrogate, essentially an ML
model. Over the past few decades, various surrogate modeling methods have been proposed
for different purposes within engineering design, including model calibration [319], reliabil-
ity analysis [28], sensitivity analysis [320], and optimization [321]. These existing surrogate

modeling methods can be broadly classified into two groups:

(a) Global surrogate modeling for general purposes: This class of surrogate models is con-
structed for the general purpose of design optimization and tries to achieve a good pre-
diction accuracy in the whole design region of interest [27, 322, 323]. More specifically,
let us use y = é(x) to represent the surrogate model of a computer simulation model
y = G(x),x € Qy, where Qy is the prediction domain of the inputs. In global surrogate
modeling, we are concerned about the prediction accuracy of § = G’(x) for all x € Q.
Because of this, the training data for ML model construction needs to spread through-
out the whole prediction domain {2, with those in nonlinear regions being denser and
the others in relatively smoother regions being more sparse. Various sampling techniques
have been developed to efficiently construct globally accurate surrogate models using ML.
Some examples of the techniques include MSE-based methods, the A-optimality criterion,
and maximin scaled distance approaches [24]. The goal of global surrogate modeling is
to construct a surrogate that is fully representative of the original computer simulation
model. Since the surrogate model is not constructed for any specific purposes and the
prediction accuracy has been verified for all x € (), it can be used for any purposes, such
as design optimization, uncertainty analysis, and sensitivity analysis, after its construc-
tion. In addition, the UQ calibration metrics presented in Sec. 4.1.3 and Sec. 4.3 can be
used to quantify the prediction accuracy of a global surrogate model, if the test data is

representative of the design domain .

(b) Local surrogate modeling for specific purposes: Instead of achieving good prediction accu-
racy in the whole design region, this group of surrogate models only focuses on prediction
in very localized design regions, such as the limit state regions in design for reliability

problems [28, 324-326] and important regions for model calibration purposes [327]. In
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local surrogate modeling, we are concerned about the prediction accuracy of § = é(x)
for x € Qx, where Qy C Qy is a subset of the prediction domain of the inputs. This
sub-domain €y varies with the specific purpose of the surrogate modeling. For example,
when the surrogate model is constructed for the purpose of reliability analysis, which is a
classification problem, Qy will be the regions along the limit state or classification bound-
ary. When the surrogate model is constructed for optimization, Qy will be the regions
where the optima locate. As a result, the training data for surrogate modeling will be
concentrated in those localized regions instead of spreading evenly throughout the whole
prediction domain of the inputs. Because we only concentrate on a sub-domain Qy of the
input space, {2, the local surrogate model 4§ = G(X), x € Qy only partially represents the
original simulation model (i.e., the surrogate is an accurate representation of the simula-
tion model only in the sub-domain of the design space). Moreover, since the sub-domain
Qy is usually unknown during the construction of the surrogate model, learning functions
(also called acquisition functions in some methods) are needed to identify these localized
sub-domains adaptively based on the currently available information about the underly-
ing simulation model (ground truth). Because the surrogate model is constructed for a
specific purpose (e.g., model calibration, reliability analysis, or optimization), its accuracy
also needs to be quantified using metrics tailored for that specific purpose. For example, a
metric used to check the prediction accuracy of the surrogate model for reliability analysis

may not be appropriate for constructing a surrogate model for design optimization.

iii. Optimization: Engineering design problems are essentially optimization problems. Conven-
tional gradient-based optimizers often have difficulties in finding global optima. Even though
evolutionary optimization methods can overcome some of the limitations of gradient-based op-
timizers, the former methods are likely to require much larger numbers of function evaluations,
which could become prohibitively costly for high-fidelity simulation models in many engineer-
ing design problems. ML-based or ML-assisted optimization methods have been proposed to
tackle this challenge, resulting in a new family of optimization methods collectively named
gradient-free ML-based optimization. One representative example of this family is Bayesian
optimization [30]. ML-based optimization transforms the way that engineering systems are
designed in many fields, such as new materials [328]. It is worth noting that the Materials
Genome Initiative [329, 330, 330—-333], firstly debuted in 2011, was embedded in the context
of designing new materials using ML and optimization to significantly reduce the research and
development time. Moreover, the development of deep learning methods in recent years even
allows designers to bypass complicated design optimization by directly generating candidate
designs for a particular application. Some examples include the ML-based topology optimiza-

tion [334, 335] and deep learning-enabled design of large-scale complex networks [336].

