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ARTICLE INFO ABETRACT

Handling Bditor: Karen Vancampenhout Characterizing the distribution and dynamics of organic carbon in 2oil iz critical for quantifying changes in the
global carbon cycle. In particular, weathering conirol: on near-surface and deep (=1 m) soil organic carbon

Eeywords: (S0C) dynamics hawe been proposed but limited data preventz us from predicting SOC over topographically

Mmm complex landscapes and quantifying how changes in climate and perturbations, such az wildfire or land man-

“"""ﬂ‘ﬂ"“? agement, influence S0C stocks. To advance our understanding of how weathering alters s0il geochemistry and

F ]; i ineral influences 30C storage, we synthesize previous data with a new analyziz of the Siuslaw River soil chronose-

quence from terraces in the Oregon Coast Range, a region that harbors the rchest S0OC inventories in the con-
tnental US. We analyze how the relationships between zoil geochemistry, physical propertiez, and S0C storage
wvary with weathering status and pathways across zoils that span 0.041 to 990 kyr and vary in depth from 1 m to
=10 m To distinguish the key properties and processes influencing S00C storage at different depths, we break our
analyzizs into three depth intervals: 0-30, 30-100, and :>100 em. Our resultz suggest that the processes that
control 30C stocks vary systematically with time and depth owing to weathering impacts on soil properties and
pedogenic development. At 30 kyr we observe a peak in 50C stock in the top 100 cm coincident with a peak in
oxalate extractable Al and Fe concentrations, representing secondary poorly crystalline mineralz, which iz
consiztent with previous studiez. We also obzerve a decline in shallow S00C stock for »30 kyr soils az poorly
cryztalline mineralz are replaced by more stable erystalline forms and zoils become clay dominated. At 120 kyr,
S0C below 100 cm startz to contribute significantly to the total 50C profile inventory and by 990 kyr, this
fraction composzes >40% of the total 50C stock Taken together, our results indicate that total S0C stock in-
creaszes with zoil age az the increazed intensity of bedrock weathering deepens the critical zone, creating ac-
commaodation space for deep SOC storage. These findings reweal the intimate link between poorly crystalline
minerals and S0C and suggest that systematic analyzizs of soil development in the critical zone provides a first-
order constraint on S0C stocks.

1. Introduction et al, 2009). The relative amount of OC in the pedosphere compared to
the atmosphere and biosphere, means small changes in zoil organic

The pedosphere stores ~2.400 Pg of organic carbon (OC) in the carbon (S0OC) can influence atmospheric CO5 and global carbon dy-
upper 2 m (Batjes, 2014), which iz more than the biosphere and atmo- namice (Conant et al., 2011; Minasny =t al., 2017). However, uncer-
gphere combined, making 1t the largest terrestnial pool of OC (Jobbagy tainty in the distnibution, stability, and dynamics of organic carbon in
and Jackson, 2000; Kirechbaum, 2000; Le Quere ot al, 2015; Tarnocal the zoil limits our understanding of the global carbon cyele and how

Abbrevimtions: S0C, soil organic carbon; MAOC, mineral-associated organic carbon; POC, particulate organic carbon; SRC, Siuslaw River Chronosequence; PCM,
poory crystalline mineral.
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Fig. 1. Map of terrace locations for soil chronosequence over slope angle map modified from Almond et at. (2007). Terrace rizers (white linez) and soil pit locations

(black dots) represent sites of zoils detailed in Almond et al. (2007

Table 1
Terrace  Age Elevation Depth of MAP MAAT
(kyr) {m)* weathering (cm)’ a—t o
Tla 0041 ° B5.5* 40 1,300 10.5
Tib 1t B5.5* 77 1,300 10.5
12 30° B9.0 109 1,900 11
T3 69" 94.3 260 1,900 11
T4 1407 106.9 310 2,400 11
= 200 ¢ 117.6 460 2,400 11
T6 g0a * 2489 =910 2,550 95
17 g90” 2638 1,100 2,550 95

* Tla age iz bazed on the occumrence of a significant flood in 1964, Samples
were collected in 2005 zo we applied an age of 41 years;

b T1 age of 3.5kyr was based on radiocarbon dating of detrital charcoal from
Almond et al, (Z007). We estimated an age for Tlb by azsuming it iz younger
than the fourth buried sodl;

* from Almond et al (2007), based on radiocarbon dating of detrital chareoal;

4 from Almond et al. (2007), bazed on elevation, uplift rates and back caleu-
lation from incizion rates;

* from Almond et al. (2007, feld work with GPS;

! from Almond et al. [2007), equivalent to base of saprolite;

* from Soil Survey of Land County Area, Patching, W.R_, (1987).

perturbatione, such as wildfire or land management, may influence SOC
stocks.

While many S0C studies focus on climatie, biologie, or lithologic
controls on SOC storage (Silva and Lambers, 2021); weathering on
millennial and longer timescales playe a key role in the development of
goll ecosyetem properties that modulate SOC storage (Doctter] =t al |
2018; Hemingway ot al, 2019; Schmidt et al, 2011). In addibon to the
influencing SOC longevity itself (Eogel-Enabner et al, 2008; Lavallee
et al, 2020; Six =t al, 2000), soll texture, soil chemistry, thickness,
aggregate abundance, and mineralogy set the accommeodation space and
protection mechaniems necessary for S0C storage (Eramer and

Chadwick, 2016; Lehmann et al, 2020; Maziello et al, 2004; Slessarev
etal, 2022). In general, these soil properties depend on the rates of frech
mineral supply (soil production), weathering, and erosion (Doctter
et al, 2016; Mudd and Yoo, 2010). Over millenmin, these processes
control soil properties required for significant SOC storage suggesting
that analyziz and quantification of soil development can advance our
understanding of the persistence and preservation of S0C (Lehmann
et al., 2020).

Chronosequence studies are often used to iInvestigate the trajectory
alogy amd phyeical properties (Almond et al., 2007; Birkeland, 1992;
Harden, 1982; Lawrence et al., 2015; Lilienfein et al., 2003; Lindeburg
et al,, 2013; Mainka et al., 2022; Masiello et al_, 2004; Tomn et al., 1997;
Vreeken, 1975, 1975; Walker =t al., 2010). To isolate the effect of ime,
chronosequence studies examine soils acroes landforms with consistent
vegetation (net primary production input), climate and parent material
(Almond et al, 2007; Baisden et al, 2002; KEramer and Chadwack, 2016;
Maziello et al | 2004). These landforms often orginate from marine,
fluvial, or glacial deposits or lava flows and are assumed to expenience
changes over ime. Prom these studies we understand that as soils age,
continual physical and chemical weathernng breaks down and converts
primary minerals to secondary ones. For soile in humid envireonments,
thiz causes an increase in silt- amd clay- sized minerals and greater
abundance of reactive pedogenic products such az Fe-oxides and Al-
oxyhydroxides {Chadwick and Chorowver, 2001 ; Lawrence et al | 2015),
and higher ageregate abundanes and stability (Wei et al, 2016) in the
so0il matrix. The patterns and timeseales of zoil property development
and S0OC storage play an integral role in connecting the trajectory of soil
development and 50C stocks (Baldock and Skjemstad, 2000; Lawrence
et al, 2021).

Clay-gized particles have long been hypothesized to be one of the
carbon (MAOC) protection (Fleber =t al | 2021; Six et al., 2000), by
providing larse amounts of surface area to form organo-mineral



B.D. Hunter et ol Geoderma 436 (2023) 116531

1.5
i 1.0
® 0.5
L.
e
-0.5
-154 :-—LCI
—20 =15
A:0-30 cm [ | t
_25 T T T T T L | T T T T _zﬂ
1.00
T 24 ”®
at.‘:n =075
< o - %
B e Y % alo
¢ RS -
7 n » % A, s 05
D um
3 . #a
h= L -0.25
@ g
2}
= -0.50
=
] —H = -
g B: 30 - 100 cm . [ o7
-m--.w.l—.—,-m.,—,—.-,-m.,—,—,-mw,—,—,-ms e rrer—r—rerrre—r—rrrr—r—rrreee —1 00
1
. ‘—o.a
Jll-CI:E
A
--- —I——.—‘———¥~ 0.0

§
Y
¥8

i Mgo

’ Fal e —.4

$ Ca0
-4 .
o Na20 ‘ 0.6
® A0 o . 0.8
A Fe:0: C:>100cm m
B S5i0: A errrmp—r—rrrrmp——r—rrreny—r——rrrr—r———r -1.0
(0] 1 10 100 1000 Q 1 10 100 1000

Terrace Age (kyr)

Fig. 2. Depth weighted &, (kgm~) for soil depth intervals 0-30 cm, 30-100 cm and below 100 em. Left column - depth weighted mazs change for Mg, K, Ca, Na, Al,
Fe and 5i. There iz 5i loss with age for all depth intervals. Right column - zoomed in depth weighted mazs change for Mg, K, Ca, Na, AL and Fe. There iz Al and Fe
enrichment and Mg, K, Ca, and Ma depletion with age for all depth intervals.

associations, which provides chemical protection from decomposition iz either free floating or phyeically protected through ceclusion in ag-
through the adserption of OM onto mineral surfaces. This chemical gregates (Blanco-Cangui and Lal, 2004; Rasmuszen et al., 2005; Totsche
protection 1= conducive to longer mean residences imes of 10 to 1,000 of et al., 2018), (Lavallee et al., 2020; Lehmann and Eleber, 2015). How-
yeare compared to the particulate orgamc carbon (POC) fraction which ever, a myriad of studies have found that it 1= not only texture, but
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Table 2
Terrace soil organic carbon (SOC) stocks (kg m2) for total profile and each depth
interval.

