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Abstract

On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential

layer of safety assurance that could lead to more principled decision making by enabling sound risk

assessment and management. The safety and reliability improvement of ML models empowered by

UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes

decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial,

we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus

on neural networks and the applications of these UQ methods in tackling engineering design as well

as prognostics and health management problems. Toward this goal, we start with a comprehensive

classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we

provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regres-

sion, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing

on spectral-normalized neural Gaussian process. Established upon the mathematical formulations,

we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by

a toy regression example) to examine their strengths and shortcomings from different dimensions.

Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty

in classification and regression problems. Afterward, we discuss the increasingly important role of

UQ of ML models in solving challenging problems in engineering design and health prognostics.

Two case studies with source codes available on GitHub are used to demonstrate these UQ methods

and compare their performance in the life prediction of lithium-ion batteries at the early stage (case

study 1) and the remaining useful life prediction of turbofan engines (case study 2).
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Nomenclature

List of acronyms

ARD Automatic relevance determination

BNN Bayesian neural network

DL Deep learning

DNN Deep neural network

ECE Expected calibration error

EI Expected improvement

ELBO Evidence lower bound

GAN Generative adversarial network

GPR Gaussian process regression

HMC Hamiltonian Monte Carlo

KL Kullback–Leibler

MC Monte Carlo

MCMC Markov chain Monte Carlo

MFVI Mean-field variational inference

ML Machine learning

MSE Mean squared error

NLL Negative log-likelihood

OOD Out of distribution

PDF Probability density function

PHM Prognostics and health management

RUL Remaining useful life

SNGP Spectral-normalized neural Gaussian pro-

cess

SVGD Stein variational gradient descent

UQ Uncertainty quantification

VAE Variational autoencoder

VI Variational inference

List of mathematical notations

D = {(x1, y1) , (x2, y2) , · · · , (xN , yN )} Training

data

D Number of features (dimensions) in a sin-

gle input x

ε A random noise variable following a zero-

mean Gaussian distribution

E [•] Expectation of •
k(x,x′) Covariance function or kernel in GPR

depicting the covariance between function

outputs at x and x′

λ Parameter to be optimized in the varia-

tional distribution q

l Length scale parameter of a kernel

N Number of training samples

p Probability density

p (θ) Prior distribution of θ

p(θ|D) Posterior distribution of θ given the

training data D
p(y|θ,X) Likelihood function indicating the

probability of observing y given the pa-

rameters θ and inputs X

q (θ;λ) A variational distribution parameterized

by λ to approximate the posterior distri-

bution p(θ|D)
σf Signal amplitude parameter of a kernel

σε Standard deviation of a random noise

variable ε

θ Set of tunable parameters in an ML model

θ∗ Set of optimal parameters in an ML model

after tuning

X = {x1,x2, · · · ,xN} Inputs (or input points)

in a training dataset for BNN

Xt Matrix representation of inputs in train-

ing data, i.e., Xt = [x1, . . . ,xN ]T ∈
RN×D

x A single input, x ∈ RN

x∗ A test point

y A single observation/target, y ∈ R1

y = {y1, y2, · · · , yN} Observations/targets in a

training dataset to be predicted by an ML

model
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yt Matrix representation of target output in

training data, that is yt = [y1, . . . , yN ]T ∈
RN

1. Introduction

In recent years, data-driven machine learning (ML) models have become increasingly prevalent

across a wide range of engineering fields. Two application domains of interest to this tutorial are

engineering design and post-design health prognostics. The ML community has devoted significant

efforts toward creating deep learning (DL) models that yield improved prediction accuracy over

earlier DL models on publicly available, large, standardized datasets, such as MNIST [1], ImageNet

[2], Places [3], and Microsoft COCO [4]. Among these DL models are deep neural networks (DNNs),

known for their ability to extract high-level abstracted features from large volumes of data auto-

matically achieved through multiple layers of neurons and activation functions in an end-to-end

fashion.

Despite record-breaking prediction accuracy on some fixed sets of test samples (i.e., images in

the case of computer vision), these neural networks typically have difficulties in generalizing to data

not observed during model training. Suppose test samples come from a distribution substantially

different from the training distribution, where most of the training samples are located. These test

samples can be called out-of-distribution (OOD) samples. Trained neural network models tend to

produce large prediction errors on these OOD samples. Despite considerable efforts, such as domain

adaption [5–7], aimed at improving the generalization performance of neural network models, the

issue of poor generalizability still persists. Another limitation that adds to the challenge is that

complex ML models, such as DNNs, are mostly black-box in nature. It is generally preferred to use

simpler models (e.g., linear regression and decision tree) that are easier to interpret unless more

complex models can be justified with non-incremental benefits (e.g., substantially improved accu-

racy). In recent years, the growing availability of large volumes of data has made complex models,

which are often significantly more accurate than simple models, the obvious better choice in many

ML applications where prediction accuracy is the priority. Consequently, black-box ML models that

are hard to understand are increasingly deployed, particularly in big data applications. Some efforts

have been made to address the lack of interpretability, with notable explanation algorithms such as

SHAP [8] and Grad-CAM [9] and a good review of interpretable ML [10]. Despite these recent ef-

forts, many complex ML models are still implemented as black-box models and cannot explain their

predictions to the end user for various reasons. This limitation makes it extremely intricate for the

end user to understand the decision mechanism behind a neural network’s prediction. Given these

two limitations (difficulties in extrapolating to OOD samples and lack of interpretability), it is vital

to quantify the predictive uncertainty of a trained ML model and communicate this uncertainty to

end users in an easy-to-understand way. To enhance algorithmic transparency and trustworthiness,

uncertainty quantification (UQ) and interpretation should ideally be performed together, with UQ

providing information on the confidence of complex machine learning models in making predictions.

This integration allows for a better understanding of often difficult-to-interpret models and their

predictions.
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Let us first look at typical ways to express and communicate predictive uncertainty. A simple

case is with classification problems, where the probability of the model-predicted class can depict

model confidence at a prediction. For example, a fault classification model may predict a bearing

to have an inner race fault with a 90% probability/confidence. In regression problems, predictive

uncertainty is often communicated as confidence intervals, shown as error bars on graphs visualizing

predictions. For instance, we could train a probabilistic ML model to predict the number of weeks a

rolling element bearing can be used before failure, i.e., the remaining useful life (RUL). An example

prediction may be 120 ± 15, in weeks, which represents a two-sided 95% confidence interval (i.e.,

∼1.96 standard deviations subtracted from or added to the mean estimate assuming the model-

predicted RUL follows a Gaussian distribution). A narrower confidence interval comes from lower

predictive uncertainty, which suggests higher model confidence.

One clear advantage of UQ is that it helps end users determine when they can trust predictions

made by the model and when they need extra caution while making decisions based on these pre-

dictions. This is especially important when incorrect decisions can lead to severe financial losses

or even life-threatening outcomes. Towards this end, the integration of UQ in ML models, as well

as the sound quantification and calibration of uncertainty in ML model prediction, has a viable

potential to tackle a central research question the ML community confronts – safety assurance of

ML models [11–14]. In fact, the absence of essential performance characteristics (e.g., model robust-

ness and safety assurance) has emerged as the fundamental roadblock to limiting ML’s application

scope in risk-insensitive areas, while its adoptions in high-stakes, high-reward decision environments

(e.g., healthcare, aviation, and power grid) are still in the infancy stage primarily because of the

reluctance of end users to delegate critical decision making to machine intelligence in cases where

the safety of patients or critical engineering systems might be put at stake [15–18]. Towards the

translation of ML solutions in high-risk domains, UQ offers an additional dimension by extend-

ing the traditional discipline of statistical error analysis to capture various uncertainties arising

from limited or noisy data, missing variables, incomplete knowledge, etc. This development has

wide-ranging implications for supporting quantitative and precise risk management in high-stakes

decision-making settings, particularly concerning potential model failures and decision limitations of

ML algorithms. However, the evaluation of ML model performance on most benchmarking datasets

focuses exclusively on some form of prediction accuracy on a fixed test dataset; it rarely considers

the quality of predictive uncertainty. As a result, UQ of ML models is typically pushed to the

sidelines, yielding the centerlines to prediction accuracy. In reality, underestimating uncertainty

(overconfidence) can create trust issues, while overestimating uncertainty (underconfidence) may

result in overly conservative predictions, ultimately diminishing the value of ML.

More recently (approximately since 2015), there has been growing interest in approaches to

estimating the predictive uncertainty of deep learning models, for example, in the form of class

probability for classification and predicted variance for regression, as discussed earlier. The growing

interest can be attributed to failure cases where trained ML models produced unexpectedly incorrect

predictions on test samples while communicating high confidence in the predictions [19] and those

where models changed their predictions substantially in response to minor, unimportant changes
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to samples (or so-called adversarial samples) [20]. Two pioneering studies that stimulated many

subsequent efforts created two widely used approaches to UQ of neural networks: (1) Monte Carlo

(MC) dropout as a computationally efficient alternative to traditional Bayesian neural network

[21] and (2) neural network ensemble consisting of multiple independently trained neural networks,

each predicting a mean and standard deviation of a Gaussian target [22]. Another notable early

study highlighted differences between aleatory and epistemic uncertainty and discussed situations

where quantifying aleatory uncertainty is important and where quantifying epistemic uncertainty

is important [23]. A common understanding in the ML community towards these two types of

uncertainty has been the following: aleatory uncertainty can be considered data uncertainty and

represents inherent randomness (e.g., measurement noise) in observations of the target that an ML

model is tasked with predicting; epistemic uncertainty can be treated as model uncertainty and

results from having access to only limited training data, which makes it not possible to learn a

precise model. As discussed in Sec. 2.1, aleatory and epistemic uncertainty could encompass more

sources and causes than the well-known data and model uncertainty.

The engineering design community has a long history of applying Gaussian process regression

(GPR) or kriging, an ML method with UQ capability, to build cheap-to-evaluate surrogates of

expensive simulation models for simulation-based design, dating back to the early 2000s [24–26].

GPR has an elegant way of quantifying aleatory and epistemic uncertainty and can produce high

uncertainty on OOD samples. However, the UQ capability of GPR is typically not used to detect

OOD samples or quantify the epistemic uncertainty of a final built surrogate. Rather, it is leveraged

in an adaptive sampling scheme to encourage sampling in highly uncertain and critical regions of

the input space (exploration) to minimize the number of training samples for either (1) building

an accurate surrogate within some lower and upper bounds of input variables (local or global sur-

rogate modeling) [27–29] or (2) finding a globally optimally design for some expensive-to-evaluate

black-box objective function [30, 31]. Additionally, little effort is made to evaluate the quality of

UQ for a trained GPR model, likely because the model makes predictions on samples within pre-

defined design bounds and does not need to extrapolate much (low epistemic uncertainty). Other

classical surrogate modeling methods, such as standard artificial neural networks and support vec-

tor machines, are generally less capable of quantifying predictive uncertainty, especially epistemic

uncertainty. These methods and GPR are typically used to build surrogates that act as “deter-

ministic” transfer functions and allow propagating aleatory uncertainty in input variables to derive

the uncertainty in the model output, known as uncertainty propagation [32]. The recent two years

have seen efforts applying DNNs to surrogate modeling for reliability analysis [33–35]. Similarly,

these DNNs do not have built-in UQ capability and are typically used as deterministic functions

primarily for uncertainty propagation.

For over two decades, the prognostics and health management (PHM) community has used ML

methods with built-in UQ capability as part of the health forecasting/RUL prediction process. Early

applications include the Bayesian linear regression for aircraft turbofan engine prognostics [36], the

relevance vector machine, a probabilistic kernel regression model of an identical function form to the

support vector machine [37], for battery prognostics [38–40] and general purpose prognostics [41, 42],
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and GPR for battery prognostics [43–45]. UQ of ML models for PHM is perceived to have more

significance than that for engineering design, mainly due to (1) the more likely lack of sufficient

training data, given an expensive and time-consuming process to collect run-to-failure data for

training ML models for health prognostics, (2) the higher need to extrapolate to unseen operating

conditions in PHM applications, and (3) the higher criticality of consequences from incorrectly made

maintenance decisions. Two representative reviews of UQ work in the field of PHM can be found

in [46, 47]. Both reviews seem to focus on identifying uncertainty sources in health prognostics and

discussing ways to propagate these sources of uncertainty to derive the probability distribution of

RUL.

2.1: Aleatory and epistemic uncertainty
2.2: Decomposition of predictive uncertainty
2.3: Reduction of epistemic uncertainty

Sec. 2: Types and 
sources of uncertainty

3.1: Gaussian process regression
3.2: Bayesian neural network
3.3: Neural network ensemble
3.4: Deterministic methods
3.5: Toy example
3.6: Summary

Sec. 3: Methods for 
UQ of ML models

5.1: Uncertainty-aware ML for PHM
5.2: Uncertainty evaluation metrics for prognostics
5.3: Discussion

Sec. 5: UQ of ML 
models in prognostics

Sec. 8: Conclusion and outlook

4.1: Calibration curves and metrics
4.2: Sparsification plots and metrics
4.3: Negative log-likelihood
4.4: Accuracy vs. UQ quality

Sec. 4: Evaluation of 
predictive uncertainty

In process

6.1: Case study 1: Battery early life prediction
6.2: Case study 2: Turbofan engine prognosticsSec. 6: Case studies

figures/outline.pdf
7.1: Physics-informed ML
7.2: Probabilistic Learning on Manifolds
7.3: Interpretability of ML models for dynamic 
systems
7.4: Polynomial chaos expansion

Sec. 7: Other topics 
related to UQ of ML 
models

Figure 1: Overview of the organization of the tutorial paper.

Within this paper, we seek to provide a comprehensive overview of emerging approaches for UQ

of ML models and a brief review of applications of these approaches to solve engineering design and

health prognostics problems. As for the ML models, our tutorial focuses on neural networks due to

their increasing popularity amongst academic researchers and industrial practitioners. In essence,

we look at methods to quantify the predictive uncertainty of neural networks, i.e., methods for UQ

of neural networks. This focus differs from the notion of “ML for UQ” where UQ of engineered
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systems or processes becomes the primary task, and ML models are built only to serve the primary

purpose of UQ. Figure 1 shows an outline of this tutorial paper. Our tutorial possesses four unique

properties that distinguish it from recent reviews on UQ of ML models in the ML community [48–50],

computational physics community [51], and PHM community [46, 47], and a recent benchmarking

study assessing state-of-the-art UQ methods for neural networks in the PHM community [52].

• First, we give a detailed classification of uncertainty types, sources, and causes (Sec. 2.1)

and discuss ways to reduce epistemic uncertainty (Sec. 2.3). Our classification and discussion

complement the theoretical and data science-oriented discussions in the ML community and

provide more context for researchers and practitioners in the engineering design and PHM

communities. Additionally, we provide an easy-to-understand explanation of the process of

decomposing the total predictive uncertainty of an ML model into aleatory and epistemic

uncertainty, leveraging simple mathematical examples (Sec. 2.2).

• Second, we provide a tutorial-style description and a qualitative and quantitative comparison

of emerging UQ approaches developed in the ML community over the past eight years. This

tutorial-style description covers both methodologies (Sec. 3) and their implementations on real-

world case studies (Sec. 6). The tutorial style also applies to our discussion on methods and

metrics for assessing the quality of predictive uncertainty (Sec. 4), an increasingly important

exercise in UQ of ML models.

• Third, although our tutorial focuses primarily on UQ methods for ML models, it additionally

briefly covers a collection of recent studies that apply some of the emerging UQ approaches to

solve challenging problems in engineering design (Appendix B) and health prognostics (Sec. 5).

This review is meaningful because as the adoption of ML techniques in design and prognostics

rapidly increases, we also expect to see an increasing need for UQ of ML models. Note that

deep neural network architectures, originally created for computer vision tasks based on large

image datasets, can be readily adopted in engineering design tasks, such as surrogate modeling

for reliability analysis [28, 29] and generative designs [53–55], and PHM tasks, such as fault

diagnostics [56–60] and RUL prediction [61–63]. We hope to provide observations and insights

that can help guide researchers in the engineering design and PHM communities in choosing

and implementing the UQ methods suitable for specific applications. This unique and distinct

application area distinguishes our tutorial paper from a recent review paper on UQ of ML

models [51], which explored the use of ML with UQ for solving partial differential equations

and learning neural operators. Additionally, our tutorial paper complements a recent effort in

benchmarking UQ methods for neural networks on aircraft engine prognostics [52].

• Fourth, we share, on GitHub, our code for implementing several UQ methods on one toy

regression example (Sec. 3.5) and two real-world case studies on health prognostics (Sec. 6).

Our implementations have been thoroughly verified to have quality on par with high quality

implementations by the ML community. Some of our implementations are directly built on

top of code shared by the ML community. We anticipate our code will allow researchers and
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practitioners in the engineering design and PHM communities to replicate results, customize

existing UQ methods to specific applications, and test new methods. Moving forward, we plan

to make continuous improvements to the codebase, e.g., by polishing lines of code and adding

new methods as they become available.

Our tutorial paper is concluded in Sec. 8, where we also discuss directions for future research.

2. Types and sources of uncertainty

This section first provides the definitions of different types of uncertainty and a summary of

their sources and causes, and then discusses the methods to decompose and reduce the predictive

uncertainty of ML models.

2.1. Aleatory and epistemic uncertainty

Uncertainty, in general, can be classified into two types: aleatory uncertainty and epistemic

uncertainty [64]. This classification of uncertainty originated in the engineering domain for risk and

reliability analysis [64] and is also applicable to the ML domain [19, 23]. The definitions and sources

of these two types of uncertainty are summarized as follows.

i. Aleatory uncertainty: It stems from natural variability and is irreducible by nature [64].

This type of uncertainty captures the noise inherent in physical systems [65]. A typical example

of aleatory uncertainty is the noise in sensor measurements, which would persist even if more

data were collected. In ML, aleatory uncertainty represents the inherently stochastic nature

of an input, an output, or the dependency between these two [19]. Example causes of aleatory

uncertainty include variability of material properties from one specimen to another, variability

of response from different runs of the same experiment, variability in classes for classification

problems, and variability of the output for regression problems. This type of uncertainty

is usually modeled as a part of the likelihood function in a probabilistic ML model. The

predictions of the ML model is also probabilistically distributed [65]. This way of capturing

the observation uncertainty (sometimes termed data uncertainty) is leveraged by several UQ

methods, such as homoscedastic (Eq. (13)) and heteroscedastic (Eq. (30)) GPRs discussed in

Sec. 3.1 and neural network ensemble (Eq. (30)) discussed in Sec. 3.3.

ii. Epistemic uncertainty: This type of uncertainty is attributed to things one could know

in principle but remain unknown in practice due to a lack of knowledge. It is reducible by

nature [64]. Common causes of epistemic uncertainty in the engineering domain include model

simplification, model-form selection, computational assumptions, lack of information about

certain model parameters, and numerical discretization. ML models generally have similar

epistemic uncertainty sources as engineering models. In particular, the epistemic uncertainty

in ML models can be further classified into the following two categories:

(a) Model-form uncertainty is due to the simplification and approximation procedures involved

in ML model construction. It is usually associated with the choices of model types, such
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as the architectures and activation functions of neural networks and the model forms of

kernel functions in GPR models.

(b) Parameter uncertainty is associated with model parameters and arises from the model

calibration and training processes. Major causes of parameter uncertainty include a lack

of enough training data, inherent bias in the training data due to low data fidelity, and

difficulties in converging to optimal solutions faced by training algorithms.

Table 1 summarizes the common sources and associated causes of the above two types of un-

certainty in ML. When the test dataset falls outside the training data distribution, the ML model

predictions likely have high epistemic uncertainty since the performance of ML models is typically

poorer in extrapolation than in interpolation. When the test data in some regions of the input space

are associated with higher measurement noise, they can lead to higher aleatory uncertainty. Addi-

tionally, data of output used to train an ML model could deviate from the true values of the output.

When the error is caused by random noise of measurement, it will lead to aleatory uncertainty in

the output. However, when there is also bias in the data, the error causes additional epistemic

uncertainty. For instance, when the bias is caused by low data fidelity representing the data’s low

accuracy, this bias will result in epistemic uncertainty, which is reducible by adding high-fidelity

data for training.

Table 1: Types, sources, and causes of uncertainty in ML

Type Source Cause(s)

Aleatory uncertainty
Observational uncertainty
(model input and output)

Measurement noise (e.g., sensor
noise in measuring inputs/outputs
of ML models)

Natural variability (model
input)

Variability in material properties,
manufacturing tolerance, variability
in loading and environmental condi-
tions, etc.

Lack of predictive power
(model input)

Dimension reduction, non-separable
classes in input space (classifica-
tion), etc.

Epistemic uncertainty
Parameter uncertainty Limited training data, local op-

tima of ML model parameters, low-
fidelity training data*, etc.

Model-form uncertainty Choices of neural network architec-
tures and activation and other func-
tions, missing input features, etc.

* Data fidelity is the accuracy with which data quantifies and embodies the characteristics of the source [66].

Note that aleatory uncertainty could exist in the input, output, or both of an ML model. A

common practice of dealing with aleatory uncertainty in the inputs is propagating the uncertainty

to the output after constructing the ML model. The aleatory uncertainty in the output, however,

is more challenging to tackle, since it needs to be accounted for during the training of an ML model

(see more detailed discussion in Secs. 3.1 and 3.3). Uncertainty propagation of input aleatory
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uncertainty to the output is not the focus of this paper. We mainly focus on accounting for aleatory

uncertainty in the output during the training of an ML model. Moreover, it is worth mentioning

that aleatory uncertainty and epistemic uncertainty often coexist, making it difficult to separate

them. Even though some efforts have been made in recent years to separate these two types of

uncertainty, for example, by using the variance decomposition method (see Sec. 2.2) that has been

extensively studied in the global sensitivity analysis field [67–69], a clean and complete separation

of these two types of uncertainty may only be possible for some cases when there are no complicated

interactions between aleatory and epistemic uncertainty sources. We are interested in separating

these two types of uncertainty often because we are usually concerned about when the “prediction

accuracy” of ML models becomes so low that model prediction cannot be trusted. These “break-

down” cases are typically associated with high epistemic uncertainty, the quantification of which

would help identify low-confidence predictions by the ML models and avoid making sub-optimal

or even incorrect decisions whose consequences could be very costly and even life-threatening in

safety-critical applications.

Suppose we cannot separate these two types of uncertainty and only look at their combination.

In that case, we only have access to the total predictive uncertainty of an ML model, which can be

used to measure the model’s confidence in predicting at a test point, given both noise sources in the

environment and the reducible uncertainty arising from a lack of training data. The total predictive

uncertainty is often what commercially available ML solutions produce as ML outputs (e.g., the

probability mass function of the predicted health class for health diagnostics and the variance of

the remaining useful life estimate for health prognostics).

2.2. Decomposition of predictive uncertainty

From the above discussion, we can intuitively and qualitatively tell the difference between

aleatory (irreducible) and epistemic (reducible) uncertainty. Some recent studies also attempted

to estimate these two types of uncertainty quantitatively. To this end, it is essential to decompose

the total predictive uncertainty into aleatory and epistemic components [70–72]. Let us consider the

simplest form of a probabilistic ML model, a linear regression model. This model is parameterized

by weights and biases, concatenated into a vector θ. Then, we can express this linear regression

model in the following form:

ŷ(x) = f(x;θ) = θTx+ ε, (1)

where ε ∼ N
(
0, σ2I

)
is the Gaussian noise variable with I denoting an D × D identity matrix.

Note that applying an activation function to the linear term θTx introduces nonlinearity to the

regression model, making it a building block in a neural network.

If we make a Bayesian treatment of Eq. (1), we will start with a prior distribution p(θ) over

model parameters θ and then infer a posterior from a training dataset D, p(θ|D). Essentially, we

build a Bayesian linear regression model, from which we can derive the predictive distribution of y

at a given training/validation/test point x via marginalization:

p(y|x,D) =
∫
p(y|x,θ)p(θ|D)dθ. (2)
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To make the discussion more concrete and easier to understand, we further assume that Eq.

(1) is a two-dimensional model (i.e., D = 2) and the posterior of θ is jointly Gaussian: p(θ|D) =

N (µθ, Σθ) with µθ = [µθ1 , µθ2 ]
T and a covariance matrix Σθ =

[
σ2θ1 ρσθ1σθ2

ρσθ1σθ2 σ2θ2

]
. The predicted

y then follows a Gaussian distribution given by:

p(y|x,D) = N (µθ1x1 + µθ2x2, σ
2
θ1x

2
1 + σ2θ2x

2
2 + 2ρσθ1σθ2x1x2 + σ2). (3)

For classification problems, we typically use differential entropy as a measure of uncertainty [73];

for regression problems, a typical choice is variance of a Gaussian output [74]. Since we deal with

a regression problem, we use variance to measure uncertainty in this example. The total predictive

uncertainty is measured as the predicted variance

Utotal = V ar(y|x,D) = σ2θ1x
2
1 + σ2θ2x

2
2 + 2ρσθ1σθ2x1x2 + σ2. (4)

The aleatory uncertainty can be measured as the variance of the Gaussian noise (intrinsic in the

data)

Ualeatory = σ2. (5)

Then, the epistemic uncertainty can be estimated by subtracting the aleatory uncertainty from

the total predictive uncertainty

Uepistemic = Utotal − Ualeatory = σ2θ1x
2
1 + σ2θ2x

2
2 + 2ρσθ1σθ2x1x2. (6)

It can be seen from the above equation that the epistemic uncertainty is dependent on (1) the

posterior variances (σ2θ1 and σ2θ2) and covariance (ρσθ1σθ2) of the model parameters θ and (2) values

of the input variables (x1 and x2). The noise variance, which measures the intrinsic uncertainty in

the data, does not affect and has nothing to do with the epistemic uncertainty.

Using the law of total variance or variance-based sensitivity analysis [75], we can generalize Eqs.

(4) through (6) for uncertainty decomposition:

V ar(y|x,D)︸ ︷︷ ︸
Utotal

= Eθ∼p(θ|D)[V ar(y|x,θ)]︸ ︷︷ ︸
Ualeatory

+V arθ∼p(θ|D)[E(y|x,θ)]︸ ︷︷ ︸
Uepistemic

, (7)

where E(y|x,θ) and V ar(y|x,θ) are the mean and variance of y at x for a given realization of

θ. The first term on the right-hand side of Eq. (7), Eθ∼p(θ|D)[V ar(y|x,θ)], computes the average

of the variance of y, V ar(y|x,θ), over p(θ|D). This term does not consider any contribution of

parameter (θ) uncertainty to the variance of y, as the expectation operation, Eθ∼p(θ|D)[·], take out

the contribution of the variation in θ. It only captures the intrinsic data noise (ε) and therefore

represents the aleatory uncertainty. The second term, V arθ∼p(θ|D)[E(y|x,θ)], computes the vari-

ance of E(y|x,θ) for θ ∼ p(θ|D). The expectation operation, E(y|x,θ), essentially takes out the

contribution by the data noise (ε). Therefore, this second term measures epistemic uncertainty. For
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classification problems, similar expressions can be derived for the uncertainty metric of differential

entropy, as demonstrated in some earlier work (see, for example, [70–72]).

Total predictive variance

Variance due to epistemic uncertaintyVariance due to aleatory uncertainty

True response

High 
epistemic

High 
aleatory

Figure 2: An example of uncertainty decomposition using variance-decomposition based method.

Figure 2 shows an example of uncertainty decomposition using the above variance decomposition

method for a mathematical problem. The true model is a two-dimensional function as depicted in

the top-right graph of Fig. 2 and this function has the following closed form: y(x) = 1
20((1.5 + x1)

2+

4)× (1.5+x2)− sin 5×(1.5+x1)
2 . In this example, the true model is assumed to be unknown and needs

to be learned from training data using an ML model. Due to inherent sensor noise, observational

uncertainty is present in the output of the training data. It is modeled as a random variable

following a Gaussian distribution as ε(x) ∼ N (0, 0.5|sin(y(x))|2). Based on 50 training samples, a

GPR model is constructed. The total predicted variance of the resulting ML model is shown in the

upper left graph of Fig. 2. This graph shows that the predicted variance is high for some regions and

low for others. Since both aleatory and epistemic uncertainty exists and only the total predictive

uncertainty is visualized, it is difficult to tell if the uncertainty (the total predicted variance) in a

certain region could be further reduced.

Decomposing the total predicted variance into variances due to aleatory uncertainty and epis-

temic uncertainty, respectively, as shown in the lower half of this figure, allows us to identify regions

with high aleatory uncertainty and those with high epistemic uncertainty. If a region with high

12



epistemic uncertainty is the prediction region of interest, we can reduce the uncertainty to improve

the prediction confidence of the ML model (see the uncertainty reduction methods in Sec. 2.3).

However, if a region with high aleatory uncertainty and low epistemic uncertainty is the prediction

region of interest, it would be difficult to further reduce the total predictive uncertainty. In that

case, risk-based decision making needs to be employed to account for the irreducible aleatory uncer-

tainty when deriving optimal decisions (see, for example, decision-making scenarios in engineering

design, as discussed in Appendix B, and in PHM, as discussed in Sec. 5).

