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Kinegami: Algorithmic Design of Compliant
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Abstract—Origami processes can generate both rigid and com-
pliant structures from the same homogeneous sheet material. In
this article, we advance the origami robotics literature by showing
that it is possible to construct an arbitrary rigid kinematic chain
with prescribed joint compliance from a single tubular sheet. Our
“Kinegami” algorithm converts a Denavit–Hartenberg specifica-
tion into a single-sheet crease pattern for an equivalent serial robot
mechanism by composing origami modules from a catalogue. The
algorithm arises from the key observation that tubular origami
linkage design reduces to a Dubins path planning problem. The
automatically generated structural connections and movable joints
that realize the specified design can also be endowed with indepen-
dent user-specified compliance. We apply the Kinegami algorithm
to a number of common robot mechanisms and hand-fold their
algorithmically generated single-sheet crease patterns into func-
tioning kinematic chains. We believe this is the first completely
automated end-to-end system for converting an abstract manipu-
lator specification into a physically realizable origami design that
requires no additional human input.

Index Terms—Dubins path, kinematic synthesis, origami robot,
programmable compliance.

I. INTRODUCTION

ORIGAMI robots are machines whose morphologies and
functions are created by folding locally flat sheets [1]. This

fabrication and assembly process enables rapid construction of
complex 3-D objects and can even incorporate multilayered
materials for regional stiffness [2], [3], [4] and circuit inte-
gration [5], [6], [7]. Folded modules can be used as joints [8]
or near-rigid thin shell structural supports [9]. In this article,
we present and analyze an algorithmic pipeline enabling the
construction of an entire robot consisting of both rigid links and
compliant joints with origami fabrication.
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A. Designing Crease Patterns for Kinematic Mechanisms

The design of origami kinematic structures is more com-
plex than the conventional robot design [10] since it inte-
grates manufacturability with function, requiring 2-D embed-
dable crease patterns that simultaneously fold into complex
spatial shapes [11]. Existing computational methods for auto-
matically generating origami patterns are generally restricted
to rigid shapes [12], [13], [14]. In contrast, robot designs re-
quire fold patterns that achieve not only the desired geometries
but also the desired degrees of freedom. Successful modular
approaches [7], [9], [15], [16] to origami robot design involve
combining simple patterns for structural links or joints to cre-
ate more complicated trusses, linkages, and even continuum
mechanisms [17]. These approaches leverage libraries of crease
patterns generated through in-depth studies of action origami [8],
[18], buckling, and bellows patterns [19], [20], [21], and high-
degree-of-freedom tessellations of both the origami [22] and
kirigami (combining folding and cutting) variety [23], [24].
Partial automation of origami module compositions has been
developed for shapes in [25] (joining the crease patterns of the
unfolded constituent spatial structures along human specified
edges) and to create specific kinematic mechanisms in [16] (al-
lowing their manual joining via discretely constructed hinges or
actuators). Other algorithmic work on origami composition [9],
[15], including algorithmic resolution of geometric conflicts [7],
[16], similarly presumes both prior specification of the modules
to be joined and how they should be combined. This article
aims to advance the systematic design of origami robots through
algorithms that directly translate kinematic specifications into
constituent modules and the corresponding crease pattern com-
positions that fold into the appropriate spatial mechanism.

B. Tunable Compliance in Robots

In addition to kinematic synthesis, a modular design approach
provides the opportunity for programmable compliance in the
resulting mechanism. There is growing interest in both the
analysis [26] and synthesis [21] of origami joints that exploit
tunable [27] and parametrizable [28] compliance, as well as the
dramatic range of stiffnesses [9] achievable with this hybrid soft-
rigid metamaterial. In dynamical tasks, the ability to manage the
kinetic and the potential energy of a robot’s body and environ-
ment allows the robot to manipulate objects using fewer actuated
degrees of freedom (DOF) [29] and negotiate otherwise inac-
cessible environments [30]. Traditionally, dynamical tasks have
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required high-power-density actuators [31], [32], [33] where
output power is generally proportional to mass [34]. A long-
standing tradition of parallel compliance in mechatronics design,
when joined to novel, distributable actuation materials [35], can
open the door to systematic reduction of actuator mass through
the distribution of peak power demand over space and time [36]
with consequently increased specific agility [37]. Impressive
dynamic behaviors in folded sheet machines have been demon-
strated through powerful actuators [38], [39], [40], as well as
in transmitting cascaded power into and from compliant folded
springs [41] for hopping [42] and leaping [43] behaviors driven
by conventional actuators. Again, in all these applications of
origami’s metamaterial properties (i.e., anisotropically tuned
rigid and compliant responses from homogeneous sheets), the
desired structural shapes and stiffnesses have emerged from
painstakingly planned one-off manually generated designs.

