

1 **Golgi-localized MORN1 promotes lipid droplet abundance and enhances tolerance to multiple**
2 **stresses in *Arabidopsis***

3
4 Zhan Li^{1,2†}, Yue Gao^{2†}, Jiapei Yan^{2,3}, Shuai Wang^{2,4}, Shu Wang^{2,5}, Yuanyuan Liu¹, Shaokui Wang¹, Jian
5 Hua^{2*}

6 ¹ Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for
7 Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University,
8 Guangzhou, China

9 ² School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA.

10

11

12 *Corresponding author: jh299@cornell.edu

13 [†]These authors have contributed equally to this work

14 ³ Current address: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory,
15 Huazhong Agricultural University, Wuhan 430070, China⁴ Current address: Nanjing Agricultural
16 University, Nanjing, China

17 ⁵ Current address: Jiangbei New Area Biopharmaceutical Public Service Platform Co., Ltd, Nanjing, China

18

19

20 **Key words**

21 Lipid droplet, MORN1, Golgi, stress tolerance, heat, cold, immunity, natural variation

22 **Abstract**

23 Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses
24 in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified
25 a *MORN1* gene as a contributor to natural variations of stress tolerance through genome-wide association
26 study in *Arabidopsis thaliana*. Characterization of its loss of function mutant and natural variants revealed
27 that the *MORN1* gene is a positive regulator of plant growth, disease resistance, cold tolerance and heat
28 tolerance. The *MORN1* protein is associated with the Golgi and is also partly associated with LD. Protein
29 truncations that disrupt these associations abolished the biological function of the *MORN1* protein.
30 Furthermore, the *MORN1* gene is a positive regulator of LD abundance, and its role in LD number
31 regulation and stress tolerance is highly linked. Therefore, this study identifies *MORN1* as a positive
32 regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential
33 involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of
34 plant growth and stress responses.

35 **Introduction**

36 Plants have evolved multi-layered mechanisms to respond to environment and cope with stresses.
37 In addition to extensive transcriptome reprogramming in nucleus, multiple organelles, such as chloroplast
38 and endoplasmic reticulum (ER), undergo functional modifications in response to environmental changes
39 and contribute to adaptation and stress tolerance (Liu and Li, 2019) (Song et al., 2021). Lipid droplet (LD),
40 also named lipid body or oil body, is recently also implicated in stress tolerance in plants, besides its
41 conserved function as reservoirs of high-energy metabolites. LDs in leaves, while less abundant than in
42 seeds, have been found to modulate plant growth, drought stress, defense responses, plant senescence, heat
43 tolerance, and cold tolerance (Aubert et al., 2010; Brocard et al., 2017; Fernandez-Santos et al., 2020; Gidda
44 et al., 2016; Kim et al., 2016; Shimada et al., 2014). LDs consist of neutral lipids in the core and
45 phospholipids as a monolayer on the surface as well as LD proteins (or LD coat proteins) inserted into or
46 attached to the phospholipids (Chapman et al., 2019; Chapman et al., 2012). Plant LD coat proteins play
47 important roles in modulating LD number and size as well as plant development and environmental
48 responses (de Vries and Ischebeck, 2020; Huang et al., 2019; Ischebeck et al., 2020; Pyc et al., 2017;
49 Shimada et al., 2018). For instance, oleosins, the primary LD coat proteins in seed, are critical for LD
50 integrity (Shimada et al., 2018). A LD protein CALEOSIN3 (CLO3, or RD20) in guard cells controls
51 stomata aperture in response to light and ABA (Aubert et al., 2010) while CLO3 in mesophyll cell is
52 responsible for the biosynthesis of a critical antifungal compound (Shimada et al., 2014).

53 LD biogenesis is shown to initiate at the membranes of the (ER in yeasts, animals and plants
54 (Murphy, 2012). Neutral lipid triacylglycerol (TAG) is synthesized in the ER and buds out to form LD
55 (Jackson, 2019; Walther et al., 2017; Weigel and Mott, 2009). Some LD proteins target to the LD surface
56 by routing directly through the ER (Ohsaki et al., 2014; Olzmann and Carvalho, 2019). There is also
57 evidence that Golgi is also involved with LD formation in mammalian and yeast cells. For instance, the
58 Golgi-localized ARF-related protein 1 mediates LD growth via organizing the membranous structures at
59 LD for TAG transport in specific cell types in mice (Hesse et al., 2013). However, it is not known how
60 prevalent the Golgi and LD association is among various cell types and how much this association
61 contributes to LD biogenesis. In plants, no connection of the Golgi to LD biogenesis is reported.

62 The Membrane Occupation and Recognition Nexus (MORN) motif was first described as an
63 membrane tethering module of the mammalian Junctophilin Protein 1 (JP1 or JPH1) to facilitate calcium
64 transduction between the plasma membrane (PM) and the ER (Takeshima et al., 2000). This motif is now
65 defined as 23 amino acids (aa) including the originally identified 14 aa sequence YxGxWxxG/DxxxGxG
66 (Li et al., 2019a; Sajko et al., 2020). The MORN motif has been found to exert diverse functions in various
67 tissues and species and to influence protein-lipid and protein-protein interactions (Im et al., 2007; Li et al.,

68 2019a; Ma et al., 2006; Sajko et al., 2020). In *Arabidopsis thaliana* (referred as Arabidopsis from hereon),
69 a total of 15 proteins contain the MORN motif which is always in repeats in each protein. They include 9
70 Phosphatidylinositol-phosphate-5-kinases (PIP5Ks) (Ma et al., 2006; Mueller-Roeber and Pical, 2002),
71 Accumulation and Replication of Chloroplasts 3 (ARC3), Translocon at the Inner Envelope Membrane of
72 Chloroplast 100 (TIC100, or EMB1211) (Liang et al., 2010; Shimada et al., 2004) and 4 JPH1-like proteins.

73 In this study, we used Genome Wide Association Study (GWAS) to identify genetic and molecular
74 basis for environmental responses because variations in genomes have been linked to adaptation to local
75 environment (Exposito-Alonso et al., 2018; Fournier-Level et al., 2011; Hancock et al., 2011; Weigel and
76 Mott, 2009). A MORN motif containing protein MORN1 was identified as a contributor to natural
77 variations of plant immunity at 16 °C in Arabidopsis from this GWAS. The *MORN1* gene is revealed as a
78 positive regulator of plant growth, disease resistance, heat tolerance and freezing tolerance through
79 characterization of its loss of function mutation alleles, natural variants, and its overexpression lines.
80 *MORN1* is found to be a positive regulator of LD abundance, and its role in LD number regulation and
81 stress tolerance is highly linked. Furthermore, the MORN1 protein is associated largely with the Golgi and
82 partially with LD. The identification of a Golgi-localized MORN1 as a novel regulator of LD abundance
83 as well as multiple environmental stress responses provide new areas to explore on LD biology and suggests
84 a role of LD variation in environmental adaptation.

85

86 **Results**

87 **GWAS identifies the *MORN1* gene as a regulator of disease resistance at 16°C**

88 A total of 69 natural accessions of Arabidopsis plants were assayed for their resistance to a virulent
89 pathogen *Pseudomonas syringae pathovar tomato* (*Pst*) DC3000 at 16°C (Fig. 1A). GWAS on differences
90 in the growth of *Pst* DC3000 between at 3 days and 0 day (1 hour) after infection revealed one major QTL
91 centered around position 9600 K on the chromosome 4 (Fig. 1B). This QTL fell below the significance
92 value, but could still to be true due to the small number of accessions used in this association study. Earlier
93 studies have identified true QTLs with a similarly low values using the same sized population (Lu et al.,
94 2021; Wang et al., 2019). Underlying this QTL was a gene coding a MORN motif containing protein. This
95 is one of the 4 JPH1-like proteins in Arabidopsis, and we named it MORN1 and other 3 JPH1-like as
96 MORN2 to MORN4 (Fig. S1A). The Arabidopsis MORN1 to MORN4 proteins are mis-annotated (in
97 Araport v11) as putative histone H3K4-specific methyltransferases due to the presence of MORN-repeat
98 motifs in the animal methyl transferases SET7/9, but these plant proteins do not have a methyltransferase
99 domain. The molecular and biological functions of these proteins are unknown except for the MORN-motif
100 repeat protein regulating flowering (MRF1, or MORN3) that was shown to promote flowering under long

101 day condition (You et al., 2019). The closest homolog of the MORN1 subfamily (MORN1 to MORN4) is
102 TIC100 in Arabidopsis based on the MORN motif sequences (Fig. S1A).