2.3. Reduction of epistemic uncertainty

As mentioned in Sec. 2.1, epistemic uncertainty is reducible. Suppose an ML model has low

prediction accuracy and confidence due to high epistemic uncertainty, resulting in sub-optimal or

even incorrect decisions. In that case, it is necessary to reduce the epistemic uncertainty. Commonly

used strategies for the reduction of epistemic uncertainty can be roughly divided into the following

two groups according to the source of epistemic uncertainty of interest.

(a) Reducing parameter uncertainty

i Adding more training data: Having access to limited training data usually leads

to uncertainty in ML model parameters. The model-parameter uncertainty is part of

epistemic uncertainty. It can be reduced by increasing the training data size, e.g., via data

augmentation using physics-based models [76] or simply by collecting and adding more

experimental data to the training set. Let us assume the added training data is as clean

as the existing data. In that case, the epistemic uncertainty component of the predictive

uncertainty becomes smaller, while the aleatory uncertainty is expected to remain at a

similar level. Suppose that, in a different case, the added training data contains more

noise than the existing data. In that case, we still expect lower epistemic uncertainty in

regions of the input space where the added data lie but higher aleatory uncertainty in

these regions.

ii Adding physics-informed loss or physical constraints for ML model training:

Incorporating physical laws as new loss terms or imposing physical constraints, such as

boundedness, monotonicity, and convexity for interpretable latent variables for ML model

training, may allow us to obtain a more accurate estimate of ML model parameters.

Although this physics-informed/constrained ML approach may not directly reduce epis-

temic uncertainty in ML predictions, it helps to reduce the training data size required to

build a robust ML model that produces accurate predictions across a wide range of input

settings. Specifically, enforcing principled physical laws into an ML model considerably

prunes the search space of model parameters as parameters violating these constraints are

discarded immediately. As a result, physical constraints contribute to reducing parameter

uncertainty to some extent by complementing the insufficient training data and narrow-

ing down the feasible region of these parameters. This benefit becomes especially relevant

when training data is lacking and has been reported in recent review papers in various
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engineering fields, such as computational physics [77], digital twin [78], and reliability

engineering [79], and in research papers published in recent special issue collections on

health diagnostics/prognostics [80] and the broader topic of reliability and safety [81]. For

over-parameterized ML models such as neural networks, it is possible to simultaneously

reduce bias and variance in the model parameters [82]. For simpler models such as GPR,

utilizing additional information such as gradient information [83], orthogonality [84], and

monotonicity [85] as constraints in kernel construction can also improve the prediction

accuracy.

iii Adopting better strategies for ML model training: If a better starting point can

be used when training an ML model, the optimization process may yield a more accurate

estimate of the model parameters. Similar to adding physics-informed loss terms, this

strategy can also indirectly reduce epistemic uncertainty. A popular example of this

strategy is transfer learning, where the model trained in one domain is used as a starting

point for training a model in another domain (e.g., transfer of weights and biases in selected

neural network layers) [86]. Another strategy is to use better optimization algorithms

when the number of parameters to be optimized is large. Global optimization in high-

dimensional search spaces is always challenging. Algorithms such as stochastic gradient

descent can have better convergence than traditional quasi-Newton methods in training

deep neural networks [87]. Reformulating model training with multiple loss terms as

minimax problems to adjust the focus of different loss terms can also improve convergence

[88].

(b) Reducing model-form uncertainty

i Identifying better input features: In practical applications, an important step in

training ML models is the selection of input features with strong predictive power accord-

ing to domain knowledge, expert opinions, or exploratory analysis [89, 90]. Identifying

input features with higher predictive power and using them as input features allows us to

reduce the model-form uncertainty of ML models.

ii Choosing better model architecture/kernel functions: All models are wrong, but

some are useful [91]. An appropriately chosen model architecture can better approximate

the true underlying function than many other model architectures. A commonly used

method is, therefore, to choose better model architecture or kernel function through tuning

or model validation. It can reduce model-form uncertainty to some degree.

iii Adding high-fidelity data: An obvious way to reduce model-form uncertainty caused

by bias in the training data is by adding high-fidelity data, thereby reducing the overall

epistemic uncertainty. Such strategies have been widely adopted in the ML field in the

context of multi-fidelity surrogate modeling/ML [92–95] and transfer learning [96].

Next, we use the two-dimensional example given in Fig. 2 to illustrate the process of reducing

epistemic uncertainty. As shown in Fig. 3, a group of training points is first generated from a known
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Epistemic uncertainty 
(model-form and data)

Use only 𝑥1 as 
input feature

Use 𝑥1 and 𝑥2
as input features Reduced epistemic 

uncertainty

Further reduced epistemic 
uncertainty

Adding more 
training data

True model
ML 
model 1

ML 
model 2

ML 
model 3

Training 
data

ML 
model

Input 
feature(s)

Number of 
training points

1 𝑥1 50

2 𝑥1, 𝑥2 50

3 𝑥1, 𝑥2 100

Figure 3: Types of uncertainty sources in ML models and the process of reducing epistemic uncertainty (i.e., methods
(b).i and (a).i described in Sec. 2.3).

mathematical function. Then, an ML model with only x1 as the input feature is constructed based

on this group of training data. As shown in this figure, the resulting ML model (i.e., ML model 1)

has considerable epistemic uncertainty due to the combined effect of model-form uncertainty and

model-parameter uncertainty. In particular, the model-form uncertainty is caused by the fact that

the underlying model used to generate this dataset has two input variables (x1 and x2) while ML

model 1 only uses x1 as its input feature. Model-parameter uncertainty stems from the limited

number of training samples (i.e., 50 in this example). In order to reduce the epistemic uncertainty

(model-form uncertainty), we then include both x1 and x2 as the input features, and another ML

model labeled ML model 2 is constructed using the same group of training data. As illustrated in

Fig. 3, adding input feature x2 (i.e., strategy (b).i as described above) substantially reduces the

epistemic uncertainty in regions within the training sample distribution. If we increase the size of

the training data to 100 (i.e., strategy (a).i), a third ML model (ML model 3) can be built based

on this larger training dataset. As expected, the epistemic component of the predictive uncertainty

is shown to decrease further due to the reduction of model-parameter uncertainty.

3. Methods for UQ of ML models

Data-driven ML models, most notably neural networks, have demonstrated unprecedented per-

formance in establishing associations and correlations from large volumes of data in high-dimensional

space via multiple layers of neurons and activation functions stacked together [97]. While ML has
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progressed on a fast track, it is still far away from fulfilling the stringent conditions of mission-

critical applications [15, 98], such as medical diagnostics, self-driving, and health prognostics of

critical infrastructures, where safety and correctness concerns are salient. In addition to safety and

reliability concerns, we are only able to collect a limited amount of data to train an ML model in a

broad range of applications due to practical constraints on physical experiments and computational

resources. To address some of these challenges, it is of paramount importance to establish princi-

pled and formal UQ approaches so that we can quantitatively analyze the uncertainty in ML model

predictions arising from scarce and noisy training data as well as model parameters and structures

in a sound manner. Accurate quantification of uncertainty in ML model predictions substantially

facilitates the risk management of ML models in high-stakes decision-making environments [99–102].

In particular, when dealing with input samples in the region of input space with low signal-to-

noise ratios or when handling the so-called OOD samples (input points sampled from a distribution

very different from the training distribution), most ML models are prone to produce erroneous

predictions [103]. If the uncertainty of an ML model can be quantified appropriately, it could lead to

more principled decision making by enabling ML models to automatically detect samples for which

there is high uncertainty. In fact, principled ML models are expected to yield high uncertainty (low

confidence) in their predictions when the ML model predictions are likely to be wrong [104, 105].

Having uncertainty estimates that appropriately reflect the correctness of predictions is essential to

identifying these “difficult-to-predict” samples that need to be examined cautiously, possibly with

the eyes of a domain expert. This section provides a detailed, tutorial-style introduction of state-of-

the-art methods for estimating the predictive uncertainty of data-driven ML models. As graphically

summarized in Fig. 4, these UQ methods are GPR (Sec. 3.1), Bayesian neural network (BNN) (Sec.

3.2), neural network ensemble (Sec. 3.3), and deterministic methods focusing on SNGP (Sec. 3.4).

3.1. Gaussian process regression

GPR can be viewed as a generalized Bayesian inference, extending from an inference about a

finite set of random variables to an inference about functions (each being an infinite-dimensional

vector of random variables) [106]. This generalized Bayesian inference works with a joint probability

distribution of a random function (i.e., an infinite-dimensional random vector) rather than a joint

distribution of a finite-dimensional random vector. Comprehensive and critical reviews are provided

by Rasmussen [106], Brochu et al. [107], and Shahriari et al. [31]. For complete details about GPR,

readers are referred to the seminal textbook by Rasmussen [106].

3.1.1. Basics of Gaussian process regression

a. Introduction to Gaussian process and Gaussian process prior.

A Gaussian process is a collection of random variables over some domain, where any finite subset

of these variables follows a joint (multivariate) Gaussian distribution. Intuitively, the Gaussian

process also defines a probability distribution for an unknown function, and this function comprises

a collection of (infinitely many) random variables. Let f(x) be the unknown function, where x ∈ RD

is a D-dimensional input, then for any finite set of input (x) points of this function, for example,
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Figure 4: Graphical comparison of six state-of-the-art UQ methods introduced in Sec. 3. These methods are GPR
(method 1), BNN via MCMC or VI (method 2), BNN via MC dropout (method 3), neural network ensemble (method
4), DNN with GPR – DNN-GPR (method 5), and SNGP (method 6). In method 1, MVN standards for the multivariate
normal distribution, or equivalently, the multivariate Gaussian distribution used in the main text. In methods (5)
and (6), SN stands for spectral normalization.
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Xt = [x1, . . . ,xN ]T ∈ RN×D, their corresponding outputs f(Xt) = [f(x1), . . . , f(xN )]T ∈ RN follow

a joint Gaussian distribution.

GPR starts from a Gaussian process prior for the unknown function: f(x) ∼ GP(m(x), k(x,x′))

[106]. This Gaussian process prior is fully characterized by a (prior) mean function m(x) : RD 7→ R
and a (prior) covariance function k(x,x′) : RD × RD 7→ R. The mean function m(x) defines the

prior mean of f at any given input point x, i.e.,

m(x) = E[f(x)]. (8)

The prior mean of the Gaussian process is often set as zero everywhere, m(x) = 0, for the ease of

computing the posterior. If the prior mean is a non-zero function, a trick is subtracting the prior

means from the observations and function means (which we want to predict), thereby maintaining

the “zero-mean” condition. The covariance function k(x,x′), also called the kernel in GPR, captures

how the function values at two input points, x and x′, linearly depend on each other. It takes the

following form

k(x,x′) = E
[
(f(x)−m(x))

(
f(x′)−m(x′)

)]
. (9)

When the prior mean is zero, the kernel fully defines the shape (e.g., smoothness and patterns)

of functions sampled from the prior and posterior.

b. Kernel (covariance function).

Probably the most commonly used kernel is the squared exponential kernel (a.k.a. the radial

basis function kernel and the Gaussian kernel), defined as

k(x,x′) = σ2f exp

(
−∥x− x′∥2

2l2

)
. (10)

where the two kernel parameters, or two hyperparameters of the GPR model, are the signal am-

plitude σf (σ2f is called signal variance) and length scale l. σ2f sets the upper limit of the prior

variance and covariance and should take a large value if f(x) spans a large range vertically (along

the y-axis). It can be observed that the covariance between f(x) and f(x′) decreases as x and x′

get farther apart. When x is extremely far from x′, they have a very large Euclidian distance, and

thus, k(x,x′) ≈ 0, i.e., the covariance between their function values approaches 0. Therefore, when

predicting f at a new input point, observations far away in the input space will have a minimum

influence. When a new input is OOD, it has a very low covariance with any training point, meaning

that the training observations contribute minimally to reducing the prior variance of the function

value at the OOD point, leading to high epistemic uncertainty. This kernel-enabled characteristic

has important implications for the distance awareness property of GPR. On the other extreme, if

two input points are extremely close, i.e., x ≈ x′, then k(x,x′) becomes very close to its maximum,

meaning f(x) and f(x′) have an almost perfect correlation. Function values of neighbors being

highly correlated ensures smoothness in the GPR model, which is desirable because we often want

to fit smooth functions to data.
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The squared exponential kernel in Eq. (10) uses the same length scale l across all D dimensions.

An alternative approach is to assign a different length scale ld for each input dimension xd, known

as automatic relevance determination (ARD) [108]. The resulting ARD squared exponential kernel

takes the following form

k(x,x′) = σ2f exp

(
−1

2

D∑
d=1

(xd − x′d)
2

l2d

)
, (11)

where the (D + 1) kernal parameters are the D length scales, l1, . . . , lD, and the signal amplitude,

σf . The ARD squared exponential kernel is also known as the anisotropic variant of the (isotropic)

squared exponential kernel. Each length scale determines how relevant an input variable is to the

GPR model. If ld is learned to take a very large value, the corresponding input dimension xd is

deemed irrelevant and contributes minimally to the regression. It is worth noting that the squared

exponential kernel is a special case of a more general class of kernels called Matérn kernels. See

Appendix A.1 for an extended discussion of kernels.

c. Drawing random sample functions.

After defining a mean and a covariance function (kernel), we can draw sample functions from the

Gaussian process prior without any observations of the function output. We can also sample function

values from the Gaussian process posterior (i.e., the conditional Gaussian process conditioned on

observed data), an essential task in GPR. Let us look at sampling functions from a Gaussian

prior; a similar process can be followed to draw samples from a Gaussian process posterior. It is

practically impossible to generate a perfectly continuous function from the prior, simply because

this continuous function theoretically consists of an infinitely sized vector, which is not possible to

sample. Alternatively, we can sample function values at a finite, densely populated set of input

points and use these function values to reasonably approximate the continuous function. This

approximation is acceptable in practice, given that we only need to predict f at a finite set of input

points. Since a Gaussian process entails this finite collection of random variables (i.e., the f values

at the finite set of input points) follow a multivariate Gaussian distribution, we can conveniently

sample the function values from multivariate Gaussian.

Suppose we wish to sample function values at N∗ input points, x∗
1, . . . ,x

∗
N∗

, from the prior.

These input points could become new, unseen test points in a regression setting, and we use a

subscript/superscript asterisk to distinguish them from training points. We start by defining an N∗-

by-D matrix X∗ where each row contains an input point, i.e., X∗ = [x∗
1, . . . ,x

∗
N∗

]T. For simplicity,

we assume the multivariate Gaussian prior has zero means (m(x) = 0), so we only need to obtain

the covariances between the function values at these N∗ input points. Using the squared exponential

kernel, we can derive the following covariance matrix

KX∗,X∗ =


k(x∗

1,x
∗
1) · · · k(x∗

1,x
∗
N∗

)
...

. . .
...

k(x∗
N∗
,x∗

1) · · · k(x∗
N∗
,x∗

N∗
)

 . (12)

Now we can draw random samples of the function values at the N∗ input points X from
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Figure 5: Sample functions drawn a Gaussian process prior (a) and posterior (b). The GPR model uses the squared
exponential kernel with a length scale (l) of 1 and a signal amplitude (σf) of 1, and a Gaussian observation model
with a noise standard deviation (σε) of 0.1. The means are shown collectively as a solid blue line/curve, and ∼95%
confidence intervals (means plus and minus two standard deviations) are shown collectively as a light blue shaded area.
20 training observations are generated by corrupting a sine function with a white Gaussian noise term, y = sin(0.9x)+ε
with ε ∼ N

(
0, 0.12

)
; these observations are shown as red dots.

GP(0, k(x,x′)) by sampling from the following multivariate Gaussian distribution: f∗ ∼ N (0,KX∗,X∗).

Each sample (f∗) consists of N∗ function values, i.e., f∗ = f(X∗) = [f(x∗
1), . . . , f(x

∗
N∗

)]T. The most

commonly used numerical procedure to sample from a multivariate Gaussian distribution consists of

two steps: (1) generate random samples (vectors) from the multivariate (D-dimensional) standard

normal distribution, N (0, I), and (2) transform these random samples linearly based on the mean

vector of the target multivariate Gaussian and the Cholesky decomposition of its covariance matrix

(see further details in Sec. A.2 (Gaussian Identities) of Ref. [106]). Figure 5(a) shows three sample

functions randomly drawn from a Gaussian process prior.

d. Making predictions at new points.

In practice, often, we only have noisy observations of f(x), for example, through the following

Gaussian observation model:

y = f(x) + ε, (13)

where ε is a zero-mean Gaussian noise, i.e., ε ∼ N (0, σ2ε). The above additive Gaussian form will

also be commonly used for other UQ methods in the upcoming sections. The N noisy observations

can be conveniently written in a vector form: yt = [y1, . . . , yN ]T ∈ RN . Note that these observations

are sometimes called targets in a regression setting. In GPR, we want to infer the input (x) - target

(y) relationship from the noisy observations; we may also be interested in learning the input (x) -

output (f) relationship in some cases.

The Gaussian observation model in Eq. (13) portrays an observation as two components: a

signal term and a noise term. The signal term f(x) carries the epistemic uncertainty (see Sec.
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2.1) about f(x), which can be reduced with additional observations of f at a finite set of training

points (e.g., x1, . . . ,xN ). The noise term ε represents the inherent mismatch between signal and

observation (e.g., due to measurement noise; see Table 1), which is a type of aleatory uncertainty

(see Sec. 2.1) and cannot be reduced from additional observations. In some cases, observations may

be noise-free, corresponding to a special case where σε = 0. In other words, we have access to the

true function (f) output in these cases.

Now it is time to look at how to make predictions of function values f∗ for N∗ new, unseen

input points X∗, given a collection of training observations, D = {(x1, y1) , (x2, y2) , . . . , (xN , yN )},
equivalently expressed as D = {Xt,yt}. These predictions can be made by drawing samples from

the Gaussian process posterior, p(f |D). We denote the function values at the training inputs as

ft = f(Xt) = [f(x1), . . . , f(xN )]T. Again, according to the definition of a Gaussian process, the

function values at the training inputs and those at the new inputs are jointly Gaussian (prior without

using observations), written as[
ft

f∗

]
∼ N

(
0,

[
KXt,Xt KXt,X∗

KX∗,Xt KX∗,X∗

])
, (14)

where KXt,Xt is the covariance matrix between the f values at the training points, expressed by

simply replacing X in Eq. (12) with Xt, KXt,X∗ is the covariance matrix between the training

points and new points (also called the cross-covariance matrix), KX∗,Xt = KT
Xt,X∗

, and KX∗,X∗ is

the covariance matrix between the new points.

As shown in the Gaussian observation model in Eq. (13), we assume all observations contain an

additive independent and identically distributed (i.i.d.) Gaussian noise with zero mean and variance

σ2ε . Under this assumption, the covariance matrix for the training observations needs the addition

of the noise variance to each diagonal element, i.e., yt ∼ N (0,KXt,Xt + σ2εI), where I denotes the

identity matrix of size N whose diagonal elements are ones and off-diagonal elements are zeros. It

then follows that the training observations (known) and the function values at the new input points

(unknown) follow a slightly revised version of the multivariate Gaussian prior shown in Eq. (14),

expressed as [
yt

f∗

]
∼ N

(
0,

[
KXt,Xt + σ2εI KXt,X∗

KX∗,Xt KX∗,X∗

])
. (15)

Now we want to ask the following question: “given the training dataset D and new test points

X∗, what is the posterior distribution of the new, unobserved function values f∗?”. It has been

shown that conditionals of a multivariate Gaussian are also multivariate Gaussian (see, for example,

Sec. 3.2.3 of the probabilistic ML book [74]). Therefore, the posterior distribution p(f∗|D,X∗) is

multivariate Gaussian. The posterior mean f∗ and covariance cov(f∗) can be derived based on the

well-known formulae for conditional distributions of multivariate Gaussian, leading to the following:

f∗ = KT
Xt,X∗(KXt,Xt + σ2εI)

−1yt, (16)
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and

cov(f∗) = KX∗,X∗ −KT
Xt,X∗(KXt,Xt + σ2εI)

−1KXt,X∗ . (17)

It is worth noting that this posterior distribution is also a Gaussian process, called a Gaussian

process posterior. So we have f(x)|D ∼ GP(mpost(x), kpost(x,x
′)), where the mean and kernel

functions of this Gaussian process posterior take the following forms:

mpost(x) = KT
Xt,x(KXt,Xt + σ2εI)

−1yt, (18)

and

kpost(x,x
′) = k(x,x′)−KT

Xt,x(KXt,Xt + σ2εI)
−1KXt,x′ . (19)

It can be observed from Eqs. (16) and (17) that the key to making predictions with a Gaus-

sian process posterior is calculating the three covariance matrices, KXt,Xt , KXt,X∗ , and KX∗,X∗ .

Difficulties in computation usually arise when performing a matrix inversion on a large covariance

matrix KXt,Xt with many training observations. Much effort has been devoted to solving this

matrix inversion problem, resulting in many approximation methods, such as covariance tapering

[109, 110] and low-rank approximations [111, 112], mostly applied to handle large spatial datasets.

Another important issue associated with the matrix inversion is that the covariance matrix could

become ill-conditioned, most likely due to some training points being too close and providing re-

dundant information. Two common strategies to invert an ill-conditioned covariance matrix are (1)

performing the Moore–Penrose inverse or pseudoinverse using the singular value decomposition [30]

and (2) applying “nugget” regularization, i.e., adding a small positive constant (e.g., 10−6) to each

diagonal element of the covariance matrix to make it better conditioned while having a negligible

effect on the calculation [113, 114]. Oftentimes, adding the variance of the Gaussian noise σ2ε , as

shown in Eqs. (16) and (17), serves the purpose of “nugget” regularization.

Following the numerical procedure described in Sec. 3.1.1.c, we can generate random samples

of f from the Gaussian process posterior. For example, we can sample function values at the N∗

input points, x∗
1, . . . ,x

∗
N∗

, by sampling from a multivariate Gaussian with mean f∗ and covariance

cov(f∗). It is possible that the Cholesky decomposition needs to be performed on an ill-conditioned

posterior covariance matrix cov(f∗). This issue can be tackled by applying “nugget” regularization

or adopting an alternative sampling procedure that centers around defining and sampling from a

zero-mean, unconditional Gaussian process, as described in Refs. [115–117]. Figure 5(b) shows three

sample functions drawn from a Gaussian process posterior after collecting 20 noisy observations of

a 1D sine function.

We have been looking at the posterior of noise-free function values. To derive the posterior over

the noisy observations, p(y∗|D,X∗), we add a vector of i.i.d. zero-mean Gaussian noise variables to

the f∗ posterior, producing a multivariate Gaussian with the same means (Eq. (16)) and a different

covariance matrix whose diagonal elements increase by σ2ε compared to the covariance matrix in Eq.

(17). It is also straightforward to make predictions on a noise-free Gaussian process using Eqs. (16)

and (17). We can simply take out the noise variance term σ2εI and use y∗ = f∗. As is discussed in
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Appendix B, GPR with noise-free observations is widely used to build cheap-to-evaluate surrogates

of computationally expensive computer simulation models in engineering design applications such

as model calibration, reliability analysis, sensitivity analysis, and optimization. The observations in

these applications are free of noise because we have direct access to the true underlying function (i.e.,

the computer simulation model) that we want to approximate. In contrast, as will be discussed

in Sec. 5, many applications of GPR in health prognostics require the consideration of noisy

observations, as we often do not have access to the true targets (e.g., health indicator) but can only

obtain noisy measurements or estimates of these targets.

Now let us look back at the distance awareness property of GPR. Suppose a new input point

x∗ keeps moving away from the training distribution D. In that case, the Euclidean distance

between x∗ and any input point xi in D, i.e., dist(x∗,xi), ∀i = 1, . . . , N , constantly increases. All

elements in the cross-covariance matrix and, more strictly, the cross-covariance vector kXt,x∗ =

[k(x1,x∗), . . . , k(xN ,x∗)]
T quickly approach zero. Given that neither the training-data covariance

matrixKXt,Xt nor the new-data covariance (variance in this case) k(x∗,x∗) experiences any changes,

the posterior mean f∗ will approach zero (i.e., the prior mean), and more importantly, the posterior

variance var(f∗) will approach its maximum allowed value σ2f . This observation of the GPR model

behavior is significant for UQ because it means that a GPR model naturally yields high-uncertainty

predictions for OOD samples falling outside of the training distribution.

e. Optimizing hyperparameters.

Suppose we choose the squared exponential kernel as the covariance function. In that case,

we will have three unknown hyperparameters that need to be estimated based on training data.

These parameters are the characteristic length scale (l), signal amplitude (σf), and noise standard

deviation (σε), i.e., θ = [l, σf , σε]
T. Estimating these hyperparameters can be regarded as training

a GPR model. As it is often difficult yet not much value-added to obtain the full Bayesian posterior

of θ, we typically choose to obtain a maximum a posteriori probability (MAP) estimate of θ, a point

estimate at which the log marginal likelihood log p(yt|Xt,θ) reaches the largest value. Assuming

the prior is uniform, the log marginal likelihood function of the posterior takes the following form

[106]:

log p(yt|Xt,θ) = −
1

2
(yT

t (KXt,Xt + σ2εI)
−1yt︸ ︷︷ ︸

Model-data fit

−1

2
log |KXt,Xt + σ2εI|︸ ︷︷ ︸
Complexity penalty

−N
2
log (2π)︸ ︷︷ ︸

Constant

, (20)

The first term on the right-hand side, the so-called “model-data fit” term, quantifies how well

the model fits the training observations. The second term, called the “complexity penalty” term,

quantifies the model complexity where a smoother covariance matrix with a smaller determinant

is preferred [106]. The third and last term is a normalization constant and indicates that the

likelihood of data tends to decrease as the training data size increases [31]. It should be noted

that the cost complexity of Eq. (20) is O(N3) to compute the inverse of the covariance matrix

KXt,Xt and the space complexity is O(N2) to store this matrix. Hyperparameter optimization

significantly influences the accuracy of GPR. See Appendix A.2 for an illustrated example on the
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effect of hyperparameter optimization.

3.1.2. UQ capability and some limitations of Gaussian process regression

GPR is capable of capturing both aleatory and epistemic uncertainty. For regression problems,

the posterior variance for a query or test point, shown in Eq. (17), is an elegant expression of the

total predictive uncertainty. The variance of the additive white noise, σ2ε , is a measure of the aleatory

uncertainty. If this noise variance is assumed to be a constant (learned from the observations), the

GPR model is called a “homoscedastic” model. In contrast, a heteroscedastic GPR model represents

the noise variance as a function of the input variables x [118]. Assuming a squared exponential kernel

is used, the epistemic uncertainty is determined mainly by kXt,x∗ , the covariance vector between the

training points and query point, as discussed at the end of Sec. 3.1.1.d. The farther away the query

point is from the training points, the smaller the elements of kXt,x∗ and the larger the epistemic

uncertainty. Therefore, using a distance-based covariance (or kernel) function and according to

conditionals of a multivariate Gaussian, a GPR model produces low epistemic uncertainty at query

or test points close to observations used for training and high epistemic uncertainty at query points

far away from any training observation. This distance awareness property makes GPR an ideal

choice for highly reliable OOD detection for problems of low dimensions and small training sizes.

The aleatory and epistemic uncertainty components of the posterior variance determine how wide

the confidence interval of a model prediction at the query point should be, reflecting the total

predictive uncertainty.

Despite the highly desirable distance awareness property and OOD detection capability, GPR

does not always produce posterior variances that reliably measure the predictive uncertainty. The

reliability of UQ by GPR depends on many factors, such as the test point where a prediction is

made, the behavior of the underlying function to be fitted, and the choices of the kernel and hy-

perparameters. For example, a necessary condition for reliable UQ by a GPR model is properly

choosing its kernel and optimizing the resulting hyperparameters (e.g., the variance of the additive

white noise, σ2ε , measures the aleatory uncertainty and should be optimized for accurate UQ). As

discussed earlier, GPR can detect OOD test points, especially those far from the training distribu-

tion. However, the high posterior variances at these “extreme” test points may still not accurately

measure the prediction accuracy. Specifically, as a test point moves away from the training distri-

bution, the posterior variance will start to “saturate” at its peak value, as discussed in detail in Sec.

3.1.1.d; in contrast, the prediction error at this test point may continue to rise due to an increasing

degree of extrapolation, and so should an “ideal” estimate of the predictive uncertainty. Although

GPR may not produce reliable UQ in such an extreme extrapolation scenario, it is important to take

a step back and keep in mind that extrapolating to an extensive degree goes against the purpose

for which GPR was originally introduced, i.e., interpolation [106, 119].

Standard GPR generally does not scale well to large training datasets (large N) because its

training complexity is O(N3). This scalability issue originates from the computation of the inverse

and determinant of the N ×N covariance matrix KXt,Xt during model training (i.e., hyperparam-

eter optimization), as shown in Eq. (20). This scalability issue motivated considerable effort in
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examining local and global approximation methods to scale GPR to large training datasets while

maintaining prediction accuracy and UQ quality. Interested readers may refer to a recent review on

scalable GPR in [120]. Another limitation of GPR is its lack of scalability to high input dimensions

(high D). This limitation stems from two issues. First, training a GPR model in a high-dimensional

input space typically requires optimizing a large number of hyperparameters. This is because an

ARD kernel form often needs to be chosen to deal with high-dimensional problems. As a result,

the number of hyperparameters increases linearly with the number of input variables (e.g., a GPR

model with the ARD squared exponential kernel shown in Eq. (11) has (D+ 2) hyperparameters).