C. Contributions

This article addresses these gaps by providing, to our knowl-
edge, the first completely automated end-to-end system for con-
verting an algebraic mechanism specification into a physically
realizable crease pattern that folds to achieve it. Our method
follows the rule that no cuts are allowed in the crease pattern so
that no additional stress will be introduced around the edge of the
cuts. Similar to existing approaches, our system recruits a cata-
logue of parameterized modules. It provides the additional con-
tribution of automatically choosing the relevant modules and de-
sign parameters and composing them into a nonself-intersecting,
single-sheet pattern, thus reducing the design problem into one
abstract specification. The resulting pipeline does not require ad-
ditional human input beyond a Denavit–Hartenberg (D-H) spec-
ification, though its algorithmic steps are sufficiently transparent
to allow the integration of designers’ alternative modules or more
suitably optimized compositions when desired. Specifically, we
present the following.

1) A parameterized catalogue of origami modules for tubular
sheets, including rigid connectors and revolute and pris-
matic joints that exhibit a tunable range of stiffnesses.

2) An algorithm for accessing that catalogue in generating
from a D-H specification of a serial robot a kinematically
equivalent one-piece origami mechanism.

3) A proof that the algorithm is correct up to the yet un-
proven claim (Conj. 7) that our spatial link generator
(Algorithm 9) will never produce a design that intersects
itself.

4) An empirical analysis of how the module parameters
determine their corresponding joints’ compliance.

5) An empirical demonstration of the efficacy of these al-
gorithmic constructions taking the form of a series of
physically realized robot arms.

The rest of this article is organized as fiollows. Section II
defines the design problem and proves a comprehensive reader’s
guide to where each of these contributions is presented. Sec-
tion III introduces the proposed origami modules that act as
building blocks to our algorithm, including their crease patterns
and the folded states. Section IV describes how to connect

TABLE I
NOMENCLATURE

origami modules into origami links. Section V locates origami
joints to satisfy a given D-H specification. Section VI synthesizes
the previous steps into a complete algorithm that converts an
arbitrary D-H specification into a foldable kinematic chain.
Section VII presents experimental results, and finally, Sec-
tion VIII concludes this article.

II. PROBLEM FORMULATION

Given a kinematic description of a serial robot, our goal is
to find a crease pattern that folds into a functionally equivalent
kinematic chain. The key symbols are summarized in Table I.

A. Definitions

1) Kinematic Chain: A serial robot, or a robot with a kine-
matic chain mechanism, is a collection of links and joints where
each link is connected by joints to at most two other links. In this
work, we follow the convention [45] of using exclusively 1-DOF
revolute joints (R) and prismatic joints (P) and describe the robot
using the D-H convention. Frames attached to the links track the
change in robot posture affected by each joint [46]. We denote
a frame O = {x̂, ŷ, ẑ,o}, where (x̂, ŷ, ẑ) is the orthonormal
basis and o is the origin. We use the numbering system in [44]
(see Fig. 1) and attach the joint frame Oi for the ith joint to the
intersection between the ith joint axis and the common normal
of the ith and (i+ 1)th joint axes. Using this convention, the
relative position and orientation of the frame Oi with respect
to frame Oi−1 can be described with only four parameters: link
length ai, link twist αi, joint offset di, and joint angle θi.