103 To determine whether or not the *MORN1* gene has a role in disease resistance regulation, we
104 analyzed a *MORN1* loss-of-function mutant (Salk_073158) from the T-DNA mutant collection (Alonso et
105 al., 2003). This *morn1-1* mutant (referred as *morn1* from hereon) has a T-DNA insertion in the first exon
106 of the gene which is predicted to cause a truncation of protein (Fig. S1B), and it also has greatly reduced
107 *MORN1* RNA expression (Fig. S1C). Another *morn1-2* mutant had a T-DNA insertion in the promoter
108 region but did not have a reduced *MORN1* expression compared to the wild type (Fig. S1B, S1C) and
109 therefore was not used for further study. The growth of pathogen *Pst* DC3000 was 2-fold higher in the
110 *morn1* mutant compared with the wild-type Col-0 at 16°C (Fig. 1B and 1C). This defect was rescued by the
111 wild-type *MORN1* from Col-0 (*MORN1*^{Col-0}) as shown by the wild-type level of growth of *Pst* DC3000 in
112 transgenic lines in *morn1* (Fig. 1C). Pathogen growth at 22°C was also higher in *morn1* (by 1.6-fold each)
113 compared to wild-type Col-0, but the difference was not statistically significant (Fig. 1D). This indicates
114 that *MORN1* positively regulates plant immunity, and this function is strongest at a relatively low
115 temperature and is weak or not significant at normal temperatures. This temperature influenced defect is
116 consistent with the general enhancement of disease resistance at low temperatures (Li et al., 2019b).

117 ***MORN1* positively regulates plant growth**

118 The *morn1* mutants also exhibited growth defects compared to the wild-type Col-0. At both 16°C
119 and 22°C, it had a reduced growth with a lower fresh weight and smaller rosette compared to the wild-type
120 Col-0 (Fig 2A, 2B). The growth defects in rosette size and fresh weight were rescued by the *MORN1*^{Col-0}
121 transgene (Fig. 2B, S2A, S2B). In addition, a high expression of *MORN1* was associated with more
122 resistance to *Pst* DC3000 and larger growth among lines carrying the transgene of the genomic fragment
123 of the *MORN1* gene from Col-0. *MORN1* was expressed at a higher level in two lines (line #5 and #8) than
124 the rest of the 9 lines (Fig. S2C), which is likely due to transgene insertion. These two lines had larger
125 rosettes and less pathogen growth compared to other lines (Fig. S2B, S2D). This data indicates that *MORN1*
126 is required for plant growth and disease resistance, and it also suggests that its activity is expression level
127 dependent.

128 ***MORN1* positively regulates freezing tolerance and heat tolerance**

129 To have a more comprehensive assessment of the biological role of *MORN1*, we examined the
130 *morn1* mutant under abiotic stresses, especially freezing and heat. Plants grown at normal growth
131 temperature 22°C for 2 weeks were subject to -10°C treatment, and lethality was examined after recovery
132 at 22°C for 5 days. The wild-type Col-0 and the *morn1* plants were not significantly different from each
133 other after 4 hr of freezing treatment, and neither survived after 10 h of -10°C freezing treatment (Fig. S2E

134 and S2F). However, the survival rate was significantly lower in *morn1* compared to the wild type after -
135 10°C freezing treatment of 5 h, 6 h and 8 h (Fig. 2C, S2E and S2F). This function of *MORN1* was supported
136 by an increase of freezing tolerance in *MORN1* overexpressing (*MORN1*-OE) transgenic plants compared
137 to the wild type (Fig. 2C). To examine heat tolerance of *morn1*, plants grown at 22°C for 2 weeks were
138 treated by a moderate heat of 35°C. After four weeks at 35°C, all *morn1* mutant plants died while the wild-
139 type plants were still alive (Fig. 2D). This heat susceptible defect was complemented by the *MORN1*^{Col-0}
140 transgene (Fig. 2D). Therefore, *MORN1* also acts as a positive regulator of temperature stress tolerance.

141 The *MORN1* protein is associated with the Golgi and lipid droplets

142 *MORN1* encodes a protein of 513 aa, with two predicted transmembrane segments (153 aa to 198
143 aa) and 7 MORN motifs (from 260 aa to 419 aa) (Fig. 3A). We analyze the subcellular localization of this
144 protein by its GFP fusion proteins. The *MORN1*-GFP transgene complemented the growth defects of the
145 *morn1* mutant (Fig. S2G), but no GFP signal was detected in transgenic plants under confocal microscope.
146 We therefore transiently expressed this functional fusion in *Arabidopsis* protoplasts and observed its
147 localization pattern by confocal imaging. A punctate or droplet-like structure was observed for the *MORN1*-
148 GFP signal, and this structure was not associated with chloroplasts by viewing with the constructed 3D
149 image (Fig. S3A). A number of organelle markers or stains (Nelson et al., 2007; Rumin et al., 2015) were
150 used to determine the location of *MORN1*-GFP expressed in *N. benthamiana*. Z-stacked images of
151 *MORN1*-GFP were merged with each of the marker protein or stain of peroxisome, plastid, ER, LD or
152 Golgi. Significant overlap with *MORN1* signal was observed for the cis-Golgi marker mannosidase I-
153 mCherry fusion as well as the LD stained by Nile red (Fig. S3B).

154 Localization of *MORN1* to the Golgi was confirmed by marker proteins of both the cis-Golgi ManI
155 and trans-Golgi SYP61 (Yang et al., 2021) (Fig. 3B). When co-expressed in *Arabidopsis* protoplasts, 80%
156 (from 40% to 90%) of the *MORN1*-GFP or GFP-*MORN1* signal areas overlapped with the ManI-mCherry
157 signals (Fig. 3C), and 70% (45% to 90%) of the *MORN1*-GFP or GFP-*MORN1* signal areas overlapped
158 with the SYP61-mCherry signals (Fig. 3C). It is worth noting that overexpressing *MORN1*-GFP, and GFP-
159 *MORN1* to a less extent, sometimes induced aggregate like structures of the *MORN1* fusion protein itself
160 in protoplasts and caused the Golgi marker protein to exhibit a more ER like structure. Therefore, the
161 overlap measured in this transient expression might be an overestimation or underestimation of the real
162 overlap of *MORN1* protein produced at normal level with the Golgi. Nevertheless, this data supports the
163 localization of *MORN1* to the Golgi, especially considering that expression of the marker protein in some
164 cells may not be high enough to mark all the Golgi and the ratio of overlap could be an underestimation of
165 the association of *MORN1* with the Golgi. Since a large overlap was observed for both cis- and trans- Golgi

166 markers, MORN1 may be associated with both compartments of the Golgi, or the imaging resolution does
167 not resolve the spatial difference of the two.

168 In *N. benthamiana*, MORN1-GFP had a large overlap with signals from LD stain Nile red on
169 projected Z-stacked images (Fig. S3B). This association of MORN1 with LD was observed in Arabidopsis
170 protoplasts as well. In optical sections of the confocal images, a large signal overlap was observed between
171 Nile red stain and MORN1-GFP or GFP-MORN1 (Fig. 3D). Another LD stain BODIPY that more
172 specifically detects neutral lipids than Nile red was further used to verify the location of MORN1 relative
173 to LD. Because of the emission signals from BODIPY and GFP are too similar to distinguish, the mCherry
174 fusion of MORN1 was used for co-localization with BODIPY staining. The emission range was set at 590
175 to 640 nm so that BODIPY signal could not be falsely detected in the mCherry channel. Again, a large
176 overlap was observed between MORN1-mCherry signals and BODIPY staining signals (Fig. 3D). The
177 MORN1 signal was close to the LD or wrapped around the LD (Fig 3D), suggesting that MORN1 was
178 associated with the surface of LD. Quantification of the overlapping areas on the optical section images of
179 protoplasts revealed that an average of 60% (30%-78%) of the MORN1-GFP or GFP-MORN1 signal area
180 overlapped with signals from Nile red staining, an average of 57% (from 15% to 81%) of MORN1-mCherry
181 signal areas overlapped with BODIPY signal areas (Fig. 3B), indicating that about half of MORN1 proteins
182 are associated with LDs. The association of MORN1 with LD was less than the association with the Golgi
183 (Fig. 3B), suggesting that MORN1 is localized to the Golgi but is associated with LD frequently.

184 The dual association of MORN1 with the Golgi and LD suggests an association of LD with the
185 Golgi. As prior studies showed that the ER has a contact with LD for its initiation, we examined the
186 association of MORN1 with the ER in more detail using an ER marker HDEL-mCherry. Similar to what
187 was observed in *N. benthamiana* (Fig. S3B), very little contact was observed between MORN1-GFP and
188 HDEL-mCherry in protoplast cells (Fig. S3C). In addition, we examined the association of MORN1 with
189 the SEIPIN that was shown to reside at the ER and LD contact site (Cai et al., 2015; Salo et al., 2016;
190 Szymanski et al., 2007). Little overlap of signals was observed between MORN1-mCherry and SEIPIN1-
191 GFP when co-expressed in leaves of *N. benthamiana* (Fig. S3D). These data indicate that MORN1 is not
192 associated with the ER.