SOC Stock (kg m?)

Terrace Age (kyr) 0 30 cm 30 100 cm 100 cm Total
Tla 0.041 1.97 0.69 0.00 2.66
T1b 1 3.45 3.33 0.00 6.78
T2 30 14.27 11.16 3.21 28.65
T3 69 11.16 4.51 4.43 20.09
T4 140 4.88 5.92 5.01 15.81
T5 200 11.57 10.00 7.76 29.32
T6 908 8.04 7.85 15.24 31.12
T7 990 11.06 7.84 13.09 31.99
Table 3

R-squared values for SOC density (kg m *) and variables with analysis for all
samples and subsets of samples for intervals 0 30, 30 100, and 100 cm.

Full Profile 0 30 cm 30 100 cm 100 cm
Age (kyr) 0.009 0.052 0.026 0.066
CEC (cmolc kg 1) 0.663 0.794 0.699 0.000
Ald (gkg b 0.517 0.588 0.300 0.578
Alo (gkg 1 0.590 0.604 0.398 0.331
Alp (gkg 1) 0.728 0.581 0.531 0.281
Fed (gkg ) 0.000 0.194 0.011 0.018
Fep (gkg ) 0.832 0.712 0.677 0.156
Feo (gkg 1) 0.494 0.404 0.314 0.158
0.5 Feo Alo(gkg 1) 0.607 0.584 0.408 0.364
Sand % 0.034 0.197 0.078 0.260
Silt % 0.047 0.464 0.340 0.194
Clay % 0.010 0.024 0.006 0.440
Center Depth (cm) 0.243 0.143 0.326 0.358
pH 0.000 0.312 0.082 0.075
SOC % 0.945 0.918 0.964 0.978

mineral composition as well that influences how well a clay or silt size
particle will protect SOC (Rasmussen et al., 2018). Specifically, poorly
crystalline minerals (PCMs) containing Fe and Al have been shown to
have a strong positive association with SOC content (Lawrence et al.,
2015; Masiello et al., 2004). As such, understanding how the abundance
of PCMs evolves in the critical zone (CZ) is important for SOC prediction
and modeling (Slessarev et al., 2022).

During pedogenesis Al rich minerals, such as feldspars, and Fe-
bearing primary minerals, such as biotite and magnetite, weather and
alter to form nanocrystalline hydroxide-rich secondary minerals that
then slowly polymerize through dehydration to form stable crystalline
secondary minerals. Poorly crystalline Fe-oxides are composed of crys-
tallites of ferrihydrite or nano-goethite and Al-hydroxides and oxy-
hydroxides, are composed of crystallites of allophane, imogolite, and
halloysite. Due to their nano-crystalline structure, PCMs have extremely
high surface area and a mix of charges that are conducive to creating
organo-mineral associations that protect OM organic matter from mi-
crobial decomposition (Eusterhues et al., 2003; Kaiser and Guggen-
berger, 2003; Kleber et al., 2015; Lawrence et al., 2021; Mikutta et al.,
2005; Mudd and Yoo, 2010; Parfitt and Childs, 1988; Yoo and Jelinski,
2016). Although PCMs may make up a small fraction of the total mineral
content of the soil, this fraction can account for a disproportionate
amount of the total SOC storage. For example, across a chronosequence
(300 yr to 4,100 kyr) of volcanic soils on the Island of Hawaii, Torn et al.
(1997) found that organic matter sorbed to non-crystalline clays
accounted for 40% of OC content variation in all mineral horizons.
However, over long timescales PCMs are metastable and weather to
more crystalline Fe and Al bearing clays, such as goethite or kaolinite
respectively, which have lower surface area and less reactive surfaces to
bond with OM (Chorover et al., 2004; Garcia Arredondo et al., 2019;
Masiello et al., 2004; Torn et al., 1997). Torn et al. 1997 documented
this shift when they saw a peak in PCMs and SOC on 150 kyr lava flows
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and an increase in crystalline forms accompanied by a drop in SOC
stocks for older surfaces approaching 1 Ma. Analysis of OM association
with PCM at depth is important to characterize because the abundance
of PCMs is variable with depth as well as with age.

Historically, most studies focus on SOC measurements in the top 30
cm (Yost and Hartemink, 2020), where the highest density of SOC is
typically observed. However, a growing number of studies highlight the
significant contribution of deep SOC stocks in many landscapes
(Fontaine et al., 2007; Harper and Tibbett, 2013; Jobbagy and Jackson,
2000; Moreland et al., 2021). Fluxes of OM decrease with depth,
contributing to observed rapid decline in SOC content in deeper soil
horizons. Nevertheless, microbial activity, root exudates, and infiltra-
tion of dissolved organic carbon (DOC) supply deep regolith with OM
(Guggenberger and Kaiser, 2003; Kaiser and Kalbitz, 2012; Sanderman
etal., 2008; Sanderman and Amundson, 2008). SOC in deep horizons are
sometimes considered to be recalcitrant with limited ability to be
degraded by microbes (Rumpel and Kogel-Knabner, 2011), but potential
turnover and accessibility may be greater than previously thought.
While most studies of deep SOC have been conducted on landforms
underlain by thick unconsolidated deposits, the potential for SOC stor-
age in weathered bedrock must be evaluated (Harper and Tibbett, 2013;
Lal, 2018; Moreland et al., 2021; Riebe et al., 2017; Georgiou et al.,
2022). For example, Moreland et al. (2021) found on average that 74%
of OC was located below the A horizon and that up to 30% was stored in
saprolite, material where original rock fabric is maintained but weath-
ering has increased friability and porosity (Graham et al., 2010) across a
bio-climosequence in the Sierra Nevada, California. Work by Riebe et al.
(2017) focused on deciphering the range of mechanisms that may con-
trol the penetration depth of the critical zone into bedrock. These deep
CZ forming mechanisms have not been applied to consider their influ-
ence on SOC stocks. As a result, factors operating over a range of scales
such as tectonic stresses, frost weathering (Marshall et al., 2015), and
groundwater dynamics (Rempe and Dietrich, 2014), which have been
proposed to set critical zone depth, may play a role in determining the
depth, magnitude, and stability of SOC stocks.

Here, we synthesize previous data and analyses (Almond et al., 2007;
Lindeburg et al., 2013) with new analysis of the Siuslaw River Chro-
nosequence (SRC) soils from terraces in the Oregon Coast Range (OCR)
to quantify what controls SOC density, total SOC storage, and the
timescales and depths at which controlling variables are significant. We
perform a geochemical mass balance, analyze total soil organic carbon
stocks, and connect geochemical and physical properties to SOC content
to advance our understanding of how weathering alters mineral as-
semblages, thus soil geochemistry, and influences SOC storage. We
partition our analysis into three depth intervals: 0 30, 30 100, and

100 cm, in addition to an analysis of full soil profiles to parse out
variable controls on SOC storage with soil development. We also use the
chronosequence to analyze the timescales of PCM production and sub-
sequent conversion to more crystalline Fe and Al forms and their
accompanying association with SOC. Specifically, we seek to determine
if a sweet spot or peak of PCM concentration is observed along the
SRC, and if an associated peak in SOC storage is present, as has been
observed in a limited number of studies conducted in settings with
volcanic substrate (Lawrence et al., 2015; Torn et al., 1997). Further,
determining the timescales of weathering products that regulate SOC
storage could motivate efforts to couple geomorphic, geochemical, and
biological models for land management practices that optimize SOC
storage.

2. Materials and methods
2.1. Study Region: Oregon Coast range
Hillslopes in the Oregon Coast Range are soil mantled and tend to be

steep and highly dissected with relatively uniform ridge and valley
terrain that is sculpted by shallow landslides, debris flows, and fluvial
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Fig. 3. Depth weighted averages over time for the dithionite-citrate-bicarbonate (Fed - blue cirele), oxalate (Feo - orange triangle], and zodium pyrophosphate (Fep -
vellow square) extractions for depth intervalz 0-30 (A), 30-100 (B), and =100 em (C). Fed, a proxy for crystalline Fe forms, increases with terrace age reaching a
maximum at #30 kyr in the 30-100 cm interval Poorly crystalline minerals (PCMz), approximated by Feo, and organo-metal complexes (Fep) are emphasized in the
right column. PCMs peak in both the 0-30 and 30-100 cm intervals at 30 kyr, then decline with terrace age. Error bars reprezent the standard deviations of measured

values in the interval

incision (Dietrich and Dunne, 1978; Montgomery, 2001; Reneau and
Dietrich, 1921). Much of western Oregon 1z underlain by a thick
sequence of Eocene sedimentary rocks that include the Tyee Formation,
a sand-rich sequence of turbidite deposite (Chan and Dett, Jr., 1983;
Heller and Dickinson, 1985; Lovell, 1969) that overlic volcanic base-
ment rockes associated with Siletzia (Wells et al | 2014, 1998; Wells and
Heller, 1988; Wells and MeCaffrey, 2013). Long-term rock uplift rates

measured via marine terraces vary from <0.]1 to 0.3 mm yr ! in the
region (Beschta, 1978; Eelzey et al_ | 1996), which are similar to erosion

rates measured by cosmogenic radionuclides and suspended sediment

records of 0.06 to 0.15 mm vr 1 (Heimeath et al |, 2001 ; Marshall et al |
2017; Penserind =t al, 2017; Reneau and Dietrich, 1991). In general,

long-term uplift rates are lower than geodetic uplift rates, reflecting the
ecarthquake deformation cyele (Mitchell et al | 1994).
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Fig. 4. Depth weighted averages over time for clay (yellow diamond]), zilt (green square), and zand (purple circle) percent depth intervals 0-30 (A), 30-100 (B), and
=100 em (C). Young soilz are dominated by sand untl ~30 kyr where clay percent iz the highest Silt increaszes with clay until ~~30 kyr where it begins to decline.