Appendix B.2. Role of UQ of ML models in engineering design

An indispensable step for the above-reviewed three categories of ML-enabled techniques (i.e.,

feature extraction, surrogate modeling, and optimization) is UQ of ML models. For example,
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for ML-enabled feature extraction in engineering design, quantifying the predictive uncertainty of
ML models play an important role in (1) ensuring the extracted features are representative of the
original data sources, (2) eliminating the ill-posedness of inverse problems in generative design, and
(3) accounting for variability across input features.

For surrogate modeling in engineering design, an essential step in building an accurate surrogate
model (global or local surrogate) is the collection of training data. However, an initial set of training
data is usually insufficient to build a surrogate model with satisfactory prediction accuracy. A
subsequent refinement step sometimes is needed to improve the prediction accuracy of the surrogate
model. Due to the high computational effort required to collect training data from high-fidelity
simulations in engineering design, it is desirable to reduce the number of training data points
or refinement iterations for surrogate modeling as much as possible. Over the past few decades,
numerous refinement strategies have been developed in engineering design to minimize the number
of iterations in collecting training data for the purpose of improving the performance of surrogate
models. Even though these refinement strategies may differ from each other, they share one notable
starting point: quantifying the predictive uncertainty of the surrogate model for any given input.

For instance, the most commonly used refinement method for global surrogate modeling is to
identify new training data by maximizing the variance of the prediction of the surrogate model [27].
That is a mean squared error-method as mentioned above in Appendix B.1. In a GPR model, the
variance of the prediction can be directly obtained from the surrogate model. For other types of
surrogate models, however, the predictive uncertainty needs to be quantified using a separate UQ
method. Moreover, UQ of ML models becomes particularly important, if local surrogate models
need to be constructed for engineering design. In the context of local surrogate modeling, learning
functions (also called acquisition functions), such as the expected improvement (EI) function in
GPR-based surrogate modeling, are required to identify new training data in critical local regions
(i.e., Qx mentioned in Appendix B.1) of the input space. The new training data will then be
used to refine the surrogate. Many (20+) learning functions have been proposed in recent years
for local surrogate modeling of various purposes (e.g., surrogate construction, reliability analysis,
and optimization). These learning functions look into multiple quantitative metrics to examine
different aspects crucial to the iterative improvement of surrogate models, such as classification
error [337], information entropy [338, 339], and exploitation and exploration [340], among others.
A detailed review of various learning functions for local surrogate modeling for reliability analysis
is available in Ref. [341]. To the best of our knowledge, nearly all the learning functions for
local surrogate modeling heavily rely on UQ of ML models. Let us take a look at two well-known
learning functions for local surrogate modeling in reliability-based design optimization: the expected
feasibility function (EFF) [28] and the U function [29]. They are mathematically described as

121



follows:

e+T
BFF(9 = [ [~ le =yl paco 0}, (B.12)
U(x) = o) — el (B.1b)
ay(x)

where e is the failure threshold used to define the limit state, y = e, that separates the failure
region (y > e) from the safe region (y < e), 7 is half the width of a two-sided critical interval in the
vincinity of the limit state (y = e), often set as two times the standard deviation of the ML model
prediction, i.e., T = 20y(x), py(x) and o;(x) are, respectively, the mean and standard deviation of
the ML prediction with respect to the input x, and pyx) (y) is the probability density function of y
for given input x predicted by the ML model.

As shown in the above two equations, UQ of ML models plays an essential role in the construc-
tion of such learning functions. This observation also applies to the other learning functions in local
surrogate modeling. It is commonly referred as adaptive surrogate modeling in the literature. In
general, the identification of the sub-domain Qy (see Appendix B.1) relies on the learning func-
tions in local surrogate modeling, where UQ of ML models plays a foundational role towards the
establishment of these learning functions.