193 **The transmembrane region and the MORN domain are important for the Golgi and LD associations,
194 respectively**

195 We further examined the structural basis for the association of MORN1 with Golgi and LD. A
196 series of truncated MORN1 proteins were made with one or more of the domains or motifs deleted: the N-
197 terminal segment (aa1-151), two consecutive transmembrane segments (aa152-198), six MORN1 motifs
198 (aa260-419), and the C-terminal segment (aa420-513) (Fig. 4A). The truncated proteins were fused with

199 mCherry for co-localization study with BODIPY staining, and they were fused with GFP for co-localization
200 with the Golgi marker ManI-mCherry or for staining with Nile red in protoplasts.

201 Similar to the full-length MORN1, the Δ 420-513 form of MORN1 had co-localization signals with
202 both the Golgi markers and the LD stain (Fig. 4A), suggesting the last 94 aa are not essential for the
203 localization of MORN1. The Δ 199-513 form of MORN1 was localized on the Golgi but had no association
204 with LD (Fig. 4A), indicating the N-terminus and the TM segments are sufficient for Golgi localization,
205 and the MORN motifs and/or C-terminal are needed for LD localization. The Δ 282-513 form of MORN1
206 that had the N-terminal part till the first MORN1 motif was also localized on the Golgi but not associated
207 with the LD (Fig. 4A). Similarly, the Δ 260-419 form that lacks all 7 MORN motifs was co-localized with
208 Golgi marker but not with LD stain (Fig. 4A). This indicates that MORN motifs are required for LD
209 localization but not Golgi localization. Interestingly, the Δ 1-259 form of MORN1 (aa260-513) that lacks
210 the N-terminus and transmembrane segments but contains all the MORN motifs and the C-terminus did not
211 show co-localization with Golgi marker or LD stain (Fig. 4A). Therefore, MORN motifs are required but
212 not sufficient for LD localization and Golgi localization is essential for the LD association of the MORN1
213 protein.

214 We further analyzed the biological activities of these truncated proteins by expressing the mutant
215 genes in the *morn1* mutant. Over 27 primary transformants for each of the MORN1 forms were analyzed
216 for their growth phenotype. Compared to transgenic lines containing the full-length wild-type *MORN1* gene,
217 transgenic lines carrying all the mutant forms of *MORN1* exhibited reduced growth (Fig. 4B). The Δ 420-
218 513 form that had the same subcellular localization with the wild-type form had a higher activity than other
219 truncated forms, although its activity was still lower compared to the wild-type form in promoting plant
220 growth. These data suggests that Golgi localization and LD association are both important for MORN1
221 function.

222 ***MORN1* is a positive regulator of lipid droplet abundance**

223 MORN1 is associated with LD as shown above by its localization in *Arabidopsis* protoplasts and
224 *N. benthamiana*, but it was not identified as a LD resident protein in any of the lipid droplet proteome
225 studies (Brocard et al., 2017; Kretzschmar et al., 2020; Zhi et al., 2017). We therefore hypothesize that
226 MORN1 is localized at Golgi and may be associated with LD while LD is undergoing biogenesis or
227 maturation. To test this hypothesis, we analyzed the LDs in the wild type and the *morn1* mutant plants by
228 using the BODIPY stain. In leaf epidermis, the *morn1* mutant had a reduced LD number under both normal
229 growth condition and stress conditions (Fig. 5A). Quantification of the BODIPY signals revealed a
230 significantly reduced LD number per leaf area in the *morn1* mutant compared to the wild type under normal
231 growth condition of 22°C (Fig. 5B). LD number increased drastically at 48 h after infection with virulent

232 pathogen *Pst* DC3000 in the wild type (Fig. 5A, 5B). A similar extent of increase was observed in the
233 *morn1* mutant after infection, and the LD number in the mutant remained reduced compared to the wild
234 type under pathogen infection (Fig. 5A, 5B). LD number also increased after 48 h of heat (35°C) treatment
235 (Fig. 5A, 5B). An increase of LD number was also observed in the *morn1* mutant but to a much lower extent
236 compared to the wild type (Fig. 5A and 5B). The average LD size was similar between the wild type and
237 the *morn1* mutant (Fig. 5C). The LD number difference between the mutant and the wild type was also
238 observed in protoplasts generated from mesophyll cells (Fig. 5D). Quantification using Z-stack images of
239 BODIPY stain of protoplasts revealed that the *morn1* mutant had a 30% reduction of LD number per cell
240 compared to the wild type (Fig. 5E). The average LD size was also comparable between the wild type and
241 the mutant (Fig. 5F).

242 We further used the LD coat protein CLO3 to quantify LD amount to complement the LD staining
243 method. A CLO3-GFP protein that is expressed under the native *CLO3* promoter and is present in about
244 80% of leaf LDs (Shimada et al., 2014) was introduced into the *morn1* background by hybridization to
245 generate isogenic plants of the wild type and the *morn1* mutant carrying the same *CLO3-GFP* transgene.
246 Confocal imaging of epidermis revealed a reduced CLO3-GFP signal in the *morn1* mutant compared to the
247 wild type under non stress condition, after pathogen infection, and after heat treatment (Fig. S4A).
248 Consistent with the microscopy observation, Western blot of total leaf proteins from isogenic lines revealed
249 a similar reduction of CLO3-GFP protein under all conditions tested. The CLO3-GFP was reduced to about
250 half in *morn1* compared to the wild type under normal growth condition (Fig. 5G). After infection with
251 pathogen *Pst* DC3000, the wild type and the mutant had an increase of CLO3-GFP by 12 folds, and the
252 CLO3-GFP remained lower in *morn1* compared to the wild-type Col-0 after infection (Fig. 5G). Heat
253 treatment of 35°C for 24 hours induced CLO3-GFP in the wild type by 5 folds and in the *morn1* mutant by
254 1.2 folds, leading to a drastically reduced CLO3-GFP in the mutant (Fig. 5G). The CLO3-GFP protein level
255 was slightly higher at 16°C compared to 22°C for both wild type and the *morn1* mutant, and the mutant
256 remained to have a lower CLO3-GFP compared to the wild type (Fig. S4B). The reduced level of the CLO3
257 protein was not due to a lower transcript level of *CLO3* in the mutant. The RNA level of *CLO3* in the *morn1*
258 was even higher than that in the wild-type Col-0 at 22°C and was even higher in the mutant compared to
259 the wild type at 16°C and 35°C (Fig. S4C). These data indicate that *MORN1* is a positive regulator of LD
260 abundance, and its effect is present under normal growth conditions as well as under biotic and abiotic
261 stresses.

262 **MORN1 does not significantly affect TAG, sterols or phosphatidylcholine content or Golgi-mediated**
263 **protein secretion**

264 As LD consists of TAG in the core as well as sterols in and phospholipids on the surface , we asked
265 whether or not MORN1 affects their metabolism to regulate LD abundance. Six major TAGs and 22
266 phosphatidylcholines were analyzed on leaf tissues from plants grown under 16°C, and none of them had
267 significant difference between the wild-type Col-0 and the *morn1* mutant (Fig. 5H and S5B). In addition,
268 all 12 sterols analyzed (stigmasterols, sitosterols and campesterols) had a similar concentration in Col-0
269 and the *morn1* mutant except for stigmasterol (18:2) which was slightly lower in *morn1* than in Col-0 (Fig.
270 S5A). This indicates that MORN1 does not drastically affect the amount of TAGs, sterols or
271 phosphatidylcholines.

272 We further asked whether or not MORN1 has a function in vesicle trafficking that is carried out by
273 the Golgi. A glycosylphosphatidylinositol (GPI)-anchored protein was used as a marker for this trafficking
274 process, because defective Golgi function would render it trapped in the Golgi rather than presented on the
275 PM (Bernat-Silvestre et al., 2021; Martiniere et al., 2012). When expressed in *Arabidopsis* protoplasts, the
276 GFP-GPI fusion protein was localized on the PM in both the wild type and the *morn1* mutant in all
277 protoplasts observed (Fig. 5I).

278 Together, these data suggest that the MORN1 protein does not have a significant role in TAG
279 metabolism or vesicle trafficking, therefore its regulation of LD abundance is not likely via its effect on
280 TAG metabolism or Golgi function.