The region iz characterized by a Mediterranean chimate with warm
summers with minimal precipitation and wet and cool conditions in the
winter (Fatching, 1987). Western OCR has a mean annual average
temperature (MAAT) of 10-11.1 °C and mean annual precipitation
(MAP) between 1,800-2,600 mm respectively with most oceurring be-
tween fall and spring. The dominant vegetation 1= coniferous trees,
particularly Douglas fir [Prewdotzuga mensiesii (Mirbel) Franeco] and
Western hemlock [Teuga heteraphylla (Raf ) Sarg.] Subdominant and less
abundant epecies include Sitka spruce [Picea sitchensiz (Bong. ) Carr.] and

Western red cedar [Thupa plicata (Donn) ex D. Don). The understory in
the region hoste zalal (Gaultheria shallon Pursh), salmonberry (Rubus
spectabiliz Purch), and evergreen huckleberry (Vaccinmium ovatum Pursh)
(Patching, 1987). Widespread fire management by indigenous peoples
az well az stand-replacing fires have been documented historically and
lake cores reveal Holocene fire return intervals of 200-300 years (Gavin
et al, 2003; Long =t al, 1998). More recently, the region has been
subject to widespread timber harvest activity for the past 80—100 years.
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below 100 cm S0C stock below 100 em iz removed in inzet A. When S0C =100
cm iz excluded, S0C stock peaks around 30 kyr, but then declines with age,
which demonstrates the significance of 30C below 100 cm.

2.2 Siuslaw River zoil chronosequence

Almond et al. (2007) identified and analyzed soils from the Siuslaw
River Chronosequence (SRC) that consists of 7 distinet surfaces created
by fluvial incizion (T1-T7; Fiz. 1). These terraces were carved by pro-
gressive lateral migration of a large bedrock meander in the Siuslaw
River in the central section of the OCR. T1-T5 were sampled until auger
refusal, coincident with unweathered bedrock. Sampling on T6 and T7
was limited by the practicalibes of hand augernng to @ and 10 m,
respectively (for more details on sample collection see Almond et al |
2007). In almost all cases, surfaces are strath terraces which are char-
acterized by 1 to 2 m of fluvial sediment over beveled bedrock. The
lowest terrace (T1) i= the exception, which ineludes > 2 m of overbank
sediment with intercalated buried soils. The first five fluvial terraces
(T1-T5) narrow as they increase in elevation and age. The oldest terraces
(T6 and T7) are narrow but well-defined surfaces that are remnants of
much more extensive surfaces that have been truncated by progressive
uplift and ercsion of the ridge defined by the meander (Fiz. 1).

Terrace ages for T1 and T2 were determined by radiocarbon dating
while ages for T3 to T7 were denived from an incizsion rate of 0.18 +
0.04 mm yr~ ! and elevation above modern channel (further details cn
dating methods found in Almeond et al | 2007). For the purposes of this
study, we separated the soil of T1 into 4 umits (T1a — T1d) corresponding
to 3 individual buried soils and a capping flood deposit associated with a
regionally significant flosd in 1964 (Harr, 1921 ). We lnuted our anal-
yaie from the top two: T1a and T1b (Appendix Fig. A1). Tla, classified as
an Entizel by Almond et al. (2007), consists of sandy and relatively
unweathered material reflecting historie deposition and minimal alter-
ation, overlain by a 10 em thick A horizon. T2 1= characteristic of an
Inceptizol with a thick A horizon as well We applied an age of 4] years to
Tla determuined by the ime between sample collection (2005) and flood
(1964). For T1b, the youngest of the buried eoils in T1, we interpolated
an age of 1 kyr +/- 500 yrs, with the assumption it iz younger than the
oldest buried soil where radiocarbon dates of material at the base sug-
gest 3.5 kyr (Table 1). Obeervations from Almond =t al 2007 demon-
strate unisequal pedogenic development az T2 to TS progress from an
Inceptizeol to Alfizol to an Ultisol. Both T6 and T7 are classified az Ultizols
as well.

Almond et al (2007) calibrated a soil chronofunction for the SRC
that connects the rubification of soils to soil properties and age (Swesney
et al., 2012). They demonstrated that mean soil residence time varies
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locally by orders of magmitude in response to stream capture, deep-
geated landshiding, and lateral channel magration. Lindeburg et al
(201 3) furthered thiz analysiz and explored the curious lack of podscl-
ization in the Siuslaw chronosequence, which contraste with marne
terraces found at similar latitude along Oregon Coast, with detailed sodl
chemieal, physical and mineralogical analyzie of the SRC eoile. The au-
thors postulate that lithology, vegetation or climate alone do not control
thiz and could be the result of multiple combined factors. Such as, dryer
inland soils, higher pH in surface soile, and more rapid increase in clays
in the inland fluvial SRC chronoeequence. Their measurements included
OC content, zoil texture, pH, geochemistry, mineralogy, and conducted
iron and aluminum extractions across age and depth. They observed an
increass In Al and Fe with age that supports the rubification of soils.
Here we expand upon Lind=burg =t al. (2013 50C analysiz to include
soil depths >1 m and analyze the controls of S0C density with age and
depth and the connections to Al and Fe mineral evolution with scil
development.

2.3. Elemental mass change calculations

We characterized how weathering altered the chronossquence soils
soil grochemistry. Major element concentrations were measured for Mg,
E, Ca, Na, Al, Pe, and 51 by X-ray fluoreseence (XRF) at ALS Minerals,
Reno, NV. We caleulated absolute mass changes of a specific element jin
weathered matenial w, (mygy), per unit volume of parent rock Vj, ac-
cording to the following mass balanece formulation (Anderson et al |
2002; Brimhall et al, 1991; Brimhall and Districh, 1987; Chadwick
et al., 1990):

M L Cy
B ==y~ = To0 (G, — el M

where Cj iz the concentration in weight percent of element j, g [Nl[.':'] e
the bulk dengity, my; is the maes flux of element ;. The subseript i refers to
an immobile element. We use Zr as our reference immobile element and
alluvium for the reference parent material for T1-T5 and unweathered
bedrock for T6 and T7. Negative & values indicate elemental loss and
positive values represent accumulation or gain. To identify the variable
timescales of weatherning and elemental changes with soil development,
we caleulated depth weighted 4;, averages for the soil intervals 0-30,
30-100, and >100 em (Fiz. 2).

2.4 Organic carbon calculations

Lindeburg «t al (20]3) measured organic carbon (OC) of the fine
fraction soil (<2 mm). From their measured S0C3 values (see Table 4]
for values), we calculated SOC density as a mass per volume [MLz]Fn.r
ecach interval of soil depth sampled and analyzed, we caleulate S0C
density in within a horizon as:

S0C density = 0.01-%50C-p, . (2)

where (g g 15 dry total bulk density [ML™]. Coaree material (=2 mm])
was negligible for all sites, besides on horizon in T4 where evidencs of a
potential debnis flow depoeit existe at depth (Almeond et al | 2007), thus
we do not iIncorporate a coarse fraction correction into our bulk density
caleulations. This could result in a slight overestimation of SOC density
for that =oil depth at T4

We caleulated SOC stock [kgC m 2]£ucrca.chsa.ilhmimubymu]ti-
plying the horizon SOC densigy and the hornzon thickness (h) [L], then
summing all soil horizon SOC stock values in the profile (Table Z).
Additionally, we caleulated the S50C stock for depth intervals; 0-30,
30-100, and >100 cm to determine how soil depth modulates the
interplay between measured zoill properties and SOC density (see
Table 3).
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2.5. Iron extractions

We characterize the evolution of organc-metal complexes, PCM, and
S0C content by correlating previously measured and published con-
centrations of three Fe and two Al extractable fractions conducted by
Lindeburg et al. (2013) to 80C density measurements. Lindeburg ot al.
(201 32) conducted three separate extractions in parallel; 1) sodium py-
rophosphate (Alp and Fep), which iz expected to reflect the orgameally
complexed metals (McEeague, 1967), 2) ammomum acid oxalic acid
buffered at pH 3 (Alo and Feo) which iz expected to isolate PCMs mn
addition to phases extracted by Alp and Fep, such as fermhydrite and
nanc-cryvetalline goethite (McEeazue and Day, 1966), and 3) dithionite-
citrate-bicarbonate extraction of Fe (Fed) 1= expected to extract crye-
talline Fe forms in addition to phases extracted by oxalate and pyro-
phosphate extractions (Mechra and Jackson, 1952). Sinee Fe and Al
extractions were done in parallel, thus some overlap between extrac-
tions 15 expected. Lindeburg et all (2013) reported a < 6% vanation

with szoil age and depth, we calculated a depth-weighted average for
ecach extraction. Additonally, we approximated short-range order
mineral concentration by caleulating Ale 4+ 0.5Feo (Lindeburg =t al |
2013). We present the depth varability of measurements used to
caleulate the depth weighted average within a depth interval by stan-
dard dewiation of the so0il horzon measurements within each 0-30,
30-100, and >100 cm interval (Table B.1 and C.1 for Fe and Al
respectively).