A direct consequence is that a large quantity of training samples (high N) is needed to optimize the

many hyperparameters, leading to a large covariance matrix. As discussed earlier, inverting this

large covariance matrix and calculating its determinant have high computational complexity. Sec-

ond, maximizing the log marginal likelihood (see Eq. (20)) with a large number of hyperparameters

becomes a high-dimensional optimization problem. Solving this high-dimensional problem requires

many function evaluations, each involving one-time covariance matrix inversion and determinant

calculation. Attempts to improve GPR’s scalability to high-dimensional problems include (1) pro-

jecting the original, high-dimensional input onto a much lower-dimensional subspace and building a

GPR model in the subspace [121, 122], (2) defining a new kernel with a substantially smaller num-

ber of parameters identified with partial least squares [123], and (3) adopting an additive kernel in

place of a tensor product kernel in Eq. (11) [124]. More detailed discussions on scaling GPR to

high-dimensional problems can be found in a recent review [125].

As a final note, since this tutorial focuses on UQ of neural networks, it is relevant and interesting

to discuss connections between GPR and neural networks. Considerable efforts have been made to

establish such connections. Some of these efforts are briefly discussed in Appendix A.3.

3.2. Bayesian neural network

We will first introduce the non-Bayesian (frequentist) training of a DNN, and contrast it against

the Bayesian training used to form the BNNs. Consider a DNN f : RD 7→ R with tunable parameters

θ, and its prediction at an x is written as ŷ = f(x;θ). In non-Bayesian (frequentist) training, θ are

treated as deterministic, but unknown, parameters (i.e. not random variables). An estimator for θ

can then be created from a training dataset D = {(x1, y1) , (x2, y2) , · · · , (xN , yN )} by minimizing a

loss function shown below:

θ⋆ = argmin
θ

L(θ;D). (21)

For example, a commonly used loss function for regression problems is the mean squared error

(MSE) defined below:

θ⋆
MSE = argmin

θ

1

N

N∑
i=1

||yi − f(xi;θ)||22. (22)

With the gradient of f accessible through back-propagation [126], the loss minimization is typi-
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cally solved numerically using stochastic gradient descent [127, 128]. Once θ⋆ is found, prediction

at a new point x∗ can be made via ŷ∗ = f(x∗;θ
⋆). These predictions, however, are single-valued

and do not have quantified uncertainty.

A Bayesian training [129–131] of DNNs, also known as Bayesian deep learning [70, 108, 132–

134], produces a Bayesian neural network or BNN. The Bayesian approach views θ as a random

variable with the goal to find the entire distribution of plausible θ values that could have generated

the observed data D. Following Bayes’ rule, the prior probability density function (PDF) p(θ)

(“before”-uncertainty in θ) is updated to the posterior PDF p(θ|D) (“after”-uncertainty in θ)

conditioned on the training data D. Mathematically, we have:

p(θ|D) = p(D|θ)p(θ)
p(D) =

p(y|θ,X)p(θ)

p(y|X)
, (23)

where we separate the training dataset D = {X,y} into their inputs X = {x1,x2, · · · ,xN} and

corresponding outputs y = {y1, y2, · · · , yN}. Note that in the GPR section (Sec. 3.1), Xt and X∗

denote matrices comprising input points and yt and y∗ denote vectors consisting of observations. In

this BNN section, X and y denote sets of input points and observations, respectively, to be consistent

with the literature on Bayesian inference and BNN. In the above, p(y|θ,X) is the likelihood and

p(y|X) is the marginal likelihood (model evidence). The Bayesian problem and the BNN entail

solving for the posterior p(θ|D). We further discuss each term in the Bayes’ rule in Eq. (23) below.

The prior p(θ) can be formed in an informative or non-informative manner. The former allows

one to inject domain knowledge and expert opinions on the probable values of θ, formally through

the methods of prior elicitation [135]. However, these methods are difficult to use on DNN param-

eters θ due to their abstract and high-dimensional nature. The latter generates a prior following

guiding principles for desirable properties (e.g., Jeffreys’ prior [136], maximum entropy prior [137]).

In practice, isotropic Gaussian is often adopted for their convenience, but caution must be taken to

consider their pitfalls and appropriateness as BNN priors [138].

The likelihood p(y|θ,X) commonly follows a data (observation) model with an additive indepen-

dent Gaussian noise (similar to Eq. (13) in the GPR case): yi = f(xi;θ) + ε, where ε ∼ N (0, σ2ε).

In the implementation, we often work with the log-likelihood, which is computed as:

log p(y|θ,X) =
N∑
i=1

log p(yi|θ,xi) = −N log(
√
2πσε)−

1

2σ2ε

N∑
i=1

||yi − f(xi;θ)||22. (24)

We can see that finding the mode of the Gaussian (log)-likelihood above (i.e. the θ that maxi-

mizes Eq. (24)) is equivalent to the MSE minimization in Eq. (22); hence, θ⋆
MSE is also known as

the maximum likelihood estimator. Furthermore, adding a regularization term to Eq. (22) serves

the role of a prior, and in a similar fashion, a regularized loss minimization is also known as a

maximum a-posteriori (MAP) estimator (e.g., L2-regularization is the MAP with a Gaussian prior,

L1-regularization is the MAP with a Laplace prior).

The marginal likelihood p(y|X) in the denominator of Eq. (23) is a (normalization) constant
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for the posterior that integrates the numerator: p(y|X) =
∫
p(y|θ,X)p(θ) dθ. As it requires a

non-trivial integration, this term is highly difficult to estimate. Fortunately, Bayesian computation

algorithms are often designed to avoid the marginal likelihood altogether; we will describe examples

of these algorithms in the upcoming sections.

Lastly, once the Bayesian posterior p(θ|D) is obtained, the posterior uncertainty can be propa-

gated through the BNN at a new point x∗ via, for example, MC sampling. Importantly, we draw the

distinction between the posterior-pushforward and posterior-predictive distributions. The posterior-

pushforward is p(ŷ∗|x∗,D) = p(f(x∗;θ)|x∗,D). It describes the uncertainty on ŷ∗ (i.e. the “clean”

prediction from the DNN) as a result of the uncertainty in θ. In contrast, the posterior-predictive

is p(y∗|x∗,D) = p( [f(x∗;θ) + ε] |x∗,D), it describes the uncertainty on y∗ (i.e. the noisy observed

quantity). Hence, the former incorporates epistemic parametric uncertainty, while the latter fur-

ther augments aleatory data uncertainty to the new prediction. The two distributions can be easily

confused with each other, with the danger of improper UQ assessments where one might incorrectly

expect the posterior-pushforward uncertainty to “capture” the noisy observation data.

In the following sections, we introduce several major types of Bayesian computational methods

for solving the Bayesian posterior: Markov chain Monte Carlo or MCMC (posterior sampling),

variational inference (posterior approximating), and MC dropout.

3.2.1. Markov chain Monte Carlo

The classical method for solving the Bayesian problem is to sample the posterior distribu-

tion using Markov chain Monte Carlo (MCMC) [139, 140]. MCMC establishes a Markov chain

{θ(n)}, n ∈ N from a transition kernel (i.e. proposal distribution) such that the chain converges to

the posterior p(θ|D) regardless of its initial position θ(0). Most importantly, ergodicity theorems

ensure that the empirical average of MCMC samples, 1
Ns

∑Ns
n=1 h(θ

(n)), converges to the posterior

expectation Eθ|D[h(θ)] almost surely. The most fundamental MCMC is the Metropolis-Hastings

(MH) algorithm [141, 142], which forms the basis of many advanced MCMC variants. Hamiltonian

Monte Carlo (HMC) [143, 144], an advanced type of MCMC with improved mixing properties, is

more commonly used for BNNs. Drawing intuition from physics, HMC introduces an auxiliary

momentum variable to form a system of Hamiltonian dynamics that can generate trajectories fol-

lowing the high-probability regions of the posterior (the so-called typical set). However, the effect of

concentration of measure brings the typical set to become more singular with increasing dimension,

and even HMC has only been exercised for θ that is hundreds-dimensional [108, 145, 146]. This is

still orders of magnitude shorter than modern DNNs that can easily have millions, even billions,

of tunable parameters. While MCMC methods are theoretically appealing due to their asymptotic

convergence to the true posterior, the Markov chains can be very difficult to mix for high dimensions

in practice. As a result, they see limited usage in BNNs.

3.2.2. Variational Inference

A more scalable approach to the Bayesian inference problem can be found through variational

inference (VI) [147, 148]. In contrast to MCMC sampling, the idea of VI is to approximate the

posterior within a parametric family of distributions (e.g., a family of Gaussian distributions). In
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this section, we will start by defining the optimization problem that describes the best posterior

approximation, then introduce some examples of numerical algorithms to solve the VI problem.

Denoting a variational distribution (for approximating the posterior) using q(θ;λ) parameterized

by λ, VI seeks the best posterior-approximation q(θ;λ⋆) that minimizes the Kullback-Leibler (KL)

divergence between q(θ;λ) and p(θ|D), that is:

λ⋆ = argmin
λ

DKL [ q(θ;λ) || p(θ|D) ] . (25)

A popular choice for the variational distribution is the independent (mean-field) Gaussian:

q(θ;λ) =
∏K

k=1 q(θk;λk) =
∏K

k=1N (θk;µk, σ
2
k), where K is the total number of parameters in

the DNN. The independence structure allows the joint PDF to be factored into a product of uni-

variate Gaussian marginals, and so the variational parameters are λ = {µk, σk}, k = 1, . . . ,K that

encompasses the mean and standard deviation of each component of θ, for a total of 2K variational

parameters. As a result, mean-field simplifies to a diagonal global covariance matrix (instead of

dense covariance) in the approximate posterior, and it is unable to capture any correlation among

the θk’s. More expressive representations of q(θ;λ) are also possible, for example via normalizing

flows [149] and transport maps [150] that parameterize the mapping from the posterior random

variable θ to a standard normal reference random variable.

Given the variational distribution q(θ;λ), Eq. (25) can be further simplified as follows:

λ∗ = argmin
λ

DKL [ q(θ;λ) || p(θ|D) ]

= argmin
λ

Eq(θ;λ)

[
ln q(θ;λ)− ln

(
p(y|θ,X)p(θ)

p(y|X)

)]
= argmin

λ
DKL [ q(θ;λ) || p(θ) ]− Eq(θ;λ) [ln p(y|θ,X)]︸ ︷︷ ︸

−Evidence Lower Bound (ELBO)

, (26)

where going from the second to the third equation, the log-denominator’s contribution Eq(θ;λ) [ln p(y|X)] =

ln p(y|X) is omitted since it is constant with respect to both λ and θ and its exclusion does not

change the minimizer. The resulting expression in Eq. (26) is the negative of the well-known Evi-

dence Lower Bound (ELBO). The first term of ELBO acts as a regularization to keep q(θ;λ) close

to the prior. The second term of ELBO involves the log-likelihood of generating the observed data

under DNN parameters θ ∼ q(θ;λ); hence it measures the expected model-data fit.

In general, it is impossible to evaluate the ELBO analytically, and Eq. (26) must be solved

numerically. The simplest approach is to use MC sampling to estimate the ELBO, which only

entails sampling θ ∼ q(θ;λ). Often, further simplifications can be made by analyically computing

the first term, which involves only the prior and variational distribution. Furthermore, the gradient

of ELBO with respect to λ may be derived (e.g., see [134] for Gaussian q) or obtained through

automatic differentiation, allowing one to take advantage of gradient-based optimization algorithms

(e.g., stochastic gradient descent) to solve Eq. (26).

The Stein variational gradient descent (SVGD) [151] is another VI variant offering a flexible
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particle approximation to the posterior distribution. SVGD leverages the relationship between

the gradient of the KL divergence in Eq. (25) to the Stein discrepancy, the latter which can be

approximated using a set of particles. An update procedure can then formed to iteratively ascent

along a perturbation direction θℓ+1
i ← θℓ

i + ϵℓφ̂
∗(θℓ

i), where θℓ
i , i = 1, . . . , Np, denotes the i-th

particle at the ℓ-th iteration, ϵℓ is the learning rate, and the perturbation direction is defined as:

φ̂∗(θ) =
1

Np

Np∑
j=1

[
k(θℓ

j ,θ)∇θℓ
j
ln p(θℓ

j | D) +∇θℓ
j
k(θℓ

j ,θ)
]
, (27)

with k(·, ·) being a positive definite kernel (e.g., radial basis function kernel in Eq. (10)) Notably,

the gradient of the log-posterior in the above equation can be evaluated via the sum of gradients

of log-likelihood and log-prior, since the gradient of the log-marginal-likelihood with respect to θ

is zero. The overall effect is an iterative transport of a set of particles to best match the target

posterior distribution p(θ|D). Building upon the SVGD, advanced methods of Stein variational

Newton [152, 153] that makes use of second-order (Hessian) information, and projected SVGD [154]

that finds low dimensional data-informed subspaces, have also been proposed.

Figure 6: Illustration of Bayesian posterior obtained from (left) MCMC, (middle) SVGD, and (right) mean-field
Gaussian VI for a simple low-dimensional Bayesian inference test problem.

Figure 6 compares the different Bayesian posteriors obtained from a simple low-dimensional

Bayesian inference test problem using MCMC, SVGD, and mean-field Gaussian VI. MCMC and

SVGD provide sample/particle representations of the posterior distribution, while VI produces an

analytical Gaussian approximation of the PDF. Both MCMC and SVGD are able to capture non-

Gaussian and correlated structure, although SVGD is more restrictive in the number of particles it

can use due to higher memory requirement. However, SVGD and VI are more scalable to higher θ

dimensions than MCMC.

We note that another variant of VI can arise from the reverse KL divergence DKL [ p(θ|D) || q(θ;λ) ]
(in contrast to the DKL [ q(θ;λ) || p(θ|D) ] from Eq. (25)). Notable algorithms from this formulation

include expectation propagation [155], assumed density filtering [156], and moment matching [157];

in particular, expectation propagation has been shown to be quite effective in logistic-type models

in general.

29



3.2.3. MC dropout

Although the Bayesian approach offers an elegant and principled way to model and quantify

the uncertainty in neural networks, it typically comes with a prohibitive computational cost. As

introduced earlier, MCMC and VI are two commonly used methods to perform Bayesian inference

over the parameters of neural network. However, Bayesian inference with MCMC and variational

inference in DNNs suffers from extremely time-consuming computational burden and poor scalabil-

ity. Specifically, in the case of MCMC, estimating the uncertainty of neural network prediction with

respect to a given input requires to draw a large number of samples from the posterior distributions

of thousands or even millions of neural network parameters and propagate these samples through

the neural network [158]. Compared with MCMC, VI is much faster and has better scalability as

it recasts the inference of posterior distributions of neural network parameters as an optimization

problem. However, VI unfortunately doubles the parameters to be estimated for the same neu-

ral network. In addition, it is intricate to derive and formulate the optimization problem, much

less optimization regarding the high-dimensional problem consumes a large amount of time before

convergence [21].

Beyond MCMC and VI, further scalability can be achieved through the MC dropout method.

Initially proposed as a regularization technique to prevent the overfitting of DNNs [159], MC dropout

has been shown to approximate the posterior predictive distribution under a particular Bayesian

setup [21]. Procedurally, MC dropout follows the same deterministic DNN training in Eq. (21),

except that it forms new sparsely connected DNNs from the original DNN (see method 3 in Fig. 4)

by multiplying every weight with an independent Bernoulli random variable. Hence, each weight

has some probability of becoming zero (i.e., the weight being dropped). These Bernoulli random

variables are re-sampled (i.e., a new, randomized sparse DNN is formed) for every training sample

and for every forward pass of the model. At test time, the prediction at a new point x∗ can also be

repeated with multiple forward passes each with a new, randomized sparse DNN resulting from the

dropout operation. An ensemble of predictions can thus be obtained to estimate the uncertainty.

Practical implementation of MC dropout in probabilistic programming languages is often realized

by adding a dropout layer after each fully-connected layer.

The connection from MC dropout to a Bayesian setup is detailed in [21, 160]. Those works

show that the loss function following the dropout procedure corresponds to a single-sample MC

approximation to the VI objective (i.e., the ELBO in Eq. (26)), where the variational posterior of the

DNN weights is a Bernoulli mixture of two independent Gaussians of fixed covariance. Furthermore,

the prior of each DNN weight is assumed to follow a standard normal distribution, and the likelihood

is based on the additive Gaussian noise model in Eq. (24). Established upon such a setup, in MC

dropout, the variational distribution q (θ;λ) for approximating the posterior distribution p(θ|D)
becomes a factorization over the weight matrices Wi of the layers 1 to L. Mathematically, the

variational distribution q (θ;λ) takes the following multiplicative form:

q (θ;λ) =

L∏
i=1

qMi (Wi), (28)
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where qMi (Wi) denotes the density associated with the weight matrices Wi of layer i, and under

MC dropout, it emerges as a Gaussian mixture model consisting of two independent Gaussian

components with a fixed and identical variance, as shown below [21, 160]:

qMi (Wi) = piN
(
Mi, σ

2Ii
)︸ ︷︷ ︸

First Gaussian

+(1− pi) N
(
0, σ2Ii

)︸ ︷︷ ︸
Second Gaussian

. (29)

In the above, Mi is the mean of the first Gaussian, which is a vectorization of ni−1 × ni values
pertaining to the weight matrix Wi of size ni−1 × ni (ni denotes the number of units in the i-th

layer; when i = 0, it denotes the number of inputs), σ is the standard deviation parameter specified

by the end user, Ii is the identity matrix, N denotes the normal distribution, and pi (pi ∈ [0, 1])

is the dropout rate associated with the set of links connecting two consecutive layers of the neural

network. Under this VI perspective, MC dropout corresponds to optimizing λ = Mi, while both σ

and pi have fixed user-chosen values and are not part of the variational parameter set.

In the MC dropout implementation, for each element of Wi, we sample a υ according to a

Bernoulli distribution with a prescribed dropout rate pi, that is υ ∼ Bernoulli(pi). If the binary

variable υ = 0, it indicates that link connecting the i-th and (i+ 1)-th layers is dropped out. This

operation corresponds to choosing one of the two Gaussians from the mixture model in Eq. (29),

and hence MC dropout can serve as an approximation to the Bayesian posterior in BNNs.

A major advantage of MC dropout is that it is very straightforward to implement, requiring

only a few lines of modification to insert the z’s to an existing DNN setup and often conveniently

available as a dropout layer in many programming environments. Furthermore, its ease of imple-

mentation is agnostic of the neural network architecture, and can be readily adopted for many

polular types of neural networks such as convolutional neural network (CNN) and recurrent neural

network (RNN) [160, 161]. Another major advantage of MC dropout is its low computational cost

and high scalability since its training procedure is effectively identical to an ordinary, non-Bayesian

training of DNNs but with randomized sparse networks. These appealing properties collectively

contribute to the growing popularity of MC dropout in practice.

MC dropout also has some limitations. One disadvantage is that the quality of the uncertainty

generated by MC dropout is highly dependent on the choice of several hyperparameters [162–164],

such as the dropout rate and number of dropout layers. Thus, these hyperparameters need to be

fine tuned. Along this front, we also have similar findings in Section 3.5 that MC dropout exhibits

poor stability to the dropout rate, training epochs, and the number of trainable network parameters

(see Appendix D for more details). Regardless of the instability, the uncertainty produced by MC

dropout exhibits a consistent difficulty in detecting OOD instances. Note that other approximation

inference methods, such as MFVI, have a pathology that is slightly different from MC dropout

with respect to the soundness of the quantified uncertainty, see Section 3.5 for more details. As

highlighted by Foong et al. [165], the pathology of UQ in approximation methods is solely attributed

to the restrictiveness of approximating family, while exact inference methods, such as MCMC, do

not have such a problem. Another disadvantage of MC dropout is that users do not have the

option to inject their prior knowledge by specifying the prior or likelihood function because there
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is no mechanism for MC dropout to integrate such information—as a result, MC dropout can

only represent a narrow spectrum of Bayesian problems. A further side effect of this limitation

is that users may be hindered from critically thinking about the prior and likelihood altogether,

which may lead to claims of a Bayesian solution without actually having a Bayesian problem setup.

Finally, some researchers [166] have argued that MC dropout is not Bayesian because the variational

distribution fails to converge to ground-truth posterior distribution on closed-form benchmarks.

3.3. Neural network ensemble

Ensemble learning is a well-established technique to prevent overfitting and mitigate the poor

generalizability of ML models [167]. An essential step in constructing ensemble models is to train

multiple individual models independently and aggregate predictions from these individual models

to derive the final prediction. When building an ML model ensemble, it is of paramount importance

to retain a high degree of diversity among the individual models to achieve desirable performance

improvement [168]. Such diversity can be achieved through a broad spectrum of means that can

be grouped into two principal categories: (1) randomization approaches, such as bagging (a.k.a.

bootstrapping), where ensemble members are trained on different bootstrap samples of the original

training set or a random subset of original features [169]; and (2) boosting approaches: boosting

learns from the errors of previous iterations by increasing the importance of those wrongly predicted

training instances, thus sequentially and incrementally constructing an ensemble [170].

In the context of deep learning, building an ensemble of neural networks entails independently

training multiple neural networks with an identical architecture. Due to the easiness of implemen-

tation, neural network ensemble has been pervasively used to characterize the uncertainty of neural

network predictions [78, 171]. In particular, well-calibrated uncertainty estimates tend to yield

higher uncertainty on OOD data than on samples sufficiently similar to the distribution of training

data. On this front, the uncertainty of a neural network ensemble is principled to some extent in

the sense that this ensemble is inclined to produce higher uncertainty estimates (e.g., entropy in

the case of classification problems) for OOD instances [22]. The appealing feature of neural net-

work ensembles in producing higher uncertainty for OOD instances has been actively exploited s a

prevailing means to detect dataset shifts in the ML community because the data collected under a

shifted environment typically displays salient patterns that are substantially different from the data

that the ensemble neural networks are trained with [22, 101, 172].

3.3.1. Aleatory uncertainty: training each network individually

We consider a popular configuration of neural network ensemble where each individual neural

network in an ensemble outputs two quantities denoting the predicted mean µ̂ (xi) and variance

σ̂2 (xi) with respect to an input xi in its final output layer (see Fig. 4 for an overview on the

architecture of the individual neural network). In this configuration, the predictive distribution of

each network is often assumed to be Gaussian; therefore, the final output layer is sometimes called

Gaussian layer. Such a configuration enables characterizing observational noise of aleatory nature

associated with target values.
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Let us take a closer look at the aleatory uncertainty, more specifically, the observational noise

pertaining to each target observation. The simplest case is that we assume the same amount of

noise or aleatory uncertainty for every input xi, also known as homoscedasticity or homogeneity of

variance in statistics (similar to the homoscedastic case for GPR discussed in Sec. 3.1). To represent

the relationship between input xi and observation yi, we can use the Gaussian observation model

given in Eq. (13), substituting x with xi and y with yi. In this model, a random noise term ε, often

modeled as a zero-mean Gaussian noise, shifts the target away from the true value f (xi) to the

observed value yi. In this simplest case, the variance of random noise ε takes the same value σ2ε for

every input and is thus a constant. Although we could learn σε together with the neural network

parameters θ, this simplest case may not be realistic as some regions of the input space may have

larger measurement noise than other regions.

A more realistic case is one where the noise variance depends on xi. The basic idea is to tailor

aleatory uncertainty to each input, making the uncertainty input-dependent. This heteroscedastic

case is also briefly discussed in Sec. 3.1 where heteroscedastic GPR is the focus of the discussion.

The observation model now becomes the following:

yi = f (xi) + ε (xi) , (30)

where the variance of the noise term ε (xi), σ
2
ε (xi), is now a function of xi. It turns out that a

neural network can be trained to learn the mapping from x to σ2ε [22, 23]. It then follows that

we can train a neural network with parameters θ that learns to predict both the mean µ (xi) and

variance σ2 (xi) of the target for each input xi. This neural network has two outputs, predicted

mean µ̂ (xi;θ) and variance σ̂2 (xi;θ), which fully characterise a Gaussian predictive distribution,

i.e., ŷi ∼ N
(
µ̂ (xi;θ), σ̂

2 (xi;θ)
)

Before optimizing the network parameters θ, we need to define a proper scoring rule that mea-

sures the quality of predictive (aleatory) uncertainty. For regression problems, a typical choice of

a proper scoring rule is the likelihood function p (yi|xi;θ) whose logarithmic transformation takes

the following form [22, 173]:

log p (yi|xi;θ) = −
log σ̂2 (xi;θ)

2
− (yi − µ̂ (xi;θ))

2

2σ̂2 (xi;θ)
− constant. (31)

Given a training dataset consisting ofN input-output pairs, D = {(x1, y1) , (x2, y2) , · · · , (xN , yN )},
θ can be optimized by minimizing the following negative log-likelihood (NLL) loss on the entire

training data, which is equivalent to maximizing the negative counterpart of the likelihood function

in Eq. (31), after being summed up over all N training samples.

L (θ) =
N∑
i=1

[
log σ̂2 (xi;θ)

2
+

(yi − µ̂ (xi;θ))
2

2σ̂2 (xi;θ)

]
, (32)

where the constant term in Eq. (31) is omitted for brevity because it has nothing to do with the

optimization of θ.
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3.3.2. Epistemic uncertainty: using an ensemble of independently trained networks

As discussed in Sec. 3.3.1, the neural network ensemble approach captures aleatory uncertainty

by training a neural network that produces a Gaussian output (or another type of probability dis-

tribution) for each input. This modeling process improves over traditional deterministic approaches

that only produce a point estimate. Plus, the network-predicted variance varies according to the

input, making it possible to capture input-dependent observational noise. One limitation is that

minimizing the loss function in Eq. (32) yields a single vector of network parameters. Therefore, the

resulting neural network cannot capture the uncertainty related to the network parameters because

all parameters are deterministic. This treatment becomes an issue when only limited training data

are available. These cases are more realistic than having abundant training data, and when train-

ing data are of limited quantities, epistemic uncertainty is high and cannot be ignored. One widely

used way to capture epistemic uncertainty is to assume and estimate uncertainty in the parame-

ters of a neural network model, also known as model parameter uncertainty or network parameter

uncertainty.

After tuning the neural network parameters θ, at the time of prediction, each individual neural

network generates a pair of outputs (µ̂ (x∗) , σ̂ (x∗)) with respect to an unseen instance x∗, where

σ̂ (x∗) explicitly quantifies the aleatory uncertainty in model prediction arising from the random

noise ε (·) associated with the target value. Next, to quantify the epistemic uncertainty associated

with the neural network parameters θ, we can build an ensemble of neural networks, for example,

by adopting the randomization strategy (random parameter initialization and mini-batch sampling)

that attains a diverse set of neural networks. Suppose the neural network ensemble is composed

of M individual neural networks, then the ensemble model produces M pairs of (µ̂m (x∗) , σ̂m (x∗))

(m = 1, 2, · · · ,M) for the given input x∗. The M pairs of predictions (µ̂m (x∗) , σ̂m (x∗)) can be

viewed as a mixture of Gaussian distributions. Thus, we can use a single Gaussian distribution to

approximate the mixture of Gaussian distributions as long as the mean and variance of the single

Gaussian distribution are the same as the mean and variance of the mixture. Assuming that each

individual neural network in the ensemble carries an equal weight, we have the mean and variance

of the ensemble-predicted single Gaussian distribution as:

µ (x∗) =
1
M

M∑
m=1

µ̂m (x∗) ,

σ2 (x∗) =
1
M

M∑
m=1

(
σ̂2m (x∗) + µ̂2m (x∗)− µ2 (x∗)

)
.

(33)

In the ensemble of neural networks, both the aleatory and epistemic uncertainty can be measured

in a straightforward way. Specifically, the aleatory uncertainty arising from the noise associated with

the observation y is reflected in the variance σ̂m (x∗) predicted by each individual neural network.

In contrast, the epistemic uncertainty associated with the network structure and parameters is

manifested mainly as the difference with respect to µ̂m (x∗) of the M neural networks because

each individual neural network is initialized with a random set of weights and biases and trained

with a random mini-batch data for the gradient descent algorithm. Such randomness introduces
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a sufficient amount of diversity among the individual models. Thus, the difference between the

individual mean predictions µ̂m (x∗) that dominates the epistemic uncertainty characterizes the

structural and parametric uncertainty pertaining to the neural network.

An interesting question about neural network ensembles is why training multiple neural networks

of an identical architecture independently with just random initializations can capture epistemic

uncertainty. The answer lies in that training a neural network with a large number of parameters

(e.g., weights and biases) is an extremely intricate large-scale optimization problem in a high-

dimensional space, and stochastic gradient descent-based algorithms oftentimes converge to different

sets of parameter values θ that are locally optimal [174]. As mentioned earlier, network training

involves two sources of randomness: (1) random parameters initialization at the beginning of model

training and (2) random perturbations of the training data to produce mini-batches of data in

stochastic gradient descent As a result, the locally optimal parameters θ vary from one trained

neural network to another. Suppose M independent training runs give rise to M different local

minima for the network parameters, which then lead to the creation of M individual members of

an ensemble, as shown in Eq. (33). From the optimization perspective, the randomness in the

initialization of neural network parameters and the sampling of mini-batch data encourages the

optimization algorithm to explore different modes of the function space of a neural network. As a

result, the predicted means of theseM networks may differ substantially in some regions of the input

space, while the predicted variances may still be similar, resulting in high epistemic uncertainty.