281 **Natural MORN1 variants have differential activities in plant stress tolerances and LD number**

282 As *MORN1* was identified as a candidate gene for natural variation, we determined whether or not
283 the *MORN1* variants could confer differential disease resistance. Polymorphisms were observed in
284 regulatory or intergenic regions as well as in the coding regions in the *MORN1* gene among three high
285 resistant accessions (Bsch_0, Kin_0, Sq_8) and three low resistance accessions (Kro_0, Ove_0, Sei_0) (Fig.
286 6A, S6A, S6B). The three resistant accessions (Bsch_0, Kin_0, Sq_8) and one susceptible accession (Sei_0)
287 had a higher *MORN1* expression than the less resistant Col-0, and two susceptible accessions had a similar
288 expression as Col-0 (Fig. 6B), suggesting that the *MORN1* expression level may contribute to resistance
289 variation. Inspection of coding sequences revealed that *MORN1* variants of the resistant accessions are
290 similar to that of the reference accession Col-0, while *MORN1* variants of the susceptible accessions are
291 similar to each other but distinct from Col-0 (Fig. 6A, S6B), and they differ by 5 amino acids residing
292 outside the transmembrane segments and the MORN motifs (Fig. S6C).

293 To assess the biological activities of the variants, we isolated the genomic fragments of the *MORN1*
294 gene (including its promoter) from the representative susceptible accession Ove_0 and resistant Kin_0
295 accessions. The *MORN1*^{Ove_0} transgene could not complement the growth defect of the *morn1* mutant (Fig.
296 6C, and S6D) even though the *MORN1* gene expression was higher in these lines than the wild-type Col-0

297 (Fig. 6D). In contrast, the *MORN1*^{Kin_0} transgene complemented the growth defect of the *morn1* mutant
298 (Fig. 6E, and S6D), and it was expressed at a higher level than the *MORN1* gene in Col-0 (Fig. 6F). This
299 indicates the *MORN1*^{Ove_0} variant has a lower activity than the *MORN*^{Col-0} and *MORN1*^{Kin_0} variant in
300 promoting plant growth. In addition, lines #2 and #3 of *MORN1*^{Kin_0} in *morn1* with a higher *MORN1*^{Kin_0}
301 expression had larger rosettes than line #1 with a lower *MORN1*^{Kin_0} expression (Fig. 6E and 6F), suggesting
302 an enhancement of growth by a higher expression of *MORN1*.

303 In addition to the growth promoting activity, the *MORN1*^{Ove_0} variant also exhibited lower activity
304 than *MORN1*^{Kin_0} or *MORN1*^{Col-0} in rescuing defects in disease resistance, freezing tolerance and heat
305 tolerance of *morn1*. *MORN1*^{Ove_0} could not complement the defect of immunity, heat and freezing tolerance
306 in *morn1*, while *MORN1*^{Kin_0} and *MORN1*^{Col-0} each restored the *morn1* to the wild-type Col-0 phenotype
307 (Fig. 6G, 6H and 6I). This indicates that *MORN1* variations, either in expression (Kin_0 versus Col-0) or
308 protein activity (Col-0 versus Ove_0), can confer differences in growth and environmental responses.

309 We further examined the effect of *MORN1* variants on LD abundance using *morn1* transgenic lines
310 carrying *MORN1*^{Ove_0} or *MORN1*^{Kin_0}. BODIPY staining of protoplasts from wild type, *morn1*, and
311 transgenic plants revealed that LD number in *MORN1*^{Kin_0}/*morn1* was higher than that in *morn1* and similar
312 to that of the wild-type Col-0 while LD number in *MORN1*^{Ove_0}/*morn1* was not significantly different from
313 that in *morn1* (Fig. 6J). This indicates that natural *MORN1* gene variants can confer variations of LD
314 numbers in addition to variations of growth and environmental responses.

315

316 Discussion

317 Here, we identified MORN1, a MORN motif containing protein, as a positive regulator of growth
318 and stress tolerances in *Arabidopsis*. A loss of *MORN1* function resulted in multiple defects, including
319 reduced plant growth, compromised immunity, and hyper-susceptibility to heat and freezing, while a high
320 expression of *MORN1* enhances plant growth and stress tolerances (Fig. 1, 2 and S2). Furthermore, natural
321 polymorphisms in the *MORN1* gene confer variations in growth and stress tolerance and contribute to
322 variations in disease resistance in *Arabidopsis* natural accessions (Fig. 6 and S6). These data not only
323 indicate an important role of *MORN1* in environmental response but also implicate its contribution to
324 adaptation in natural populations.

325 The biological function of MORN1 in stress tolerance and growth likely results from its cellular
326 function in promoting LD abundance. MORN1 is a positive regulator of LD abundance. LD number is
327 reduced with the loss of *MORN1* activity and increased when the *MORN1* has a higher activity (Fig. 5 and
328 6). The abundance of LD has been associated with plant growth and stress tolerance (Pyc et al., 2017;
329 Shimada et al., 2018). The reduced LD number might account for the multiple defects of *morn1* in plants

330 growth, immunity, heat tolerance, and freezing stress. The *morn1* mutant exhibited a stronger susceptibility
331 at 16°C compared to at 22°C, it is possible that LD proteins such as CLO3 are important for defense
332 responses, reduced LD protein in the *morn1* mutant may lead to reduced disease resistance. Because defense
333 response against *Pst* DC3000 is enhanced at 16°C (Li et al., 2019b), MORN1 might be involved in this
334 lower temperature enhancement of defense response. Although a high correlation of LD number and stress
335 tolerance was found for effects of loss of function, overexpression and natural variants of MORN1 gene,
336 whether or not the regulation of LD number leads to its regulation of plant growth and stress tolerance will
337 still need to be further investigated.

338 It is not yet known at the molecular level how MORN1 modulates LD number in plants. MORN1
339 does not significantly affect metabolism of TAG or sterols (Fig. 5H and S5), and it also does not
340 significantly affect protein trafficking through the Golgi as indicated by the marker protein GFP-GPI (Fig.
341 5I). It is therefore unlikely that the processing of some LD coat proteins in the Golgi is significantly affected
342 in the *morn1* mutant leading to LD biogenesis defect. Our data suggests that MORN1 may act as a bridge
343 between the Golgi and LD and thus promote or maintain the association of LD with Golgi. Structurally,
344 MORN1 could be a Golgi resident protein through its transmembrane region in the Golgi membrane. At
345 the same time, it could associate with LD through the MORN repeats and therefore tether LD to the Golgi.
346 While its Golgi localization only requires the transmembrane region, its LD association requires both
347 transmembrane region and the MORN motifs (Fig. 3). The tethering of LD to the Golgi via the MORN1
348 protein could affect the biogenesis of LD. LD may initiate from Golgi directly and MORN1 may maintain
349 a longer association of LD with the Golgi to facilitate material transfer. Alternatively, LD initiated from ER
350 may dock on Golgi through MORN1 for further maturation (Fig. S7). Similar tethering and transfer
351 facilitating activities have been observed in other MORN motif containing proteins. JPH proteins in muscle
352 and neuronal cells tether the ER to the PM for lipid transfer and calcium dynamics between the ER and the
353 PM (Woo et al., 2016), and TIC100 on the chloroplast inner envelope is critical for chloroplast protein
354 import (Loudya et al., 2022). Because of the low expression of MORN1-GFP in transgenic plants, all
355 localization studies were carried out by transient expression in *Arabidopsis* protoplasts and *N. benthamiana*
356 leaves. Stronger fluorescent proteins might be used as tags for MORN1 localization studies in plants for
357 the future. Whether or not MORN1 has an overlapping function with other MORN proteins to tether LD
358 and Golgi also needs to be investigated.

359 The study of MORN1 suggests that the Golgi might be a site for LD initiation or maturation.
360 Although the ER is considered as an initiation site for LD biogenesis, the Golgi was recently found to be
361 another initiation site in animal lipid cells. High throughput fluorescence imaging of mammalian cells also
362 revealed that LDs are in contact with multiple organelles, with the ER as the most frequently contacted

363 organelle followed by the Golgi and the mitochondria (Valm et al., 2017). Proteomic analysis of leaf LDs
364 also suggested a direct contact of Golgi with LD, as a number of Golgi membrane proteins were detected
365 from purified LD proteins in *Arabidopsis* leaves (Kretzschmar et al., 2020). High throughput and high
366 resolution imaging could be employed to further test this hypothesis in plants.

367 Variations in the *MORN1* genes contributes to diversity of plant growth, defense and
368 thermotolerance as well as LD biogenesis. This suggests that modulating LD number could be an adaptation
369 strategy in natural population. The expression and protein activity of *MORN1* show natural variations
370 which could both contribute to its activity variation. Differences in amino acids are mainly in N terminus
371 before TM domain and the linker between TM and MORN domain (Fig. S5C). The linker region was found
372 to be important for protein-protein interaction to facilitate JHP4 molecular function (Woo et al., 2016).
373 Further detailed targeted mutagenesis should reveal the major variations that are responsible for the
374 phenotypic effects and how these variations might enable adaptation to their local environment.