Similar to local surrogate modeling, ML-enabled optimization in engineering design also depends
heavily on the ability to quantify the predictive uncertainty of ML models, which is essential for ML
models to exploit and explore the design domain to efficiently identify optimal designs. Examples
of such ML-based optimizers include Bayesian optimization [342] and deep reinforcement learning-
based optimization [343]. Specifically for Bayesian optimization, a trade-off between exploitation
and exploration is balanced through a learning/acquisition function, which is very similar to that in
local surrogate modeling discussed above. Some popular learning functions include the probability
of improvement, EI, upper confidence bound, and knowledge gradient (a generalization of EI).
Taking the EI function for a minimization problem as an example, this function is mathematically

defined as [30].

B100 = (fuin — o) (P22 1900 ) 4 0 (Fm = 1000 ) (B.2)

o4(x) o4(%)

where fiin is the current best function value obtained from the existing training data [30]. As
indicated in this equation, p;(x) and oy(x) are two essential elements of the EI function. UQ of ML
models is needed to obtain these two terms, and more fundamentally, the probability distribution of
7 is required to derive a learning/acquisition function such as the EI function in Eq. (B.2). Defining
such a function makes it possible to accelerate design optimization through ML. This characteristic
is very similar to that of learning functions in local surrogate modeling.

In a broad sense, adaptive surrogate modeling-based design optimization can also be classified
as a type of local surrogate model since a learning function is used to adaptively identify critical

local regions that are important for the specific purpose of identifying a maximum or minimum.
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Moreover, a global surrogate model and a local surrogate model are interchangeable during the
process of ML model construction. For example, we usually start with a global surrogate model in
order to construct a local surrogate model because the critical local regions are unknown and need
to be identified using a learning function based on the UQ of an ML model. After constructing a
local surrogate model for a specific purpose (e.g., reliability analysis, optimization), we can always
convert this local surrogate into a global one if we want to expand the prediction domain to the
whole design domain. Regardless of whether design optimization leverages local or global surrogate
modeling, UQ of ML models is almost always the foundation of the three categories of ML-enabled

capabilities in engineering design described in Appendix B.1.

Appendiz B.3. State of knowledge and gaps

Driven by the increasing needs of various engineering design problems (e.g., design for reliability,
design for additive manufacturing, new material design, energy system design, etc) as illustrated
in Fig. B.27, the three categories of ML-enabled techniques established upon UQ of ML models
(see Appendix B.1) have been extensively studied in the literature. Next, we elaborate the current
state-of-the-art literature and highlight research gaps that need further investigation and efforts
from three aspects: feature extraction, surrogate modeling, and optimization.

According to our literature survey, studies on feature extraction in engineering design mostly
implement neural network-based approaches, such as those based on variants of autoencoders and
GANs as mentioned in Appendix B.1 [344]. For example, Guo et al. [345] tackled the topology
design of a heat conduction system using the latent representation produced by a VAE. Chen et al.
[346] trained a wireframe image autoencoder with a large database of unlabeled real-application
user interface (UI) designs to serve as a Ul search engine for the purpose of supporting Ul design
in software development. Li et al. [347] developed a target-embedding VAE neural network and
explored its usage in the design of 3D car body and mugs. In recent years, the idea of using ML for
automatic design synthesis has also gained increasing popularity [315, 348, 349], especially in the
mechanical design community. For instance, Zhang et al. [53] used an unsupervised VAE to learn
a generative model from a corpus of existing 3D glider designs and demonstrated the utility of the
VAE in the 3D outer shape design of gliders. Chen and Fuge [54] developed a generative model
established upon a GAN for synthesizing smooth curves, in which the generator first synthesized
parameters for rational Bézier curves, and then transformed those parameters into discrete point
representations. In another study, Chen and Fuge [55] considered the interpart dependencies and
proposed a GAN-based generative model for synthesizing designs by decomposing the synthesis
into synthesizing each part conditioned on its corresponding parent part. The UQ methods for ML
models presented in Sec. 3 can be directly applied to the aforementioned neural network models to
improve the effectiveness of feature extraction in engineering design by enabling dimension reduction
or generative design under uncertainty. However, as of now, only a limited number of studies have
touched on topics to investigate the UQ of neural networks used in feature extraction.