The chain’s configuration space Q is the set of all possible
values of its joint variables and can be written as a Cartesian
product of each joint’s variable range. Here, we define the joint
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Fig. 1. Schematic of links and joints in the origami kinematic chain and its
D-H parameters with the numbering system from [44].

variable as qi, where the index i ∈ N denotes the ith joint. The
joint state can be represented as q = (q1, q2, . . .qi) ∈ Q = Ri.
We also define the zero configuration q0 ∈ Q of the joint state
to be the state where the robot is initialized. For a revolute joint,
the joint angle is the joint variable θi = qi ∈ S1. For a prismatic
joint, the joint offset is the joint variabledi = qi ∈ R. In practice,
these joints could have geometrical limits that only allow them
to move on a proper subset of S or R.

Denote by i−1T i the homogeneous transformation matrix of
the Oi frame relative to the Oi−1 frame, as given by the D-H
specification D := {ai, αi, di, θi}N+1, where N is the number
of joints (and the additional row prescribes the end-effector
frame) [47]. Assuming O0 is the base frame, the forward kine-
matics for the ith joint is then

Oi =
0T iO0, where 0T i =

0T 1
1T 2 · · · i−1T i. (1)

Note that the D-H specification does not specify the complete
morphology of a kinematic chain since the physical location of
a joint does not need to coincide with the joint frame. Given D,
one can realize more than one kinematic chain that satisfies the
specification. We will show in this article one way to construct
an origami kinematic chain robot for a given D.

2) Tubular Origami: A tubular folding sheet PT is a sheet
that is a spatial embedding of the cylinder, S1 × [0, 1] ↪→ R3. In
other words, PT is a cylindrical tube in space with “holes” only
at either end and no self-intersections. In practice, a tubular sheet
can be formed by gluing an opposite pair of a rectangular sheet’s
edges together. For ease of visualization, this work depicts PT

as a flat rectangle with left and right sides identified. A crease
pattern is then a partition of the folding sheet PT into a finite
set of open polygons bounded by a set of open line segments
bounded by vertices. Each line segment is called a fold or a
crease. Each polygon separated by a cycle of creases and the
boundary of the sheet is called a facet. We describe a crease
pattern as a graph F = (V′, E′), where V′ = {v′

1,v
′
2, . . .,v

′
n},

v′
i =

[
v′i,x v′i,y

]T
is the set of vertices and E′ = {(i, j) :

v′
i,v

′
j ∈ V′} is the set of edges, or creases. Each crease is asso-

ciated with a spatial (out of plane) fold angle μ : E′ → [−π, π].
Creases assigned with negative fold angles are called mountain
folds, and creases assigned with positive fold angles are called
valley folds. As with the periodic crease pattern tiles in [48], the

Fig. 2. Tubular origami catalogue and Kinegami algorithm flowchart.

creases that cross the left and right side borders of PT must be
continuous straight lines with the same fold angle assignments.

Folding is a sequence of rigid transformations consisting
of rotating facets by the assigned fold angles about creases.
Through folding, each vertex v′

i in the crease pattern is mapped

to a location vi =
[
vi,x vi,y vi,z

]T
in R3. The length of the

creases and the inner angles of each facet are isometric between
the crease pattern and its folded state. Note that this is slightly
different from the standard rigid foldability assumptions in that
faces may deform during the folding process (and subsequent
joint motion), similarly to [48]. We call the final product after
folding an origami module, denoted as M = (V, E), where
V = {v1, . . .,vn} is the set of spatial vertices and E = {(i, j) :
vi,vj ∈ V} is the set of edges. (Note that we use “primed”
variables to differentiate between the R2 and their corresponding
“unprimed” R3 coordinates.)

3) Joint Compliance: It is sometimes desirable for a joint to
exhibit compliance to mediate the dynamical exchange of poten-
tial and kinetic energy, such as in a series elastic actuator [49].
This compliance can be intentionally designed into an origami
joint by taking advantage of material deformation in the folds
and facets [26]. Define the relaxed configuration of a spring
as the configuration where it stores no energy. Henceforth, this
work assumes the zero and relaxed configuration is the same.
Then, locally about the relaxed configuration, we can linearize
the joints’ force-extension relations to get a Hookean stiffness
profile k ∈ RN

≥0, or the vector of Hookean stiffnesses of the
corresponding N joints.