375 In summary, this study has identified *MORN1* as a regulator of LD abundance and suggests an
376 involvement of the Golgi in LD initiation and/or maturation. This study supports the emerging role of LD
377 in growth and stress tolerance in vegetative tissues. The contribution of *MORN1* to natural variations of
378 disease resistance suggests a role of LDs in environmental adaptation.

379

380 **Materials and Methods**

381 Plants growth conditions

382 The *Arabidopsis* plants were grown in chambers with a light intensity of 70-100 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$ and a
383 relative humidity of 50-70%. Plants were grown under constant light unless they were used for pathogen
384 growth assay where a 12 hr light/12 hr dark photoperiod was used.

385 Generation of constructs and transgenic plants

386 For complementation tests of *MORN1*^{Col-0}, *MORN1*^{Ove-0} and *MORN1*^{Kin-0}, genomic fragments
387 containing the promoter region of *MORN1* were amplified from the respective accessions and cloned first
388 into PCR8/GW/TOPO vector (Invitrogen) and then the binary vector pMDC99 (Curtis and Grossniklaus,
389 2003) by Gateway LR clonase (Invitrogen). For *MORN1*-OE construct, the cDNA of *MORN1* was cloned
390 into vector PMDC32 (Curtis and Grossniklaus, 2003) by the Gateway system. The constructs were
391 transformed into *Agrobacterium* GV3101 and then *Arabidopsis* plants via floral dipping method (Clough
392 and Bent, 1998). For localization assays, cDNA of *MORN1* and genomic DNA of *SEIPIN1* were cloned in
393 the vector pSAT4A-mCherry-N1 (Citovsky et al., 2006) by In-fusion cloning (Vazyme) or in the vector
394 pSAT6-EGFP-N1 (Tzfira et al., 2005) by the Gateway system. All primers used in generating constructs
395 are provided in Supplemental data.

396 Genome-wide association study

397 A genome-wide association study was performed on GWAPP
398 (<https://gwapp.gmi.oeaw.ac.at/index.html>) with a 250K single nucleotide polymorphism SNP dataset
399 (Seren et al., 2012). The 69 *Arabidopsis* natural accessions used were the same as in the early study (Wang
400 et al., 2019).

401 Pathogen growth assay

402 Pathogen growth assays were performed by dipping inoculation as previously described (Gou et al.,
403 2015). Seedlings were grown at 22°C for 14 days before inoculation. The number of bacteria in seedlings
404 was analyzed at 1 h (0 d) and 3 d post inoculation (dpi).

405 Freezing and heat tolerance assays

406 Plants were grown at 22°C for 2 weeks before being moved to -10°C for freezing treatment or 35°C
407 for heat treatment. Phenotypic comparison was done on plants grown side by side in the same pot. The heat
408 tolerance test was conducted at least three times and the freezing tolerance test was conducted two times
409 with similar results.

410 Protoplast isolation and transformation

411 Protoplast isolation and transfection were performed as previously described (Jung et al., 2015).
412 Transfected protoplasts were inoculated at 22°C for 16 h under dark before being placed on ice for
413 transporting to facility for imagining.

414 Lipid droplet staining

415 LD staining in leaves was performed as previously described (Gidda et al., 2016) with slight
416 modifications. The 5th or 6th leaves of *Arabidopsis* plants were stained with 2 µg/mL BODIPY 493/503
417 (Invitrogen) in 50 mM PIPES buffer (pH 7.0) under water-pump vacuum for 30 minutes followed by
418 washing with 70% ethanol for 30 seconds and then with PIPES buffer for 5 minutes. LD staining in
419 protoplasts was done by incubating protoplasts in 0.1 µg/mL BODIPY or Nile red for 1 minute.

420 Confocal microscopy and imaging quantification

421 Confocal microscopy images were taken using the ZEISS LSM880 confocal microscope equipped
422 with the ZEISS software package. A 20x objective was used for imaging, and images with a zoom factor
423 of 8-bit were acquired with a frame size of 512 x 512 pixels. For BODIPY staining and GFP, signals were
424 excited at 488 nm and emission was obtained at 495-545 nm. For Nile red staining and mCherry fusions,
425 signal was excited at 561 nm and emission was obtained at 590-640 nm. Images were acquired as individual
426 single optical sections or as a Z-stack sections.

427 All confocal imaging experiments were done at least two times independently with similar results.
428 Images shown are representative from these experiments. The number and area of signals (such as LD)

429 were quantified on the Z-stacked images or section images using the ‘Analyze Particles with the circularity
430 value set at 0.80-1.0 to exclude signals that likely come from clustered LDs, while the area of one signal
431 that overlaps with another signal was quantified on the optical section images using the “ROI manager”
432 function in FIJI software (Schindelin et al., 2012).

433 Analysis of plant lipids

434 Leaf tissues were harvested from 21-day-old *Arabidopsis* seedlings grown at 16°C under 12h/12h
435 light/dark. Lipids were extracted according to the protocol described (Shiva et al., 2018) and submitted to
436 Kansas Lipidomics Research Center for Mass-spec analysis.

437 Western blot

438 Total proteins were extracted from 2-week-old seedlings with or without treatments. Anti-GFP
439 antibody (JL-8; Takara Bio) was used at a 1:3000 dilution to detect CLO3-GFP. Anti-mouse IgG antibody
440 linked with HRP (Cell Signaling Technology) was used at a 1: 5000 dilution to detect the primary antibody.
441 Protein signals were quantified using FIJI.

442

443 **Acknowledgement**

444 We thank Dr. Ruth Welti and Kansas Lipidomics Research Center for TAG measurement and the
445 *Arabidopsis* Biological Resource Center for the *Arabidopsis* mutant seeds. We thank Dr. June Nasrallah,
446 Dr. María J.M. Zaragoza and Dr. Ikuko Hara Nishimura for organelle markers, GFP-GPI construct and the
447 CLO3-GFP seeds. We acknowledge funding support from NYSTEM (C029155) and NIH (S10OD018516)
448 to the Imaging facility of Cornell Institute of Biotechnology for the Zeiss LSM880 microscopes. This work
449 is supported by National Science Foundation USA IOS-1946174 to JH, Cornell-ZJU seed grant, and Seed
450 Grant of Cornell Institute of Biotechnology.

451

452 **Author contributions**

453 JH conceived and supervised the project; ZL, YG, JY, ShuaiW and ShuW performed the
454 experiments, YL and ShaokuiW provided materials, ZL and JH analyzed the data and wrote the manuscript
455 with inputs from all authors.

456

457 **References**

458 **Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K.,**
459 **Zimmerman, J., Barajas, P., and Cheuk, R.** (2003). Genome-wide insertional mutagenesis of
460 *Arabidopsis thaliana*. *Science* **301**: 653-657.

461 **Aubert, Y., Vile, D., Pervent, M., Aldon, D., Ranty, B., Simonneau, T., Vavasseur, A., and Galaud, J.-P.** (2010). RD20, a Stress-Inducible Caleosin, Participates in Stomatal Control, Transpiration and Drought Tolerance in *Arabidopsis thaliana*. *Plant and Cell Physiology* **51**: 1975-1987.

462

463

464 **Bernat-Silvestre, C., Sanchez-Simarro, J., Ma, Y., Montero-Pau, J., Johnson, K., Aniento, F., and Marcote, M.J.** (2021). AtPGAP1 functions as a GPI inositol-deacylase required for efficient transport of GPI-anchored proteins. *Plant Physiol* **187**: 2156-2173.

465

466

467 **Brocard, L., Immel, F., Coulon, D., Esnay, N., Tophile, K., Pascal, S., Claverol, S., Fouillen, L., Bessoule, J.J., and Brehelin, C.** (2017). Proteomic Analysis of Lipid Droplets from *Arabidopsis* Aging Leaves Brings New Insight into Their Biogenesis and Functions. *Front Plant Sci* **8**: 894.

468

469

470 **Cai, Y., Goodman, J.M., Pyc, M., Mullen, R.T., Dyer, J.M., and Chapman, K.D.** (2015). *Arabidopsis* SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation. *Plant Cell* **27**: 2616-2636.

471

472

473 **Chapman, K.D., Aziz, M., Dyer, J.M., and Mullen, R.T.** (2019). Mechanisms of lipid droplet biogenesis. *Biochem J* **476**: 1929-1942.

474

475 **Chapman, K.D., Dyer, J.M., and Mullen, R.T.** (2012). Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. *J Lipid Res* **53**: 215-226.

476

477

478 **Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T.** (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. *J Mol Biol* **362**: 1120-1131.

479

480

481 **Clough, S.J., and Bent, A.F.** (1998). Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *The plant journal* **16**: 735-743.

482

483 **Curtis, M.D., and Grossniklaus, U.** (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in *Planta*. *Plant Physiology* **133**: 462-469.

484

485 **de Vries, J., and Ischebeck, T.** (2020). Ties between Stress and Lipid Droplets Pre-date Seeds. *Trends Plant Sci* **25**: 1203-1214.

