Millimeter Wave Radar-Based Road Segmentation

Mark A. Southcott?, Leo Zhang”, and Chen Liu?®

2Clarkson University, Potsdam, NY
PIndependent Researcher

ABSTRACT

Research into autonomous vehicles has focused on purpose-built vehicles with Lidar, camera, and radar systems.
Many vehicles on the road today have sensors built into them to provide advanced driver assistance systems.
In this paper we assess the ability of low-end automotive radar coupled with lightweight algorithms to perform
scene segmentation. Results from a variety of scenes demonstrate the viability of this approach that complement
existing autonomous driving systems.
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1. INTRODUCTION

A 2015 study found that 94% of road accidents are caused by human error.! The largest error type was
identified as recognition failure: certain aspect of the scene, being road path, presence or absence of an obstacle,
lane markings, etc., was incorrectly perceived by the driver, resulting in the motor accident. In 2019 motor
vehicle accidents resulted in over 36,000 deaths in the United States? alone. Two independent approaches have
been developed to reduce human errors, advanced driver assistance systems (ADAS) and autonomous driving
systems (ADS). ADAS augment the human driver with alerts based on the presence of detected objects and is
widely implemented in industry using cost-effective camera, Lidar, radar, and ultrasonic sensors. ADS, on the
other hand, is an emerging technology that relies on high quality camera, Lidar, and radar sensors to reduce or
eliminate recognition errors. There are existing companies operating ADS taxi services? and more companies
are nearing commercial operation of their own ADS taxis,® demonstrating ADS capabilities.
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Though there has been significant progress towards developing ADS that can be mass deployed, there are
still significant hurdles towards fully trusted ADS. The most common processing pipeline relies on high definition
(HD) maps of the environment that the ADS will operate in. However, even the maps at a small city scale require
more than a terabyte of storage for the maps, which also requires significant upkeep to maintain accuracy.*®
The sensing technology is another limiting factor. Of the sensing modalities used by ADS for localization in
global map and local route planning, camera and Lidar are the most commonly-used sensors.® However, both
sensing modalities suffer from severely degraded performance in inclement weather, illumination conditions” and
transparent objects.® While Lidar systems can provide the most accurate sensing, they come at a hefty cost,
where entry-level automotive grade Lidar can cost around $25,000 USD and high-end Lidar can cost as much as
$100,000 USD.” On the other hand, commoditization of Lidar, increased production scale, and new designs are
driving down the cost of automotive grade Lidar.

A complementary sensing modality for camera and Lidar-based ADS is frequency modulated continuous
wave (FMCW) radar. FMCW radar is robust in the face of inclement weather and unaffected by illumination
conditions,'® but suffers from lower resolution compared to camera and Lidar sensors.'' Imaging radars using
several coupled radar chips offer fairly high azimuth resolution of less than 2 degrees and have been used to
segment road surfaces'? while single chip radar systems typically only provide 15 degree azimuthal resolution.

Single chip radar is common in the automotive industry with radar placed around the body of vehicles used for
ADAS functions like adaptive cruise control, lane change assist, cross traffic warning, and blind spot detection.'3
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In this work we propose a low computational complexity algorithm for segmenting roads using a single-chip
automotive radar, providing ADS capability with an ADAS sensor. To the best of the authors knowledge, this
is the first work targeting this class of radar for road segmentation and opens new research about the dual-use
capability of existing automotive radar.

2. RELATED WORK

In this section we review related work in road segmentation and the application of radar to the ADS problem.

2.1 Road Segmentation

ADS increasingly relies on road segmentation to determine traffic lanes and road boundaries. Lidar and camera
systems have been extensively studied both independently'* '® and fused.'® Early approaches made assumptions
about road structure, such as what markings would be on the boundaries of roads and lane, but more recent
approaches are able to operate in unstructured road environments.'”'® However, the performance of both
modalities is dependent on favorable weather.

The ability of FMCW radar systems to segment scenes has recently begun to be investigated with approaches
using data from the range-angle heatmap'? %20 and others using range-doppler data.?! A unique approach uses
ground penetrating radar (GPR), instead of the traditional automotive radars, to segment the road.?? Each of
these approaches used custom designed or high-end imaging radar.

2.2 Radar ADS

Radar-based ADS are a less-developed field than its Lidar and camera-based counterparts. Three years after the
Oxford Robotcar dataset® was published, a radar extension was published to encourage research in radar-based
ADS.?3 Most radar ADS use mechanically actuated radars'®'? which provide higher angular resolution than
MIMO radar at the cost of lower frame rate and radial blur. More recent work has been using MIMO radar,?*
trading away the higher angular resolution of the mechanically actuated radar for the higher frame rate and
lower complexity of the MIMO system.

3. BOUNDARY DETECTION AND SEGMENTATION ALGORITHMS

In this paper we investigate the ability of TI AWR1843, an FMCW radar representative of those installed
on many vehicles, to segment individual scenes into drivable and non-drivable areas. Configuration and data
collection were performed using TT DCA1000EVM data capture board which allowed a simple method for data
to be transferred to Matlab for post-processing. The radar was programmed with the parameters given in Table
1.