These regions are typically located outside the training data distribution. Test samples falling into

these regions are called OOD samples (as previously defined in Sec. 1), where ensemble predictions

must be taken cautiously and are often untrustworthy.

3.4. Deterministic methods

A recent line of effort attempted to estimate the predictive uncertainty of neural networks using

deterministic UQ methods. These methods require only a single forward pass on a neural network

with deterministic parameters (weights and biases) to produce probabilistic outputs (e.g., predicted

mean and variance for regression). A resulting benefit that makes these methods uniquely attractive

is high computational efficiency (test time), particularly suitable for safety-critical applications

with stringent real-time inference requirements (e.g., high-rate structural health monitoring and

prognostics [175] and autonomous driving [176]). Examples of these deterministic methods include

deterministic uncertainty quantification (DUQ) [177], deep deterministic uncertainty (DDU) [178],

deterministic uncertainty estimation (DUE) [179], and spectral-normalized neural Gaussian process

(SNGP) [180, 181]. This section first discusses distance awareness in the hidden space, which is

a fundamental property of many deterministic methods, then provides a brief overview of how

distance-aware feature representation (hidden layers) and uncertainty prediction (output layer) are

achieved in SNGP.

3.4.1. Feature collapse and hidden-space regularization

The idea fundamental to many recently developed deterministic methods is (input) distance-

aware representations in the latent (or hidden) space, achieved by regularizing the learned latent
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representations of a neural network such that distances between points in the input space are

preserved in the hidden space. The need for distance-aware latent representations comes from a

recently reported phenomenon called feature collapse [177], where some OOD points in the input

space are mapped through feature extraction to in-distribution points in the hidden space, leading

to overconfident predictions at these OOD points. Feature collapse must be combatted for feature

representations in the hidden space to be useful for epistemic uncertainty estimation and OOD

detection. One option is imposing a bi-Lipschitz constraint on the feature extractor (i.e., a neural

network excluding its output layer). The term “bi-Lipschitz” means a two-sided constraint on the

Lipschitz constant of a feature extractor that determines how much distances in the input space

contract (small Lipschitz, feature collapse) and expand (large Lipschitz, small changes in input

resulting in drastic changes in latent features).

We now briefly describe the math pertaining to a bi-Lipschitz constraint. Suppose we take any

two input points x and x′ from a training dataset and let hnn(·) denote a function mapping an

input into latent features (i.e., right after the activation function in the last hidden layer of a neural

network). A bi-Lipschitz constraint on the mapping function h for any training input pairs looks

like:

Liplb||x− x′||input ≤ ||hnn(x)− hnn(x′)||hidden ≤ Lipub||x− x′||input. (34)

where Liplb and Lipub are, respectively, the lower and upper bounds imposed on the Lipschitz

constant of the feature extractor hnn(·), and || · ||input and || · ||hidden are, respectively, the distance

metrics chosen for the input and hidden spaces. Setting the lower bound Liplb ensures that latent

representations are distance sensitive, i.e., if x and x′ are relatively far apart in the input space,

they also have a relatively large distance in the hidden space. This sensitivity regularization allows

the feature extractors to preserve input distances and directly counteracts the feature collapse issue

by preventing OOD points from overlapping with in-distribution feature representations. Setting

the upper bound Lipub ensures that hidden representations are smooth, i.e., small distance changes

in the input space do not result in drastically large distance changes in the hidden space. This

smoothness enforcement leads to feature extractors that generalize well and are robust to adversarial

attacks. As for the distance metric, the Euclidean distance dist(·, ·) is often a good choice for

measuring distances between input points and even those between hidden representations, except

for image-like data. The Euclidean distance has recently been adopted as the distance metric in

several deterministic UQ methods [177, 180, 181].

The feature-space regularization via a bi-Lipschitz constraint shown in Eq. (34) can be imple-

mented during model training by applying either of the following two methods: (1) gradient penalty,

originally introduced for training generative adversarial networks (GANs) [182] and then adopted

for deterministic uncertainty estimation [177], and (2) spectral normalization, originally proposed

again for training GANs [183] and then adopted for deterministic uncertainty estimation [178–181].

In the rest of this subsection, we will briefly go over the application of spectral normalization in

SNGP. We will also discuss the use of GPR as the output layer by SNGP to produce an uncertainty

estimate based on distances in the “regularized” hidden space.
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3.4.2. Spectral normalization for distance preservation in hidden space

The algorithm of SNGP enforces the lower bound of the Lipschitz constant in Eq. (34) simply

by using network architectures with residual connections (e.g., residual networks) while imposing

the upper bound using spectral normalization. Briefly, for each hidden layer, spectral normalization

first calculates the spectral norm of the weight matrix W (i.e., the largest singular value of W),

denoted as ||W||2, and then normalizes W using its spectral norm as:

Ŵsn =
γ ·W
∥W∥2

, (35)

where γ is the upper bound of the spectral norm (i.e., ∥W∥2 ≤ γ), also called the spectral norm

upper bound, which effectively enforces an upper bound on the Lipschitz constant of the mapping

function in the hidden layer. The weight matrix needs to be spectral-normalized only when its

spectral norm exceeds the upper bound, i.e., when ||W||2 > γ [180]. Introducing the spectral norm

upper bound gives rise to the flexibility to balance the expressiveness and distance awareness of the

resulting spectral-normalized feature extractor. Specifically, when γ takes a small value (γ < 1),

the feature extractor tends to contract toward identity mapping, thereby limiting the ability of

the feature extractor to learn complex nonlinear mapping, critically important for achieving high

prediction accuracy on the training distribution; when γ is large (γ ≫ 1), the feature extractor

is allowed to expand and be more expressive but may not preserve input distances. However, in

reality, this flexibility may become a limitation against adoption, as γ needs to be carefully tuned

to balance accuracy/generalizability and distance awareness.

3.4.3. Gaussian process regression output layer for distance-aware prediction

As discussed in Sec. 3.4.2, the feature extraction layers of a neural network can be encouraged

to preserve distances in the input space through a combination of residual connections and spectral

normalization. Now we can make the predictive uncertainty of this neural network (input) distance-

aware by replacing the last (output) layer with a GPR model that takes the learned hidden features

as the input. Let us start by using the squared exponential kernel in Eq. (10) as the base kernel. We

replace the input points x and x′ with their “distance-aware” feature representations in the hidden

space, hnn(x;θ) and hnn(x
′;θ), where hnn( · ;θ) denotes the feature extraction part of a neural

network parameterized by θ, i.e., the neural network up to the last hidden layer. The resulting

kernel takes the following form:

knn(x,x
′) = k(hnn(x;θ), hnn(x

′;θ)) = σ2f exp

(
−∥hnn(x;θ)− hnn(x

′;θ)∥2
2l2

)
. (36)

When the neural network is a DNN (e.g., with > 5 hidden layers), the above kernel can sometimes be

called a deep kernel. The prior and posterior derivations follow the standard procedures described in

Secs. 3.1.1.c and 3.1.1.d. Essentially, we perform a GPR in the learned, distance-preserving feature

space instead of the input space. The resulting GPR model yields the posterior variance of a test
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input x∗ based on its Euclidean distances from all training points in the hidden space, leveraging

the distance awareness property of GPR, extensively discussed in Secs. 3.1.1.b and 3.1.1.d, to make

the output layer distance aware. Intuitively speaking, let us suppose x∗ keeps moving away from

the training distribution. The value of the hidden-space kernel between any training input xi and

x∗, knn(xi,x∗), will become smaller and smaller given the distance preservation property of hnn(·).
At some point, this kernel value will quickly approach zero. As a result, the posterior variance at

x∗ will keep increasing and eventually approach its maximum value σ2f . This scenario suggests the

distance awareness property of SNGP makes it an ideal tool for OOD detection.

To make inference computationally tractable, SNGP applies two approximations to the GPR

output layer: (1) expanding the GPR model into simpler Bayesian linear models in the space of

random Fourier features and (2) approximating the resulting posterior via Laplace approximation

[180]. It is noted that another deterministic UQ method named DUE also uses spectral normal-

ization plus residual connections to encourage a bi-Lipschitz mapping to the hidden space and

GPR in the output layer. The only major difference is that DUE uses variational inducing point

approximation for GPR in place of the random Fourier feature expansion [179].

3.4.4. Discussion on deterministic UQ methods

Deterministic methods run only a single forward pass for UQ and are computationally more

attractive than BNN and neural network ensemble. These deterministic approaches also thrive

at OOD detection thanks to their distance awareness property. However, they typically cannot

separate aleatory and epistemic uncertainty. Additionally, they may require modifications to the

network architecture (e.g., adding residual connections to enforce the Lipschitz lower bound in SNGP

[178, 180]) and training procedure (e.g., to accommodate spectral normalization) with additional

hyperparameters (e.g., the spectral norm upper bound γ, length scale l, and signal amplitude σf).

Finally, it was reported that deterministic methods such as SNGP may produce substantially lower-

accuracy UQ (e.g., higher values of the ECE defined in Sec. 4.1.3) than more mature methods such

as MC dropout and neural network ensemble [184, 185]. Findings from these recent benchmarking

studies call for more effort to investigate the calibration performance of deterministic approaches

and, in particular, to evaluate how accurately the predictive uncertainty can be used as a proxy for

model accuracy for in-distribution, around-distribution, and OOD data.

3.5. Toy example

Following the above discussions on several popular methods for UQ of ML models, we now con-

sider a toy 2D regression problem to compare the performance of these UQ methods quantitatively.

The functional relationship between y and x underlying this toy example takes the following form:

y(x) = 1
20((1.5 + x1)

2+4)×(1.5+x2)−sin 5×(1.5+x1)
2 . To train an ML model, we randomly generate

800 samples from the following two bivariate Gaussian distributions, with 400 samples randomly

drawn from either distribution, and use these 800 samples as the training data.

N
([

8

3.5

]
,

[
0.4 −0.32
−0.32 0.4

])
, N

([
−2.5
−2.5

]
,

[
0.4 −0.32
−0.32 0.4

])
. (37)
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Figure 7: The uncertainty maps by five different methods for UQ of ML models on the toy 2D regression problem.
These methods are Gaussian process regression – GPR (a), MFVI – mean-field variational inference (b), Monte Carlo
dropout – MC dropout (c), neural network ensemble (d), deep neural network with Gaussian process regression –
DNN-GPR (e), Spectral-normalized Neural Gaussian Process – SNGP (f). The two clusters colored in purple represent
the training data, while the cluster colored in red indicates a cluster of OOD instances. The background in each 2D
plot is color-coded according to the predictive uncertainty by the corresponding UQ method, with yellow (blue)
indicating high (low) uncertainty.

These training samples form two separate clusters with no overlap in between, as shown in Fig.

7. As can be observed in both Eq. (37) and Fig. 7, the two clusters have an identical variance-

covariance matrix and differ significantly only in the mean vector. We now apply the previously

introduced UQ methods on the 800 training samples. For those methods requiring neural networks,

the UQ methods are built on a backbone of similar residual neural network architectures with four

64-neuron residual layers. For example, in the case of neural network ensemble, a Gaussian layer is

inserted at the end of a residual neural network; while in the case of MC dropout, dropout with a

rate of 0.2 is applied at the end of each residual layer.

To test the UQ performance of different ML models, we generate a uniform meshgrid consisting

of 40,000 (= 200×200) samples with x1 and x2 spanning in the range [−15, 15]. Next, an uncertainty

heap map is constructed to visualize the predictive uncertainty of each trained ML model within

the domain. Figure 7 shows the uncertainty heat maps obtained by the five different UQ methods

on this toy problem. At a quick glance, both GPR and SNGP exhibit a desirable behavior in

producing high quality predictive uncertainty: the predictive uncertainty is quite low for samples
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in the proximity of the in-distribution/training data (dots in pink color). At the same time, both

GPR and SNGP generate high predictive uncertainty when test sample point [x1, x2]
T moves far

away from the training data clusters. As a result, both GPR and SNGP successfully assigned high

uncertainty to the 200 OOD samples (dots in red color at the bottom left of Fig. 7) - which are

randomly generated to test the OOD detection capability of different UQ techniques.

Unlike GPR and SNGP, the other four UQ methods have a relatively poor performance in quan-

tifying predictive uncertainty. As can be observed in Fig. 7 (c-e), MC dropout, deep ensemble, and

DNN-GPR assign low uncertainty for samples that are quite far away from the training data. As a

consequence, these three UQ techniques are likely to fail to detect the 200 OOD samples whose pre-

dictions are associated with relatively low uncertainty, as shown in the bottom-left corners of Fig. 7

(c), (d), and (e). Besides the lack of ability in OOD detection, these three UQ techniques share an-

other feature in common: their uncertainty output is more sensitive to the (hypothetical) boundary

that separates the two clusters of training data, while they exhibit a substantially faulty behav-

ior when establishing the decision boundary (trustworthy vs. untrustworthy region) around each

cluster of training data itself. More specifically, for a given test sample, the predictive uncertainty

generated by these three UQ techniques has a low sensitivity to how distant is a test sample’s dis-

tribution with respect to the training data. Regarding the mean-field variational inference (MFVI),

its predictive uncertainty gets increased in accordance with the distance away from the two train-

ing clusters, however, MFVI assigns nearly an identical uncertainty for the data between the two

training clusters as they are near the data, which contradicts with our anticipation. This suggests

that MFVI suffers from the lack of in-between uncertainty due to the approximation to Bayesian

inference, and such finding is also confirmed by Foong et al. [165]. Consequently, the predictive

uncertainty by these UQ techniques is unprincipled because their quantified uncertainty does not

match our expectation that uncertainty should clearly distinguish in-domain and out-domain data.

The significant difference in the uncertainty heat map across different UQ methods is primarily

attributed to their distance awareness capability. MC dropout, deep ensemble, and DNN-GPR do

not have the ability to properly quantify the distance of an input sample away from the training

data manifold. Instead, the predictive uncertainty at an input sample quantified by MC dropout,

deep ensemble, and DNN-GPR seems to be established upon the distance of the input sample from

a decision boundary separating the two clusters of training data. Therefore, it is not surprising

to see all these three UQ methods assign low uncertainty to the 200 OOD samples even though

they are quite far from the training data. Distinct from MC dropout and deep ensemble, GPR,

DNN-GPR, and SNGP are equipped with a good sense of awareness with respect to the distance

between an input sample and the training data manifold. As a result, they are comparatively more

principled in the sense that the uncertainty is much higher for the input sample that lies far from

the training data. Finally, even though both DNN-GPR and SNGP have GPR as the output layer,

DNN-GPR is free from determining what information to discard in the hidden space, while SNGP

imposes a spectral normalization on the latent representation of the input sample, thus making the

output layer distance sensitive in the hidden space. In a broad context, the sound UQ by GPR and

SNGP substantially facilitates the identification of OOD samples, establishing a trustworthy region
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in the input space where ML predictions are reliable.

3.6. Summary

Table 2: A qualitative comparison of state-of-the-art UQ approaches covered in this tutorial

Quantity of
interest

Gaussian
process

regression

Bayesian neural network Neural
network
ensemble

Deterministic method

MCMC
Variational
inference

MC
dropout

DNN-
GPR

SNGP

Quality of UQ
(e.g., measured
by calibration
curve)

High
High-

mediuma Medium
Medium-

low
High Medium High

Computational
cost (training)

Highb High
High-

medium
Low Low High High

Computational
efficiency (test)

Highb Low
High-

medium
Medium

Medium-
low

Low Low

Ability to detect
OOD samples

Strong Weak Weak Weak Moderate
Strong-
moderate

Strong

Scalability to
high dimensions

Low Low Medium High High High High

Effort to convert
a deterministic
to a probabilistic
model

Not
applicable

High
High-

medium
Low Medium

High-
medium

High-
medium

Ability to
distinguish
aleatory and
epistemic
uncertainty

Yes Yes Yes No Yes No No

Basis of UQ Analytical Sampling Sampling Sampling Hybrid Analytical Analytical

Stability of
quantified
uncertainty to
parameter
initialization

High High High Low Medium High High

a Accuracy is largely affected by the quality of the assumed prior.
b Efficient only for problems of low dimensions (typically < 10) and small training data (typically < 5000 points).

The numerical example in Sec. 3.5 demonstrates the performance difference among different UQ

methods with an emphasis on OOD detection. Comprehensive comparison of these UQmethods may

help better guide users to select appropriate UQ methods for specific ML applications. To this end,

we construct a table (Table 2) to qualitatively compare these methods along multiple dimensions,

such as the quality of UQ, computational costs in training and test, etc. In the first place, regarding

the calibration accuracy of these UQ methods, GPR and SNGP generally outperform other alternate

UQ methods, which is also confirmed in the previous numerical example. For the computational

cost associated with training an ML model, implementing a Bayesian neural network via MCMC or

variational inference incurs a relatively higher computational cost than MC dropout, as MC dropout

consumes nearly the same amount of computational time as training a regular neural network. In
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terms of scalability, it is well-known that GPR suffers from the curse of high dimensionality, so

training and testing GPR models may be computationally very expensive for high-dimensional

problems. The other three UQ methods (neural network ensemble, DNN-GPR, and SNGP) are

computationally cheaper than GPR, MCMC, and variational inference. We have similar findings

regarding the computational burden of these UQ methods at test time.

An important function of UQ built atop the original deterministic ML model is to serve as a

safeguard to detect OOD samples for the purpose of increasing the reliability of ML models. In

this regard, SNGP achieves similar performance as the gold standard GPR, while the remaining

UQ methods may perform poorly in detecting OOD samples. Besides strong OOD detection capa-

bility, SNGP also exhibits a desirable feature in scalability, while such a feature is missing in GP.

However, compared to GP, SNGP requires an additional effort to turn a deterministic ML model

into a probabilistic counterpart for UQ, while GPR is born with the capability of UQ. As for the

uncertainty decomposition, GPR, Bayesian neural network, and neural network ensemble all have

some capability to quantify aleatory and epistemic uncertainty separately, while such a capability

may be lacking in the MC dropout version of Bayesian neural network as well as in DNN-GPR

and SNGP. Next, both GPR and SNGP estimate the predictive uncertainty of ML models in an

analytical form. In contrast, the other UQ methods draw Monte Carlo samples to approximate the

uncertainty, which is a major performance barrier if critical applications require real-time inferences.

4. Evaluation of predictive uncertainty

Let us now shift our focus to the performance evaluation of probabilistic ML models. A unique

property of these models is that they do not simply produce a point estimate of y and instead

output a probability distribution of y, p(y), that fully characterizes the predictive uncertainty. This

unique property requires that the performance evaluation examines both the prediction accuracy,

e.g., the RMSE or mean absolute error calculated based on the mean predictions for regression,

and the quality of predictive uncertainty, e.g., how accurately the predictive uncertainty reflects the

deviation of a model prediction from the actual observation. In what follows, we will discuss ways

to assess the quality of predictive uncertainty.

4.1. Calibration curves and metrics

A standard approach to assessing the quality of predictive uncertainty is creating a calibration

curve, also called a reliability diagram [186–188]. We will first give a detailed walkthrough of creating

calibration curves for regression and classification and then present UQ performance metrics that

can be derived from a calibration curve.

4.1.1. Calibration curves for regression

Let us assume, in a regression setting, that we have a validation/test set of N input-output

pairs, D = {(x1, y1) , (x2, y2) , · · · , (xN , yN )}. Given a trained probabilistic ML model (e.g., an

ensemble of probabilistic neural networks or simply called a neural network ensemble as discussed

in Sec. 3.3) parameterized by θ, let ŷi = f (xi;θ) denote the predicted outcome for the i-th
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validation/test sample xi, i = 1, · · · , N . Without loss of generality, let us further assume that

the probabilistic output ŷi follows a Gaussian distribution, characterized by a Gaussian probability

density function, p (ŷi;µθ (xi) , σθ (xi)) =
1

σθ(xi)
ϕ
(
ŷi−µθ(xi)
σθ(xi)

)
, with the predicted mean µθ (xi) and

standard deviation σθ (xi). For a given confidence level c ∈ [0, 1], we can easily derive a two-sided

100c% confidence interval for the Gaussian random variable ŷi as:

CIci =
[
µθ (xi)− z 1+c

2
σθ (xi) , µθ (xi) + z 1+c

2
σθ (xi)

]
, (38)

where z 1+c
2

denotes the
(
1+c
2

)th
quantile of the standard normal distribution, i.e., z 1+c

2
= Φ−1

(
1+c
2

)
,

with Φ(·) denoting the cumulative distribution function (CDF) of the standard normal distribution.

The probability of a random realization of ŷi falling into CIci equals c, expressed as∫ µθ(xi)+z 1+c
2

σθ(xi)

µθ(xi)−z 1+c
2

σθ(xi)
p (ŷi;µθ (xi) , σθ (xi))dŷi =

τ≡
(

ŷi−µθ(xi)
σθ(xi)

)
∫ z 1+c

2

−z 1+c
2

ϕ (τ)dτ = c. (39)

If we choose to use a CDF Pi to characterize the probability distribution of ŷi that may not

follow a Gaussian distribution, we can write out the 100c% confidence interval for any arbitrary

distribution type,

CIci =

[
P−1
i

(
1− c
2

)
, P−1

i

(
1 + c

2

)]
, (40)

where P−1
i (c) = inf

(
ŷi : P

−1
i (ŷi) ≥ c

)
. Here, P−1

i is an inverse of the CDF Pi, also called a quantile

function, and becomes Φ−1 for the standard normal distribution. Alternatively, we can derive a

one-sided confidence interval CIci =
[
−∞, P−1

i (c)
]
.

Ideally, the UQ of this ML model should yield a 100c% confidence interval that contains the

observed y for approximately 100c% of the time. For example, if c = 0.95, then yi should fall into

a 95% confidence interval CI0.95i , one- or two-sided, for nearly 95% of the time. In other words,

we expect that approximately 95% of the N validation/test samples have their observed y values

fall into the respective 95% confidence intervals. The fraction of validation/test samples for which

the confidence intervals contain the observations can be called observed confidence (ĉ) or sometimes

accuracy, expressed as ĉ = 1
N

N∑
i=1

I (yi ∈ CIci ), where I (prop) is an indicator function that takes the

value of 1 if the proposition prop is true and 0 otherwise. If we plot observed confidence against

expected confidence (c) over [0, 1], we will create a calibration curve, sometimes called a reliability

diagram (see an example in the right-most plot of Fig. 9). This calibration curve shows how well

predictive uncertainty is quantified, and a perfect UQ should yield a calibration curve that overlaps

with the diagonal line (y = x). If the observed confidence is higher than expected at some c values,

the model is said to be underconfident at these confidence levels; otherwise, the model is deemed

overconfident. In predictive maintenance practices, reliability/maintenance engineers often prefer

underconfident predictions over overconfident predictions, as overconfident predictions are more

likely to trigger maintenance actions that are either unnecessarily early or too late. If 90% or 95%

is chosen as the confidence level, it is preferred that the observed confidence (or accuracy) is very
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close to or slightly higher than 90% or 95%.
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Figure 8: An example dataset with eight training samples (solid red circles) and 100 test samples (hollow red circles),
plotted with the underlying one-dimensional function and fitted GPR model. Shown for the fitted GPR model is the
poterior mean function (solid blue curve) and a collection of 95% confidence intervals (light blue shade) for the noisy
observations (y∗) at new/test points. These test points are equally spaced between -5 and 5 along the x-axis.

Let us now do a step-by-step walkthrough of how a calibration curve is created using a toy

example. This example uses training and test data generated from the same 1D function and

Gaussian observation model used to generate Figs. 5 and A.25 in Sec. 3.1.1. The observation

model consists of a sine function corrupted with a white Gaussian noise term, y = sin(0.9x) + ε

with ε ∼ N
(
0, 0.12

)
. As shown in Fig. 8, we fit a GPR model to the eight training data points

and test this model on 100 test points. It can be seen from the figure that the regressor reports

high uncertainty at test points that fall outside of the x ranges where training samples exist. If we

compare the in-distribution test samples (i.e., whose x values fall into [−3,−1) or [2, 4)) with the

OOD samples (whose x values lie within [−5,−3), [−1, 2), or [4, 5)), we observe higher predictive

uncertainty on the OOD samples, where the model’s predictions are more likely to be incorrect.

Creating a calibration curve in this toy example consists of three steps.

Step 1: We start by choosing K confidence levels between 0 and 1, 0 ≤ c1 < c2 < · · · < cK ≤ 1.

In this example, we choose 11 (K = 11) confidence levels equally spaced between 0 and

1, i.e., 0, 0.1, · · · , 0.9, 1 (see Step 1 in Fig. 9).
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Step 2: We then compute for each expected confidence level cj the observed confidence as:

ĉj =
1

N

N∑
i=1

I (yi ∈ CIci ). (41)

As mentioned above, CIci =
[
P−1
i

(
1−c
2

)
, P−1

i

(
1+c
2

)]
for a two-sided confidence interval

and CIci =
[
−∞, P−1

i (c)
]
for a one-sided confidence interval. Step 2 in Fig. 9 shows an

example of how to implement Eq. (40) for c6 = 0.5.

Step 3: We finally plot the K pairs of expected vs. observed confidence, {(c1, ĉ1) , · · · , (cK , ĉK)},
which gives rise to a calibration curve. In the toy example, we have 11 pairs of (cj , ĉj)

plotted to form a discrete calibration curve in Step 3 in Fig. 9.

0 0.2 0.4 0.6 0.8 1
Expected confidence

0

0.2

0.4

0.6

0.8

1

O
bs

er
ve

d 
co

nf
id

en
ce

Calibration
Ideal

0 0.2 0.4 0.6 0.8 1
Expected confidence

0

0.2

0.4

0.6

0.8

1

O
bs

er
ve

d 
co

nf
id

en
ce

Step 1: Identify 
confidence levels

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

Step 2: Compute 
observed confidence

0 20 40 60 80 100
Sample index (sorted)

-1

-0.5

0

0.5

1

y

Accurate
Inaccurate
Observed

𝑐̂𝑐6 =
55

55 + 45

# of accurate 
predictions

# of inaccurate
predictions

y

Step 3: Plot observed vs. 
expected confidence

Repeat for c1–c11

Final

figures/procedure_calibration_curve.pdf

Figure 9: Illustration of three-step procedure to create a calibration curve for toy regression problem shown in Fig. 8.

Suppose we are interested in assessing the regression model’s UQ quality at the confidence level

of 90%. In that case, we can observe from the calibration curve drawn in Step 3 that the Gaussian

process regressor tends to be underconfident, i.e., the confidence we expect the regressor to have

(c10 = 90%) is lower than the observed (empirically estimated) confidence (ĉ10 = 95%) or simply

c10 < ĉ10. More specifically, the actual proportion of times that the model’s 90% confidence interval

contains the ground truth (i.e., the model is correct) is higher than the expected value (i.e., 90%).

Being underconfident also means that the model tends to produce higher-than-true uncertainty in its

predictions, which is often more desirable in safety-critical applications than having an overconfident

model.

To further understand how a calibration curve behaves as a test window varies, we expand the

range of test data from [−5, 5], as shown in Fig. 8, to [−15, 15], as shown in Fig. 10, while keeping

the same number of test samples (i.e., 100). As shown in Fig. 10, the new test dataset includes much

more OOD samples that fall outside the range of [−5, 5]. The calibration curve on this new dataset

is plotted alongside the one on the original dataset in Fig. 11. Let us compare the new (red) and

original (blue) calibration curves. We can observe that having more OOD test samples degrades the

quality of UQ by moving the calibration curve further away from the ideal line. This observation

is not surprising because high quality UQ (i.e., producing predictive uncertainty that accurately
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Figure 10: Toy example identical to the one in Fig. 8 but with an expanded range of x on test data.
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Overconfident
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Figure 11: Comparison of calibration curves for two different ranges of test data for the toy 1D mathematical problem.
Test samples are equally spaced between -5 and 5 (the same as Figs. 8 and 9) and between -15 and 15, respectively,
for the two test ranges.

reflects prediction errors) is expected to be more challenging on OOD samples than in-distribution

samples. Another interesting observation is that the GPR model appears more overconfident in
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making predictions on the new test dataset with more OOD samples. Our explanation for this

observation is that as a test sample xi moves farther away from the training data, the prediction

error may increase drastically (i.e., the model-predicted mean may deviate substantially more from

the true observation), but the predictive uncertainty by a UQ method may start to saturate at a

certain distance away from the training distribution (see, for example, the flat confidence bounds

in Fig. 10 when xi ∈ [−15,−6] ∪ [7, 15]), making it more difficult for a probabilistic prediction to

be accurate (i.e., the predictive confidence interval at xi contains the ground truth yi). Essentially,

in some cases, the predictive uncertainty cannot catch up with the prediction error as a test sample

moves further away from a training distribution. In that case, it is critically important to establish

boundaries in the input space within which predictive uncertainty cannot be trusted. Very little

effort has been devoted to trustworthy UQ, and more effort is urgently needed on this front.