2.6. Sratistical correlation analyses

We used open-source packages in Python to caleulate correlation
cocfficients (Tablez D.1-4) and r* valuce between SOC density, OC%,
terrace age, Fe and Al extractions, texture, pH and cation exchange ca-
pacity (CEC). We conducted thiz analysiz for all layers in the whole
profile az well az for each depth interval We adjusted the depthe in T1b,
so that the top of the buried soil (bottom of T1a) is 0 em for T1b.
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zoil intervals 030 (A-C), 30-100 (D-F), and =100 cm (G-I).
3. Results
3.1. Elemental mazs change

Az soile age, they become relatively enriched in elements associated
with secondary pedogenic minerals, particularly Fe and Al (Fiz. 2a). For
ecach depth interval, we observe a loss of more soluble elements, such as
5105 and CaQ, as terraces age. Our data show the greatest total mass loss
of 8105, due to high coneentrations in the parent material. Although less
pronounced on a mass basis, our data also show loss of Mg0, Eo0, Ca0,
and MNas0 with soil age. These results are consistent with other studies
that examined elemental loss with continual scil weathenng (Anderson
ctal.. 2002). AlyOg and FeyOy are the only two elements to be enriched,
with Fe experiencing an age-related inerease in elemental mass. An
exception 1= present for Al where Al iz lost in the > 100 em depth interval
for T6 and T7.

3.2, Fe and Al extractions

Progressive weathering and soil development iz visible in the Fe and
Al extraction data. The inereasing formation of erystalline pedogenic Fe
mineral forms 1z chown by the inerease of the depth weighted average of
Fed with terrace age (Fiz. 2). This is true for all three depth intervals,
with the highest Fed concentration, 69.64 4+ /-7.75 gkg ! in the 30-100
cm interval of T6. There iz a peak in depth-weighted average of 12.18
+/- 0.60 g kg ! Feo, approximating PCMz, at 30 to 69 kyr in the top
0-30 em. A smaller less pronounced peak ~4.37 +/-1.04 g kg ! ecurs
for the average Fep, approximating the organc-metallic complexes.
However, there ie greater overlap in the Fep measurements, shown by
standard deviation: of measurements in that interval (black lines
through data). Since PCM content varies with depth standard deviations
of measurements within depth intervals are expected. In the 30-100 em
interval, we observe a small peak in Feo at 30 kyr with 8.94 +/- 275 g
kg '. Fep abundance iz minimal in the 100 cm interval for all ages. As
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zoils get older the fraction of total erystalline minerals (Fed) becomes
dominant.

Oxalate and pyrophosphate extractable aluminum (Ale and Alp
respectively) follow similar trende as Fe with time (Appendix Fiz. B1).
Alo and Alp both peak ~30 to 69 kyr with concentrations of 15.20 +/-
0.56 g kg~ ! and 11.50 +/- 0.16 g kg ! respectively in the top 30 cm
There are legs pronounced peaks in the 30— 100 cm interval (11.08 +/-
298 g kg ! and 5.27 +/- 3.675 g kg ' respectively) and overlap of
standard dewviations of measurements. Below 100 cm a peak in Alo ex-
iste, but there are few measurements in thiz hornizon and owverlap in
valuezs between terraces exists.

3.2. Texture evolution

Soils become inecreasingly finer textured with terrace age due to
inereassd exposure ime to weathering. Young soile dominated by sand
with Tla -T2 being >80% eand (Fiz. 4). In the 0-30 and 30-100 cm
intervals, the average clay and silt percent values inerease at a similar

10

rate as sand declines until 30 to 62 kyr. Silt pereent declines in soils =30
kyr, while clay continues to increass making up >60% of the soil in the
top 100 cm for the oldest terraces, as shown by the top yellow fraction in
Fig. 4 stack plots. In the =100 cm depth mnterval, the shift from sand to
clay nich zoile iz less pronounced. Clay increases from ~25% to ~40%
while sand experiences a decline in that range.

3.4 Total zo1l organic carbon stocks

Total 80C stock iz low in the youngest soils (<5 kg m™~2) and reaches
a maximum in T7 with ~32 kg m ™2 (Fiz. 5 and Table A_1). Prior to 30
kyr, zolls are <100 cm thick and SOC stock in the top 30 cm makes up
=50% for Tla and T1b (~73% and ~51% respectively). In addition to
having challower depths, thus less vertical space to accommodate SOC,
Tla and T1b also have the lowest SOC content across all zoil depths
(Appendix Fig. C.1), resulting in lower total stocks when integrated with
depth. Total S0C stock in the top 100 cm, dips between 30 and 69 kyr
(Fig. 5. mmset A) but inereases again after 120 kyr. Consstent with other
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studies and expectations, SOC density and concentration decline with
depth. Although SOC density is low below 100 cm, the SOC stored at
these depths becomes a significant contributor to total SOC constituting
~48% of the total SOC stock in the 908 kyr and ~40% in 990 kyr.

3.5. Soil organic carbon density and geochemical and physical soil
properties

We correlated geochemical and physical soil properties to SOC den-
sity values for all samples (from all depths and terrace ages) (Fig. 6). In
line with previous studies (Lawrence et al., 2015; Masiello et al., 2004),
both Alp and Fep had a positive correlation, r>  0.728 and 0.832
respectively (Table 2) with SOC density regardless of terrace age (Fig. 6a
and d). Alo and Feo, which extract PCM material in addition to the
organo-mineral complexes extracted with the pyrophosphate extraction,
are also positively correlated with SOC density (>  0.590 and 0. 494
respectively) (Fig. 6b and e). Terrace age appears to modify the slope of
the Feo relationship with SOC, where SOC is more sensitive to Feo (i.e.,
steeper slope on the graph) for older terraces. This is not as prominent for
the SOC density relationship with Alo. Fed, which also includes crystal-
line forms of pedogenic Fe minerals, does not have a clear relationship
with SOC density when analyzing samples from all depths and terraces (r2

0.001) (Fig. 6¢). However, the overall increase of Fed with terrace age
is evident, which is consistent with the increasing crystallinity expected
with soil age. It is also evident that clay content also increases with age,
but there is not a corresponding increase in SOC density (r?>  0.010)
when looking at samples from all depths and terraces (Fig. 6h).

3.5.1. Soil depth intervals: Fe and al extractions

The relationship between SOC density and Fe and Al extractions
varies with depth and extraction type. In the top 30 cm, SOC density
increases with Fep (r2 0.712) and Feo (r2 0.404) concentration
(Fig. 7a-c). Although SOC density increases with Feo in the top 30 cm,
Tla and T1b have the lowest concentration in both SOC and Feo, which
both increase for T2 T4. However, in the oldest three terraces (T5-T7)
both SOC and Feo concentrations decline. Fed increases with terrace
age, but SOC does not increase consistently in a similar fashion. There is
an increase in SOC density in T2 that declines at T3-T4, then increases
slightly for T6 and T7. In the 30 100 cm interval, Fep concentrations are
lower, but a positive relationship with SOC persists (? 0.677)
(Fig. 7d). SOC does not increase consistently with Fed in the 30 100 cm
interval (r  0.013), but again an increase in Fed with terrace age exists.
Below 100 cm, SOC does not vary systematically with Fep (>  0.156),
Feo, (1‘2 0.158), or Fed (r2 0.018) (Fig. 7g - i), likely owing to very
low concentrations of Fep and Feo, as well as low OM input at these
depths.

With depth, Alp and Alo follow similar trends as Fep and Feo (Ap-
pendix Fig. D.1). In the top 30 cm SOC density increases with both Alp (r

0 0.581) and Alo (r 0 0.604). With increasing depth, Alp and Alo
concentrations become less correlated with SOC density. Alp and Alo
concentrations in the 30 100 cm layer are lower ( 15 gkg 1) as well as
the 100 cm interval ( 4 and 10 g kg ! respectively).

3.5.2. Soil depth intervals: Texture

Younger terraces have greater sand content and lower SOC concen-
tration compared to older terraces dominated by clay and silt. Our data
show that as soils age, sand content decreases as weathering produces
more silt and clay sized minerals. Within the whole profile, SOC density
is negatively correlated with sand, while increasing with higher silt
content and clay. Notably, in the top 30 cm, clay content increases with
terrace age (Fig. 8a), but SOC is not strongly correlated to this increase
(> 0.024). On the other hand, SOC density does have a slight positive
correlation with silt (>  0.464) and weak negative correlation with
sand in the top 30 cm (r2 0.197) (Fig. 8b, c). Clay content also in-
creases with terrace age in the 30 100 cm interval, but there is no
corresponding SOC density increase (r? 0.006) (Fig. 8 d). Sand
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decreases with terrace age, but there is not a strong correlation with SOC
T 0.034) (Fig. 8 e).. Below 100 cm, SOC density increases with clay
content (r2 0.440) (Fig. 8g).

4. Discussion

4.1. Siuslaw River chronosequence development and controls on soil
organic carbon

Our analysis of how geochemical characteristics, physical properties,
and SOC content vary with age and depth demonstrates the key role
weathering plays in SOC storage and distribution (Fig. 9). Young soils in
the SRC, underlain by sandstone and mudstone, are dominated by coarse,
relatively unweathered material made up of sand-sized mineral grains
dominated by feldspars. As soils in the SRC age, older soils are enriched in
quartz as plagioclase and potassium feldspars weather to secondary clay
minerals (Lindeburg et al., 2013). This increasing degree of weathering
with soil age is supported by the production of clay sized minerals,
enrichment in Fe- and Al- bearing pedogenic products and depletion of
elements like Si as leaching takes place (Fig. 2). These results complement
the rubification of soils characterized in Almond et al. (2007) and the
weathering patterns of the SRC reported in Lindeburg et al. (2013).