B. Problem Statement and Structure of Solution

The main contribution of this article is a solution to the
following problem.

Problem 1: Given a D-H specification of an N -joint serial
robot and its relaxed configuration q0, construct a crease pattern
on a tubular sheetPT that folds into a robot with compliant joints
that is kinematically equivalent to the prescribed one.

Our overall strategy to solve this problem is summarized in
Fig. 2 and consists of two major parts.

1) Tubular Origami Catalogue: An origami module M is a
3-D polyhedral shell folded from PT that instantiates a spatial
transformation in R3 (see Section III). We present a catalogue
of modules for translation (see Section III-A1), twisting (see
Section III-A2), constant radius turning (see Section III-A3),
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1-DOF translation (see Section III-B1), and 1-DOF rotation (see
Section III-B2). We find the crease pattern F of each origami
module M by preserving the isometric constraints between the
origami module vertices and the crease pattern vertices.

2) Kinegami Algorithm: A D-H specification D only de-
scribes the frames of the joints, but not their locations. We show
how to algorithmically identify the locations of the joints so that
they satisfy D while remaining sufficiently far away from each
other (see Section V), such that they can be physically connected
using a Dubins-specified link (see Section IV-B)—although
the correctness of this particular algorithm remains conjectural
(Conj. 7). The crease patterns can be “glued” with no gaps (see
Section IV-A) to achieve a single-sheet crease pattern.

Further, we discuss how to specify the stiffnesses of the
compliant joints independently:

Problem 2: Given a desired stiffness profile k and an error
allowance ε, construct a compliant origami robot such that the
local stiffness profile around the relaxed configuration q0 lies
within k ± ε.

We demonstrate empirically that there are effectively two
methods to manipulate the stiffness of an individual joint: in-
crease the effective thickness of the material by using multiple
layers (see Section III-B2), or increase facet deformation by
manipulating the geometry (see Section III-B1). We defer the
formal algorithmic solution to Problem 2 to future work.

III. ORIGAMI MODULES

We start by constructing the necessary catalogue of origami
modulesM. To start,PT is folded into a right prism origami tube
whose facets are globally flat. The base, or the embedded image
in R3 of S1 × {0} of the right prism tube, is a regular ns-sided
polygon with a circumradius r. The tube has a total length of
h. We define the proximal and the distal polygon base as the
base located at the starting and the ending edge of an origami
module, respectively (see Fig. 3). Let the proximal frame Op =

{âp, b̂p, ĉp,op} and the distal frame Od = {âd, b̂d, ĉd,od} lie
at the centers of their respective polygonal bases. We define the
module’s centerline as the curve connecting the base centers op

and od along a path that is equidistant to all facets in the module.
Then, the “centerline axis” â is perpendicular to the base and
tangent to the centerline. We choose the axis b̂ to lie on the
plane of the polygon base and perpendicular to a selected edge.
Axis ĉ follows the right-hand rule. The frame assignment is not
unique since the polygon has rotational symmetry. To simplify
the notation of the orientation of the polygon base, we define
a reference point p that lies on both the circumference of the
polygon and the positive direction on the b̂ axis, or

p := (r sin δ)b̂+ o (2)

where δ = π ns−2
2ns

is half of the interior polygon angle.
Adding or modifying creases to a tubular origami of this form

can generate multiple geometries, including origami fittings and
origami joints. An origami fitting is a rigid structure connect-
ing nonintersecting tubes with different base orientations. An
origami joint is a mechanism that performs relative motion on
the connecting tubes using active folds. In addition, each origami

module can be viewed as instantiating a rigid transformation,
pM d : R3 → R3, that transfers a proximal base to a distal base
according to a set of given geometric variables. Fig. 3 shows
these origami modules, their spatial transformations, and their
crease patterns.