4.1.2. Calibration curves for classification

Creating calibration curves for classification models involves a multi-step procedure that dif-

fers from that for regression models. Let us use a binary classifier as an example. Similar

to the regression setting, we also have access to a validation/test set of N input-output pairs,

D = {(x1, y1) , (x2, y2) , · · · , (xN , yN )}. In a binary classification setting, the output takes the value

of either 0 or 1, i.e., y ∈ {0, 1}. Creating a calibration curve for this classification setting involves

three steps.

Step 1: The first step is to discretize the observed confidence c into some number (K) of bins of

width 1/K. For example, if K = 10, we then have ten intervals of observed confidence,

[0, 0.1], (0.1, 0.2], · · · , (0.9, 1.0].

Step 2: We then compute for each bin Bj =
(
cj − 1

2K , cj +
1
2K

]
the observed confidence as

ĉj =

N∑
i=1

yiI (fθ (xi) ∈ Bj)

N∑
i=1

I (fθ (xi) ∈ Bj)

, (42)

where fθ (xi) outputs the probability of yi = 1.

Step 3: The final step is to plot the predicted vs. the observed confidence for class 1 for each bin

Bj .

4.1.3. Calibration metrics

Several calibration metrics can be defined based on a calibration curve (see an example in Fig. 9).

For example, a simple metric can be the area between the calibration curve and the identity line,

sometimes called the miscalibration area, which interestingly shares a similar concept with the

area metric or u-pooling metric commonly used in the validation of computer simulation models

[189]. Another calibration metric that is more widely used is the so-called expected calibration

error (ECE), originally proposed for classification [190] and later extended for regression [191].
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Note though that the extension in [191] focused on deriving calibration curves and did not propose

an ECE definition under regression settings. The ECE can be defined as the weighted average

difference between a calibration curve and the ideal linear line, ECE =
K∑
j=1

wj |ĉj − cj |, where the

weight wj can be set as either a constant (i.e., 1/K) or proportional to the number of samples

falling into each bin, i.e., wj ∝
N∑
i=1

I
(
yi ∈ CICi

)
for regression and wj ∝

N∑
i=1

I (fθ (xi) ∈ Bj) for

binary classification [191]. Figure 12 illustrates the calibration-ideal differences as error bars on the

calibration curve obtained for the toy 1D mathematical problem shown in Fig. 8. Assuming equal

weights (w1 = w2 =, · · · ,= w11 = 1/11), the ECE for this calibration error is calculated to be 0.043,

which means the observed confidence deviates from the expected confidence by 0.043 on average.
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Figure 12: Calibration curve for the toy 1D mathematical problem shown in Fig. 8. This figure builds on the calibration
curve shown in Step 3 of Fig. 9 and also includes the differences between calibrated and ideal (red error bars) used to
calculate the ECE for this example.

4.1.4. Recalibration

If the calibration curve deviates significantly from the identity function (perfect calibration), a

recalibration may be needed to bring the calibration curve closer to the linear line. For example,

this recalibration can be done by a parametric approach called Platt scaling, which modifies the

non-probabilistic prediction of an ML binary classifier (e.g., a neural network or support vector

classifier) using a two-parameter, simple linear regression model and optimizes the two model pa-

rameters by minimizing the NLL on a validation dataset [188, 192]. It is straightforward to extend

Platt scaling to multi-class settings, for example, by expanding the simple linear regression model

to a multivariate linear regression model [193]. Another simple extension is temperature scaling,

a single-parameter version of Platt scaling [193], which was shown to be effective in re-calibrating

deterministic neural networks capable of UQ [178]. Another approach to recalibrating classification

models is training an auxiliary regression model on top of the trained machine learning predictor,

again using a validation dataset [191]. A popular choice of the auxiliary regression model is an iso-
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tonic regression model, where a non-parametric isotonic (monotonically increasing) function maps

probabilistic predictions to empirically observed values on a validation set. Recalibration using iso-

tonic regression was originally proposed for classification [187, 188] and then extended to regression

[191]. It found recent applications in the PHM field, such as battery state-of-health estimation

[194].

Both Platt scaling and isotonic regression require a separate validation dataset of a decent size

(typically 20-50% of the training dataset) to either optimize scaling parameters (Platt scaling) or

build a non-parametric regression model (isotonic regression), while in reality, such a decent sized

validation dataset may not be available. A comparative study of re-calibration approaches was

performed in [193], where temperature scaling was found to be the most simple and effective.

4.1.5. Connecting UQ calibration with model validation

It is worth noting the connection between UQ calibration and the u-pooling method. U-pooling

is a method for validating computer simulation models and has been well-established in the model

validation community [189, 195]. The u-pooling method aims to test whether all experimental

observations, often made under multiple experimental conditions and sparse under each condition,

come from the probability distributions predicted by a computer simulation model for the respective

experimental conditions. If each observation comes from the corresponding predictive distribution,

the CDF values of the experimental observations, “pooled” together from all physical experiments,

should follow a standard uniform distribution. Briefly, the u-pooling method first calculates the

CDF value or u value of each observation, ui, based on the predictive CDF by a computer simulation

model, then plots the empirical CDF of u, where u is along the x-axis and CDF is along the y-

axis, and finally computes the area difference between the empirical CDF of u and the CDF of the

standard uniform distribution (diagonal line). The smaller the area difference, the more accurate

(in a probabilistic sense) the computer simulation model.

Plotting a UQ calibration curve like the ones in Fig. 11 but for one-sided confidence intervals

could also start by calculating the predictive CDF values (u values in the u-pooling method) of all

test samples, u1, · · · , uN . Then, the observed confidence ĉ (y-axis) for any expected confidence c

(x-axis) can be calculated as the fraction of the CDF values that are smaller or equal to c, i.e.,

ĉ = 1
N

N∑
i=1

I (ui ≤ c). The differences are that (1) the empirical CDF plot in the u-pooling method

shows N eventually spaced empirical CDF values on the y-axis, while the number of expected

confidence levels on the x-axis of a UQ calibration plot is manually selected; and (2) for each

empirical CDF (y-axis for u-pooling) or expected confidence (x-axis for UQ calibration) value c,

the u-pooling method plots the corresponding percentile of u, i.e., the 100cth percentile of u based

on the dataset of N u values, while UQ calibration plots the corresponding fraction of the u values

that are no greater than c. Additionally, the u-pooling method strictly starts by looking at u

values. It then derives their empirical CDF values. In contrast, UQ calibration, to some degree,

has a reverse process where it begins with manually choosing expected confidence levels and then

calculates fractions of probabilistically accurate predictions (observed confidence values). However,

the fraction calculation can use the u values, as mentioned earlier.
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Before concluding on the connection between UQ calibration (ML community) and the u-pooling

method (model validation community), we want to note that the u-pooling method could also be

applied to assess the quality of the UQ of an ML model, with a different objective of measuring the

degree to which each observation comes from the probability distribution predicted by the MLmodel,

which differs from the objective of UQ calibration to test how underconfident or overconfident the

ML model is. Similarly, the area metric or “u-pooling” metric can be used to measure the mismatch

between predictive distributions and observations in a global sense [189].

4.2. Sparsification plots and metrics

Another method to assess the quality of predictive uncertainty is by creating the so-called sparsi-

fication plot [196]. A sparsification plot can be used to examine how well the predictive uncertainty

of an ML model can serve as a proxy of the actual model prediction error, which is unknown without

access to the ground truth. Creating a sparsification plot on a validation/test dataset consists of

three steps. These three steps will be explained using the toy 1D regression problem from Sec. 4.1.1

(see Fig. 8).

Step 1: Given an uncertainty metric (e.g., variance for regression, entropy for classification),

all samples in the validation/test dataset are sorted in descending order, starting with

those with the highest predictive uncertainty. In the toy example, the 100 test samples

are ranked according to the GPR model-predicted variance, with the first few samples

having the largest predicted variances.

Step 2: A subset of samples (e.g., 2% of the validation/test dataset) with the highest uncertainty

is gradually removed, leaving an increasingly smaller dataset whose samples have lower

predictive uncertainty than those removed. In the toy example, the sample removal

process involves 50 iterations, each of which takes out 2% of the remaining test samples

with the highest predictive uncertainty.

Step 3: Given an error metric (e.g., RMSE, mean absolute error), the prediction error is computed

on the remaining samples each time a subset of high uncertainty samples is removed in

Step 2. The toy example uses the RMSE as the error metric, computed by comparing

the GPR model-predicted means with the actual (noisy) observations.

Step 4: The final step is to plot the error metric vs. fraction of removed samples for the combi-

nations obtained in Steps 2 and 3. Figure 13 shows the sparsification plot (dashed blue

curve) for the toy example.

The resulting sparsification plot (see, for example, Fig. 13) visualizes how the prediction error

changes as a function of the fraction of removed samples. If predictive uncertainty is a good proxy

for prediction error, the error metric on a sparsification plot should decrease monotonically with the

fraction of removed high-uncertainty samples, as is the case in Fig. 13. If ground truth is available,

an ideal error curve (oracle) can be derived by ranking all samples in the validation/test dataset

in descending order according to the actual prediction error. The oracle for the 1D toy regression
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Figure 13: Sparsification curve and oracles for the toy 1D mathematical problem shown in Fig. 8.

problem is shown as a solid gray curve in Fig. 13, where we can observe a small difference between

the calculated and ideal error curves. If predictive uncertainty is a perfect representation of model

prediction error, the calculated error curve and oracle will overlap on the sparsification plot. On

the other extreme, random uncertainty estimates that do not reflect prediction error meaningfully

would result in an almost constant error on the remaining samples, i.e., a (close to) flat error curve.

An example of the sparsification curve under random uncertainty estimates is shown in Fig. 13

for the 1D toy regression problem (see the dash-dotted red curve). In this extreme case, a flat

curve suggests that UQ provides little information about identifying problematic samples (e.g.,

OOD samples and those in regions of the input space with high measurement noise) whose model

predictions may contain large errors.

Prior UQ studies in the ML community used plots similar to the sparsification plot to examine

model accuracy as a function of model confidence [22, 197]. The only difference may be the label used

for the x-axis, sometimes explicitly called confidence threshold for classification [22] and regression

[197], instead of fraction of removed samples. Per-sample model confidence was derived as the

probability of the predicted label for classification [22] and the percentage of validation/test samples

whose variances are higher than the validation/test sample of interest [197]. However, estimating

the per-sample model confidence from the per-sample predictive uncertainty without access to the

ground truth is difficult and remains an open research question.

Since the model prediction error of one UQ approach on a validation/test sample most likely

differs from that of a different approach, the ideal error curve (oracle) is likely to differ among

UQ approaches. To compare these approaches, we can first calculate the difference between the

sparsification and oracle for each fraction of removed samples, named sparcification error. Then, we

can compute two sparsification metrics: (1) the Area Under the Sparsification Error curve (AUSE),

i.e., the area between the actual error curve and its oracle [198], and (2) the Area Under the Random

Gain curve (AURG), i.e., the area between the (close-to) flat random curve and the actual error

curve. The lower the AUSE, the better the predictive uncertainty (derived from UQ) represents
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the actual prediction error (unknown). The higher the AURG (assuming the error curve shows a

monotonically decreasing trend), the better UQ is compared to no UQ.

4.3. Negative log-likelihood

Given a training dataset D and a validation/test data point x, we can look at calculating the

probability of observing its target value y using the predictive probability density function of the

target, expressed as p̂(y|x,D). We can repeat this process to get the probability of observing the

target value for each sample in the validation/test dataset. Multiplying these predictive probabilities

gives rise to a predictive likelihood. Taking a logarithmic transformation yields a predictive log-

likelihood, which is a good measure of the goodness of fit of the probabilistic ML model to the

validation/test data. The larger the log-likelihood, the better the model-data fit. Often, the negative

counterpart of a log-likelihood, named NLL, is used in place of log-likelihood as the loss function or

part of the loss function when training a probabilistic ML model. An example of the NLL has been

given in Eq. (32) as the loss function for training a prababilisitic neural network in a neural network

ensemble, as discussed in Sec. 3.3.1. It has been widely accepted that log-likelihood, or equivalently

NLL, is a good measure of a probabilistic model’s quality of fit [199]. NLL can be viewed as an

indirect measure of model calibration [193] and is often used alongside calibration metrics to assess

the quality of predictive uncertainty (see, for example, three recent methodological studies on UQ

of ML models in [180, 181, 200]).

4.4. Accuracy vs. UQ quality

An interesting finding about UQ of ML models was reported in [193], where NLL was found to

behave inconsistently with traditional accuracy measures, such as the RMSE or mean absolute error

for regression, during model training. It appeared that NLL and accuracy could become conflicting

at some point during the training process when neural networks could learn to be more accurate at

the cost of lower quality in UQ, as reported for classification problems in [193]. This finding may

help explain the observation in [201] that wide and deep neural networks trained with very limited

regularization sometimes generalize surprisingly well [193]. Specifically, the inconsistency between

NLL and accuracy provides evidence that (1) these large-scale models exhibiting good generalization

performance may still suffer from the common overfitting issue, and (2) overfitting occurs only for a

probabilistic error metric (e.g., NLL), not a classification error metric (e.g., classification accuracy)

for classification or an error metric calculated based on mean predictions (e.g., RMSE or mean

absolute error) for regression. Nonetheless, it is still important to understand how well a model

does probabilistically by looking at UQ quality metrics, such as calibration metrics (Sec. 4.1),

sparsification metrics (Sec. 4.2), and NLL (Sec. 4.3). Therefore, we strongly recommend academic

researchers and industrial practitioners examine their ML models’ performance in terms of both

accuracy and UQ quality rather than focusing solely on accuracy metrics such as classification

accuracy or RMSE. A seemingly highly accurate ML model may still have difficulties extrapolating

to OOD samples, and it is crucial to estimate model confidence accurately through high quality

UQ. We can now connect this discussion to an important statement in Sec. 2.3, i.e., all models are

wrong, but some are useful [91].
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5. UQ of ML models in prognostics

As stated in Sec. 1, our tutorial has an additional, secondary role, i.e., reviewing recent studies

on engineering design and health prognostics applications of emerging UQ approaches. To make

this tutorial focused, we place our review of engineering design applications in Appendix B and

only present the review of health prognostics applications in the main text of this tutorial (i.e., the

present section). We believe such an arrangement will provide the additional benefit of creating

a methodological transition into the two case studies in Sec. 6 that are both related to health

prognostics.

5.1. Uncertainty-aware ML for prognostics and health management

5.1.1. Prognostics and the role of UQ

PHM is an engineering field that focuses on developing techniques and tools to establish ef-

fective maintenance strategies that balance system availability and performance with operational

requirements and maintenance costs [202, 203]. PHM comprises the main tasks of detecting the

initiation of a fault (fault detection), distinguishing between different types of fault and isolating

the root cause (fault diagnostics), and predicting the RUL (referred to as prognostics [202, 204]).

Notoriously, prognostics represents the most challenging task among the three main tasks of PHM

[14]. Effective prognostics enables just-in-time maintenance [205, 206], which holds the promise

of significantly reducing maintenance costs and system downtime while prolonging the lifetime of

industrial and infrastructure assets, thereby increasing system availability. Besides its potential in

terms of cost savings, effective prognostics also enables more environmentally sustainable operations

of industrial and infrastructure assets by lowering the frequency of replacement and reducing the

consumption of spare parts and resources [203]. To be useful in mission- and safety-critical applica-

tions, successful prognostics approaches should be capable of not only predicting the RUL but also

quantifying the associated uncertainty [207]. Knowledge of the associated uncertainty quantified

in a principled manner allows users to conscientiously optimize the schedule of interventions and

machine downtime with confidence rather than blindly relying upon the deterministic predictions

of broadly applied black-box ML algorithms. In reality, inaccurate predictions of the end of life

or RUL due to low quality UQ can have catastrophic consequences in safety-critical applications.

For example, when an ML model makes overconfident predictions, it could either over- or under-

predict the end of life and RUL. Significant overpredictions can lead to unexpected safety failures,

while substantial underpredictions can lead to a shortened useful lifespan of components. Ensuring

reliable uncertainty estimates from data-driven algorithms is essential to mitigate these problems

and optimize safety and cost-effectiveness in maintenance operations. This involves preventing dis-

ruptive events by avoiding delayed replacements and minimizing costs by preventing premature

maintenance actions, such as replacements or repairs.

5.1.2. The potential of DL for PHM

Recently, deep learning (DL) methods have become more prevalent in PHM applications. One of

the major advantages offered by DL techniques in PHM is the ability to automatically analyze sensor
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data, learn important features that characterize the system’s health status, and track its changes

over time until reaching the end of life. Industrial asset prognostics using DL can be implemented

in two ways: directly predicting the RUL from sensor data or forecasting the future evolution of

the system’s health status until a pre-defined threshold is reached. The first approach, referred to

as direct mapping [14], requires a dataset that links sensor readings to corresponding RUL target

labels and is treated as a regression task. The second approach, called time series forecasting

[14], involves identifying condition indicators that change in a predictable manner as the system

deteriorates under different operational modes. These indicators may either be predetermined

as strongly correlated with the machine’s health and hence, interpretable, such as the internal

resistance and capacity of a lithium-ion battery [208] or may be derived implicitly. A health indicator

integrates several condition indicators into a single value, providing the user with information about

the component’s health status. The threshold for the health indicator, which may be subject to

noise, also needs to be derived or learned. The importance of UQ in both approaches lies in the

need to avoid unexpected safety-critical failures due to too-late replacements and to minimize costs

by avoiding too-early replacements. UQ is, therefore, crucial to provide meaningful estimations and

ensure accurate predictions in DL-based industrial asset prognostics. While quantifying the total

predictive uncertainty (e.g., as a single variance value) already provides essential information for

decision making, distinguishing between aleatory and epistemic uncertainty is equally important

for prognostic applications. Particularly, considering that faults/failures are rare in safety-critical

applications, epistemic uncertainty substantially impacts model performance due to the challenges

in collecting representative run-to-failure datasets for training.

5.1.3. Uncertainty-aware DL in prognostics

Modern DL techniques can often not be directly interpreted by humans. The black-box nature of

DL models is clearly at odds with the need for trustworthy prognostic algorithms. UQ can remediate

this drawback, and its integration in DNNs is the subject of an exciting - yet constantly evolving -

research field in the DL community [48, 134, 209–213], as discussed in Secs. 3.2-3.4. While a large

number of research studies have focused on developing ML and DL approaches for providing point

estimates of the RUL ([202, 203, 214] and the references therein), uncertainty-aware models, despite

their great relevance, have not yet significantly impacted the research in this field.

In data-driven prognostics, the models’ predictions are inevitably affected by various sources

of uncertainty. These sources of uncertainty include model-form uncertainty, insufficient repre-

sentative historical data for model training, as well as errors in measurement and communication

transmission, among others (refer to Table 1). While ML and DL approaches have been increasingly

applied for prognostics, most developed algorithms did not quantify the associated uncertainty. This

limitation, among other factors, has prevented such approaches from being practically deployable

in real mission- and safety-critical applications. UQ plays a vital role in enabling ML and DL

to deliver high value in practical health prognostics applications. By instilling greater confidence

in the predictions and streamlining the integration of the results into maintenance planning and

scheduling, UQ reinforces user trust and enhances the effectiveness and safety of these applications
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[46, 202, 207, 215–217].

5.2. Uncertainty evaluation metrics for prognostics

While UQ for prognostics already significantly benefits from the standard UQ performance eval-

uation metrics commonly applied in other disciplines as well, such as NLL, the MSE, the RMSE,

or the mean absolute percentage error (MAPE), the specificity of the prognostics problem often

requires a set of customized metrics. One of the particularities of RUL predictions is for example

that the closer the predictions progress to the end of life, the more certain the models should behave

when making estimations about the predicted end of life. Therefore, the performance evaluation

metrics should take such behavior into consideration and provide quantitative evaluation for it.

Metrics, such as MSE or MAPE, do not take into account the statistical distribution of the RUL

predictions around the ground-truth values. To account for such statistical deviations, a number of

more informative probabilistic metrics have been introduced for applications in prognostics. Most

of these metrics are built under the assumption that predicting the RUL at the initial time steps of

the machine operation, is much harder and, as progressively additional information is acquired, the

prediction task also gets simplified thanks to the fact that the severity of the fault increases and

the corresponding symptoms tend to become more pronounced as the system approaches the end

of life.

In the seminal work of Saxena et al. [218], the authors introduce four performance evaluation

metrics for prognostics - meant to be measured sequentially - assessing different aspects of the RUL

prediction problems, namely: the Prognostic Horizon, the α-λ performance, the Relative Accuracy,

and the Convergence (Fig. 14). While these performance evaluation metrics have mainly targeted

physics-based prognostic methods, they are also applicable to DL-based UQ approaches. In the

following, we briefly review their definitions and rationales. We refer interested readers to the

original paper for more details. In essence, Prognostic Horizon is defined as the difference between

the time step when the predicted RUL first meets the specified performance criteria and the time

index for the end of life. The performance criteria are met if the predicted RUL value falls within

an area determined by the ground-truth RUL value plus/minus a certain pre-selected confidence

interval (called α). The metric can be easily adapted to cases where the output of the model is

probabilistic. In that case, the criterion is met if the probability of the predicted RUL falling within

the previously defined area is larger than β, an additional parameter to be chosen a priori (Fig. 14).
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Figure 14: (Left) Prognostic Horizon (PH): here [π(r(k))]α
+

α− indicates the probability that the distribution of the
prediction r at time k falls within the confidence region [r∗(k)−α−, r∗(k)+α+] (grey area), and β is a pre-determined
threshold; (Middle) α-λ metric calculated at kλ1 and kλ2 : same notation as before, note that the confidence bounds
around the ground-truth shrink as the end of life is approached; (Right) Relative Accuracy calculated at kλ1 : ∆λ1

indicates the difference between the median of the predictive distribution and the ground-truth value.

The α-λ metric is very similar to the Prediction Horizon but it differs in two aspects: first, it is

binary, if the criterion is met at a certain time step, its value will be one, otherwise 0. Second, the

confidence bounds around the ground-truth RUL are now a function of the predicted RUL and, as

a result, will tend to shrink as the machine approaches the end of life.

The relative accuracy is simply calculated as one minus the relative error of the model with

respect to the ground truth at a certain time step. In particular, the relative error is computed

by taking the ratio between the absolute difference between ground truth and a properly-chosen

central tendency point estimate of the predicted RUL distribution, and the ground truth RUL value.

The central tendency point estimate of the prediction distribution is arbitrary and depends on the

statistical properties of the predictive distribution (Gaussian, mixture-of-Gaussians, multi-modal,

etc.). Finally, the Convergence acts as a meta-metric to measure how quickly each of the above

metrics improves over time.

5.3. Discussion

Meaningful uncertainty estimates are crucial for ensuring the safe and reliable deployment of

DL models in real-world applications, especially for safety-critical assets. This is essential to build

trust in the models and ensure their effectiveness. This is because, in practice, decision making in

the context of industrial applications involves a complicated trade-off between risky decisions and

large potential economic benefits. DL has undoubtedly advanced the field by offering a valuable set

of tools to efficiently learn from data and automate the entire prognostics process. Nevertheless,

this is only one part - yet very significant - of the challenges arising in prognostics. ML and DL

techniques need to be as trustworthy and reliable as possible, and for this reason, effective UQ and

its integration into existing techniques remain an essential desideratum.

In previous research studies, MC dropout has been by far the most widely employed strategy for

tackling UQ of neural networks, especially DNNs. There are likely two reasons for this: first, the

interpretation of MC dropout is very intuitive; and second, it requires only a minimal modification

to existing architectures, namely activating dropout layers at training time. Nevertheless, as shown

in multiple studies [22, 219, 220], the UQ performance of MC dropout is not always satisfactory,
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and more advanced solutions should be explored. Fortunately, the fields of UQ and Bayesian DL are

constantly progressing, and applications of the resulting techniques to prognostics are an important

research area to be further explored [48, 134, 209–213].

In addition, uncertainty-aware ML methods have been mainly used in the context of prognostics

for RUL prediction. While this is arguably the most important end goal in this field, several other

avenues could be investigated in the future. An example is, for instance, anomaly detection. In

this setting, uncertainty can be used to detect abnormal health states in the machine operation by

evaluating the level of confidence of the model corresponding to that time step. The assumption

is that a high level of epistemic uncertainty associated with a certain input will be indicative of

test data points that are less representative of the training data distribution. Hence, such data

will probably correspond to unusual health states, assuming the training data are collected from a

machine operating in a nominal regime.

To conclude, a crucial criterion for any UQ technique used in prognostics is the ability to accu-

rately disentangle aleatory and epistemic uncertainty. These two measures contain distinct types

of information and, therefore, must be interpreted separately to ensure appropriate analysis.

6. Case studies for benchmarking – Code Sharing on GitHub

In this section, we benchmark the performance of several UQ methods in two engineering appli-

cations: (1) early life prediction of lithium-ion batteries and (2) RUL prediction of turbofan engines.

In both case studies, we built UQ models with publicly available datasets and compared the models’

performance. To ensure a fair comparison, these UQ models are built with nearly identical back-

bone architectures wherever applicable. These two case studies are widely used in the literature

due to their broad significance in safety-critical applications and, therefore, a comprehensive under-

standing of the performance of different UQ methods helps to identify the right model to deploy in

a particular application. A code walk-through is provided for the first case study to demonstrate

the practical implementation of UQ methods. We acknowledge that there could be several other

ways of implementing the same UQ models using different sets of libraries. In this discussion, we

try to limit ourselves to using only TensorFlow and Keras libraries for building the neural network

models.

6.1. Case study 1: Battery early life prediction

In this section, we explore the utility of various UQ for ML model methods to tackle the early

life prediction of lithium-ion batteries. The dataset used in this case study consists of run-to-failure

data from 169 LFP/graphite APR18650M1A cells with a nominal capacity of 1.1Ah [221, 222].

The goal of this case study is to predict, with confidence, the remaining cycle life of lithium-ion

cells based on data collected only in the first 100 cycles. This early life prediction is a challenging

problem as most cells do not exhibit significant levels of degradation during the first 100 cycles.

Therefore, it is important for researchers to associate each prediction with an uncertainty estimate.

The code for this case study can be found at our Github page. In this section, we take the

opportunity to provide a brief walk-through of the code while discussing the following UQ methods:
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(1) neural network ensemble, (2) MC dropout, (3) GPR, and (4) SNGP. The goal of this study is to

compare several UQ methods with comparable prediction accuracy based on the current literature.

The neural network-based models, namely neural network ensemble, MC dropout, and SNGP, are

built on a ResNet with a similar backbone architecture as shown in Fig. 15.

Figure 15: UQ model architectures with ResNet backbone used in case study 1. The ResNet block for each model is
defined by the blue box.

6.1.1. Dataset overview

The 169 LFP cell dataset is a combination of the 124-cell dataset provided by Severson et al.

[221] and the 45-cell dataset provided by Attia et al. [222]. These 169 cells are divided into three

subsets as described in Table 3, where the partition for training, primary test, and secondary test

datasets is consistent with that of Severson et al. [221], and the dataset from Attia et al. [222]

is used as the tertiary test dataset. The 169 LFP cells underwent different fast-charge protocols

and storage time, but they had identical discharging conditions, which in turn led to a diverse set

of capacity trajectories as illustrated in Fig. 16. Similar to the existing literature, we assume a

cell to have reached the end of life when its capacity reaches 80% of the nominal value (cutoff of

0.88Ah). A more detailed description of the battery cycling tests and raw data can be found at

https://data.matr.io/1/.

The cycle-to-cycle evolution of voltage as a function of discharge capacity V (Q) is often captured

when conducting the experiments. However, the authors of the original dataset Severson et al. [221]

hypothesize and prove that the inverse relationship, where the discharge capacity as a function of

voltage Q(V ) during the early cycles carries sufficient information to accurately predict the cycle

life. We adopt a similar strategy of using ∆Q100−10(V ) = Q100(V ) − Q10(V ) as the input to our
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Table 3: Summary of LFP battery dataset

Type No. of cells

Training 41

Primary test 43

Secondary test 40

Tertiary test 45
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Figure 16: Normalized capacity curves for the four datasets mentioned in Table 3.

UQ models. Similar to Severson et al. [221], we find that the cycle life is significantly correlated

with V ar(∆Q100−10(V )) as shown in Fig. 17.

6.1.2. Neural Network Ensemble

We first develop a neural network ensemble model (NNE) following the discussion from Sec.

3.3. Particularly, we develop a neural network learning framework following the work by Lakshmi-

narayanan et al. [22]. Each individual model of the ensemble consists of a Gaussian layer as the

final layer, and the Gaussian layer outputs a predicted mean µ and variance σ2 for a given input x.

Parameters θ of the neural network are trained to minimize the NLL loss function defined in Eq.

(31) earlier, which corresponds to the implementation below:

def custom_loss(variance):

def nll_loss(y_true , y_pred):

return tf.reduce_mean (0.5* tf.math.log(( variance)) +

0.5*tf.math.divide(tf.math.square(y_true - y_pred),

variance)) + 1e-6
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Figure 17: Correlating cycle life with V ar(∆Q100−10(V )).

return nll_loss NLL loss in Eq. (31)

In the code below, the Gaussian layer uses two kernels and biases to characterize µ and σ by

splitting the output of the previous layer (traditionally a fully connected layer with one dimension).