The progressive accumulation of Al and Fe, the loss of highly mobile
cations and other elements, as well as the increase in clay alone are not
effective predictors of the controls on SOC accumulation and stabiliza-
tion. Rather the mineral-specific weathering pathways provide key
explanation as to where and how SOC is stored in soils and what pro-
cesses are critical for soils of different ages. Specifically, the evolution of
organo-metal complexes, poorly or nano-crystalline oxide minerals, and
crystalline oxide phases strongly correlates with SOC storage across the
SRC (Figs. 6 and 7). Additionally, during this mineralogical evolution,
clay content increases - and silt in intermediate ages accompanied by a
corresponding decline in sand-sized minerals.

Although SOC increases with both Feo and Fep in the top 30 cm, soil
samples cluster by terrace in the top 30 cm along the SOC-Feo and Fep
correlations, implying that time-dependent weathering pathways retain
a key control on SOC. In contrast, terrace ages do not align with the SOC
vs Fep relationship indicating that soil age does not exert a strong
control on the correlation of SOC and Fep (Fig. 7a and b). Pyrophosphate
extractable Fe and Al, a proxy for organo-metal complexes, are immobile
and primarily located in the top 30 cm.

When soils are young, Feo content and SOC density are low, and
weathering causes non-crystalline forms to develop resulting in our
observed increase in SOC density in the top 30 cm between T2 and T4.
When conversion to more crystalline forms occurs, Fed content increases
and Feo declines (Fig. 3), but SOC density does not drop to the low
values observed for younger soils. This apparent inconsistency is likely
due to the fact that as the soils are depleted of PCMs (Feo), crystalline
minerals (Fed) and clay content increase which provide large amounts of
surface area as well and can form other types of organo-mineral asso-
ciations that hold onto OC.

When analyzing samples from all ages and depths, SOC is strongly
correlated to both non-crystalline Fe extractions - Feo and Fep (Fig. 6)
which is consistent with other chronosequence studies (Garcia Arre-
dondo et al., 2019; Lawrence et al., 2015; Mainka et al., 2022; Masiello
etal., 2004; Torn et al., 1997). The strength of the SOC relationship with
non-crystalline extractions in the SRC, however, decreases with depth.
In surface soils (30 cm), Fep and Feo are strongly correlated with SOC
density, but in the 30 100 cm and 100 cm intervals Feo and Fep
concentrations decline and the correlation strength with SOC deceases.
In the SRC 0 30 and 30 100 cm intervals, both Feo and Fep concen-
trations peak, particularly Feo, as non-crystalline forms progressively
become more crystalline, indicated by an increase in Fed concentrations
in soils 30 kyr. A drop in total SOC stock occurs during the 30 69 kyr
time interval, as well, and does not recover high values until after 120
kyr (Fig. 5). However, when only examining the top 100 cm, SOC stocks



B.D. Hunter et al.

remain low (Fig. 5 inset) suggesting that the peak observed in non-
crystalline minerals may help facilitate a sweet spot in SOC storage.
This peak in SOC at ~30 kyr is coincident with the peak in non-
crystalline Fe and Al fractions and a shift in the dominant texture
(Fig. 4). Prior to 30 kyr, sand is the dominant size fraction in the top 100
cm, with silt and clay increasing together at a similar rate. However, for
30 69 kyr soils, clay concentration becomes greater, while sand and silt
begin to decline as soils become increasingly weathered.

Although the SRC is underlain by predominantly sandstone and
mudstone, our results accord with the conceptual model of Lawrence
et al. (2015) developed in volcanic landscapes, which highlights how
specific soil properties regulate SOC storage. Their conceptual model
suggests that the relevant processes that connect SOC storage and soil
properties vary with depth and time. Due to the shallow nature of young
soils, the vast majority of the mineral mass is close to the surface and
thus likely to interact with OM input and cycling from the surface. On
the other hand, although deep soils have more total mineral mass, OM
input is limited at depth. This contrast results in thick, highly altered, old
soils having a greater proportion of PCM and crystalline minerals
compared to young shallow sites, which will have higher fraction of
organo-metal complexes.

Lawrence et al. (2015) also reported a peak in SOC stock in shallower
soils ( 50 cm) for 14 kyr soils in the Cowlitz River Chronosequence,
which occurs sooner than the 30 kyr peak we observe in the SRC.
However, these chronosequence studies are limited to the ages at which
terraces exist and it is promising that our SRC and the Cowlitz data both
reveal peak-SOC in shallow soils with ages of the same magnitude (10*).
Nonetheless, the age at which the peaks occur only vary by a factor of 2.
This difference could be the result of contrasting parent material and
terrace formation. The SRC terraces are formed from deep bedrock
weathering (except for T1), while the Cowlitz chronosequence substrate
is composed of glacial gravels and outwash sands. The relatively rapid
attainment of peak SOC in shallow soils and the slightly higher SOC
stocks at the Cowlitz chronosequence could also result from the initial
texture, porosity, and other properties of the volcanic parent material.
Additionally, the Cowlitz river sediments are likely derived from pri-
marily basalt and andesite gravel with additional mixing of tephra and
silt-sized volcanic sediments of the loess input (Lawrence et al., 2015).
These materials are ideal for the rapid production of poorly crystalline
minerals that are highly effective for bonding with SOC. Additionally
climatic differences would also likely influence weathering rates and
timescales of SOC accumulation and pedogenic mineral evolution.
Lawrence et al. (2021) compared the wetter Mattole River and drier
Santa Cruz marine chronosequences and observed that the Santa Cruz
chronosequence has lower SOC stocks than the Mattole River. On the
Hawaiian basalt flows, SOC in surface horizons (O and A) in Torn et al.
(1997) peak around 20 kyr which is similar to the timescale observed for
the SRC and the Cowlitz chronosequence.

4.2. Critical zone development and deep soil organic carbon stocks

Although deep carbon has frequently been neglected from prior
studies, our findings reveal that nearly all of the total SOC stock is found
below 100 cm within the oldest SRC soils. Interest and research in deep
soils is increasing, but it is rare to obtain samples from below 100 cm.
Deep soil sampling is not frequent practice because OM input and
decomposition rates are much slower with depth due to a decline mi-
crobial activity and increased protection through processes such as
mineral associations and/or aggregate occlusion (Rumpel and Kogel-
Knabner, 2011; Schrumpf et al., 2013). Therefore, deep carbon has often
been thought of as having a weak influence on total SOC dynamics.
Additionally, because sampling is difficult, deep subsoils are often
neglected. Particularly in steep, remote terrain, it may be challenging to
obtain samples below a certain depth due to the heterogeneity of rocky
soils. The common focus on understanding OM dynamics in topsoil has
resulted in a knowledge gap in understanding deep carbon dynamics and
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an underestimation of global SOC stocks (Moreland et al., 2021; Rumpel
and Kogel-Knabner, 2011). Additionally, much of the SOC literature has
developed through agricultural applications where topsoil character-
ization is the focus coinciding with the highest concentration and rate of
OM cycling. A recent study highlights the tendency to focus on shallow
soils and for SOC studies published between 2004 and 2019, the average
soil depth measured was 24 cm (Yost and Hartemink, 2020). The lack of
understanding of deep SOC dynamics adds to the uncertainty of how soil
perturbations (agriculture, wildfire, etc.) will affect SOC stores.

Our results show that weathering and deep SOC are significant
contributions to carbon stocks over long time periods. In the SRC, SOC
stocks below 100 cm account for 25% of the total stock by 120 kyr, and

40% of the SOC inventory by 908 kyr. Since Feo and Fep are strongly
correlated with SOC density and decline with soil age, one might expect
a continual decline of total SOC stock as well. However, the non-
crystalline phases are concentrated in the top 100 cm. Although we
observe a decline in SOC stored in the top 100 cm associated with this
mineral control, total organic carbon continues to increase due to the
growth of deep carbon stocks. Following the 30 kyr peak in total SOC
stock, SOC stock begin to increase again around 120 kyr (T5 T7) as soil
profiles become thick and highly weathered. Although deep SOC con-
centration ( 1 m and up to 6 m) is relative small compared to surface
soil, the SOC stock below 1 m can be significant. The timescale at which
deep SOC begins to constitute a substantial component of the SOC in-
ventory appears to vary with climate and parent material. Torn et al.
(1997) attributed a total SOC stock peak at 157 kyr to a peak in total
non-crystalline minerals present in the soil while Lawrence et al. (2015)
had a peak in total SOC around 300 kyr, while total SOC storage in the
SRC continues to increase even after 908kyr.

After 120 kyr however, these deep stores become increasingly
important contributors to total SOC storage. As non-crystalline phases
that have large reactive surfaces areas for storing carbon are converted
to less reactive lower-surface area crystalline phases with age and
weathering, soil depth and clay content increase. Prior to the transition
from poorly crystalline sand-dominated soils to crystalline clay-rich soils
at 30 69 kyr, SOC below 100 cm was minimal. Although PCMS
(approximated by Feo and Alo), which provide strong bonds for OM,
decline with terrace age, SOC continues to increase. Larger accommo-
dation space due to increased depth and large clay abundance to be
stored at depth with increasing clay abundance and soil thickness.
Implying a shift in SOC dependence on PCM phases to clay content and
increasing soil depth and mean soil age occurs.