The 3-D shape of the origami module is represented with
Cartesian coordinates vi, where i ∈ 1, . . ., ns is the index cor-
responding to the vertices of the polygon base. Due to the wrap-
around effects in indexing, we can define vns+1 := v1. First,
we assign the proximal base vertices vpi recursively through
the polygon base vertex assignments

vp,1 := (r sin δ)b̂p + (r cos δ)ĉp + op

vp,i+1 := R(âp,
2π
ns

) (vp,i − op) + op (3)

whereR(âp,
2π
ns

) is the rotational matrix about the unit vector âp

by an angle 2π/ns. With this assignment, the reference point pp

is on the midpoint of the edge (vp,1,vp,ns
). Applying a known

rigid transformation pM d to the proximal base vertices produces
the positions of all distal base vertices vd,i. For some origami
modules, additional vertices are required to capture the full 3-D
shape and will be discussed later.

The crease pattern is defined in R2 where p′
p := [0 0]T is

the origin. Intuitively, we can cut the origami module verti-
cally through the reference marker pp and unwrap the tube
into a flat sheet where we align pp onto p′

p. Let v′
p,i be the

vertices on the crease pattern that correspond to the proximal
base vertices vp,i in R3. Since the vertices vp,i are copla-
nar, we can assume without loss of generality that the crease
pattern vertices v′

p,i lie on the x-axis of the crease pattern.
And since neighboring vertices of vp,i have the same distance
ls := 2r cos δ, we can write the base perimeter vertex assign-
ment (using modular arithmetic in the subscripts, i, here and
henceforth) as

v′
p,1 := p′

p +
[
ls/2 0

]T
vp,i+1 := v′

p,i +
[
ls 0

]T
. (4)

Since PT is a developable surface and does not stretch, the
corresponding facets between the crease pattern and the origami
module are isometric [50]. Thus, the crease pattern vertices,v′

d,i,
that correspond to the distal base vertices,vd,i, in the folded state
can be found by satisfying isometry constraints. Specifically,
the edge between any connected vertices and the angle between
any two adjacent edges on a facet must be the same in both the
folded state and their crease pattern. All additional crease pattern
vertices can be found in this way.

A. Rigid Transformations With Origami Modules

The fundamental building block of the tubular origami mod-
ules is the origami tube. We show in this section how to
generate both translational and rotational rigid transformations
by folding this tube in different ways. Together, the three mod-
ules proposed—tube, twist, and elbow fittings—are sufficient to
express any rigid 3-D transformation. Section IV-B shows that
the problem of designing an origami link can thus be reduced to
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Fig. 3. Folded state of the origami module, its spatial operator representation, and its crease pattern. (a) Origami prism tube in Section III-A1., (b) Twist fitting
in Section III-A2. (c) Elbow fitting in Section III-A3. (d) Prismatic joint in Section III-B1. (e) Revolute joint in Section III-B2. In addition, (f) and (g) show the
lower half portion of the elbow fitting and the revolute joint, and their closed-up crease patterns, respectively. The actual modules in both the folded states and the
crease patterns are colored in green. The crease pattern is drawn on a rectangle with its left and right sides identified, with solid blue lines indicating mountain
folds and red dotted lines indicating valley folds. The proximal base of the module is colored yellow and the distal base is orange. The blue arrow that connects
the two bases is the centerline of the module. In each case, the input specification (the desired rigid transformation from proximal frame Op to distal frame Od)
is represented by red parameters superimposed on the hexagonal base sketch. The polygon circumradius r and the number of sides ns are inputs. The vertices are
marked with numbers in circles and are counted counterclockwise from b̂. The origin of the embedded image of S1 × {0}, or where the axis b̂ and the polygon
circumference intersect, is marked with p. Notable spatial vertices of the origami modules and their corresponding crease pattern vertices are represented by black
parameters superimposed on the figures.
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finding a connecting CSC Dubins path [51] and constructing it
from these three module types.