For global surrogate modeling, approaches have been investigated using various ML methods,

including GPR models, neural networks (both regular artificial neural networks and DNNs), sup-
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port vector regression, random forest, etc. For local surrogate modeling, however, most current
approaches are developed based on GPR models. This is largely attributed to the capability of
GPR to analytically quantify the predictive uncertainty in the form of a Gaussian distribution that
is convenient to use. In fact, most of the learning functions for local surrogate model-based relia-
bility analysis are derived or developed based on GPR models. For example, learning functions in
closed forms as given in Egs. (B.la) and (B.1b) have been derived for GPR models. Quantifying
the predictive uncertainty of GPR models in the Gaussian form facilitates an efficient evaluation
of various learning functions for the refinement of local surrogates. In addition to GPR-based local
surrogate modeling methods, a few approaches have also been proposed for local surrogate modeling
based on UQ of support vector regression models [350, 351]. In recent years, with the rapid devel-
opment of deep learning techniques and the capability of quantifying the prediction uncertainty of
deep learning models, local surrogate modeling methods have been studied for deep neural networks
to achieve “active learning” [352-354]. For instance, Xiang et al. [354] proposed an active learning
method for DNN-based structural reliability analysis by extending a weighted sampling method
from GPR models to DNNs. This extension allows for selecting new training data for refining DNN
models for reliability analysis. Similarly, Bao et al. [355] extended the subset sampling method
to DNNs, resulting in an adaptive DNN method for structural reliability analysis. Even though
active learning for local surrogate modeling has great potential in reducing the size of training data
required to build accurate surrogate models, it is still in the early development stage for other ML
models beyond GPR models. In particular, many existing UQ methods for deep learning models
are still far from GPR’s scientific rigor and theoretical soundness because few can stand strict UQ
tests pertaining to uncertainty calibration, decomposition, and attribution. Additionally, even fewer
methods offer principled ways to reduce the predictive uncertainty of deep neural networks. With
UQ methods for ML models (as reviewed in Sec. 3) getting more and more mature, we foresee that
active learning for local surrogate modeling will also become a very active research topic for ML
models other than GPR models.

Similar to local surrogate modeling, even though some deep learning-based optimization methods
have been developed recently [356, 357], ML-enabled optimization has mostly been studied using
GPR models, resulting in a group of Bayesian optimization-based engineering design methods [328,
358, 359], whose applications include material design [360, 361], design for reliability [362], and
design for additive manufacturing [363]. Because GPR is a flexible and versatile framework, which
means it can be fairly easy to extend to other problems and applications, numerous extensions have
been considered to adopt GPR models in different settings under the big umbrella of “Bayesian
optimization”. These extensions include, but are not limited to, using multi-fidelity strategy to
reduce the required number of high-fidelity samples in GPR-based Bayesian optimization [364],
Bayesian optimization for multi-output response [365], enhancing Bayesian optimization through
gradient information during the construction of a GPR model [366], Bayesian optimization for
problems with mixed-integer design variables (also known as mixed-variables) [367], and Bayesian
optimization based on heteroscedastic or non-stationary GPR models [118, 368-370].

Based on the above reviews, we can conclude that the UQ methods for ML models reviewed
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in Sec. 3 provide valuable tools to fill the gaps in the following three major activities of ML-based

engineering design: ML-enabled feature extraction, surrogate modeling, and optimization.

a. Enabling uncertainty-informed surrogate modeling and optimization: The UQ meth-
ods for neural networks presented in Secs. 3.2 and 3.3 enable us to extend various local surro-
gate modeling and optimization methods, which are originally developed for GPR models, to
various neural network-based ML models. This opportunity is especially important for deep

neural networks that are gaining popularity in the engineering design community.

b. Accounting for aleatory uncertainty in ML-based engineering design: Most current
methods for global surrogate modeling, local surrogate modeling, and ML-based optimization
lack the capability of considering input-dependent aleatory uncertainty during the local surro-
gate modeling or optimization. UQ methods newly developed in the ML community such as
the neural network ensemble method reviewed in Sec. 3.3 offer opportunities to address this

important issue.