Note that the kernel shape should be compatible with the number of hidden units in the previous

dense layer.

class GaussianLayer(Layer):

def build(self , input_shape):

self.kernel_1 = self.add_weight(shape =(10, self.output_dim) ,...)

self.kernel_2 = self.add_weight(shape =(10, self.output_dim) ,...)

... # (define bias_1 and bias_2)

def call(self , x):

output_mu = K.dot(x, self.kernel_1) + self.bias_1

output_var = K.dot(x, self.kernel_2) + self.bias_2

output_var_pos = K.log(1 + K.exp(output_var)) + 1e-06

return [output_mu , output_var_pos]

Two kernels + biases to split the output

Make variance positive

Output mean and variance

Finally, a neural network model is constructed by appending the Gaussian layer to a simple

ResNet model. The architecture for each individual model of the neural network ensemble is shown
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in Table 4.

Table 4: Individual model of the neural network ensemble

Layer Output Shape No. of Parameters

Input [(None, 1000)] 0

Fully connected (None, 100) 100100

Fully connected (None, 50) 5050

Fully connected (None, 50) 2550

Fully connected (None, 50) 2550

Fully connected (None, 50) 2550

Fully connected (None, 10) 510

Gaussian layer [(None, 1), (None, 1)] 22

Total trainable parameters 113332

In total, we independently trained 15 models by randomizing the initialization of model weights

in addition to shuffling the training samples. The size of the neural network ensemble is determined

based on the elbow method - see Fig. 18 for more details. Each individual model is trained for 300

epochs (based on validation split/validation loss to test for overfitting).

6.1.3. MC Dropout

In this section, a simple MC dropout model is developed following the method described in

Section 3.2.3. The only differences between the implementation of the MC dropout and the neural

network ensemble are (1) the inclusion of dropout layers with dropout being active during the pre-

diction phase and (2) having a single deterministic output as the final output. Note that the dropout

layer can also be introduced in other UQ methods, for example, in neural network ensembles, to

mitigate overfitting. However, dropout is typically not activated during the prediction phase in such

models. In the case of MC dropout, the output varies from one prediction run to another, where a

certain percentage of neural network weights from the trained model are randomly dropped out at

the prediction phase. The code snippet below showcases our implementation of the dropout layers

within the ResNet block as shown in Fig. 15.

for _ in range(num_res_layers): # for each residual block

x = Dense(50, activation = actfn)(x)

x1 = Dense (50, activation = actfn)(x)

x = x1 + x

x = Dropout(rate = 0.10)(x)

mu = Dense(1, activation = actfn)(x)

model = Model(feature_input , mu)

Dropout within each ResNet block

Single output (RUL)

The MC dropout model architecture and trainable parameters are similar to Table 4 except for

the presence of dropout layers with a 10% dropout rate. During the prediction phase, the trained

MC dropout model is run 15 times with dropout enabled (the ensemble size was determined based

on the elbow method - see description for Fig. 18). An ensemble of all the individual deterministic

RUL predictions produces the RUL prediction with uncertainty quantified.
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6.1.4. Spectral Normalization Gaussian Process (SNGP)

Next, we implement the SNGP model discussed in Section 3.4 with the core idea of preserving

distance awareness between training and test/OOD distributions when producing the uncertainty

for each prediction. This is achieved by: (1) applying spectral normalization to the hidden layers

of the neural network and (2) replacing the final layer with a Gaussian process layer. This is a

single-model method with high performance in OOD detection.

Following Liu et al. [180] and a corresponding tutorial of TensorFlow, as shown below, we first

define a model class FC SNGP inherited from the class of TensorFlow model. In this model class, we

wrap some dense layers with the spectral normalization layer, where the normalization threshold has

a constant value of spec norm bound. The RandomFeatureGaussianProcess layer with RBF kernel

serves as the Gaussian process layer.

import official.nlp.modeling.layers as nlp_layers

class RN_SNGP(tf.keras.Model):

...

self.dense_layers1 = nlp_layers.SpectralNormalization(

self.make_dense_layer (100) ,norm_multiplier=self.spec_norm_bound)

...

def make_output_layer(self , no_outputs):

""" Uses Gaussian process as the output layer."""

return nlp_layers.RandomFeatureGaussianProcess(no_outputs ,

gp_cov_momentum =-1,**self.kwargs)

Spectral Normalization wrapper

applied to Dense layer

The value of gp cov momentum in the above figure decides if the calculated covariance is exact or

approximated. A positive value of gp cov momentum updates the covariance across the batch using

a momentum-based moving average technique, whereas a value of -1 calculates the exact covariance.

Since the calculation of covariance could be affected by the batch size, it is recommended that the

covariance matrix estimator be reset during each epoch. This can be done using Keras API to

define a callback class and then appending it to FC SNGP. Finally, we train an SNGP model with

the ReLU activation function and spec norm bound = 0.9.

class ResetCovarianceCallback(tf.keras.callbacks.Callback):

def on_epoch_begin(self , epoch , logs=None):

""" Resets covariance matrix at the beginning of the epoch."""

if epoch > 0:

self.model.regressor.reset_covariance_matrix ()

6.1.5. Gaussian Process Regression

At last, a standard GPR model with RBF kernel is trained using the scikit-learn Python package.

The hyperparameters of the GPR models, such as length scale, are optimized using grid search

during model fitting.
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6.1.6. Evaluation/Results

In this section, we exploit the following metrics to quantitatively examine the uncertainty quan-

tification performance of all the models: (1) root mean square error (RMSE), (2) average NLL

defined in Eq. (31), (3) expected calibration error (ECE) as defined in Section 4.1.3, and (4) cal-

ibration curve introduced in Section 4.1.1. Since both neural network ensemble and MC dropout

require an ensemble of individual models, it is essential to determine the ensemble size. Ideally, it is

preferred that an ensemble has as many individual models as possible so that all the potential varia-

tions get manifested during the prediction stage. In other words, an ensemble benefits from models

that undergo diverse learning paths and this would effectively capture the variations in predictions.

However, beyond a certain ensemble size, the learning becomes increasingly less diverse and only

trivially contributes to the ensemble at the expense of increased computational cost. Therefore,

inspired by the elbow method, we systematically vary the ensemble size for constructing the neural

network ensemble and MC dropout models while capturing the training RMSE and ECE as shown

in Fig. 18. RMSE and ECE are chosen to strike a trade-off between accuracy and uncertainty

quantification capabilities. Based on this study, we choose an ensemble size of 15 for both neural

network ensemble and MC dropout.
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Figure 18: Determining the ensemble size for neural network ensemble and MC dropout. The selected ensemble size
for this case study is determined by the green vertical line.

Table 5 reports the RMSE, NLL, and ECE across different UQ methods for the dataset described

in Table 3. The variation in Table 5 results from 10 end-to-end independent runs. Note that the

results may not be the best that each method could offer as all these methods are built on a backbone

of a simple ResNet architecture except for GPR. It is likely that different UQ methods would require

different architectures to obtain the best results. From Table 5, we observe that the GPR model

perfectly fits the 41 training data points with an RMSE of zero and an extremely low NLL. However,

GPR exhibits poor generalization when learning, as can be seen in the large RUL prediction error

as well as high uncertainty at testing. In particular, for the secondary and tertiary test datasets

that are known to be significantly different from the training dataset, the performance of GPR gets

even worse. Secondly, the non-ensemble SNGP model performs much better in generalization when
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Table 5: Performance comparison across UQ methods for the 169 LFP cell dataset in terms of MSE ± standard
deviation

NNE MC SNGP GPR

Dataset RMSE (cycles) ↓
Train 68.1±22.1 69.4±16.8 34.8±14.7 0.0±0.0

Primary test 137.3±20.9 149.9±18.4 148.1±16.2 141.1±0.0
Secondary test 205.1±27.4 194.1±15.1 249.3±33.6 319.0±0.0
Tertiary test 183.9±46.9 195.0±29.1 258.9±60.3 406.5±0.0

NLL ↓
Train 4.7±0.3 8.6±2.6 5.6±0.02 -3.8±0.0

Primary test 5.4±0.2 14.3±6.5 5.7±0.03 5.7±0.0
Secondary test 5.7±0.2 6.9±1.3 6.1±0.2 6.0±0.0
Tertiary test 5.7±0.1 9.2±1.7 5.9±0.1 6.4±0.0

ECE (%) ↓
Train 29.8±3.7 15.2±6.8 42.5±3.0 49.9±0.0

Primary test 10.5±5.0 24.4±5.3 21.5±2.3 6.9±0.0
Secondary test 13.5±5.7 9.5±4.6 12.7±4.6 10.4±0.0
Tertiary test 9.8±4.5 22.6±3.4 9.3±4.4 8.0±0.0

compared to GPR. The presence of neural network layers helps condense crucial information in the

hidden space which is further enhanced by the spectral normalization wrapper. But we generally

found in this case study that SNGP tends to generate unnecessarily large uncertainty for each

prediction, thus resulting in a large NLL and ECE. Third, among the two ensemble-like models, the

neural network ensemble performs slightly better than MC dropout in terms of accuracy but exhibits

a substantial advantage in UQ over MC dropout. We observe that the MC dropout predictions are

generally overconfident with a low uncertainty estimate σ̂RUL for each prediction. This low σ̂RUL

leads to large NLLs along with increased run-to-run variation. In the case that there is a larger

σ̂RUL, small changes in µ̂RUL do not significantly affect the run-to-run variation. On the other

hand, when σ̂RUL is small, run-to-run variation of NLL becomes more sensitive to the changes in

µ̂RUL around the true RUL. Note that the dropout rate hyperparameter of the MC dropout model

significantly affects the model performance. A low dropout rate would lead to almost identical

models within the ensemble, leading to very low predictive uncertainty and, thus, an overconfident

model. On the contrary, a larger dropout rate could cause significant differences between different

runs, thereby increasing uncertainty while compromising accuracy. Lastly, the better UQ ability

of the neural network ensemble can be primarily attributed to the ability of each individual model

within the ensemble to provide aleatory uncertainty, which during the ensemble process provides a

more holistic picture of uncertainty.
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Figure 19: RUL prediction error curves with cells sorted based on true RUL values.

Next, we visualize the prediction error with respect to a single end-to-end run for neural network

ensemble and SNGP in Fig. 19. To better depict prediction accuracy and the uncertainty estimate

pertaining to each prediction, we plot the error curve associated with each cell in the dataset by

their RUL in ascending order. As can be observed, regarding the training data, the mean RUL

predictions of both SNGP and neural network ensemble models highly align with the true RUL

prediction. In the case of the primary and secondary test datasets, a few instances of discrepancy

between the mean RUL prediction and ground truth arise. However, these models fail to capture

the true RULs of the tertiary test dataset, which is well known to be significantly different from

the other three datasets. Another interesting observation across the first three considered datasets

is that SNGP tends to yield a large uncertainty estimate for almost all predictions. As a result,

SNGP is underconfident in most cases. In contrast, the neural network ensemble model produces

significantly lower prediction uncertainty than SNGP. Only in the case of the tertiary test dataset,

both neural network ensemble and SNGP associate large σ̂RUL to most of the batteries.

In what follows, we construct the calibration curve based on each model’s performance on the

four datasets. As illustrated in Fig. 20, the shaded area of each curve characterizes the run-to-run
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Figure 20: Calibration curves for the four models on all the datasets of the 169 LFP cell dataset. The shaded area
captures the run-to-run variation of all the models.

variation over 10 independent trials. First, since the GPR model fits the training data perfectly (zero

RMSE), the observed confidence is 100% and does not change with the expected confidence level.

For the other datasets, GPR seems to be the closest to the expected line leading to the least ECE

(see Table 5). Next, we observe that both GPR and SNGP are relatively stable irrespective of model

initialization leading to low run-to-run variation. On the other hand, models like neural network

ensemble and MC dropout exhibit higher run-to-run variation (with MC dropout having the highest

run-to-run variation), especially when considering OOD datasets like the tertiary dataset. These

observations regarding model stability are in line with our qualitative comparison of UQ models

summarized in Table 2. Lastly, MC dropout is generally overconfident across all the datasets, as

reflected in the relatively low uncertainty associated with each RUL prediction. Different from MC

dropout, neural network ensemble, and SNGP are consistently underconfident. Considering the

safety-critical nature of early life prediction of batteries, underconfident models are desirable as

they allow end users to stay on the safe side.
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6.2. Case study 2: Turbofan engine prognostics

In this section, similar to Case Study 1, we evaluate the performance of multiple UQ methods

in predicting the RUL of nine turbofan engines that operate under varying conditions. To carry

out our analysis, we utilize the New Commercial Modular Aero-Propulsion System Simulation (N-

CMAPSS) prognostics dataset [223], which has been recently open-sourced. Specifically, we use

the sub-dataset DS02, which has been used in several previous works, see Refs. [224–226]. Our

objective is to predict the target RUL by employing a set of multivariate time series as inputs. In

addition to providing a point estimate of the RUL, our aim is to quantify the uncertainty associated

with the RUL prediction with the UQ methods surveyed in this paper. The code for this case study

is available on our Github page. The primary goal of this study is to pedagogically compare various

UQ methods that exhibit similar prediction accuracy based on the current literature. We do not

make any claims that the discussed methods outperform the existing literature’s models.

6.2.1. Dataset overview

Table 6: Overview of the input variables. These condition monitoring signals include both scenario descriptors (first 6
rows) and measured physical properties (last 14 rows). The symbol used for each variable corresponds to its internal
name in the CMAPSS dataset.

Variable No Symbol Description Unit

1 alt Altitude ft
2 XM Flight Mach number -
3 TRA Throttle-resolver angle %
4 T2 Total temperature at fan inlet ◦R
5 Nf Physical fan speed rpm
6 Nc Physical core speed rpm
7 Wf Fuel flow pps
8 T24 Total temperature at LPC outlet ◦R
9 T30 Total temperature at HPC outlet ◦R
10 T40 Total temp. at burner outlet ◦R
11 T48 Total temperature at HPT outlet ◦R
12 T50 Total temperature at LPT outlet ◦R
13 P15 Total pressure in bypass-duct psia
14 P2 Total pressure at fan inlet psia
15 P21 Total pressure at fan outlet psia
16 P24 Total pressure at LPC outlet psia
17 Ps30 Static pressure at HPC outlet psia
18 P30 Total pressure at HPC outlet psia
19 P40 Total pressure at burner outlet psia
20 P50 Total pressure at LPT outlet psia

This case study comprises a collection of run-to-failure trajectories for a fleet of nine aircraft

engines that operate under authentic flight conditions [223]. We use the open-source code presented

in Ref. [227] to download and preprocess the data. For every RUL prediction time step, the input
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to the UQ model is a 20-dimensional vector that represents the measured physical properties of

the engine as well as the scenario descriptors characterizing the engine’s operating mode during the

flight. At each time step, the UQ model produces RUL and its associated uncertainty as outputs.

Table 6 provides an overview of the input variables used in the model. As we adopted a purely

data-driven approach, we did not utilize the virtual sensors or the calibration parameters that are

available in the N-CMAPSS dataset [223, 228].

Consistent with Ref. [228], we split the entire dataset into a training dataset, which comprises

the time-to-failure trajectories of six units (i.e., units 2, 5, 10, 16, 18 and 20), and a testing dataset,

which includes the trajectories of three units (i.e., units 11, 14 and 15). Figure 21 illustrates

the distributions of the flight conditions across all units and provides an example of a flight cycle

obtained by traces of the scenario-descriptor variables for unit 10. Finally, to address the memory

consumption concerns associated with the size of the dataset, we downsampled the data by a factor

of 500 by using the code from Ref. [227], thus resulting in a sampling frequency of 0.002 Hz.
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Figure 21: (Left) The flight envelopes simulated for climb, cruise, and descend conditions were estimated using
kernel density estimation based on measurements of altitude, flight Mach number, throttle-resolver angle, and total
temperature at the fan inlet. The densities of these measurements are shown for three representative training units
(u = 2, 10, and 18) and two test units (u = 14 and 15). (Right) A typical flight cycle for unit 10 with traces of
the scenario-descriptor variables depicting the climb, cruise, and descend phases of the flight, covering different flight
routes operated by the aircraft, where altitude was above 10,000 ft.

6.2.2. Evaluation/Results

For the sake of clarity and consistency, in this case study, we have used the same code structure/-

functions from the previous case study. However, we have excluded GPR from our evaluation due

to the large size of the dataset and the well-known scaling issues associated with this UQ method.

For further implementation details, we refer the reader to the detailed descriptions in the previous

case study or to the code implementation on GitHub.
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The performance of NNE, MC, and SNGP on the three test units is compared in Table 7 using

RMSE, NLL, and ECE metrics. Overall, NNE seems to outperform MC and SNGP in terms of

all the metrics considered, with SNGP providing slightly better performance than MC. Figure 22

shows that all the three models are able to capture the decreasing trend of the RUL over time,

but they encounter difficulties at the beginning of the trajectory, i.e., at the onset of degradation.

Interestingly, NNE appears to address this issue by assigning higher uncertainty corresponding to

such points.

Table 7: Comparison of the error metrics across different UQ methods on the N-CMAPSS dataset

NNE MC SNGP

Dataset RMSE (cycles) ↓
Train 7.1±0.1 10.2±0.1 8.7±0.7
Unit 11 8.5±0.5 10.0±0.3 8.9±1.8
Unit 14 7.4±0.2 11.5±0.1 9.3±1.4
Unit 15 4.8±0.3 8.2±0.2 6.8±1.2

NLL ↓
Train 2.0±0.0 3.7±0.1 4.4±0.7
Unit 11 2.3±0.1 3.0±0.1 4.8±1.8
Unit 14 2.2±0.0 4.2±0.2 4.4±1.3
Unit 15 1.8±0.0 2.8±0.1 3.1±0.6

ECE (%) ↓
Train 6.2±0.8 12.8±1.2 9.6±2.7
Unit 11 15.1±2.5 19.6±1.5 15.9±7.3
Unit 14 5.8±1.0 25.1±1.2 13.0±3.5
Unit 15 14.9±2.7 11.5±1.6 8.5±3.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Time

0

20

40

60

80

RU
L 

(c
yc

le
s)

Test unit: 11
True
NNE
MC
SNGP

0.0 0.2 0.4 0.6 0.8 1.0
Relative Time

0

20

40

60

80

RU
L 

(c
yc

le
s)

Test unit: 14

0.0 0.2 0.4 0.6 0.8 1.0
Relative Time

0

20

40

60

80

RU
L 

(c
yc

le
s)

Test unit: 15

Figure 22: RUL prediction error curves for the N-CMAPSS dataset.

The calibration curves presented in Fig. 23 suggest that the methods used in this study tend to

produce over-confident predictions, particularly for unit 11. This overconfidence can have serious

implications for safety in prognostics. While MC exhibits overconfidence across all test units, NNE

performs best on unit 14 and SNGP on unit 15, displaying a calibration curve that is closer to

the ideal. Overall, NNE generally outperforms other UQ models as demonstrated by its accurate

predictions (i.e., low RMSE and NLL scores). Furthermore, NNE’s calibration curve is more closely
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aligned with the ideal leading to low ECE values.
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Figure 23: Calibration curves for the three models on all the datasets. The shaded area captures the run-to-run
variation of all the models.

As a final remark, we would like to acknowledge that the present results could be improved by

optimizing the hyperparameters of each model individually, i.e., the number of layers and nodes, the

dropout rate, the number of ensemble components, and the type of activation functions. However,

the present study serves as a solid foundation for investigating the UQ capabilities of the analyzed

methods in challenging and realistic case studies.

7. Other topics related to UQ of ML models

7.1. Physics-informed ML and its synergy with UQ and probabilistic ML

Physics-informed ML, and more broadly methods of scientific ML, has been developed to alleviate

the challenge of training data scarcity and to improve the predictive capability of ML models by

combining physics-based and data-driven modeling. Such a hybrid strategy is especially valuable

for domains where training data is difficult or expensive to obtain, and where the modeling and

downstream decision-making consequences are high (e.g., pertaining to health, safety, and security).

In essence, physics-informed ML develops techniques to enable a seamless combination of physics-

based models and observation data, or the embedding of physical and domain knowledge into

data-driven ML models. Prior work on physics-informed ML can be broadly grouped into seven

classes [14]: (1) impose physical knowledge as soft constraints in the loss functions of an ML model

such as neural networks, for example the works of physics-informed neural networks (PINNs) [229–

231]; (2) combine first-principle simulation data with experimental data to construct an augmented

training dataset [232, 233]; (3) train an ML model with first-principle simulation data, then fine-

tune the trained ML model with experimental data [96, 234], which is often referred to as transfer

learning; (4) build an ML model in parallel with a physics-based model, and using the ML model to

learn missing/unmodeled physics from experimental data [235, 236]; (5) use ML models to enhance

physics-based models such as in delta or residual learning [237–239] and reduced-order modeling

for building models with lower complexity and degrees of freedom for rapid and reliable model

evaluations [240–242]; (6) use neural networks to predict the input or parameters of a physics-based

model [243–246]; and (7) enforcing physical models in the architecture design of neural networks,
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such as architectures dedicated to specific physics and engineering problems [247, 248] and utilizing

a large amount of simulation data to emulate the dynamics of physical systems, such as deep

operator networks [249] and Fourier neural operator [250]. A more detailed summary of these seven

physics-informed ML categories can be found in Part 1 of our recent review on digital twins [14].

As mentioned in this review, the above list of seven categories is not exhaustive by any means, and

many other approaches for combining data and physics have been developed over the past decade.

Comprehensive reviews dedicated to physics-informed ML are also available in Refs. [77, 251].

Regardless of the specific means of incorporating physical knowledge into ML modeling, param-

eter and model-form uncertainty inevitably persist due to the imperfect knowledge of physics, and

assumptions and approximations made to simplify the problem setup during the modeling process.

In the case of uncertainty of physical parameters (e.g., uncertain parameters in a PDE), the cor-

responding probability distribution of solution variables can be generated with those parameters

as inputs to neural network representations of the solution field [252] or utilizing generative ad-

versarial networks [253]. However, these approaches do not consider the uncertainty induced by

the use of physics-informed ML model itself (e.g., uncertainty due to the use of a neural network).

For neural networks, the commonly used MC dropout helps increase robustness of training associ-

ated with randomization of the network architecture, while BNNs more directly seek to quantify

the parameter uncertainty of the neural network (e.g., for its weight and bias terms). Moreover,

physics-constrained BNNs [82, 254] have been developed to address the uncertainty in PINNs. We

direct interested readers to two recent review papers for a more comprehensive, in-depth discussion

on UQ for physics-informed ML [51, 255], with emphasis on PINNs [51, 255] and deep operator

networks [51].

7.2. Probabilistic Learning on Manifolds (PLoM)

Another ML approach that naturally captures the uncertainty of data while simultaneously per-

forming dimension reduction is the Probabilistic Learning on Manifolds (PLoM) [256]. PLoM builds

a generative model from an initial set of data samples by identifying a manifold where the unknown

probability measure concentrates. The learning procedure starts by scaling the training data via

principal component analysis (PCA) followed by performing a density estimation (e.g., Gaussian

kernel density estimation) on the training data in the PCA space. Then, an Itô stochastic differential

equation is established as a sample-generating mechanism whose invariant distribution matches the

probability density just estimated. In order to ensure the generated samples coalesce around a low-

dimensional manifold, additional structure is injected by forming a reduced-order “diffusion-maps

basis” induced by an isotropic diffusion kernel to help constrain the sample coordinates. Putting

everything together, new samples consistent with the training data distribution can be generated

on a low-dimensional manifold by numerically solving the Itô equations through a discretization

scheme.

With its ability to find low-dimensional manifolds, PLoM is particularly suitable for dimension

reduction of high-dimensional datasets. Its strength and focus thus differs from ML constructs such

as GPR and BNN that are more directly concerned with function approximation and regression
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tasks. To be effective, PLoM generally requires a sufficiently large quantity of data samples that can

reasonably reveal the underlying distribution geometry. This also differs from GPR and BNN that,

by design, engender a larger degree of uncertainty in the model (e.g., by falling back towards their

prior uncertainty) when less data is available. Nonetheless, PLoM has been demonstrated to work

well even in settings with relatively small datasets, especially if additional constraining from relevant

governing PDEs is available [257]. Lastly, the generative model resulting from PLoM can be highly

versatile and used for a range of applications beyond sample generation and surrogate modeling,

such as density estimates of statistics of interest [258], optimization under uncertainty [259], and

design using digital twins [260], as some examples.

7.3. Interpretability of ML models for dynamic systems

Data-driven system identification plays a vital role in structural health monitoring, system fail-

ure prognostics, design and control as well as risk assessment of dynamic systems. In the past

decades, various approaches have been developed to accomplish this task. Some representative

examples include autoregressive models, autoregressive–moving-average models, nonlinear autore-

gressive moving average with exogenous inputs models, the Volterra series gray-box tooling method,

and ML-based methods emerging in recent years [78, 261]. While these black-box or grey-box mod-

els show promising performance in various applications, they are often criticized for their lack of

interpretability.

As introduced earlier, significant efforts have been devoted to addressing the challenge of in-

terpretability in ML models. Among the techniques that stand out are SHAP, Grad-CAM, and

other methods. Notably, over the past decade, there has been a remarkable stride in enhancing

the interpretability of ML models through the integration of data, genetic programming, and spar-

sity. This fusion has led to the formulation of evolution equations that are not only simplistic but

also parsimonious. Several approaches have been proposed to construct interpretable ML models,

particularly symbolic regression, which has been applied with different techniques [262]. A pivotal

advancement in this realm is the emergence of the Sparse Identification of Nonlinear Dynamics

(SINDy) technique, which has become a cornerstone in addressing this issue. Initially proposed

by Brunton et al. [263], SINDy aims to uncover the underlying partial differential equations gov-

erning nonlinear dynamic systems. This discovery is accomplished even in the presence of noisy

measurement data [264, 265].

What sets SINDy apart is its ability to exploit the dominance of only a handful of terms in

shaping the behavior of nonlinear dynamic systems. This is achieved by encouraging sparsity in

the data-driven identification of governing equations, leveraging an extensive library of potential

function bases. From the model interpretation point of view, the sparsity promoting the discovery of

governing equations of dynamic systems results in parsimonious and interpretable models that strike

a sound balance between regression accuracy with model complexity. In particular, the parsimonious

model is achieved by employing sparsity-promoting regularization techniques [263, 266], such as

LASSO regression, also known as L1 regularization, using sparsifying priors, hard thresholding with

Pareto analysis. The resulting parsimonious representations through sparsity lead to interpretable

72



models with good generalization to unseen data. Besides, the sparsity in the resulting function basis

offers valuable insights into the management of model selection uncertainty in the context of hybrid

dynamical systems [267]. For instance, hybrid SINDy employed the Akaike information criterion

score on out-of-sample validation data to match the SINDy model with a specific regime in a hybrid

dynamical system, from which the switching point of the hybrid system can be found [267].

The elegance and clarity inherent in the models derived through SINDy are of particular impor-

tance when considering ML model interpretability. Building upon the foundational work of Brunton

and Kutz, a multitude of SINDy variants have emerged, finding applications even in UQ contexts. A

remarkable instance worth highlighting is the approach introduced by Hirsh et al. [266], wherein the

SINDy approach is extended into a Bayesian probabilistic framework. This novel approach, termed

Uncertainty Quantification SINDy (UQ-SINDy), accounts for uncertainties in SINDy coefficients

arising from observation errors and limited data. The central innovation lies in the integration of

sparsifying priors, specifically the spike and slab prior and the regularized horseshoe prior, into

the Bayesian inference of SINDy coefficients. By unifying UQ with SINDy variants, this approach

not only heightens the interpretability of ML models but also facilitates the quantification of the

prediction’s confidence level.

7.4. PCE and its relationship with GPR and connection with ML

A key role for both GPR (see Sec. 1 and Appendix B) and polynomial chaos expansion (PCE) is

building surrogate models for solving engineering design problems. The need for surrogate modeling

stems from the multi-query nature of uncertainty propagation and design optimization, which often

require many repeated simulation runs (e.g., 103 − 106) to assess the behavior of output responses

under different realizations of input design variables and simulation model parameters. This process

may become prohibitively expensive for high-fidelity models where each simulation may require

hours to days. One strategy to accelerate these computations, as explained in Appendix B.1, is

to build a cheap-to-evaluate surrogate of the computationally expensive simulation model—i.e. to

trade model fidelity for speed. The surrogate model, sometimes called metamodel or response

surface, is often an explicit mathematical function (e.g., as in GPR and PCE), allowing for rapid

predictions at different input realizations.