Our results demonstrate that progressive thickening of the weath-
ering zone can facilitate the establishment of substantial SOC stocks,
even when SOC concentrations at depth are small (Fig. 5). The spatial
and temporal pattern of deep weathering that affects, soil porosity,
texture, mineralogy, etc., may result from a variety of mechanisms and
Riebe et al. (2017) compares four hypotheses for deep bedrock weath-
ering and critical zone architecture. The combined influence of topo-
graphic and tectonic stresses can control the size and location of open
fractures in the critical zone that influence fracture flow and exposure to
atmospheric and biotic activity critical for soil development (Slim et al.,
2015; St. Clair et al., 2015). Another hypothesis for deep CZ develop-
ment is through a bottom-up control due to the slow drainage of the
water table. Draining water allows the drying of rock, creating an
oxidizing setting rather than reducing. Additionally, it allows for biotic
activity to enter and define the bedrock-soil interface (Rempe and Die-
trich, 2014). On the other hand, erosion rates and fluid residence time
may control CZ depth through accumulated chemical weathering. The
downward advection of reactive water from surface inputs influences
mineral weathering and lateral translocation of elements in the soil
profile (Lebedeva and Brantley, 2013). This process would influence pH
values with depth and thus organo-metal complex formation and
percolation into the soil. By contrast, in some regions, frost weathering
processes and thus temperature variations may exert a primary role in
breaking down bedrock and soil development. (Anderson et al., 2013;
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Flg. 9. Schematic of the evolution of zoil properties prominence and fractions
of B00C stock stored in depth intervals. Soil profile depth (zhown by length of
column) increazes with zoil age. Az soilz age, “deep” SOC below 100 cm, rep-
rezented by light brown, makes up a greater fraction of the total 50C storage.
Poorly crystalline mineralz play an important role in SOC storage for soile of
~10 kyr. Increazing soil depth and clay content in the oldest zoils creates more
zpace for S00C storage.

Marzhall et al., 2015). Cooler and wetter environments tend to form
thicker zoils and lower OM cyeling and decomposition rates. In other
settings, the contrast in temperature and water content depending on
hillslope aspect, result in higher S0C stocks on north-facing slopes in the
northern hemizsphere attributed to decreased radiation and contrasting
vegetation specics and coverage (Chen ot al |, 2016; Godsey et al | 201 8;
Lozanc-Garcia et al, 2016; Patton et al, 2019).

The controls on so1l thickness and mineralogical evolution mn the CZ
are key, first-order controls on SOC density and stocks. As soils thicken
the rate of o1l production and weathering decreases (Heimsath et al |
1997). Pror to 100 kyr, the average rate of soil profile deepeming 1z
~0.02 mm/yr. After 120 kyr, the CZ decpens at a minimum average rate
of ~0.009 mm/yr. Although 30C density values are low in deep soil
horizons (>100 ecm), the integration over several meters can often
exceed the 50C obeerved iIn the upper 30-100 em in the SRC. Thus,
identifying and quantifying the factors that dictate the evolution of soil
in variable cntical zones can inform SOC modeling.

4.2. Beyond Terraces: Broader utility for predicting SOC in eroding
landscapes

S0C stock caleulations can substantially improve upon previous state-of-
the-art predictions and databases. For example, SeilGrids (Fozzio et al |
2021}, a global so1l model that uses data from soil pite and regressions to
derive zoil properties, only provides data for soil organic carbon stocks
in the top 30 em. For our study area, SoilGrids predicte ~7.5 to 8.0 kgC
m z,whi.chalignswithuurmm:m.cutsinﬂlcbupﬂﬂm Howewer,
sinece soil depth and deep weathering are not accounted for, it neglects
deep S0OC stocks, which contribute a sigmificant amount of SOC in the
older soils.

Furthermore, many recent studies have pointed to the Importance of
breaking total 50C down into different fractions (Lavalles ot al., 2020;
Cotrufo et al |, 2013, Lehmann and Eleber, 2015). POC, which conmiste of
plant-denived organic matter tends to be relatively short-lived as defined
by voung '*C ages (<10 year) and is cither unprotected or protected via
occlusion n eoil aggregates (Rasmussen ot al., 2005; von Litzow et al |
2007). In contrast, mineral-associated organie carbon (MAQC) iz made up
of emaller, simpler carbon compounds that ean form organc-mineral as-
sociations that help to chemically protect carbon from decomposition and
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disturbanee (Eusterhues ot al, 2003; Eleber et al | 2015). Tracking and
mapping the pedogenic evolution of minerals significant for ehemical
protection, such as pedogenic Fe and Al ooades, across complex landscapes
could improve not only total SOC stocks but fractions MAOC and POC.
Our results show that weathering pathways and the evolution of
mineral soil composition impart a strong influence on 50C but the
quantitative application of these findings to erosional settings, which
dominate much of the Pacific Morthwest, iz non-trivial. In eroding
landseapes, minerals are removed from the soil column through scil
transport processes and replemished by soil production from bedrock
(Yoo and Mudd, 2008). As a result, determining the erosion rate (or soil
residence time) that corresponds with our observed 50C and PCM peak
at 34 kyr requires additional analyees. Mudd and Yoo (20]10) explore the
mineral tumeoser, age, and residence time using four scenarios with
combinations of non-eroding, eroding, mixed, and unmixed zoil settings.
susceptibility to weathering it does not directly equate to soil age (Yoo
and Mudd, 2002). Rather, due to downward propagation of the weath-
enng front there iz a range of mineral ages that exists in the 201l column,
with young fresh minerals being introduced at the eveolving soil-bedrock
interface. Thus, weathering rates that are derived from non-eroding
surfaces, such as terraces, will tend to overestimate mineral residence
time when directly applied to eroding sites. In the case of our SRC data,
if we assume a soil thickness of 1 m and we stipulate that erosion rate iz
equal to soil thickness divided by the soil residence time (Almond =t al |
2007]), the average erosion rate neceszary to develop a soil with a soil
residence time of 30 kyr (which iz the soil age associated with peak PCM
and S0C content in the shallow eoils) would be ~0.03 mm v\ How-
ever, due to the supply of fresh matenial from soil production amd the
removal of older minerals on hillelopes through erosion, a soil with this
erosion rate on a hillslope would contain a mineral assemblage with an
age distribution skewed vounger than a non-eroding soil. Thus, the peak
in SOC content and non-erystalline minerale would likely correspond
with eroding slopes with erosion rates slower than 0.03 mm vr~ L. Sye-
tematic analysis and extrapolation of our findings for eroding seenarios
iz eritical for managing landscapes for carbon storage potential but iz

5. Conclusions

In this study, we mvestigated how weathering alters soil geochem-
1stry/mineral assemblages and mnfluences SOC storage. We synthesized
previous data (Almond et al., 2007; Lindeburg et al_ | 201 3) from the SRC
with new caleulations of chemical mass balance. We correlated total
S0C stocks and SOC concentrations from three depth intervals with
geochemical and physical properties to identify the different soil prop-
erties that influence SOC storage at different timescales. We conclude
the following:

# Az soile age and weather, PCM content in shallow soils peaks at 30
kyr, then declines as amorphous phases ripen to more eryetalline Fe
and Al pedogenic minerals. SOC density positively correlates with
poody crystalline mineral content.

# Although non-erystalline Al and Fe have a strong correlation with
S0C denzity, their decline with age does not diminich total SOC
stocks because deep bedrock weathering and inereasing clay content
inerease to provide space for SOC storage at depth despite low car-
bon densities. For the oldest soils in our chronosequence (T7), deep
S0C (1 m) constitutes > 40% of the S0C inventory despites having
1% carbon for each umt of so01l mass.

# The timescale at which S0OC densities peak in challow and deep soils
ig likely also dependent on elimate and parent material which control
the rate of weathering.

The ability to predict deep S0C iz partly limited by our ability to
predict and accurately identify where deep soils exist. Analyzing how
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extractable Al and Fe content in addition to soil texture relate to SOC
storage with soil age at variable depth, 1= eritical to improving our ability
to predict how well (and how much) carbon storage potential exists.
Connecting geomorphic theory and soil development models will help
inform where deep slowly eroding soils are located and how much S50C
could be there. Determining the timescales of weathering products that
regulate SOC storage potential motivates new work to couple geomor-
phic, grochemical, and biological models for land management prae-
tices that optimize for SOC storage.
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Appendix

Filg. Al. Annotated photo of Terrace 1. Tla (top) iz light in color, coarse,
zandy, and relatvely unweathered material T1b is the first buried soil and is
much darker in color and composed of Aner grained matrix.
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Flg. Bl. Depth weighted averages over time for oxalate (Alo - pink triangle),
and zodivm pyrophosphate (Alp - orange square) extractions for depth intervals
0-30 (A), 30-100 (B), and > 100 em (C). Poordy crystalline Al minerals (PCMs),
approcimated by Alo, and organo-metal complexes (Alp) peak in both the 0-30
and 30-100 cm intervals ~30-90 kyr, then decline with terrace age.
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Table A1

Geoderma 436 (2023) 116531

Field (bulk density) and lab (pH, CEC, SOC%, SON%, and C:N) measurements from Almond et al. (2007) and Lindeburg et al., 2013 for SOC density (kg m 3), soil depth
intervals (0 30, 30 100, and 100 cm) stocks, and total SOC stock (kg m 2) calculations from this study. SOC stocks in Table 2 were calculated by multiplying the
horizon interval SOC density by the horizon thickness. Bolded rows were inserted to set firm boundaries for intervals (0 30, 30 100, and 100 cm). Horizons that

spanned interval boundaries were split into two and layer thickness was adjusted appropriately.