¢. Reducing computational cost: Computationally efficient UQ methods are needed to quan-
tify the predictive uncertainty of ML models, since local/global surrogate modeling and its
applications to design optimization more than often require multiple UQ runs, with each run
at a different input sample (e.g., for the iterative refinement of a surrogate or search for a
global optimum). A computationally expensive UQ procedure could significantly increase the
overhead time for surrogate modeling or design optimization, which may diminish the benefits
of using an ML model in engineering design. To enable the wide adoption of UQ for ML in
engineering design, the UQ method should be able to not only accurately quantify the predic-
tive uncertainty, but also be very efficient in doing that. The methods presented in Sec. 3.2

and 3.3 have great potential to address this issue.

In summary, UQ of ML models is essential for ML-based engineering design to enable accelerated
design optimization and analysis and scale design optimization to large-scale problems. The ap-
proaches presented in Sec. 3 could lead to a paradigm shift in various engineering design applications

(e.g., materials, energy systems, additive manufacturing, to name a few) in the long term.

Appendix C. UQ of ML models in prognostics

Appendiz C.1. Introduction to prognostics

Prognostics aims to predict the future evolution of the health condition of systems, components,
or processes based on their current state, the past evolution of the health condition, and the future
predicted or planned usage or operating profile [202]. If no additional information on the future
usage or operating profile is available, it is often assumed that the system will be operated in the
same way as it was operated in the past.

Generally, two different types of data-driven approaches for predicting the RUL can be distin-
guished [371]:
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1. Identifying a health indicator and predicting its trend until a defined threshold is reached.
2. Directly mapping the extracted features or raw measurements as in the case of DL to the RUL.

For the first approach, the focus is on identifying a specific parameter or health indicator that
is indicative of the health state of the system or component being monitored. This degradation
indicator could be a physical measurement, a derived relevant feature or a combination of several
degradation indicators that change over time as the system undergoes degradation. Once the health
indicator is identified, the next step is to predict its trend over time. This involves using various
predictive modeling techniques, such as regression or time-series analysis, to estimate how the health
indicator evolves as the system degrades over time. The goal is to predict when the health indicator
will reach a defined threshold, indicating that the system or component is reaching the end of its
useful life.

For the second approach, instead of focusing on predicting the trend of a specific health indicator,
the predictive model directly maps either the extracted features or, in the case of deep learning,

directly from the raw measurements of the system or component to the RUL.

Appendix C.2. Sources of uncertainty in prognostics

In prognostics, there are several sources of uncertainty that can affect the quality of RUL pre-
dictions. These uncertainties can originate from diverse factors, and depending on the system, they
can impact the RUL prediction to various degrees [47].

While measurement and model uncertainty are common sources of uncertainty in all disciplines
and are also encountered in prognostics, some additional challenges for prognostics in terms of
uncertainty include the uncertainty of the future usage and operating profiles, the quality and
the limited availability of representative time-to-failure trajectories, high variability of operating
conditions, and the dependence on external factors and environmental conditions and their impact
on system degradation. Moreover, since failure modes and their mechanisms play a crucial role in
the evolution of component and system degradation, the precise degradation mechanisms leading
to failures may not be fully understood or may involve complex interactions. Such uncertainty in

failure modes adds an additional source of uncertainties to the predictions.

Appendix C.3. DL for prognostics
The great advantage brought by DL approaches in the context of prognostics stems from their

ability to automatically process high-dimensional, heterogeneous - and often noisy - sensor data in
an end-to-end fashion, learn the features automatically and reduce the necessity for hand-crafted
feature extraction to the minimum [203]. This concept has given rise to extensive research showcas-
ing the prediction capabilities of modern DL algorithms in the context of prognostics. Nevertheless,
most of these approaches are designed to output a single-point estimate of the RUL of the consid-
ered industrial or infrastructure assets ([202, 203, 214] and the references therein). This is the case
since standard neural networks’ outputs are deterministic and are not typically accompanied by a

meaningful probabilistic interpretation. This is undesirable in the context of prognostics. Sensor
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data are frequently distorted by multiple sources of noise and, training data is often limited in scope
and fails to represent the full range of conditions that may arise in real-world scenarios. Conse-
quently, there is a significant risk of encountering high levels of epistemic uncertainties, which must

be quantified and communicated to the decision makers.