486

487 **Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H.A., and Weigel, D.** (2018). Genomic basis and evolutionary potential for extreme drought adaptation in *Arabidopsis thaliana*. *Nat Ecol Evol* **2**: 352-358.

488

489

490 **Fernandez-Santos, R., Izquierdo, Y., Lopez, A., Muniz, L., Martinez, M., Cascon, T., Hamberg, M., and Castresana, C.** (2020). Protein Profiles of Lipid Droplets during the Hypersensitive Defense Response of *Arabidopsis* against *Pseudomonas* Infection. *Plant Cell Physiol* **61**: 1144-1157.

491

492

493 **Fournier-Level, A., Korte, A., Cooper, M.D., Nordborg, M., Schmitt, J., and Wilczek, A.M.** (2011). A
494 Map of Local Adaptation in *Arabidopsis thaliana*. *Science* **334**: 86-89.

495 **Gidda, S.K., Park, S., Pyc, M., Yurchenko, O., Cai, Y., Wu, P., Andrews, D.W., Chapman, K.D., Dyer,
496 J.M., and Mullen, R.T.** (2016). Lipid Droplet-Associated Proteins (LDAPs) Are Required for the
497 Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells. *Plant Physiol* **170**: 2052-
498 2071.

499 **Gou, M., Zhang, Z., Zhang, N., Huang, Q., Monaghan, J., Yang, H., Shi, Z., Zipfel, C., and Hua, J.**
500 (2015). Opposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT
501 SHOCK COGNATE70 and BONZAI1 in *Arabidopsis*. *Plant physiology* **169**: 2304-2323.

502 **Hancock, A.M., Brachi, B., Faure, N., Horton, M.W., Jarymowycz, L.B., Sperone, F.G., Toomajian,
503 C., Roux, F., and Bergelson, J.** (2011). Adaptation to Climate Across the *Arabidopsis thaliana*
504 Genome. *Science* **334**: 83-86.

505 **Hesse, D., Jaschke, A., Chung, B., and Schurmann, A.** (2013). Trans-Golgi proteins participate in the
506 control of lipid droplet and chylomicron formation. *Biosci Rep* **33**: 1-9.

507 **Huang, S., Jiang, L., and Zhuang, X.** (2019). Possible Roles of Membrane Trafficking Components for
508 Lipid Droplet Dynamics in Higher Plants and Green Algae. *Front Plant Sci* **10**: 207.

509 **Im, Y.J., Davis, A.J., Perera, I.Y., Johannes, E., Allen, N.S., and Boss, W.F.** (2007). The N-terminal
510 membrane occupation and recognition nexus domain of *Arabidopsis* phosphatidylinositol
511 phosphate kinase 1 regulates enzyme activity. *J Biol Chem* **282**: 5443-5452.

512 **Ischebeck, T., Krawczyk, H.E., Mullen, R.T., Dyer, J.M., and Chapman, K.D.** (2020). Lipid droplets
513 in plants and algae: Distribution, formation, turnover and function. *Semin Cell Dev Biol* **108**: 82-
514 93.

515 **Jackson, C.L.** (2019). Lipid droplet biogenesis. *Curr Opin Cell Biol* **59**: 88-96.

516 **Jung, H.-i., Yan, J., Zhai, Z., and Vatamaniuk, O.K.** (2015). Gene Functional Analysis Using Protoplast
517 Transient Assays. In: *Plant Functional Genomics: Methods and Protocols*--Alonso, J.M., and
518 Stepanova, A.N., eds. New York, NY: Springer New York. 433-452.

519 **Kim, E.Y., Park, K.Y., Seo, Y.S., and Kim, W.T.** (2016). *Arabidopsis* Small Rubber Particle Protein
520 Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in
521 Drought Stress Responses. *Plant Physiol* **170**: 2494-2510.

522 **Kretzschmar, F.K., Doner, N.M., Krawczyk, H.E., Scholz, P., Schmitt, K., Valerius, O., Braus, G.H.,
523 Mullen, R.T., and Ischebeck, T.** (2020). Identification of Low-Abundance Lipid Droplet Proteins
524 in Seeds and Seedlings. *Plant Physiol* **182**: 1326-1345.

525 **Li, J., Liu, H., Raval, M.H., Wan, J., Yengo, C.M., Liu, W., and Zhang, M.** (2019a). Structure of the
526 MORN4/Myo3a Tail Complex Reveals MORN Repeats as Protein Binding Modules. *Structure* **27**:
527 1366-1374 e1363.

528 **Li, Z., Liu, H., Ding, Z., Yan, J., and Hua, J.** (2019b). Low Temperature Enhances Plant Immunity via
529 Salicylic Acid Pathway Genes That Are Repressed by Ethylene. *Plant Physiology* **182**:
530 pp.01130.02019.

531 **Liang, Q., Lu, X., Jiang, L., Wang, C., Fan, Y., and Zhang, C.** (2010). EMB1211 is required for normal
532 embryo development and influences chloroplast biogenesis in Arabidopsis. *Physiol Plant* **140**: 380-
533 394.

534 **Liu, L., and Li, J.** (2019). Communications Between the Endoplasmic Reticulum and Other Organelles
535 During Abiotic Stress Response in Plants. *Front Plant Sci* **10**: 749.

536 **Loudya, N., Maffei, D.P.F., Bedard, J., Ali, S.M., Devlin, P.F., Jarvis, R.P., and Lopez-Juez, E.** (2022).
537 Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein
538 import and impact retrograde signalling. *Plant Cell*.

539 **Lu, S., Zhu, T., Wang, Z., Luo, L., Wang, S., Lu, M., Cui, Y., Zou, B., and Hua, J.** (2021). Arabidopsis
540 immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by
541 inhibiting the unfolded protein response and promoting cell death. *Mol Plant* **14**: 267-284.

542 **Ma, H., Lou, Y., Lin, W.H., and Xue, H.W.** (2006). MORN motifs in plant PIPKs are involved in the
543 regulation of subcellular localization and phospholipid binding. *Cell Res* **16**: 466-478.

544 **Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D.J., Maneta-Peyret, L., Luu, D.T., Botchway, S.W.,**
545 **Webb, S.E., Mongrand, S., Maurel, C., Martin-Fernandez, M.L., Kleine-Vehn, J., Friml, J.,**
546 **Moreau, P., and Runions, J.** (2012). Cell wall constrains lateral diffusion of plant plasma-
547 membrane proteins. *Proc Natl Acad Sci U S A* **109**: 12805-12810.

548 **Mueller-Roeber, B., and Pical, C.** (2002). Inositol phospholipid metabolism in Arabidopsis. Characterized
549 and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase
550 C. *Plant Physiol* **130**: 22-46.

551 **Murphy, D.J.** (2012). The dynamic roles of intracellular lipid droplets: from archaea to mammals.
552 *Protoplasma* **249**: 541-585.

553 **Nelson, B.K., Cai, X., and Nebenfuhr, A.** (2007). A multicolored set of in vivo organelle markers for co-
554 localization studies in Arabidopsis and other plants. *Plant J* **51**: 1126-1136.

555 **Ohsaki, Y., Suzuki, M., and Fujimoto, T.** (2014). Open questions in lipid droplet biology. *Chem Biol* **21**:
556 86-96.

557 **Olzmann, J.A., and Carvalho, P.** (2019). Dynamics and functions of lipid droplets. *Nat Rev Mol Cell*
558 *Biol* **20**: 137-155.

559 **Pyc, M., Cai, Y., Greer, M.S., Yurchenko, O., Chapman, K.D., Dyer, J.M., and Mullen, R.T.** (2017).
560 Turning Over a New Leaf in Lipid Droplet Biology. *Trends Plant Sci* **22**: 596-609.

561 **Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., Cadoret, J.P., and**
562 **Bougaran, G.** (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in
563 microalgae. *Biotechnol Biofuels* **8**: 42.

564 **Sajko, S., Grishkovskaya, I., Kostan, J., Graewert, M., Setiawan, K., Trübestein, L., Niedermüller,**
565 **K., Gehin, C., Sponga, A., and Puchinger, M.** (2020). Structures of three MORN repeat proteins
566 and a re-evaluation of the proposed lipid-binding properties of MORN repeats. *PloS one* **15**:
567 e0242677.

568 **Salo, V.T., Belevich, I., Li, S., Karhinen, L., Vihinen, H., Vigouroux, C., Magre, J., Thiele, C., Holtta-**
569 **Vuori, M., Jokitalo, E., and Ikonen, E.** (2016). Seipin regulates ER-lipid droplet contacts and
570 cargo delivery. *EMBO J* **35**: 2699-2716.