Having presented GPR in detail in Sec. 1 and Appendix B, we briefly introduce PCE here. PCE

was originally proposed in the 1930s to model stochastic processes using a spectral expansion of

multivariate Hermite polynomials of Gaussian random variables [268]. These Hermite polynomial

basis functions are orthogonal with respect to the joint probability distribution of the respective

Gaussian variables. PCE was later applied to solve physics and engineering problems [269] and

extended to non-Gaussian probability distributions, giving rise to the generalized PCE [270]. Since

the input variables of a PCE are naturally formulated to follow certain probability distributions,

PCE has been a convenient and popular tool for conducting UQ. However, PCE has not been

employed much for UQ of ML models, since most ML models are already relatively inexpensive

to evaluate; rather, PCE brings more value for enabling UQ of expensive computer simulation

models. In that case, a PCE surrogate model is built to approximate the original simulation model,
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where the PCE’s expansion coefficients can be computed, for example, non-intrusively by projection

(numerical integration via quadrature or simulation) [271] or regression (least squares minimization

of the fitting error) [272].

One major challenge faced by PCE is the curse of dimensionality, where the number of model

parameters (and in turn training samples of the simulation model) increases exponentially with the

input dimension (i.e., the number of input random variables). Several algorithmic techniques have

been developed to alleviate this issue through truncation schemes that can identify a sparse set

of important polynomials to be included. Two notable methods for introducing sparsity are the

Smolyak sparse constructions (and their adaptive versions) [273–275], and variants of compressive

sensing (such as least angle regression and LASSO) [276–278]. Such effort has been made in the

context of surrogate modeling [276–279] and reliability analysis [280–283]. A comprehensive review

of sparse PCE is provided in Ref. [284].

Historically, PCE and GPR (or kriging) have been studied separately and mostly in isolation,

although both methods have produced many success stories in surrogate modeling. Recently, at-

tempts have been made to combine PCE and kriging, resulting in PCE-kriging hybrids [285]. The

basic idea is to use PCE to represent the mean function m(x) of the Gaussian process prior (see

Eq. (8)) that captures the global trend of the computer simulation model (i.e., f(x)). The GPR

formulation with a non-zero, non-constant mean function is called universal kriging, which differs

from ordinary kriging where the mean function is set as a constant (e.g., zero). When combined

with kriging in this manner, PCE serves the purpose of a deterministic (non-probabilistic) mean

(trend) function. Such PCE-kriging hybrids have found applications to uncertainty propagation

in computational dosimetry [286] and damage quantification in structural health monitoring [287].

More broadly, while PCE is typically not used for UQ of ML models, it may be combined with other

ML techniques (e.g., kriging [285] and radial basis functions [288]) to produce hybrid PCE-ML mod-

els with improved prediction accuracy over standalone PCE surrogates. On a final note, although

PCE is typically not categorized as an ML technique, it was reported to offer surrogate modeling

accuracy on par with state-of-the-art ML techniques such as regression tree, neural network, and

support vector machine [289].

8. Conclusion and outlook

This tutorial aims to cover the fundamental role of UQ in ML, particularly focusing on a detailed

introduction of state-of-the-art UQ methods for neural networks and a brief review of applications in

engineering design and PHM. It possesses four salient characteristics: (1) classification of uncertainty

types (aleatory vs. epistemic), sources, and causes pertaining to ML models; (2) tutorial-style

descriptions of emerging UQ techniques; (3) quantitative metrics for evaluation and calibration of

predictive uncertainty; and (4) easily accessible source codes for implementing and comparing several

state-of-the-art UQ techniques in engineering design and PHM applications. Two case studies are

developed to demonstrate the implementation of UQ methods and benchmark their performance in

predicting battery life using early-life data (case study 1) and turbofan engine RUL using online-

accessible measurements (case study 2). Our rigorous examination of the state-of-the-art techniques
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for UQ, calibration, and evaluation and the two case studies offers a holistic lens on pressing issues

that need to be tackled along the future development of UQ techniques in terms of scalability,

principleness, and decomposition given the increasing importance of UQ in safeguarding the usage

of ML models in high-stakes applications.

It is important to note that the case studies presented in this paper are not optimized in terms of

their hyperparameters, and it is reasonable to expect that optimizing them would yield even better

performance results. The primary objective of this paper is to offer a user-friendly platform for

individuals seeking to comprehend the analyzed methods and to encourage them to enhance and

suggest new ones.

Essentially, UQ acts as a layer of safety assurance on top of ML models, enabling rigorous

and quantitative risk assessment and management of ML solutions in high-stakes applications. As

UQ methods for ML models continue to mature, they are anticipated to play a crucial role in

creating safe, reliable, and trustworthy ML solutions by safeguarding against various risks such as

OOD, adversarial attacks, and spurious correlations. From this perspective, the development of UQ

methods is of paramount significance in expanding the adoption of ML models in breadth and depth.

The accurate, sound, and principled quantification of uncertainty in ML model prediction has great

potential to fundamentally tackle the safety assurance problem that haunts ML’s development.

Towards this end, several long-standing challenges encompassing the UQ development need to be

addressed by the research community:

1. The need for a unified and well-acknowledged testbed to comprehensively examine the per-

formance of the diverse and expanding set of UQ methods in uncertainty quantification, cal-

ibration (and recalibration), decomposition, attribution, and interpretation. Although some

recent efforts were devoted to developing standardized benchmarks for UQ [290], most of these

efforts primarily emphasized conventional performance metrics, such as prediction accuracy

metrics and UQ calibration errors. However, other key performance aspects (e.g., uncertainty

decomposition and uncertainty attribution) essential to ensuring high quality UQ have rarely

been investigated. The lack of these key elements emerges as a significant challenge to the

sound development of the UQ ecosystem. Hence, there is an imperative demand calling for

establishing UQ testbeds with community-acknowledged standards to facilitate comprehen-

sive testing and verification of the behavior of uncertainty generated by different UQ methods,

especially on edge cases. Establishing such testbeds with the support of synthetic data gener-

ation is expected to tremendously benefit the long-term and sustainable development of UQ

methods for ML models.

2. The need for principled, scalable, and computationally efficient UQ methods to enable high

quality and large-scale UQ. As summarized in Table 2, each method covered in this tutorial

has its own strengths and shortcomings. Although numerous efforts have been made to elevate

the soundness and principleness of UQ methods of ML models, the existing methods still suffer

from a common but critical deficiency: a lack of (limited) theoretical guarantee in detecting

OOD instances. It is thus imperative to investigate further along this direction to fill the
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loophole. Emerging deterministic methods such as SNGP exhibit a strong OOD detection

capability due to distance awareness. In addition, the computational efficiency of UQ methods

needs to be further improved to satisfy the need for real-time or near real-time decision making

in a broad range of safety-critical applications (e.g., autonomous driving and aviation). Thus,

more research efforts need to be invested in enabling three key essential features of high quality

UQ: principleness, scalability, and efficiency.

3. ML models have shown promising potential in addressing long-standing engineering design

problems in recent years. Especially for GPR, its applications in engineering design have

resulted in a family of adaptive surrogate modeling methods for reliability-based design opti-

mization, robust design, and design optimization in general. These ML-based design methods

have revolutionized engineering design in various applications, including but not limited to

design and discovery of new materials, design for additive manufacturing, and topology opti-

mization. Despite these revolutionary advances, extending these methods to larger-scale and

more complicated problems becomes increasingly urgent. To this end, various DNN-based

methods have been investigated in engineering design to overcome the limitations of classical

ML methods, such as the GPR-based approaches. Even though the emerging DNN-based

methods show promise in addressing computational challenges in high-dimensional engineer-

ing design problems, their potential as efficient surrogates or accelerated optimizers has not

yet been fully realized. The UQ methods for ML models presented in this paper will play

a key role in fully releasing the power of DNNs in engineering design by enabling adaptive

DNNs in the context of active learning to reduce the required quantity of training data with-

out sacrificing the accuracy in surrogate modeling, reliability analysis, and optimization, (2)

accelerated design optimization for large-scale systems, and (3) efficient and accurate UQ in

engineering design accounting for various sources of aleatory and epistemic uncertainty (e.g.,

input-dependent aleatory uncertainty).

4. The PHM community has long recognized the importance of estimating the predictive uncer-

tainty of prognostic models. These prognostic models can be built based on supervised ML

or more traditional state-space models (see, for example, the Bayes filter in one of the earliest

studies on battery prognostics [38]). As discussed in Sec. 5.3, in the PHM field, UQ of ML

models has been predominantly applied to the task of predicting the RUL of a system or com-

ponent. The focus of UQ in this context is to provide a probability distribution of the RUL

rather than a single point estimate. While UQ in the PHM field has primarily been focused

on RUL prediction, there is a growing interest in applying UQ to other tasks, such as anomaly

detection, fault detection and classification, and health estimation. Many of the UQ methods

discussed in detail in Sec. 3 can also be readily applied to these classification and regression

tasks in the PHM field. Looking ahead, we identify three research directions along which pos-

itive and significant impacts could be made on the PHM field surrounding UQ of ML models.

First, decomposing the total predictive uncertainty into its aleatoric and epistemic components

is highly desirable and sometimes essential, as noted in Sec. 5.3. Such a decomposition has
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several benefits, for example, highlighting the need for improved sensing solutions with lower

measurement noise to reduce aleatory uncertainty and identifying areas where further data

collection or model refinement efforts may be necessary to reduce epistemic uncertainty. More

work is needed to develop UQ methods with built-in uncertainty decomposition capability and

create procedures to assess the accuracy of uncertainty decomposition. Second, prognostic

studies involving UQ mostly evaluate UQ quality subjectively and qualitatively by looking at

whether a two-sided 95% confidence interval of the RUL estimate gets narrows with time and

contains the true RUL, especially toward the end of life. As discussed in a general context in

Sec. 4.4, we call for consistent effort among PHM researchers and practitioners to quantita-

tively evaluate their ML models’ UQ quality using some of the metrics introduced in Sec. 4,

such as calibration metrics (Sec. 4.1), sparsification metrics (Sec. 4.2), and NLL (Sec. 4.3).

Ideally, UQ quality assessment should also become standard practice when building and de-

ploying ML models in PHM applications, just as prediction accuracy assessment is currently

standard practice. Third, both UQ and interpretation serve the purpose of improving model

transparency and trustworthiness, as noted in Sec. 1. An under-explored question is whether

UQ capability can help improve interpretability and vice versa. For example, interpretability

can provide insights into the most important input features for making predictions. Such an

understanding could allow distance-aware UQ models to define their distance measures based

only on highly important features, potentially improving the UQ quality.

5. Model uncertainty quantification for label-free learning is another future research direction.

Obtaining labels by solving implicit engineering physics models is usually costly. Label-free

machine learning embeds physics models in a cost function or as constraints in the model

training process without solving them. As a result, labels are not required. Physics-informed

neural network (PINN) is one such label-free method [77, 231]. This method has gained much

attention because it makes the regression task feasible without solving the true label. In ad-

dition, the physical constraints prevent the regression from severe overfitting in conventional

neural networks, especially when data are limited. Since labels are not available, the quantifi-

cation of prediction uncertainty of the machine learning model is extremely difficult. Even the

prediction errors at the training points are unknown. Due to this reason, the GPR method

has not been used for label-free learning since the prediction of a GPR model requires labels

at the training points. A proof-of-concept study has been conducted for quantifying epistemic

uncertainty for physics-based label-free regression [291]. This method integrates neural net-

works and GPR models and can produce both systematic error (represented by a mean) and

random error (represented by a standard deviation) for a model prediction. The method, how-

ever, has not been extended to time- and space-dependent problems where partially different

equations are involved. There is a need to develop generic uncertainty quantification methods

for label-free learning.

77



Authors’ contributions

All the authors read and approved the final manuscript. Hu, C. and Zhang, X. devised the origi-

nal concept of the tutorial paper. Hu, Z., Hu, C., Du, X., Wang, Y., and Huan, X. were responsible

for the classification of types and sources of uncertainty pertaining to ML models. Hu, C. and Tran,

A. were responsible for GPR. Huan, X. was responsible for implementing BNN via the means of

MCMC and variational inference. Zhang, X. and X. Huan were responsible for MC dropout. Zhang,

X. and Hu, C. were responsible for neural network ensemble. Hu, C. was responsible for determin-

istic methods for UQ of neural networks. Zhang, X. and Nemani, V., were responsible for the toy

example to compare the predictive uncertainty produced by different UQ methods. Zhang, X. and

Hu, C. were responsible for the summary of the qualitative comparison of different UQ methods.

Hu, C. and Nemani, V. were responsible for the evaluation of predictive uncertainty. Hu, Z., Zhang,

X., Hu., C., and Tran, A. were responsible for the review on UQ of ML models in engineering

design. Biggio, L., and Fink, O. were responsible for the review of UQ of ML models in prognostics.

Nemani, V. and Hu, C. were responsible for case study 1 – battery early life prediction. Biggio L.

and Fink O. were responsible for case study 2 – turbofan engine prognostics. Zhang, X., Hu, C.,

and Hu, Z. were responsible for the conclusion and outlook. All authors participated in manuscript

writing, review, and editing. All correspondence should be addressed to Xiaoge Zhang (e-mail:

xiaoge.zhang@polyu.edu.hk) and Chao Hu (e-mails: chao.hu@uconn.edu; huchaostu@gmail.com).

Acknowledgements

Xiaoping Du at Indiana University–Purdue University Indianapolis contributed to this manuscript

by providing helpful inputs on Section 2 surrounding the classification of types and sources of uncer-

tainty pertaining to ML models. Luca Biggio acknowledges the financial support from the CSEM

Data Program fund. Xun Huan acknowledges the financial support provided by the U.S. Depart-

ment of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), under

Award Number DE-SC0021397. Zhen Hu acknowledges financial support from the United States

Army Corps of Engineers through the US Army Engineer Research and Development Center Re-

search Cooperative Agreement W9132T-22-2-20014, the U.S. Army CCDC Ground Vehicle Systems

Center (GVSC) through the Automotive Research Center (ARC) in accordance with Cooperative

Agreement W56HZV-19-2-0001, and the U.S. National Science Foundation under Grant CMMI-

2301012. Olga Fink acknowledges the financial support from the Swiss National Science Founda-

tion under the Grant Number 200021 200461. Yan Wang received financial support from the U.S.

National Science Foundation under Grant Nos. CMMI-1306996 and CMMI-1663227, as well as the

George W. Woodruff Faculty Fellowship at the Georgia Institute of Technology. Xiaoge Zhang was

supported by a grant from the Research Grants Council of the Hong Kong Special Administrative

Region, China (Project No. PolyU 25206422) and the Research Committee of The Hong Kong

Polytechnic University under project code G-UAMR. He was also partly supported by the Centre

for Advances in Reliability and Safety (CAiRS), admitted under AIR@InnoHK Research Cluster.

Chao Hu received financial support from the U.S. National Science Foundation under Grant No.

78

zhennhu
Highlight



ECCS-2015710. The opinions, findings, and conclusions presented in this article are solely those of

the authors and do not necessarily reflect the views of the sponsors that provided funding support

for this research.

Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA-0003525.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324, doi: http://dx.doi.org/

10.1109/5.726791.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical

image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition,

IEEE, 248–255, doi: http://dx.doi.org/10.1109/CVPR.2009.5206848, 2009.

[3] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep features for scene

recognition using places database, Advances in Neural Information Processing Systems 27.

[4] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick,

Microsoft COCO: Common objects in context, in: European Conference on Computer Vision,

Springer, 740–755, 2014.

[5] J. Blitzer, M. Dredze, F. Pereira, Biographies, bollywood, boom-boxes and blenders: Domain

adaptation for sentiment classification, in: Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics, 440–447, 2007.

[6] X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification:

A deep learning approach, in: Proceedings of the 28th International Conference on Machine

Learning (ICML-11), 513–520, 2011.

[7] Q. Li, C. Shen, L. Chen, Z. Zhu, Knowledge mapping-based adversarial domain adaptation:

A novel fault diagnosis method with high generalizability under variable working conditions,

Mechanical Systems and Signal Processing 147 (2021) 107095, doi: https://doi.org/10.

1016/j.ymssp.2020.107095.

[8] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Advances in

Neural Information Processing Systems 30.

[9] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM: Visual

explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE

International Conference on Computer Vision, 618–626, doi: http://dx.doi.org/10.1109/

ICCV.2017.74, 2017.

79

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.ymssp.2020.107095
https://doi.org/10.1016/j.ymssp.2020.107095
http://dx.doi.org/10.1109/ICCV.2017.74
http://dx.doi.org/10.1109/ICCV.2017.74


[10] C. Molnar, Interpretable machine learning, Lulu. com, 2020.
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Appendix A. Some further discussions on Gaussian process regression

Appendix A.1. An extended discussion on kernels

The class of Matérn kernels represents a very general class of covariance functions, of which the

squared exponential kernel is a special case. It offers a broad class of kernels with varying values of

a smoothness parameter ν > 0 that controls the smoothness of the resulting approximation of the

underlying function [106]. The Matérn covariance between the function outputs at two points are

described as [106]

k(x,x′) = σ2f
1

Γ(ν)2ν−1

(√
2ν

ℓ
dist

(
x,x′))ν

Kν

(√
2ν

ℓ
dist

(
x,x′)) (A.1)

where Γ(·) is the Gamma function, dist(x,x′) is the Euclidean distance between points x and x′,

i.e., dist(x,x′) = |x−x′| =
√∑D

d=1(xd − x′d)2, and Kν is the modified Bessel function of the second

kind and order ν. A larger value of ν results in a smoother appropriated function. When ν → ∞,

the Matérn kernel becomes the squared exponential kernel. Another special case worth mentioning

is when ν = 1/2, the Matérn kernel is equivalent to the absolute exponential kernel (sometimes also

called the Ornstein-Uhlenbeck process kernel), which can be expressed as

k(x,x′) = σ2f exp

(
−dist (x,x

′)

l

)
. (A.2)

GPR using this Matérn 1/2 kernel yields rather unsmooth (rough) functions sampled from the

Gaussian process prior and posterior. Additionally, observations do not inform predictions on input

points far away from the points of observations, leading to poor generalization performance of the

resulting GPR model. Two other special cases of the Matérn kernels are ν = 3/2 and ν = 5/2.

The resulting Matérn 3/2 kernel and Matérn 5/2 kernel are not infinitely differentiable, unlike the

squared exponential kernel, but at least once (Matérn 3/2) or twice differentiable (ν = 5/2). These

two kernels may be useful in cases where intermediate solutions between the unsmooth Matérn 1/2

kernel and the perfectly smooth squared exponential kernel are needed to approximate functions

that are expected to be somewhat smooth yet not perfectly smooth.

The Matérn kernel in Eq. (A.1) has a single length scale l and is of an isotropic form. Like the

ARD squared exponential kernel shown in Eq. (11), an anisotropic variant of the Matérn kernel

can be defined by introducing D length scales, each depicting the relevance of an input dimension.

The resulting ARD Matérn kernel has a slightly modified term,

√∑D
d=1

(xd−x′
d)

2

l2d
, in place of the

original term,

√∑D
d=1(xd−x′

d)
2

l (i.e., dist(x,x′)
l in Eq. (A.1)). For D-dimensional input x ∈ X ⊆ Rd,

an anisotropic kernel is composed of (D + 1) hyperparameters, σf , l1, . . . , lD.

To illustrate the concept of kernels, Fig. A.24 compares GPR models built using multiple com-

monly used kernels in a 1D example. As demonstrated in this figure, the squared-exponential

kernel produces the smoothest GPR, whereas Matérn1/2 produces the roughest GPR (where the

samples drawn from the posterior are equivalent to a Brownian motion). The intuition is that the
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Figure A.24: Comparison of GPR models built using multiple kernels: squared-exponential (ν → ∞), Matérn1/2(
ν = 1

2

)
, Matérn3/2

(
ν = 3

2
)
)
, Matérn5/2

(
ν = 5

2

)
, with the same eight training data points, along with five samples

randomly drawn from the posterior.

larger the ν value, the smoother the underlying function. Specifically, when ν = 1/2, the Gaussian

process sampled from posterior with this kernel (Matérn1/2) corresponds to a Brownian motion

(or equivalently, a Wiener process), whereas ν → ∞ smoothens the sampled Gaussian process be-

cause the posterior mean is infinitely differentiable (i.e., C∞) [106]. The noiseless ground truth,

f(x) = sin(0.9x), is plotted as dot-dashed magenta lines. Each noisy observation used for training

is obtained based on the following observation model: y = f(x) + ε, where the Gaussian noise

ε ∼ N (0, 0.12). Eight training observations are plotted as black dots, and five samples randomly

drawn from the GPR posterior are plotted as dotted purple lines.

Appendix A.2. Parametric study on effect of hyperparameter optimization

Figure A.25 illustrates the effect of l, σf , and σε on the Gaussian process posterior of observations

y∗ (each being function output f plus noise ε) for the 1D toy example used in Fig. 5. In each of the

four cases considered, the values of the three hyperparameters and log marginal likelihood (see Eq.

20) are shown right below the regression plot. In all four cases, the observation (y∗) posterior has

the same mean curve as the function (f∗) posterior but a slightly larger variance at any input point

due to the non-zero noise variance σ2ε , as discussed in Sec. 3.1.1.d. The length scale determines

how quickly the correlation between the function values at two input points decays as they become

farther away. Too small of an l value (e.g., l = 0.1 in Fig. A.25) leads to an approximation

that varies too quickly horizontally and yields too wide of uncertainty regions between training

points. The signal amplitude σf depicts the maximum vertical variation of functions/observations

drawn from the Gaussian process. A larger σf value (e.g., σf = 3 in Fig. A.25) results in a larger

maximum width of the confidence interval for a test point between or away from training points.

It is an important hyperparameter for quantifying epistemic uncertainty, although it is difficult to

derive an optimum value solely based on training data. The signal standard deviation σε controls

the amount of (input-independent) noise in the observations. Too small of a σε value (e.g., σε = 0.05

in Fig. A.25) results in an approximation that fails to capture the observational noise (aleatory

uncertainty).

Appendix A.3. Connections with neural networks and recent development

Efforts to draw connections between GPR and neural networks dated back more than two

decades, with the first study showing the equivalence between a Gaussian process and a fully-

113



 

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

-3

-2

-1

0

1

2

3

Y

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

-3

-2

-1

0

1

2

3

Y

𝜎𝜎𝜀𝜀  

𝜎𝜎f 

x 

y 
𝑙𝑙 

𝛉𝛉 = [𝑙𝑙,𝜎𝜎f,𝜎𝜎𝜀𝜀]T = [1,  1,  0.1]T, log 𝑝𝑝(𝒚𝒚𝑡𝑡|𝐗𝐗t,  𝛉𝛉) = −1.6 

𝜎𝜎𝜀𝜀  

𝜎𝜎f 

x 

y 

𝑙𝑙 

𝛉𝛉 = [𝑙𝑙,𝜎𝜎f,𝜎𝜎𝜀𝜀]T = [0.1,  1,  0.1]T, log 𝑝𝑝(𝒚𝒚𝑡𝑡|𝐗𝐗t,  𝛉𝛉) = −21.4 

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

-3

-2

-1

0

1

2

3

Y

𝜎𝜎𝜀𝜀  

𝑙𝑙 

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

-3

-2

-1

0

1

2

3

Y

𝜎𝜎𝜀𝜀  

𝜎𝜎f 

x 

y 

𝑙𝑙 

𝛉𝛉 = [𝑙𝑙,𝜎𝜎f,𝜎𝜎𝜀𝜀]T = [1,  3,  0.1]T, log 𝑝𝑝(𝒚𝒚𝑡𝑡|𝐗𝐗t,  𝛉𝛉) = −9.7 

𝜎𝜎f 

x 

y 

𝛉𝛉 = [𝑙𝑙,𝜎𝜎f,𝜎𝜎𝜀𝜀]T = [1,  1,  0.05]T, log 𝑝𝑝(𝒚𝒚𝑡𝑡|𝐗𝐗t,  𝛉𝛉) = −23.0 

Figure A.25: Effect of hyperparameters on the Gaussian process posterior for the 1D toy example used in Fig. 5.
Note that the confidence intervals shown collectively as light blue shade are derived from the posterior of (noisy)
observations (function output plus noise); they are slightly wider than the confidence intervals for the underlying
function shown in Fig. 5 due to the added Gaussian noise (see the discussion below Eqs. (18) and (19) in Sec.
3.1.1.d).

connected neural network with a single, infinite-width hidden layer and an i.i.d. prior over the

network parameters (weights and biases) [292]. This equivalence is significant because using a

Gaussian process prior over functions allows one to perform Bayesian inference in its exact form

on neural networks using simple matrix operations (see the familiar formulae for Gaussian process
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posterior in Eqs. (16) and (17)) [293]. One obvious benefit is that one does not need to resort to iter-

ative, more computationally expensive training algorithms, such as gradient descent and stochastic

gradient descent, or approximate Bayesian inference methods for Bayesian neural networks (see Sec.

3.2). As deep learning has been gaining popularity in recent years, significant extensions were made

to draw such connections for standard DNNs [294] and DNNs with convolutional filters, or so-called

deep convolutional neural networks [295, 296].

In process

𝐰𝐰1 , 𝑏𝑏1𝐖𝐖0 ,𝐛𝐛0

h1

x2 y

h2

figures/single_hidden_layerNN.pdf
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Input 
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Figure A.26: A single-hidden-layer neural network where the number of hidden units NH could approach infinity,
i.e., NH → ∞. W0 and b0 conveniently denote the NH × D matrix of input-to-hidden weights and the vector of
NH input-to-hidden biases. Similarly, w1 denote the vector of NH hidden-to-output weights, again, for notational
convenience purposes.

Let us now briefly review the early work in [292]. We consider a fully-connected neural network

with one hidden layer, illustrated in Fig. A.26. To get to each hidden node hj , 1 ≤ j ≤ NH, where

NH is the number of hidden units, we first apply a linear transformation of input point x and then

a nonlinear operation using an activation function ψ(·) : RD 7→ R. The resulting j-th hidden unit

takes the following form:

hj(x) = ψ

(
b0j +

D∑
d=1

w0
djxd

)
, (A.3)

where w0
dj denotes the input-to-hidden weight from xd to hj and b0j is the input-to-hidden bias for

hj . To get to the output node y (assuming zero observation noise for simplicity, i.e., y(x) = f(x)),

we apply another linear transformation of the hidden units with hidden-to-output weights and a

bias

y(x) = b1 +

NH∑
j=1

w1
jhj(x), (A.4)

where w1
j denotes the hidden-to-output weight from hj to y, and b1 is the hidden-to-output bias.
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We assume (1) the prior of the hidden-to-output weights w1
j and bias b follows independent

zero-mean (often Gaussian) distributions with variances being σ2w1 and σ2b , respectively, and (2)

the input-to-hidden weights w0
dj and biases b0j are i.i.d. It follows that the network output y(x) in

Eq. (A.4) is a summation over (NH + 1) i.i.d. random variables [292]. Based on the Central Limit

Theorem, when NH → ∞, i.e., when the width of the hidden layer approaches infinity, ŷ(x) will

follow a Gaussian distribution. This Gaussian prior holds regardless of the distribution types of the

(NH + 1) random variables in the sum. Let us move on to look at any finite set of input points,

x1, . . . ,xN∗ . As NH →∞, their network outputs, ŷ1, . . . , ŷN∗ , will be jointly Gaussian, according to

the multidimensional Central Limit Theorem. It means that the joint distribution of the network

outputs at any finite collection of input points is multivariate Gaussian, which exactly matches the

definition of a Gaussian process discussed in Sec. 3.1.1.a. Thus, ŷ(x) ∼ GP(mnn(x), knn(x,x
′)), a

Gaussian process with the mean function mnn(·) and covariance function knn(·). Since the hidden-

to-output weights w1
j and bias b1 have zero means, mnn ≡ E[ŷ(x)] = 0. The covariance function

can be derived based on i.i.d. conditions and takes the following form:

knn(x,x
′) ≡ E

[
ŷ(x)ŷ(x′)

]
= σ2b1 +

NH∑
j=1

σ2w1E
[
hj(x)hj(x

′)
]
= σ2b1 +NHσ

2
w1︸ ︷︷ ︸

ω2

E
[
hj(x)hj(x

′)
]︸ ︷︷ ︸

C(x,x′)

, (A.5)

where the prior variance σ2w1 of each hidden-to-output weight is set to scale carefully as ω2/NH for

some fixed “unscaled” variance ω2 and C(x,x′) need to be evaluated for all x in the training set

and all x′ in the training and test sets. C(x,x′) has an analytic form for certain types of activation

functions such as the error function (or Gaussian nonlinearities) [106, 293], one-sided polynomial

functions [297], and ReLU (rectified linear unit) [294]. As a result, infinitely wide Bayesian neural

networks give rise to a new family of GPR kernels. An interesting and attractive property of

these neural networks is that all network parameters are often initialized as independent zero-mean

Gaussians, some with properly scaled variances, and the kernel parameters (e.g., “unscaled” prior

variances of weights and prior variances of biases) may be the only parameters that need to be

optimized.

What has been discussed in this subsection represents a category of approaches for combining

the strengths of GPR (exact Bayesian inference, distance awareness, etc.) with those of neural

networks (feature extraction from high-dimensional inputs (large D), ability to model nonlinearities,

etc.). These approaches explore the direct theoretical relationship between infinitely wide neural

networks and GPR. Another category of approaches uses GPR with standard kernels (such as the

squared exponential kernel in Eq. (10)) whose inputs are feature representations in the hidden

space learned by a neural network [179–181, 298]. These approaches are often called deep kernel

learning. The network weights, biases, and GPR kernel parameters can be jointly optimized end-to-

end, which is straightforward to implement using gradient descent or stochastic gradient descent.