1) Translation With the Origami Tube: Translation along the
length of the tube is achieved using the basic origami tube, a right
regular prism tube of height h ∈ R≥0 with a regular ns-sided
polygon base whose circumradius is r. Fig. 3(a) shows the folded
state and crease pattern.

a) Rigid transformation: The origami prism tube instan-
tiates the rigid transformation that translates the proximal base
by some distance h along the axis âp to the distal base. The
corresponding homogeneous transformation is

Ōd := pM dŌp =

[
I hêa

0 1

]
Ōp (5)

where I is a 3× 3 identity matrix, 0 is a 1× 3 array of 0, êa =[
0 0 1

]T
is âp in terms of the body frame Op, and

Ō =

[
â b̂ ĉ o

0 0 0 1

]
(6)

is the 4× 4 homogeneous matrix representation of O.
b) Crease pattern: Generating this transformation via

tubular origami is straightforward. Intuitively, since the folded
state is a right prism, we can cut vertically down one of the
edges or facets and unwrap the tube into a flat sheet by laying
each rectangular facet next to each other in sequence.

More formally, given the dimensions of the structure—the
number of sides ns, the circumradius r, and the translated
distance h—we design the crease pattern shown in Fig. 3(a).
The folded state of the origami tube is fully defined by vertices
V = {vp,i,vd,i}. The vertices of the proximal base vp,i are
constrained by the polygon base vertex assignments. The ver-
tices of the distal base vd,i can be found with the homogeneous
transformation

v̄d,i :=

[
I hêa

0 1

]
v̄p,i (7)

where v̄ =
[
vT 1

]T
is the homogeneous coordinate repre-

sentation of an affine spatial point.
To map this shape onto a crease pattern, it remains to solve

for the vertices {v′
p,i,v

′
d,i}. The crease pattern variables must

satisfy isometry with respect to the folded state variables to
constrain their values [48]. The crease pattern vertices that cor-
respond to the proximal base vertices satisfy the base perimeter
vertex assignments; thus,v′

p,i are fully defined. To find the crease
pattern vertices v′

d,i that correspond to the distal base, the angles
of the facets in the module must be preserved(

v′
d,i − v′

p,i

)T (
v′
p,i+1 − v′

p,i

)
=

[
v′d,i,x − v′p,i,x v′d,i,y − v′p,i,y

] [
ls 0

]T
=

(
v′d,i,x − v′p,i,x

)
ls

= (vd,i − vp,i)
T (vp,i+1 − vp,i) = 0 (8)

which simplifies to v′d,i,x = v′p,i,x. The edge lengths must match
the crease pattern and its folded form, so

||v′
d,i − v′

p,i|| = |v′d,i,y − v′p,i,y| = ||vd,i − vp,i|| = h. (9)

Without loss of generality, we always set the distal base vertices
to be “above” the proximal base vertices on the crease pattern.
We thus find v′d,i,y − v′p,i,y = v′d,i,y = h, so v′

d,i are also fully
defined.

The solution of the crease pattern consists of rectangular
panels of height h and width ls. Algorithm 1 provides the exact
vertex locations required to generate the graph. Lines 2–4 locate
the crease pattern vertices. In addition, we keep track of the distal
marker p′

p, the 2-D counterpart to the distal reference point pd

in the folded state (line 6). The x-component of p′
p is the lateral

offset from p′
p caused by the twist between the two frames Op

and Od about âp, and is 0 for this module. The y-component of
p′
p is the height of the crease pattern.
2) Twist With the Twist Fitting: This fitting twists the origami

prism tube about âp by an angle α ∈ S1, with optional height
ht ∈ R≥0, as shown in Fig. 3(b).

a) Rigid transformation: The twist fitting instantiates the
rigid transformation of a screw action on the proximal polygon
base with a twist of α and translation ht along âp. The value of
ht can be chosen arbitrarily depending on volume constraints.
The corresponding homogeneous transformation is

Ōd := pM dŌp =

[
R(êa, α) htêa

0 1

]
Ōp. (10)

Due to the rotational symmetry of a regular polygon, the distal
polygon transformed after a twist angle of α is the same as
the one transformed with a twist angle of ᾱ = α mod (2π/ns).
To ensure the origami module is a convex antiprism, we take
advantage of the rotational symmetry and rotate the distal base
by only ᾱ, but rotate the distal frame by α.

b) Crease pattern: Inspired by the triangulated cylinder
geometry [20], this crease pattern folds into a convex antiprism
for structural stability. Given the polygon base parameters ns

and r, the twist angle α with respect to the axis â, and the height
ht, we design the crease pattern shown in Fig. 3(b).