571 **Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,**
572 **Rueden, C., Saalfeld, S., and Schmid, B.** (2012). Fiji: an open-source platform for biological-
573 image analysis. *Nature methods* **9**: 676-682.

574 **Seren, Ü., Vilhjálmsdóttir, B.J., Horton, M.W., Meng, D., Forai, P., Huang, Y.S., Long, Q., Segura, V.,**
575 **and Nordborg, M.** (2012). GWAPP: a web application for genome-wide association mapping in
576 *Arabidopsis*. *The Plant Cell* **24**: 4793-4805.

577 **Shimada, H., Koizumi, M., Kuroki, K., Mochizuki, M., Fujimoto, H., Ohta, H., Masuda, T., and**
578 **Takamiya, K.-i.** (2004). ARC3, a Chloroplast Division Factor, is a Chimera of Prokaryotic FtsZ
579 and Part of Eukaryotic Phosphatidylinositol-4-phosphate 5-kinase. *Plant and Cell Physiology* **45**:
580 960-967.

581 **Shimada, T.L., Hayashi, M., and Hara-Nishimura, I.** (2018). Membrane Dynamics and Multiple
582 Functions of Oil Bodies in Seeds and Leaves. *Plant Physiol* **176**: 199-207.

583 **Shimada, T.L., Takano, Y., Shimada, T., Fujiwara, M., Fukao, Y., Mori, M., Okazaki, Y., Saito, K.,**
584 **Sasaki, R., Aoki, K., and Hara-Nishimura, I.** (2014). Leaf oil body functions as a subcellular
585 factory for the production of a phytoalexin in *Arabidopsis*. *Plant Physiol* **164**: 105-118.

586 **Shiva, S., Enninful, R., Roth, M.R., Tamura, P., Jagadish, K., and Welti, R.** (2018). An efficient
587 modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid.
588 *Plant Methods* **14**: 14.

589 **Song, Y., Feng, L., Alyafei, M.A.M., Jaleel, A., and Ren, M.** (2021). Function of Chloroplasts in Plant
590 Stress Responses. *Int J Mol Sci* **22**.

591 **Szymanski, K.M., Binns, D., Bartz, R., Grishin, N.V., Li, W.-P., Agarwal, A.K., Garg, A., Anderson,
592 R.G., and Goodman, J.M.** (2007). The lipodystrophy protein seipin is found at endoplasmic
593 reticulum lipid droplet junctions and is important for droplet morphology. *Proceedings of the
594 National Academy of Sciences* **104**: 20890-20895.

595 **Takeshima, H., Komazaki, S., Nishi, M., Iino, M., and Kangawa, K.** (2000). Junctophilins: a novel
596 family of junctional membrane complex proteins. *Molecular cell* **6**: 11-22.

597 **Tzfira, T., Tian, G.W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T.,
598 Vainstein, A., and Citovsky, V.** (2005). pSAT vectors: a modular series of plasmids for
599 autofluorescent protein tagging and expression of multiple genes in plants. *Plant Mol Biol* **57**: 503-
600 516.

601 **Valm, A.M., Cohen, S., Legant, W.R., Melunis, J., Hershberg, U., Wait, E., Cohen, A.R., Davidson,
602 M.W., Betzig, E., and Lippincott-Schwartz, J.** (2017). Applying systems-level spectral imaging
603 and analysis to reveal the organelle interactome. *Nature* **546**: 162-167.

604 **Walther, T.C., Chung, J., and Farese, R.V., Jr.** (2017). Lipid Droplet Biogenesis. *Annu Rev Cell Dev
605 Biol* **33**: 491-510.

606 **Wang, Z., Yang, L., Liu, Z., Lu, M., Wang, M., Sun, Q., Lan, Y., Shi, T., Wu, D., and Hua, J.** (2019).
607 Natural variations of growth thermo-responsiveness determined by SAUR26/27/28 proteins in
608 *Arabidopsis thaliana*. *New Phytol* **224**: 291-305.

609 **Weigel, D., and Mott, R.** (2009). The 1001 genomes project for *Arabidopsis thaliana*. *Genome Biol* **10**:
610 107.

611 **Woo, J.S., Srikanth, S., Nishi, M., Ping, P., Takeshima, H., and Gwack, Y.** (2016). Junctophilin-4, a
612 component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca²⁺ dynamics in
613 T cells. *Proc Natl Acad Sci U S A* **113**: 2762-2767.

614 **Yang, C.H., Wang, C., Singh, S., Fan, N., Liu, S., Zhao, L., Cao, H., Xie, W., Yang, C., and Huang,
615 C.F.** (2021). Golgi-localised manganese transporter PML3 regulates *Arabidopsis* growth through
616 modulating Golgi glycosylation and cell wall biosynthesis. *New Phytol* **231**: 2200-2214.

617 **You, Y., Sawikowska, A., Lee, J.E., Benstein, R.M., Neumann, M., Krajewski, P., and Schmid, M.**
618 (2019). Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify
619 MRF1, a Regulator of Flowering. *The Plant Cell* **31**: 325-345.

620 **Zhi, Y., Taylor, M.C., Campbell, P.M., Warden, A.C., Shrestha, P., El Tahchy, A., Rolland, V.,
621 Vanhercke, T., Petrie, J.R., White, R.G., Chen, W., Singh, S.P., and Liu, Q.** (2017).

622 Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of
623 Chinese Tallow (*Triadica sebifera*). *Front Plant Sci* **8**: 1339.

624

625 **Figure legends**

626 **Figure 1. Genome wide association study (GWAS) of disease resistance in Arabidopsis.**

627 **(A)** Distribution of disease resistance index values at 16°C of 69 *Arabidopsis* natural accessions as used in
628 an early study. Resistance index was defined as \log_{10} cfu/mg FW (3dpi)- \log_{10} cfu/mg FW (0 dpi) of growth
629 of bacterial pathogen *Pst* DC3000 at 16°C. **(B)** Manhattan plot of GWAS for resistance index at 16°C for
630 chromosome 4. Red arrow indicates the QTL investigated in this study. Polymorphisms in the same linkage
631 group with the top site were colored in orange. **(C)** Growth of virulent pathogen *Pst* DC3000 in wild-type
632 *Col-0*, *morn1* and two lines of *MORN1*^{Col-0} /*morn1* plants at 16°C 4 dpi. Plant phenotypes after infection
633 are shown on the left and the quantification of growth of *Pst* DC3000 is shown on the right. **(D)** Growth of
634 *Pst* DC3000 in wild-type *Col-0* and *morn1* plants at 22°C at 3 dpi or at 16°C at 4 dpi.
635 cfu: colony forming unit. FW: fresh weight, dpi: days post inoculation. Shown in all bar graphs are averages
636 and standard deviations (S.D.) of 3 biological repeats. Different letters indicate statistically significant
637 differences by ANOVA test ($p < 0.05$).

638

639 **Figure 2. The *morn1* mutant is compromised in plant growth and thermotolerance.**

640 **(A)** Growth phenotype (left) and fresh weight (right) of *Col-0* and *morn1* and plants grown for 3 weeks at
641 16°C under 12/12 h light/dark. Scale bar, 10 mm. **(B)** Growth phenotypes (left), rosette area (middle) and
642 fresh weight (right) of *Col-0*, *morn1* and *MORN1*^{Col-0} /*morn1* plants grown at 22°C for 2 weeks under
643 constant light (Scale bar, 10 mm). **(C)** Morphological phenotypes (left) and survival rates (right) of wild-
644 type *Col-0*, *morn1* and *MORN1*-OE (overexpression) plants after freezing treatment at -10°C for 6 h.
645 Seedlings were grown at 22°C for 2 weeks and then at -10°C for 6 h, followed by recovery at 22°C for 5
646 days before being photographed (Scale bar=1 cm). **(D)** Phenotypes (left) and survival rates (right) of wild-
647 type *Col-0*, *morn1* and *MORN1*^{Col-0} /*morn1* plants under heat. Seedlings were grown at 22°C for 2 weeks
648 and then at 35°C for 4 weeks before being photographed (Scale bar=1 cm).

649 Shown in bar graphs are averages and standard deviations (S.D.) of more than 15 plants biological repeats
650 (for rosette size and fresh weight). Different letters indicate statistically significant differences by ANOVA
651 test ($p < 0.05$). ‘***’ indicates a significant difference between samples determined by Student’s t test at p
652 < 0.01 .