Appendiz C.4. State-of-the-art uncertainty-aware DL approaches for prognostics

The emergence of DNNs has contributed to mitigating the two aforementioned issues, providing
a highly expressive class of methods capable of efficiently processing large-scale datasets (see [202,
203, 214] and the references therein). Since standard DL approaches do not naturally incorporate
UQ routines, using neural networks in prognostics has come at the price of neglecting UQ, hence
providing simple point-estimate predictions as outputs. Only recently, thanks to recent advances in
BNNSs, more efforts have been spent in designing uncertainty-aware DL techniques for prognostics.

One of the simplest strategies to enable UQ of DNNs is MC dropout. As explained in Section
3.2.3, this method is based on activating dropout layers at inference time, thereby, making the
neural network’s forward pass stochastic. Thanks to its intuitive rationale and relatively straight-
forward implementation, it is not surprising that the majority of uncertainty-aware DL methods
for prognostics have been established on this strategy in combination with standard neural network
architectures, such as fully-connected neural networks [208, 372], CNNs [373-375], and RNNs [376—
381]. Engineered systems to which MC dropout has been applied in prognostics include lithium-ion
batteries [208, 375, 379], turbofan engines [372, 373, 378, 382], bearings [375, 376], solenoid valves
[374], hydraulic mechanisms [377], and circuit breakers [377]. While most of the studies have ap-
plied existing MC dropout implementations to prognostics, in [377], the authors propose an adapted
framework to model epistemic and aleatory uncertainty by means of MC dropout and a final aleatory
layer with two nodes representing the parameters of either a Gaussian or two-parameter Weibull
distribution. By appropriately sampling from the weight distribution entailed by the MC dropout
and from the output distribution of the final aleatory layer, the authors are able to extract and
disentangle epistemic and aleatory uncertainty.

Besides MC dropout, ensemble methods [383-386] and deep Gaussian processes [387, 388] have
also been used in prognostics. In particular, in [386], an ensemble of Echo State Networks (ESNs), a
type of reservoir computing method, aggregated with an additional ESN on top of the ensemble to
estimate the residual variance, is used to predict the RUL and the associated prediction intervals.
The model is tested both on toy cases and on real industrial datasets and is shown to yield good
performance. In another research study, Deep Gaussian Processes [299, 389], have been employed for
the prediction of the RUL on a dataset of turbofan engines [387]. The advantage of these techniques
lies in the fact that they combine the probabilistic nature of standard GPR and the expressive power
of DNNs. In addition, contrarily to vanilla GPR, they can be applied to the “big-data” regime,
which is very common in prognostics. The results show that deep Gaussian processes perform well

in the task of RUL prediction, outperforming a number of deep learning baseline methods.
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Figure D.28: Training and validation losses for MC dropout models with dropout rate of (a) 0.05 and (b) 0.2 respec-
tively.

Appendix D. Demonstration of Instability of MC Dropout

In Section 3.2.3, we mention the instability of the MC dropout model arising from even slight
variations in hyperparameters, such as model size, training epochs and dropout rate. In this ap-
pendix, we first show the training and validation losses for two MC dropout models trained with the
same data of the toy example from Section 3.5 in Fig. D.28. The two MC dropout models have the
same architecture (3 ResNet blocks as shown in Fig. 15), but have different dropout rates. In this
case, the MC dropout model converged at around 500 epochs, but no over-fitting is observed until
10000 epochs. Next, we plot the uncertainty maps for various configurations of the MC dropout
model in Table D.8. The uncertainty maps are highly inconsistent, thus leading to our conclusion
about the instability of MC dropout.
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Table D.8: Demonstration of the instability associated with uncertainty maps of MC dropout with respect to dropout
rate, number of training epochs, and ResNet architecture.
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