Data was collected with the radar at a variety of heights low to the ground and representative of vehicle
bumper heights. Scenes collected included pavement transitioning to curbs, grass, and snowbanks. We structure
our approach to have low computational complexity in order to be applicable to the processors found in existing
radar-equipped vehicles.

Parameter Value

Virtual Antennas 8
Effective Bandwidth 2.56 GHz
Number of ADC Samples 256
Chirps per Frame 64
Table 1. Radar Configuration




Algorithm 1: Joint-Variance Towards Boundary Detection

for row rint do

r =r/max(r);

vl = variance(r);
end

for column cini do
¢ = ¢/mazx(c);

v2 = variance(c);

end
V = elementwise multiply(vl,v2);

3.1 Proposed Algorithms

Once data has been collected and processed to a range-azimuth intensity heatmap i, we apply Algorithm 1 to
calculate the joint variance V in range v1 and azimuth v2. This approach minimizes the effect of large target
sidelobes without the computational complexity of many constant false alarm rate (CFAR) algorithms. The
joint variance is windowed in range and azimuth to exclude near- and far-field effects and compared against a
threshold to identify surface transitions.

The output of Algorithm 1 is called the boundary map M. M is segmented by passing a window w over each
ray r from the origin to the maximum range. If the window exceeds the threshold t, the section covered by the
window is deemed to be non-drivable. The window is introduced as a low-complexity method of limiting the
impact of radar noise in surface classification. Once the window passes the threshold, variable b is switched so
any areas below the threshold after the non-drivable surface are deemed to be shadowed by the boundary and
labelled as such. Labels are stored in the segmentation map S.

Algorithm 2: Segmentation

for ray rin M do

if sum(w) >=t¢ then
S = boundary;
b = true;
end
if sum(w) <t then
if b then
‘ S = shadowed,
else
| S = drivable
end
end

end

3.2 Comparable Algorithms

We compared our proposed boundary detection and segmentation algorithms against a variety of CFAR algo-
rithms and the Sobel edge detection algorithm in an effort to validate the effectiveness of our approach in accuracy
and execution speed. Cell-Averaging CFAR (CA-CFAR) and Greatest of Cell Averaging (GOCA-CFAR) were
chosen as they are representative of the family of CFAR algorithms commonly applied to radar signals. CFAR
operates by taking, for each cell-under-test (CUT) in the data, the average power of a number of surrounding
cells and computing a threshold off that average. If the CUT power is greater than the threshold it is labelled as
occupied, otherwise it is labelled as unoccupied.?® Sobel edge detection is a classic image processing algorithm
that calculates the gradient of each pixel of an image using a 3 x 3 kernel and compares the output to a threshold
- gradients greater than the threshold are marked as edges.?%



4. EXPERIMENTAL RESULTS

Figure 1 shows the capability of the proposed algorithms with a variety of surface transitions, with the easier
surface transitions on the left and the harder transitions on the right. From left to right the system is looking at
a curb, down a narrow alley, driveway flanked with snow, low (around 2cm) cement barrier between pavement
and grass, and a direct pavement to grass transition. In all cases the third row - the boundary map output from
Algorithm 1 - clearly shows the delineation between drivable and non-drivable surfaces. The fourth row - the
segmentation map created by Algorithm 2 shows a strong agreement with ground truth for the easier transitions
and decreasing performance with the harder surface transitions.

Figure 1. Top row: camera images of scenes, Second row: radar intensity heatmap, Third row: boundary detection,
Bottom row: Scene segmentation where light blue is drivable, yellow is boundary, and dark blue is shadowed

Our algorithm was implemented in Matlab and compared against the built-in Matlab instances of the CFAR,
and Sobel functions. Figure 2 shows the superiority of the joint variance approach in repressing radial blur
without sacrificing the actual data. The various CFAR and image processing algorithms clearly perform worse
both in preserving the actual data and repressing radar artifacts. Furthermore, the joint variance method
outperformed the CFAR methods by at least two orders of magnitude in execution speed as shown in Table
2. While Sobel edge detection outperforms the joint variance approach in execution speed, the detected edges
are less accurate to ground truth than the joint variance method. Timing was taken by using Matlab’s timeit
function to provide an average execution time over several runs.

Method Execution Time
Joint Variance (Our scheme) .69 mS
Sobel .25 mS
CA 87.0 mS
GOCA 114.5 mS

Table 2. Comparison of joint variance execution speed to CFAR and Sobel execution speeds
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Figure 2. Comparison of (1) joint variance technique from this paper against (2) Cell-Averaging CFAR, (3) Greatest of
Cell Averaging CFAR, and (4) Sobel edge detection

5. CONCLUSIONS

In this work we demonstrated the ability of a low-cost automotive radar to segment common surface transitions
which outperforms common radar and image processing detection schemes. Our segmentation algorithm is
computationally simple, designed to be suited for edge processors and real-time applications. Future work
includes assessing these sensors with key point detection, map building for SLAM, and fusion with Lidar or
camera Sensors.
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