653

654 **Figure 3. The MORN1 protein is associated with the Golgi and the lipid droplet (LD).**

655 (A) Diagram of the MORN1 protein: seven MORN motifs (gray) and two transmembrane segments (blue).
656 The numbers below indicate amino acid positions. (B) Representative images of fluorescent signals of
657 MORN1 fusion proteins (MORN1-GFP or GFP-MORN1) and the co-expressed Golgi markers (cis-Golgi
658 ManI-mCherry or trans-Golgi SYP61-mCherry) in Arabidopsis protoplasts. (C) Ratios of MORN1 signals
659 overlapped with signals from BODIPY, Nile red, ManI-mCherry and SYP61-mcherry. Quantification was
660 done from 7-21 cells as in (B) and (D). (D) Representative images of fluorescent signals from MORN1-
661 mCherry, MORN1-GFP, or GFP-MORN1 expressed in protoplasts stained with BODIPY (for the mCherry
662 fusion) or Nile-red (for the GFP fusions). Scale bar in (B) and (D) is 10 μ m in main images and 2 μ m in
663 magnified images. ‘Merged’ images in (A) and (C) are from signals from two fluorescent channels.

664

665 **Figure 4. Requirement of the transmembrane region and the MORN motifs for the Golgi and LD**
666 **localization of MORN1.**

667 (A) Analysis of co-localization of full-length and truncated MORN1 proteins with the Golgi and LD in
668 protoplasts. For co-localization with the Golgi, GFP fusions of MORN1 proteins were co-expressed with
669 the Golgi marker ManI-mCherry (left panel). For co-localization with LD, cells expressing mCherry fusions
670 of MORN1 proteins were stained with BODIPY (middle panel) except that cells expressing MORN1 Δ 199-
671 513-GFP fusion were stained with Nile red. Truncations include Δ 420-513, Δ 199-513, Δ 282-513, Δ 260-
672 419, and Δ 1-259 of MORN1 as diagramed to the right of the images. Shown are representative images of
673 fluorescent signals and merged images from two fluorescent signals and the bright field signal for the
674 MORN1 proteins. Scale bars are 10 μ m. Co-localization of MORN protein signals with the Golgi or LD
675 was indicated by “+” and “-” respectively. (B) Morphological phenotype (left), rosette diameter (middle)
676 and fresh weight (right) of T1 plants of *morn1* plants transformed with wild-type MORN1 or truncated
677 MORN1 mutant forms: Δ 282-513, Δ 1-259, Δ 260-419, and Δ 420-513. Left shows a representative plant for
678 each transgene. Scale bar is 10 mm. Bar graphs of diameter and weight show average and S.D. from at least
679 27 T1 plants. The number of T1 plants are shown as on top of the bars. Different letters indicate significant
680 differences by ANOVA test ($p < 0.05$).

681

682 **Figure 5. The *morn1* mutant has reduced LD number compared to the wild type.**

683 (A) LDs shown by BODIPY staining in leave epidermis of wild-type Col-0 and *morn1* mutants before and
684 after treatment with pathogen *Pst* DC3000 or heat stress of 35°C for 48 hr (Scale bar = 20 μ m). The 5th or
685 6th leaves of 3-week-old plants were assayed. Shown are merged images of signals from BODIPY,
686 chloroplasts and the bright field. (B, C) Quantifications of LD number (B) and size (C) in 60 μ m x 60 μ m
687 area of leaf epidermis as in (A). Shown is box plot of data distribution, averages, and quartiles from more

688 than 20 leaves of each genotype and condition combination. Each data point of LD size is an average of all
689 LDs in each image, and 20-30 images were analyzed for each genotype and condition combination.
690 Different letters indicate statistically significant differences by ANOVA test ($p < 0.05$). **(D)** Z-stacked
691 image of LDs shown as fluorescent signals from BODIPY stain in a representative protoplast cell prepared
692 from the wild-type Col-0 and the *morn1* mutant. **(E, F)** Quantifications of LD number (E) and size (F) in
693 protoplasts from wild-type Col-0 and the *morn1* mutant from Z-stacked images as in (D). Shown are box
694 plots of measurements from more than 25 cells for each genotype. ‘**’ indicates a significant difference
695 between samples determined by Student’s *t* test at $p < 0.01$. **(g)** Protein amount of CLO3-GFP in wild-type
696 Col-0 and the *morn1* mutant before and after treatments of pathogen *Pst* DC3000 or heat stress of 35°C for
697 24 hr. Upper panel is the immunoblot of total leaf protein extracts from 2-week-old CLO3-GFP transgenic
698 plants in wild-type Col-0 or *morn1* probed with anti-GFP antibody. Lower panel shows the Coomassie
699 brilliant blue staining of the protein gel around the Rubisco band. Relative amount of CLO3-GFP or
700 Rubisco is shown below the protein band as relative amount (in fold number) to the Col-0 sample of 22°C.
701 **(H)** Contents of major triacyl glycerides (TAGs) in 3-week-old wild-type Col-0 and *morn1* plants grown at
702 22°C. Shown are average and S.D. from 5 biological repeats (each from 5 mg of plants). **(I)** Localization of
703 GFP-GPI (a marker protein for Golgi trafficking) expressed in protoplasts isolated from wild-type Col-0
704 and *morn1* plants. ManI-mCherry was co-expressed as a Golgi marker. Scale bar is 20 μ m. Merged images
705 are from two fluorescent channels and the bright field.

706

707 **Figure 6. *MORN1* variants have different activities in promoting growth, stress tolerance and LD
708 abundance.**

709 **(A)** Polymorphisms in the coding region of *MORN1* in 3 accessions (Kro_0, Ove_0 and Sei_0) with low
710 disease resistance index and 3 accessions (Sq_8, Bsch_0 and Kin_0) with high disease resistance index.
711 Shown are browser views from Salk Arabidopsis 1001 Genome Browser
712 (<http://signal.salk.edu/atg1001/3.0/gebrowser.php>). Color lines and grey boxes indicate differences from
713 the reference Col-0 sequence at the amino acid level. **(B)** Relative expression of *MORN1* in accessions of
714 Col-0, Kro_0, Ove_0, Sei_0, Bsch_0, Kin_0 and Sq_8. Shown are relative expression to Col-0 with *Actin2*
715 reference gene. **(C-F)** Fresh weight (C, E) and (D, F) relative *MORN1* expression of Col-0, *morn1* and
716 *MORN1^{Ove_0}/morn1* (C, D) or *MORN1^{Kin_0}/morn1* (E, F) plants grown for 2 weeks at 22 °C under constant
717 light. Shown in (C, E) are average and standard deviation from more than 20 plants. Shown in (D, F) are
718 average and standard deviation from 3 biological repeats. Different letters indicate significant differences
719 among samples by ANOVA ($p < 0.05$). **(G)** Growth of *Pst* DC3000 in 16°C grown plants of the wild-type
720 Col-0, *morn1*, *MORN1^{Ove_0}/morn1* and *MORN1^{Kin_0}/morn1* at 4 days post inoculation (dpi). Error bars

721 represent standard deviation (S.D.) from three biological replicates in one experiment. Similar results were
722 obtained from three independent experiments. Different letters indicate statistically significant differences
723 by ANOVA test ($p < 0.05$). **(H)** Growth phenotypes (left) and survival rate (right) of wild-type Col-0,
724 *morn1*, *MORN1^{Ove}_0/morn1* and *MORN1^{Kin}_0/morn1* plants after freezing treatment. Seedlings were grown
725 at 22°C for 2 weeks and treated at -10°C for 5 h, followed by a recovery at 22°C for 5 days before being
726 photographed and assessed for survival (Scale bar=1 cm). **(I)** Growth phenotypes of wild-type Col-0, *morn1*,
727 *MORN1^{Ove}_0/morn1* and *MORN1^{Kin}_0/morn1* plants under heat. Seedlings were grown at 22°C for 2 weeks
728 and then at 35°C for 4 weeks before being photographed (Scale bar=1 cm). **(J)** LD in protoplasts prepared
729 from Col-0, *morn1*, *MORN1^{Ove}_0/morn1* and *MORN1^{Kin}_0/morn1*. Left shows representative images of
730 BODIPY staining of protoplasts. Right shows box plots from at least 10 protoplasts per genotype. Different
731 letters indicate significant differences by ANOVA test ($p < 0.05$).
732

733 **Supplemental Information**

734 **Supplemental figures**

735 Figure S1. Phylogenetic tree of MORN motif containing proteins and characterization of the *morn1* mutants.
736 Figure S2. Characterization of the *morn1* mutant and the *MORN1* complementation lines.
737 Figure S3. Analysis of MORN1 subcellular localization.
738 Figure S4. CLO3-GFP levels in wild-type Col-0 and *morn1* after treatment with *Pst* DC3000, heat or cold.
739 Figure S5. Contents of major sterols and phosphatidylcholinesins in wild-type Col-0 and *morn1* plants.
740 Figure S6. Characterization of natural variations of the *MORN1* gene in Arabidopsis.
741 Figure S7. Model of MORN1 function and LD biogenesis.

742

743 **Supplemental data sheets**

744 Sheet 1 Disease resistance index of 69 Arabidopsis accessions at 16°C.
745 Sheet 2 Primers used in construct generation and gene expression studies.