. Age Horizon Increment Center Depth Layer Thickness Used BD (g pH CEC (cmolc SoC SON SOC Density (kg
Terrace (kyr) (cm) (cm) (cm) cm3) kg b % % m3)
Tla 0.041 010 0 0 0.91 5.4 11.49 1.00 0.04 9.16
010 5 10 0.91 54  11.49 1.00 0.04 9.16
10 25 17.5 15 1.23 56 13.16 0.39 0.02 4.81
25 30 27.5 5 1.15 5.7 15.52 0.57 0.02 6.54
30 35 32.5 5 1.15 5.7 15.52 0.57 0.02 6.54
35 40 37.5 5 1.16 5.6 15.32 0.63 0.02 7.35
35 40 40 0 1.16 5.6 15.32 0.63 0.02 7.35
T1b 1 013 0 0 1.06 5.2 21.51 1.71 0.10 18.11
013 6.5 13 1.06 5.2 21.51 1.71 0.10 18.11
13 30 21.5 17 0.49 4.9 19.82 1.32 0.09 6.42
30 35 325 5 0.49 4.9 19.82 1.32 0.09 6.42
35 47 41 12 1.20 51 1813 1.13 0.08 13.56
47 67 57 20 1.22 5.5 13.14 0.57 0.02 6.91
47 67 67 0 1.22 5.5 13.14 0.57 0.02 6.91
T2 30 07 0 0 0.63 4.9 47.92 9.91 0.45 62.34
07 3.5 7 0.63 4.9 47.92 9.91 0.45 62.34
7 30 18.5 23 0.89 48 39.41 4.84 0.20 43.07
30 38 34 8 0.89 48 39.41 4.84 0.20 43.07
38 88 63 50 1.04 49 2454 1.36 0.04 14.02
88 100 94 12 1.10 49 2441 0.53 0.00 5.89
100 109 104.5 9 1.10 49 2441 0.53 0.00 5.89
109 122 115.5 13 1.30 49 2257 0.45 * 5.86
122 146 134 24 1.19 5.3 17.48 0.15 * 1.78
146 230 188 84 1.19 53 17.48 0.15 * 1.78
146 230 230 0 1.19 5.3 17.48 0.15 * 1.78
T3 69 0 28 0 0 1.01 5 29.53 3.87 0.10 38.91
028 14 28 1.01 5 29.53 3.87 0.10 38.91
28 30 29 2 1.23 5 17.54 1.06 0.02 13.08
30 44 37 14 1.23 5 17.54 1.06 0.02 13.08
44 68 56 24 1.15 5 16.22 0.57 * 6.53
68 100 84 32 1.16 5.1 15.56 0.30 * 3.46
100 113 106.5 13 1.16 5.1 15.56 0.30 * 3.46
113 200 156.5 87 1.34 4.8 18.38 0.24 * 3.16
200 245 222.5 45 1.47 49 1259 0.14 2.05
245 260 252.5 15 1.47 49 1259 0.14 * 2.05
245 260 260 0 1.47 4.9 12.59 0.14 * 2.05
T4 140 0 28 0 0 0.99 5 29.32 1.64 0.04 16.19
028 14 28 0.99 5 29.32 1.64 0.04 16.19
28 30 29 2 1.00 4.9 20.61 1.71 0.03 17.21
30 42 36 12 1.00 4.9 20.61 1.71 0.03 17.21
42 75 58.5 33 1.13 52 16.58 0.72 8.17
75 100 87.5 25 1.43 5.2 14.86 0.33 * 4.64
100 120 110 20 1.43 5.2 14.86 0.33 * 4.64
120 190 155 70 1.14 5.1 15.43 0.21 2.35
190 240 215 50 1.34 51 1881 0.18 * 2.45
240 270 255 30 1.43 51 2450 0.12 * 1.71
270 310 290 40 1.46 5 22.98 0.12 * 1.75
270 310 310 0 1.46 5 22.98 0.12 * 1.75
T5 200 021 0 0 0.82 5.2 29.74 5.27 0.15 43.23
021 10.5 21 0.82 5.2 29.74 5.27 0.15 43.23
21 30 25.5 9 1.04 5.1 22.95 2.65 0.05 27.64
30 50 40 20 1.04 51 22.95 2.65 0.05 27.64
50 100 75 50 1.20 52 17.68 0.74 0.01 8.94
100 100 100 0 1.26 5 16.37 0.25 * 3.21
100 100 100 0 1.20 5.2 17.68 0.74 0.01 8.94
100 170 135 70 1.26 5 16.37 0.25 * 3.21
170 200 185 30 1.30 4.7 14.82 0.19 * 2.41
200 400 300 200 1.34 47 16.35 0.15 * 2.06
400 460 430 60 1.33 49 1056 0.08 * 1.12
400 460 460 0 1.33 4.9 10.56 0.08 * 1.12
T6 908 08 0 0 1.12 5 20.66 2.74 0.06 30.79
08 4 8 1.12 5 20.66 2.74 0.06 30.79
8 30 19 22 1.10 5.2 21.33 2.31 0.04 25.34
30 39 34.5 9 1.10 5.2 21.33 2.31 0.04 25.34
39 92 65.5 53 1.01 53 2094 0.97 0.02 9.74
92 100 96 8 1.04 4.8 17.54 0.48 * 5.01
100 192 146 92 1.04 4.8 17.54 0.48 * 5.01
192 232 212 40 1.35 5.1 20.91 0.32 4.33
232 262 247 30 1.16 49 2037 0.27 * 3.12
262 342 302 80 1.55 46 19.84 0.22 * 3.38
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Table A1 (continued)

. Age Horizon Increment Center Depth Layer Thickness Used BD (g pH CEC (cmolc SOC SON SOC Density (kg

Terrace (kyr) (cm) (cm) (cm) cm3) kg b % % m3)
342 392 367 50 1.42 4.8 21.37 0.05 * 0.68
392 422 407 30 1.20 4.8  20.06 0.06 * 0.69
422 432 427 10 1.14 48 2298 0.06 * 0.72
432 910 671 478 1.23 47 2143 0.08 * 0.97
432 910 910 0 1.23 4.7 21.43 0.08 * 0.97

T7 990 0 20 0 0 0.78 4.9 33.91 5.22 0.18 40.48
0 20 10 20 0.78 49 3391 5.22 0.18 40.48
20 30 25 10 1.02 5 27.70 2.90 0.09 29.65
30 37 335 7 1.02 5 27.70 2.90 0.09 29.65
37 73 55 36 1.11 52  14.69 1.14 0.03 12.68
73 100 86.5 27 1.23 4.9 14.38 0.36 0.02 4.43
100 140 120 40 1.23 4.9 14.38 0.36 0.02 4.43
140 190 165 50 1.17 5 15.25 0.26 0.00 3.05
190 270 230 80 1.29 5 16.15 0.19 0.01 2.49
270 340 305 70 1.40 4.9 16.43 0.11 * 1.48
340 400 370 60 1.34 48 17.29 0.09 * 1.25
400 500 450 100 1.31 48 18.13 0.09 * 1.15
500 950 725 450 1.30 4.7 19.40 0.07 0 0.85
950 1090 1020 140 1.72 49 2092 0.04 0.02 0.73
950 1090 1090 0 1.72 4.9 20.92 0.04 0.02 0.73

Table B1
Fe extraction data for T1a-T7. Bolded rows were inserted to set firm boundaries for intervals (0 30, 30 100, and 100 cm). Horizons that spanned interval boundaries
were split into two and layer thickness was adjusted appropriately.

Terrace  Age Horizon Center Depth  Layer Thickness Fep (g DWA STD Feo (g DWA STD Fed (g DWA STD
(kyr) Increment (cm) (cm) Used (cm) kg b kg b kg b
Tla 0.041 010 0 0 0.519 0.402  0.102 2.033 2.406  0.504 4.894 4.85 0.26
0 10 5 10 0.519 2.033 4.894
10 25 17.5 15 0.284 2.368 4.648
25 30 27.5 5 0.523 3.265 5.367
30 35 32.5 5 0.523 0.539 0.015 3.265 3.298 0.031 5.367 5.38 0.01
35 40 37.5 5 0.555 3.331 5.394
35 40 40 0 0.555 3.331 5.394
T1b 1 013 0 0 1.883 2102 018 4.491 4.454  0.03 8.959 9.33 0.31
013 6.5 13 1.883 4.491 8.959
13 30 21.5 17 2.269 4.426 9.614
30 35 32.5 5 2.269 1.608  0.67 4.426 3.432  0.87 9.614 8555 1.17
35 47 41 12 2.377 4.34 9.945
47 67 57 20 0.982 2.639 7.457
47 67 67 0 0.982 2.639 7.457
T2 30 07 0 0 6.058 4.368 1.04 11.204 12.18 0.6 22.563 22.75 0.11
07 3.5 7 6.058 11.204 22.563
7 30 18.5 23 3.854 12.475 22.802
30 38 34 8 3.854 1.392  1.39 12.475 8942 275 22.802 2272 0.72
38 88 63 50 1.163 9.145 23.022
88 100 94 12 0.706 5.741 21.393
100 109 104.5 9 0.706 0.24 0.2 5.741 3.722  0.89 21.393 6.66 6.28
109 122 115.5 13 0.255 3.341 8.753
122 146 134 24 0.199 3.6 5.18
146 230 188 84 0.199 3.6 5.18
146 230 230 0 0.199 3.6 5.18
Terrace  Age Horizon Center Depth Layer Thickness Fep (g DWA STD Feo (g DWA STD Fed (g DWA STD
(kyr) Increment (cm) (cm) Used (cm) kg b kg 1 kg 1
T3 69 0 28 0 0 1.848 1.76 0.62  9.805 9.505 212  26.533 26.71  1.27
0 28 14 28 1.848 9.805 26.533
28 30 29 2 0.532 5.307 29.217
30 44 37 14 0.532 0.399 0.08 5.307 3.852 0.86 29.217 30.88 0.99
44 68 56 24 0.387 3.648 30.95
68 100 84 32 0.35 3.369 31.55
100 113 106.5 13 0.35 0.581 0.18 3.369 2.365 0.54 31.55 25.64 2.54
113 200 156.5 87 0.478 2.484 25.011
200 245 222.5 45 0.78 1.976 25.284
245 260 252.5 15 0.78 1.976 25.284
245 260 260 0 0.78 1.976 25.284