These approaches excel in OOD detection thanks to the distance awareness property of GPR and

offer a solution to improving the scalability of GPR to high-dimensional inputs. A drawback is

that overparameterization associated with a DNN (e.g., a deep convolutional neural network) may
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make the network prone to overfitting. Another issue is feature collapse [177], which needs to be

carefully addressed to preserve input distances in the hidden space. This issue will be discussed along

with a representative approach in this category called spectral-normalized neural Gaussian process

(SNGP) in Sec. 3.4. A third category of approaches aims to mimic the many-layer architecture of

a DNN by stacking Gaussian processes on top of one another in a hierarchical form [299–302]. The

resulting deep Gaussian processes are probabilistic ML models with the UQ capability brought in

by GPR and the added flexibility to learn complex mappings from datasets that can be small or

large. However, the performance gains over standard GPR comes at a cost: exact Bayesian inference

by deep Gaussian processes can be prohibitively expensive due to the computationally demanding

need to compute the inverse and determinant of the covariance matrix. Therefore, almost all deep

Gaussian process approaches adopt appropriate inference techniques for efficient model training

that use only a small set of the so-called inducing points to build covariance matrixes [300–302].

Appendix B. UQ of ML models in engineering design

Appendix B.1. Needs of ML models in engineering design

In recent years, the rapid advancement of high-performance computing and data analytics tech-

niques has made ML a game changer for engineering design. In particular, ML enables engineers and

designers to relax simplifications and assumptions that are usually needed in conventional design

paradigms [303, 304], accelerate the design process by shortening the required design cycles [305],

and handle the design of highly complex systems with large numbers of design variables [306, 307].

These benefits provided by data-driven ML models are particularly appealing for simulation-based

engineering system design, which usually entails costly simulations.

As shown in Fig. B.27, ML revolutionizes engineering design mainly through three categories of

ML-enabled capabilities: feature extraction, surrogate modeling, and optimization. Approaches in

each of these three categories have been applied to solve challenging engineering design problems

in various applications, such as discovery and design of engineering materials [308, 309], design for

reliability [310], energy system design [311], and topology optimization [312], to name a few.

i. Feature extraction: Extracting informative features from massive volumes of raw data is

a representative use case of ML in engineering design. In this regard, ML, particularly deep

learning, has become more and more prevalent in engineering design due to its salient charac-

teristic of automatically extracting feature representations from high-dimensional data in its

raw form. Specifically, in the context of engineering design, the powerful representation learn-

ing ability has been frequently utilized in two types of design activities, namely (1) dimension

reduction, which is to reduce the dimensionality of design problems, and (2) generative design,

which is to generate candidate designs subject to certain design constraints [313–315].

(a) For dimension reduction, autoencoder, as an unsupervised learning technique, has been

commonly adopted to learn efficient codings and compressed knowledge representations

from unlabeled data [313]. More specifically, an autoencoder consists of an encoder and
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Figure B.27: ML-enabled techniques in engineering design and applications.

a decoder: the encoder transforms high-dimensional data into a low-dimensional repre-

sentation through a “bottleneck” layer of neurons, while the decoder recovers the high-

dimensional data from the low-dimensional code. The encoder and decoder are trained

together to minimize the discrepancy between the original data and its reconstruction.

Due to their powerful representation capacity, autoencoders and their variants (e.g., sparse

autoencoders and variational autoencoders (VAEs)) have been actively employed to ex-

tract important features, supporting diverse engineering design tasks [316].

(b) For generative design, researchers have investigated ML approaches to aid the design

process through automatic design synthesis. In short, generative design is an iterative

process of using algorithms to facilitate the exploration of thousands of design variants

as guided by the parameters outlined in the study setup to approach an optimal design

that meets the performance target. Towards this end, ML has contributed substantially

to automating the process of generative design, which is often referred to as automatic

design synthesis in the design community. In essence, automatic design synthesis is to

learn a generative model from existing designs and then generate new designs meeting

design requirements (e.g., performance targets and cost constraints) based on the compact

representations of training data in the hidden space. In particular, VAEs and GANs are

two popular classes of ML algorithms for generative design [317].

ii. Surrogate modeling: It is a process of using ML models as emulators of computationally
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expensive computer simulation models in engineering design [24]. With the development of

computational mechanics and advanced numerical solvers, computer simulations are getting

increasingly sophisticated. The high-fidelity computer simulations allow us to accurately pre-

dict complicated physical phenomena without performing large numbers of expensive physical

experiments, thereby accelerating the design of engineering systems to meet mission-specific re-

quirements. Although high-fidelity simulations significantly enhance our predictive capability,

they present notable challenges to engineering design due to the high computational demand

and burden often associated with them. ML models play a vital role in addressing this chal-

lenge by maintaining the same predictive capability level as high-fidelity simulations while

significantly reducing the computational effort required to make high-fidelity predictions [318].

The basic idea of ML-enabled surrogate modeling is to replace an expensive-to-evaluate high-

fidelity simulation model with a much “cheaper” mathematical surrogate, essentially an ML

model. Over the past few decades, various surrogate modeling methods have been proposed

for different purposes within engineering design, including model calibration [319], reliabil-

ity analysis [28], sensitivity analysis [320], and optimization [321]. These existing surrogate

modeling methods can be broadly classified into two groups:

(a) Global surrogate modeling for general purposes: This class of surrogate models is con-

structed for the general purpose of design optimization and tries to achieve a good pre-

diction accuracy in the whole design region of interest [27, 322, 323]. More specifically,

let us use ŷ = Ĝ(x) to represent the surrogate model of a computer simulation model

y = G(x),x ∈ Ωx, where Ωx is the prediction domain of the inputs. In global surrogate

modeling, we are concerned about the prediction accuracy of ŷ = Ĝ(x) for all x ∈ Ωx.

Because of this, the training data for ML model construction needs to spread through-

out the whole prediction domain Ωx, with those in nonlinear regions being denser and

the others in relatively smoother regions being more sparse. Various sampling techniques

have been developed to efficiently construct globally accurate surrogate models using ML.

Some examples of the techniques include MSE-based methods, the A-optimality criterion,

and maximin scaled distance approaches [24]. The goal of global surrogate modeling is

to construct a surrogate that is fully representative of the original computer simulation

model. Since the surrogate model is not constructed for any specific purposes and the

prediction accuracy has been verified for all x ∈ Ωx, it can be used for any purposes, such

as design optimization, uncertainty analysis, and sensitivity analysis, after its construc-

tion. In addition, the UQ calibration metrics presented in Sec. 4.1.3 and Sec. 4.3 can be

used to quantify the prediction accuracy of a global surrogate model, if the test data is

representative of the design domain Ωx.

(b) Local surrogate modeling for specific purposes: Instead of achieving good prediction accu-

racy in the whole design region, this group of surrogate models only focuses on prediction

in very localized design regions, such as the limit state regions in design for reliability

problems [28, 324–326] and important regions for model calibration purposes [327]. In
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local surrogate modeling, we are concerned about the prediction accuracy of ŷ = Ĝ(x)

for x ∈ Ω̃x, where Ω̃x ⊂ Ωx is a subset of the prediction domain of the inputs. This

sub-domain Ω̃x varies with the specific purpose of the surrogate modeling. For example,

when the surrogate model is constructed for the purpose of reliability analysis, which is a

classification problem, Ω̃x will be the regions along the limit state or classification bound-

ary. When the surrogate model is constructed for optimization, Ω̃x will be the regions

where the optima locate. As a result, the training data for surrogate modeling will be

concentrated in those localized regions instead of spreading evenly throughout the whole

prediction domain of the inputs. Because we only concentrate on a sub-domain Ω̃x of the

input space, Ωx, the local surrogate model ŷ = Ĝ(x),x ∈ Ω̃x only partially represents the

original simulation model (i.e., the surrogate is an accurate representation of the simula-

tion model only in the sub-domain of the design space). Moreover, since the sub-domain

Ω̃x is usually unknown during the construction of the surrogate model, learning functions

(also called acquisition functions in some methods) are needed to identify these localized

sub-domains adaptively based on the currently available information about the underly-

ing simulation model (ground truth). Because the surrogate model is constructed for a

specific purpose (e.g., model calibration, reliability analysis, or optimization), its accuracy

also needs to be quantified using metrics tailored for that specific purpose. For example, a

metric used to check the prediction accuracy of the surrogate model for reliability analysis

may not be appropriate for constructing a surrogate model for design optimization.

iii. Optimization: Engineering design problems are essentially optimization problems. Conven-

tional gradient-based optimizers often have difficulties in finding global optima. Even though

evolutionary optimization methods can overcome some of the limitations of gradient-based op-

timizers, the former methods are likely to require much larger numbers of function evaluations,

which could become prohibitively costly for high-fidelity simulation models in many engineer-

ing design problems. ML-based or ML-assisted optimization methods have been proposed to

tackle this challenge, resulting in a new family of optimization methods collectively named

gradient-free ML-based optimization. One representative example of this family is Bayesian

optimization [30]. ML-based optimization transforms the way that engineering systems are

designed in many fields, such as new materials [328]. It is worth noting that the Materials

Genome Initiative [329, 330, 330–333], firstly debuted in 2011, was embedded in the context

of designing new materials using ML and optimization to significantly reduce the research and

development time. Moreover, the development of deep learning methods in recent years even

allows designers to bypass complicated design optimization by directly generating candidate

designs for a particular application. Some examples include the ML-based topology optimiza-

tion [334, 335] and deep learning-enabled design of large-scale complex networks [336].

Appendix B.2. Role of UQ of ML models in engineering design

An indispensable step for the above-reviewed three categories of ML-enabled techniques (i.e.,

feature extraction, surrogate modeling, and optimization) is UQ of ML models. For example,
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for ML-enabled feature extraction in engineering design, quantifying the predictive uncertainty of

ML models play an important role in (1) ensuring the extracted features are representative of the

original data sources, (2) eliminating the ill-posedness of inverse problems in generative design, and

(3) accounting for variability across input features.

For surrogate modeling in engineering design, an essential step in building an accurate surrogate

model (global or local surrogate) is the collection of training data. However, an initial set of training

data is usually insufficient to build a surrogate model with satisfactory prediction accuracy. A

subsequent refinement step sometimes is needed to improve the prediction accuracy of the surrogate

model. Due to the high computational effort required to collect training data from high-fidelity

simulations in engineering design, it is desirable to reduce the number of training data points

or refinement iterations for surrogate modeling as much as possible. Over the past few decades,

numerous refinement strategies have been developed in engineering design to minimize the number

of iterations in collecting training data for the purpose of improving the performance of surrogate

models. Even though these refinement strategies may differ from each other, they share one notable

starting point: quantifying the predictive uncertainty of the surrogate model for any given input.

For instance, the most commonly used refinement method for global surrogate modeling is to

identify new training data by maximizing the variance of the prediction of the surrogate model [27].

That is a mean squared error-method as mentioned above in Appendix B.1. In a GPR model, the

variance of the prediction can be directly obtained from the surrogate model. For other types of

surrogate models, however, the predictive uncertainty needs to be quantified using a separate UQ

method. Moreover, UQ of ML models becomes particularly important, if local surrogate models

need to be constructed for engineering design. In the context of local surrogate modeling, learning

functions (also called acquisition functions), such as the expected improvement (EI) function in

GPR-based surrogate modeling, are required to identify new training data in critical local regions

(i.e., Ω̃x mentioned in Appendix B.1) of the input space. The new training data will then be

used to refine the surrogate. Many (20+) learning functions have been proposed in recent years

for local surrogate modeling of various purposes (e.g., surrogate construction, reliability analysis,

and optimization). These learning functions look into multiple quantitative metrics to examine

different aspects crucial to the iterative improvement of surrogate models, such as classification

error [337], information entropy [338, 339], and exploitation and exploration [340], among others.

A detailed review of various learning functions for local surrogate modeling for reliability analysis

is available in Ref. [341]. To the best of our knowledge, nearly all the learning functions for

local surrogate modeling heavily rely on UQ of ML models. Let us take a look at two well-known

learning functions for local surrogate modeling in reliability-based design optimization: the expected

feasibility function (EFF) [28] and the U function [29]. They are mathematically described as
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follows:

EFF (x) =

∫ e+τ

e−τ
[τ − |e− y|] pŷ(x)(y)dy, (B.1a)

U(x) =
|µŷ(x)− e|
σŷ(x)

, (B.1b)

where e is the failure threshold used to define the limit state, y = e, that separates the failure

region (y > e) from the safe region (y ≤ e), τ is half the width of a two-sided critical interval in the

vincinity of the limit state (y = e), often set as two times the standard deviation of the ML model

prediction, i.e., τ = 2σŷ(x), µŷ(x) and σŷ(x) are, respectively, the mean and standard deviation of

the ML prediction with respect to the input x, and pŷ(x)(y) is the probability density function of y

for given input x predicted by the ML model.

As shown in the above two equations, UQ of ML models plays an essential role in the construc-

tion of such learning functions. This observation also applies to the other learning functions in local

surrogate modeling. It is commonly referred as adaptive surrogate modeling in the literature. In

general, the identification of the sub-domain Ω̃x (see Appendix B.1) relies on the learning func-

tions in local surrogate modeling, where UQ of ML models plays a foundational role towards the

establishment of these learning functions.

Similar to local surrogate modeling, ML-enabled optimization in engineering design also depends

heavily on the ability to quantify the predictive uncertainty of ML models, which is essential for ML

models to exploit and explore the design domain to efficiently identify optimal designs. Examples

of such ML-based optimizers include Bayesian optimization [342] and deep reinforcement learning-

based optimization [343]. Specifically for Bayesian optimization, a trade-off between exploitation

and exploration is balanced through a learning/acquisition function, which is very similar to that in

local surrogate modeling discussed above. Some popular learning functions include the probability

of improvement, EI, upper confidence bound, and knowledge gradient (a generalization of EI).

Taking the EI function for a minimization problem as an example, this function is mathematically

defined as [30].

EI(x) = (fmin − µŷ(x))Φ
(
fmin − µŷ(x)

σŷ(x)

)
+ σŷ(x)ϕ

(
fmin − µŷ(x)

σŷ(x)

)
, (B.2)

where fmin is the current best function value obtained from the existing training data [30]. As

indicated in this equation, µŷ(x) and σŷ(x) are two essential elements of the EI function. UQ of ML

models is needed to obtain these two terms, and more fundamentally, the probability distribution of

ŷ is required to derive a learning/acquisition function such as the EI function in Eq. (B.2). Defining

such a function makes it possible to accelerate design optimization through ML. This characteristic

is very similar to that of learning functions in local surrogate modeling.

In a broad sense, adaptive surrogate modeling-based design optimization can also be classified

as a type of local surrogate model since a learning function is used to adaptively identify critical

local regions that are important for the specific purpose of identifying a maximum or minimum.
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Moreover, a global surrogate model and a local surrogate model are interchangeable during the

process of ML model construction. For example, we usually start with a global surrogate model in

order to construct a local surrogate model because the critical local regions are unknown and need

to be identified using a learning function based on the UQ of an ML model. After constructing a

local surrogate model for a specific purpose (e.g., reliability analysis, optimization), we can always

convert this local surrogate into a global one if we want to expand the prediction domain to the

whole design domain. Regardless of whether design optimization leverages local or global surrogate

modeling, UQ of ML models is almost always the foundation of the three categories of ML-enabled

capabilities in engineering design described in Appendix B.1.

Appendix B.3. State of knowledge and gaps

Driven by the increasing needs of various engineering design problems (e.g., design for reliability,

design for additive manufacturing, new material design, energy system design, etc) as illustrated

in Fig. B.27, the three categories of ML-enabled techniques established upon UQ of ML models

(see Appendix B.1) have been extensively studied in the literature. Next, we elaborate the current

state-of-the-art literature and highlight research gaps that need further investigation and efforts

from three aspects: feature extraction, surrogate modeling, and optimization.

According to our literature survey, studies on feature extraction in engineering design mostly

implement neural network-based approaches, such as those based on variants of autoencoders and

GANs as mentioned in Appendix B.1 [344]. For example, Guo et al. [345] tackled the topology

design of a heat conduction system using the latent representation produced by a VAE. Chen et al.

[346] trained a wireframe image autoencoder with a large database of unlabeled real-application

user interface (UI) designs to serve as a UI search engine for the purpose of supporting UI design

in software development. Li et al. [347] developed a target-embedding VAE neural network and

explored its usage in the design of 3D car body and mugs. In recent years, the idea of using ML for

automatic design synthesis has also gained increasing popularity [315, 348, 349], especially in the

mechanical design community. For instance, Zhang et al. [53] used an unsupervised VAE to learn

a generative model from a corpus of existing 3D glider designs and demonstrated the utility of the

VAE in the 3D outer shape design of gliders. Chen and Fuge [54] developed a generative model

established upon a GAN for synthesizing smooth curves, in which the generator first synthesized

parameters for rational Bézier curves, and then transformed those parameters into discrete point

representations. In another study, Chen and Fuge [55] considered the interpart dependencies and

proposed a GAN-based generative model for synthesizing designs by decomposing the synthesis

into synthesizing each part conditioned on its corresponding parent part. The UQ methods for ML

models presented in Sec. 3 can be directly applied to the aforementioned neural network models to

improve the effectiveness of feature extraction in engineering design by enabling dimension reduction

or generative design under uncertainty. However, as of now, only a limited number of studies have

touched on topics to investigate the UQ of neural networks used in feature extraction.

For global surrogate modeling, approaches have been investigated using various ML methods,

including GPR models, neural networks (both regular artificial neural networks and DNNs), sup-
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port vector regression, random forest, etc. For local surrogate modeling, however, most current

approaches are developed based on GPR models. This is largely attributed to the capability of

GPR to analytically quantify the predictive uncertainty in the form of a Gaussian distribution that

is convenient to use. In fact, most of the learning functions for local surrogate model-based relia-

bility analysis are derived or developed based on GPR models. For example, learning functions in

closed forms as given in Eqs. (B.1a) and (B.1b) have been derived for GPR models. Quantifying

the predictive uncertainty of GPR models in the Gaussian form facilitates an efficient evaluation

of various learning functions for the refinement of local surrogates. In addition to GPR-based local

surrogate modeling methods, a few approaches have also been proposed for local surrogate modeling

based on UQ of support vector regression models [350, 351]. In recent years, with the rapid devel-

opment of deep learning techniques and the capability of quantifying the prediction uncertainty of

deep learning models, local surrogate modeling methods have been studied for deep neural networks

to achieve “active learning” [352–354]. For instance, Xiang et al. [354] proposed an active learning

method for DNN-based structural reliability analysis by extending a weighted sampling method

from GPR models to DNNs. This extension allows for selecting new training data for refining DNN

models for reliability analysis. Similarly, Bao et al. [355] extended the subset sampling method

to DNNs, resulting in an adaptive DNN method for structural reliability analysis. Even though

active learning for local surrogate modeling has great potential in reducing the size of training data

required to build accurate surrogate models, it is still in the early development stage for other ML

models beyond GPR models. In particular, many existing UQ methods for deep learning models

are still far from GPR’s scientific rigor and theoretical soundness because few can stand strict UQ

tests pertaining to uncertainty calibration, decomposition, and attribution. Additionally, even fewer

methods offer principled ways to reduce the predictive uncertainty of deep neural networks. With

UQ methods for ML models (as reviewed in Sec. 3) getting more and more mature, we foresee that

active learning for local surrogate modeling will also become a very active research topic for ML

models other than GPR models.

Similar to local surrogate modeling, even though some deep learning-based optimization methods

have been developed recently [356, 357], ML-enabled optimization has mostly been studied using

GPR models, resulting in a group of Bayesian optimization-based engineering design methods [328,

358, 359], whose applications include material design [360, 361], design for reliability [362], and

design for additive manufacturing [363]. Because GPR is a flexible and versatile framework, which

means it can be fairly easy to extend to other problems and applications, numerous extensions have

been considered to adopt GPR models in different settings under the big umbrella of “Bayesian

optimization”. These extensions include, but are not limited to, using multi-fidelity strategy to

reduce the required number of high-fidelity samples in GPR-based Bayesian optimization [364],

Bayesian optimization for multi-output response [365], enhancing Bayesian optimization through

gradient information during the construction of a GPR model [366], Bayesian optimization for

problems with mixed-integer design variables (also known as mixed-variables) [367], and Bayesian

optimization based on heteroscedastic or non-stationary GPR models [118, 368–370].

Based on the above reviews, we can conclude that the UQ methods for ML models reviewed
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in Sec. 3 provide valuable tools to fill the gaps in the following three major activities of ML-based

engineering design: ML-enabled feature extraction, surrogate modeling, and optimization.

a. Enabling uncertainty-informed surrogate modeling and optimization: The UQ meth-

ods for neural networks presented in Secs. 3.2 and 3.3 enable us to extend various local surro-

gate modeling and optimization methods, which are originally developed for GPR models, to

various neural network-based ML models. This opportunity is especially important for deep

neural networks that are gaining popularity in the engineering design community.

b. Accounting for aleatory uncertainty in ML-based engineering design: Most current

methods for global surrogate modeling, local surrogate modeling, and ML-based optimization

lack the capability of considering input-dependent aleatory uncertainty during the local surro-

gate modeling or optimization. UQ methods newly developed in the ML community such as

the neural network ensemble method reviewed in Sec. 3.3 offer opportunities to address this

important issue.

c. Reducing computational cost: Computationally efficient UQ methods are needed to quan-

tify the predictive uncertainty of ML models, since local/global surrogate modeling and its

applications to design optimization more than often require multiple UQ runs, with each run

at a different input sample (e.g., for the iterative refinement of a surrogate or search for a

global optimum). A computationally expensive UQ procedure could significantly increase the

overhead time for surrogate modeling or design optimization, which may diminish the benefits

of using an ML model in engineering design. To enable the wide adoption of UQ for ML in

engineering design, the UQ method should be able to not only accurately quantify the predic-

tive uncertainty, but also be very efficient in doing that. The methods presented in Sec. 3.2

and 3.3 have great potential to address this issue.

In summary, UQ of ML models is essential for ML-based engineering design to enable accelerated

design optimization and analysis and scale design optimization to large-scale problems. The ap-

proaches presented in Sec. 3 could lead to a paradigm shift in various engineering design applications

(e.g., materials, energy systems, additive manufacturing, to name a few) in the long term.

Appendix C. UQ of ML models in prognostics

Appendix C.1. Introduction to prognostics

Prognostics aims to predict the future evolution of the health condition of systems, components,

or processes based on their current state, the past evolution of the health condition, and the future

predicted or planned usage or operating profile [202]. If no additional information on the future

usage or operating profile is available, it is often assumed that the system will be operated in the

same way as it was operated in the past.

Generally, two different types of data-driven approaches for predicting the RUL can be distin-

guished [371]:
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1. Identifying a health indicator and predicting its trend until a defined threshold is reached.

2. Directly mapping the extracted features or raw measurements as in the case of DL to the RUL.

For the first approach, the focus is on identifying a specific parameter or health indicator that

is indicative of the health state of the system or component being monitored. This degradation

indicator could be a physical measurement, a derived relevant feature or a combination of several

degradation indicators that change over time as the system undergoes degradation. Once the health

indicator is identified, the next step is to predict its trend over time. This involves using various

predictive modeling techniques, such as regression or time-series analysis, to estimate how the health

indicator evolves as the system degrades over time. The goal is to predict when the health indicator

will reach a defined threshold, indicating that the system or component is reaching the end of its

useful life.

For the second approach, instead of focusing on predicting the trend of a specific health indicator,

the predictive model directly maps either the extracted features or, in the case of deep learning,

directly from the raw measurements of the system or component to the RUL.

Appendix C.2. Sources of uncertainty in prognostics

In prognostics, there are several sources of uncertainty that can affect the quality of RUL pre-

dictions. These uncertainties can originate from diverse factors, and depending on the system, they

can impact the RUL prediction to various degrees [47].

While measurement and model uncertainty are common sources of uncertainty in all disciplines

and are also encountered in prognostics, some additional challenges for prognostics in terms of

uncertainty include the uncertainty of the future usage and operating profiles, the quality and

the limited availability of representative time-to-failure trajectories, high variability of operating

conditions, and the dependence on external factors and environmental conditions and their impact

on system degradation. Moreover, since failure modes and their mechanisms play a crucial role in

the evolution of component and system degradation, the precise degradation mechanisms leading

to failures may not be fully understood or may involve complex interactions. Such uncertainty in

failure modes adds an additional source of uncertainties to the predictions.

Appendix C.3. DL for prognostics

The great advantage brought by DL approaches in the context of prognostics stems from their

ability to automatically process high-dimensional, heterogeneous - and often noisy - sensor data in

an end-to-end fashion, learn the features automatically and reduce the necessity for hand-crafted

feature extraction to the minimum [203]. This concept has given rise to extensive research showcas-

ing the prediction capabilities of modern DL algorithms in the context of prognostics. Nevertheless,

most of these approaches are designed to output a single-point estimate of the RUL of the consid-

ered industrial or infrastructure assets ([202, 203, 214] and the references therein). This is the case

since standard neural networks’ outputs are deterministic and are not typically accompanied by a

meaningful probabilistic interpretation. This is undesirable in the context of prognostics. Sensor
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data are frequently distorted by multiple sources of noise and, training data is often limited in scope

and fails to represent the full range of conditions that may arise in real-world scenarios. Conse-

quently, there is a significant risk of encountering high levels of epistemic uncertainties, which must

be quantified and communicated to the decision makers.

Appendix C.4. State-of-the-art uncertainty-aware DL approaches for prognostics

The emergence of DNNs has contributed to mitigating the two aforementioned issues, providing

a highly expressive class of methods capable of efficiently processing large-scale datasets (see [202,

203, 214] and the references therein). Since standard DL approaches do not naturally incorporate

UQ routines, using neural networks in prognostics has come at the price of neglecting UQ, hence

providing simple point-estimate predictions as outputs. Only recently, thanks to recent advances in

BNNs, more efforts have been spent in designing uncertainty-aware DL techniques for prognostics.

One of the simplest strategies to enable UQ of DNNs is MC dropout. As explained in Section

3.2.3, this method is based on activating dropout layers at inference time, thereby, making the

neural network’s forward pass stochastic. Thanks to its intuitive rationale and relatively straight-

forward implementation, it is not surprising that the majority of uncertainty-aware DL methods

for prognostics have been established on this strategy in combination with standard neural network

architectures, such as fully-connected neural networks [208, 372], CNNs [373–375], and RNNs [376–

381]. Engineered systems to which MC dropout has been applied in prognostics include lithium-ion

batteries [208, 375, 379], turbofan engines [372, 373, 378, 382], bearings [375, 376], solenoid valves

[374], hydraulic mechanisms [377], and circuit breakers [377]. While most of the studies have ap-

plied existing MC dropout implementations to prognostics, in [377], the authors propose an adapted

framework to model epistemic and aleatory uncertainty by means of MC dropout and a final aleatory

layer with two nodes representing the parameters of either a Gaussian or two-parameter Weibull

distribution. By appropriately sampling from the weight distribution entailed by the MC dropout

and from the output distribution of the final aleatory layer, the authors are able to extract and

disentangle epistemic and aleatory uncertainty.

Besides MC dropout, ensemble methods [383–386] and deep Gaussian processes [387, 388] have

also been used in prognostics. In particular, in [386], an ensemble of Echo State Networks (ESNs), a

type of reservoir computing method, aggregated with an additional ESN on top of the ensemble to

estimate the residual variance, is used to predict the RUL and the associated prediction intervals.

The model is tested both on toy cases and on real industrial datasets and is shown to yield good

performance. In another research study, Deep Gaussian Processes [299, 389], have been employed for

the prediction of the RUL on a dataset of turbofan engines [387]. The advantage of these techniques

lies in the fact that they combine the probabilistic nature of standard GPR and the expressive power

of DNNs. In addition, contrarily to vanilla GPR, they can be applied to the “big-data” regime,

which is very common in prognostics. The results show that deep Gaussian processes perform well

in the task of RUL prediction, outperforming a number of deep learning baseline methods.

127



100 101 102 103 104

Epoch
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
RM

SE
 L

os
s

(a) Train
Validation

100 101 102 103 104

Epoch
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

RM
SE

 L
os

s

(b)

Figure D.28: Training and validation losses for MC dropout models with dropout rate of (a) 0.05 and (b) 0.2 respec-
tively.

Appendix D. Demonstration of Instability of MC Dropout

In Section 3.2.3, we mention the instability of the MC dropout model arising from even slight

variations in hyperparameters, such as model size, training epochs and dropout rate. In this ap-

pendix, we first show the training and validation losses for two MC dropout models trained with the

same data of the toy example from Section 3.5 in Fig. D.28. The two MC dropout models have the

same architecture (3 ResNet blocks as shown in Fig. 15), but have different dropout rates. In this

case, the MC dropout model converged at around 500 epochs, but no over-fitting is observed until

10000 epochs. Next, we plot the uncertainty maps for various configurations of the MC dropout

model in Table D.8. The uncertainty maps are highly inconsistent, thus leading to our conclusion

about the instability of MC dropout.
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Table D.8: Demonstration of the instability associated with uncertainty maps of MC dropout with respect to dropout
rate, number of training epochs, and ResNet architecture.
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