(continued on next page)
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Table B1 (continued)

Terrace  Age Horizon Center Depth Layer Thickness Fep (g DWA STD Feo (g DWA STD Fed (g DWA STD
(kyr) Increment (cm) (cm) Used (cm) kg b kg b kg b
T4 140 0 28 0 0 2.772 2.644 091 8.912 8.785 0.9 33.406 3343 015
0 28 14 28 2.772 8.912 33.406
28 30 29 2 0.847 7.013 33.73
30 42 36 12 0.847 0.403 0.28 7.013 5513 0.89 33.73 38.09 3.35
42 75 58.5 33 0.171 5.395 36.812
75 100 87.5 25 0.497 4.95 41.86
100 120 110 20 0.497 0.767 0.26  4.95 4735 0.55 41.86 41.31  0.66
120 190 155 70 1.168 3.857 42.2
190 240 215 50 0.743 5.76 40.855
240 270 255 30 0.461 4.819 40.594
270 310 290 40 0.461 4.819 40.594
270 310 310 0 0.461 4.819 40.594
Terrace  Age Horizon Center Depth Layer Thickness Fep (g DWA STD Feo (g DWA STD Fed (g DWA STD
(kyr) Increment (cm) (cm) Used (cm) kg 1 kg D) kg P
T5 200 0 21 0 0 5.179 4.254 1.45 7.331 6.71 0.98  45.97 45.69  0.44
021 10.5 21 5.179 7.331 45.97
21 30 25.5 9 2.097 5.26 45.028
30 50 40 20 2.097 1.108 0.74 5.26 5.21 0.31 45.028 55.88 6.52
50 100 75 50 0.712 5.19 60.22
100 100 100 0 0.389 4.563 56.897
100 100 100 0 0.712 0.383 0.27 5.19 4.09 0.59 60.22 43.17 10.9
100 170 135 70 0.389 4.563 56.897
170 200 185 30 0.368 4.416 47.787
200 400 300 200 0 4.047 40.883
400 460 430 60 0 3.519 32.445
400 460 460 0 0 3.519 32.445
T6 908 08 0 0 2.355 2.389 0.02 3.135 3.097 0.02 47.787 52,73 3.18
08 4 8 2.355 3.135 47.787
8 30 19 22 2.401 3.083 54.529
30 39 34.5 9 2.401 1.05 0.85 3.083 3.268 0.21  54.529 69.64  7.75
39 92 65.5 53 0.917 3.252 73.369
92 100 96 8 0.408 3.582 61.912
100 192 146 92 0.408 0.223  0.09 3.582 2.45 0.85 61.912 3165 11
192 232 212 40 0.18 1.93 36.08
232 262 247 30 0.266 1.473 37.884
262 342 302 80 0.353 1.017 39.688
342 392 367 50 0.173 1.136 31.458
392 422 407 30 0.173 1.136 31.458
422 432 427 10 0.175 1.971 27.647
432 910 671 478 0.176 2.806 23.836
432 910 910 0 0.176 2.806 23.836
Age Horizon Increment Center Depth Layer Thickness Used ~ Fep (g DWA STD Feo (g DWA STD Fed (g DWA STD
(kyr) (cm) (cm) (cm) kg 1) kg kg
T7 990 0 20 0 0 2.726 2455 0.38 4.197 3.965 0.33 43.528 47.72  5.93
0 20 10 20 2.726 4.197 43.528
20 30 25 10 1.913 3.5 56.102
30 37 33.5 7 1.913 0.599 0.73 3.5 2362 0.76  56.102 44.43 135
37 73 55 36 0.67 1.68 29.972
73 100 86.5 27 0.164 2.976 60.681
100 140 120 40 0.164 0.164 0.05 2.976 2.48 0.3 60.681 54.21 3.04
140 190 165 50 0 3.05 56.299
190 270 230 80 0 2.233 50.037
270 340 305 70 0 2.179 51.163
340 400 370 60 0 2.179 51.163
400 500 450 100 0 2.495 54.747
500 950 725 450 0 2.495 54.747
950 1090 1020 140 0 2.495 54.747
950 1090 1090 0 0 2.495 54.747
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Table C1
Al extraction data for T1a-T7. Bolded rows were inserted to set firm boundaries for intervals (0 30,30 100, and 100 cm). Horizons that spanned interval boundaries
were split into two and layer thickness was adjusted appropriately.

Terrace Age (kyr) Horizon Increment (cm) Center Depth (cm) Layer Thickness Used (cm) Alp (g kg l) DWA STD Alo (g kg l) DWA STD

Tla 0.041 010 0 0 1.038 1.172 0.110 1.734 2.084 0.251
010 5 10 1.038 1.734
10 25 17.5 15 1.298 2.292
25 30 27.5 5 1.059 2.161
30 35 32.5 5 1.059 1.081 0.021 2.161 2.183 0.020
35 40 37.5 5 1.103 2.204
35 40 40 0 1.103 2.204

T1b 1 013 0 0 2.202 2.483 0.234 3.05 3.233 0.152
013 6.5 13 2.202 3.05
13 30 21.5 17 2.698 3.373
30 35 32.5 5 2.698 2.683 0.246 3.373 3.715 0.180
35 47 41 12 3.057 3.695
47 67 57 20 2.455 3.813
47 67 67 0 2.455 3.813

T2 30 07 0 0 11.769 11.509 0.160 14.13 15.203 0.659
07 3.5 7 11.769 14.13
7 30 18.5 23 11.43 15.529
30 38 34 8 11.43 5.276 3.670 15.529 11.083 2.975
38 88 63 50 4.88 11.037
88 100 94 12 2.824 8.313
100 109 104.5 9 2.824 2.723 0.218 8.313 8.005 0.135
109 122 115.5 13 3.218 7.953
122 146 134 24 2.655 7.985
146 230 188 84 2.655 7.985
146 230 230 0 2.655 7.985

Terrace Age (kyr) Horizon Increment (cm) Center Depth (cm) Layer Thickness Used (cm) Alp (g kg D) DWA STD Alo (g kg D DWA STD

T3 69 0 28 0 0 13.407 13.174 1.645 12.721 12.600 0.853
028 14 28 13.407 12.721
28 30 29 2 9.918 10.911
30 44 37 14 9.918 5.409 2.843 10.911 8.578 1.372
44 68 56 24 6.028 8.064
68 100 84 32 2.971 7.942
100 113 106.5 13 2.971 3.240 0.160 7.942 5.169 1.936
113 200 156.5 87 3.188 6.081
200 245 222.5 45 3.375 3.247
245 260 252.5 15 3.375 3.247
245 260 260 0 3.375 3.247
T4 140 0 28 0 0 9.159 8.901 1.827 10.139 10.231 0.652
0 28 14 28 9.159 10.139
28 30 29 2 5.283 11.523
30 42 36 12 5.283 3.640 0.953 11.523 9.363 1.786
42 75 58.5 33 3.434 10.181
75 100 87.5 25 3.123 7.247
100 120 110 20 3.123 1.795 0.679 7.247 3.846 1.467
120 190 155 70 2.238 3.742
190 240 215 50 1.042 3.6
240 270 255 30 1.511 3.155
270 310 290 40 1.511 3.155
270 310 310 0 1.511 3.155
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Terrace Age (kyr) Horizon Increment (cm) Center Depth (cm) Layer Thickness Used (cm) Alp (gkg 1) DWA STD Alo (gkg 1 DWA STD

T5 200 021 0 0 10.259 9.030 1.932 11.759 11.205 0.870
021 10.5 21 10.259 11.759
21 30 25.5 9 6.161 9.914
30 50 40 20 6.161 5.533 1.359 9.914 7.070 2.475
50 100 75 50 5.282 5.933
100 100 100 0 2.941 3.963
100 100 100 0 5.282 1.739 1.537 5.933 3.416 0.977
100 170 135 70 2.941 3.963
170 200 185 30 0.458 3.312
200 400 300 200 1.546 3.297
400 460 430 60 1.62 3.226
400 460 460 0 1.62 3.226
T6 908 08 0 0 6.132 6.251 0.076 6.857 7.065 0.134
08 4 8 6.132 6.857
8 30 19 22 6.294 7.141
30 39 34.5 9 6.294 4.715 1.940 7.141 5.589 0.773
39 92 65.5 53 4.908 5.268
92 100 96 8 1.664 5.97
100 192 146 92 1.664 2.237 0.301 5.97 2.948 1.344
192 232 212 40 2.88 5.478
232 262 247 30 2.499 3.935
262 342 302 80 2.118 2.392
342 392 367 50 2.25 2.93
392 422 407 30 2.25 2.93
422 432 427 10 2.272 2.563
432 910 671 478 2.294 2.196
432 910 910 0 2.294 2.196

Terrace Age (kyr) Horizon Increment (cm) Center Depth (cm) Layer Thickness Used (cm) Alp (g kg D) DWA STD Alo (g kg B DWA STD

T7 990 0 20 0 0 7.526 6.846 0.962 9.608 9.440 0.238
0 20 10 20 7.526 9.608
20 30 25 10 5.486 9.104
30 37 33.5 7 5.486 1.873 1.895 9.104 3.642 2.866
37 73 55 36 1.498 2.488
73 100 86.5 27 1.437 3.764
100 140 120 40 1.437 1.669 0.225 3.764 2.482 0.415
140 190 165 50 1.212 2.572
190 270 230 80 1.398 2.508
270 340 305 70 1.385 2.552
340 400 370 60 1.385 2.552
400 500 450 100 1.8 2.385
500 950 725 450 1.8 2.385
950 1090 1020 140 1.8 2.385
950 1090 1090 0 1.8 2.385
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