The folded state of the twist fitting consists of proximal base
vertices vp that satisfy the polygon base vertex assignments, and
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the distal base vertices vd that meet the transformation

v̄d :=

[
R(êa, ᾱ) htêa

0 1

]
v̄p. (11)

The crease pattern can be found by solving the constraints,
where v′

p,i satisfy the base perimeter vertex assignments, and
v′
d,i satisfy the isometry constraints, as shown in Fig. 3(c)

||v′
d,j − v′

p,i|| = ||vd,j − vp,i||
||v′

d,j − v′
p,i+1|| = ||vd,j − vp,i+1|| (12)

where j = (i− �nsα
2π �) mod ns is the index of the closest distal

polygon vertex to the ith proximal vertex “counting about âp,”
and �·� is the floor operator. The two sets of equations, along
with the polygon side length ||v′

p,i+1 − v′
p,i|| = ls, define the

vertices of a triangle given three known side lengths. As the distal
vertices must be above the proximal vertices v′d,j,y > v′p,i,y , it
now follows that v′

d,i are uniquely defined.
The steps to generate the graph are shown in Algorithm 2.

The pattern essentially consists of folds connecting the vertices
of the offset proximal and distal prisms into a series of adjacent
triangular facets. The offset x in terms of pattern distance is
a function of the twist angle α as calculated in line 3. Line 4
calculates the height lt of the crease pattern from the height of
the module h. The resulting pattern has a size of nsls × lt. The
twist angle sets a perimeter offset between the p′

p and p′
d, and

the x-component of the p′
p can be computed as

p′d,x = �nsα
2π �ls + x. (13)

3) Rotation With the Elbow Fitting: The elbow fitting bends
an origami prism tube by an angle θ ∈ (−π, π) along an arbitrary
axis ŵp (described in the proximal frame Op, where the angle
between ŵp and b̂p is φω) that is perpendicular to the centerline
âp, as shown in Fig. 3(c). Elbow fittings with larger θ can
be achieved by composing n smaller elbow fittings with θ/n
together (see Section IV for composition).

a) Rigid transformation: The 3-D shape corresponding to
the fitting is essentially two truncated prism tubes joined at an

angle of θ to each other. This rotation requires a minimum
distance dw = r tan θ

2 , which depends on the rotational axis
ŵp, the bending angle θ, and the circumradius r. An elbow
fitting can thus be represented as imposing a rigid transformation
that translates the proximal base along âp for a distance dw,
rotates it along the axis ŵ by an angle θ, then translates along
âd for another distance dw. The corresponding homogeneous
transformation is

Ōd := pM dŌp =

[
R(ŵp, θ) dw (R(ŵp, θ) + I) êa

0 1

]
Ōp.

(14)
The centerline of the elbow fitting was initially defined as the
two line segments intersecting at the rotational axis. Observe that
(14) gives the same rigid transformation of a constant radius turn
with radius r for an angle θ about ŵp located at the instant center
of rotation, oicr := sgn(θ)rR(âp,

π
2 )ŵp + op. Henceforth, we

redefine the centerline of an elbow fitting to be a circular arc
centered at oicr with radius r and angle θ.

b) Crease pattern: The pattern is inspired by Gieseking’s
Crimp-bent tubes [48], [52]. Given the polygon base parameters
ns and r, the rotational axis angle φw of ŵp with respect to b̂p,
and the bending angle θ, we construct the crease pattern shown
in Fig. 3(c). Only half of the module is described, since it is
symmetric about a center plane. The vertices and edges of the
other half can then be generated through mirroring.

As shown in Fig. 3(c) and (f), the pattern essentially consists of
two parts: the green facets that are exposed on the outside and the
gray facets that are hidden away on the interior of the tube. The
exterior faces form a truncated prism with vertices {vp,i,vl,i}.
The vertices of the proximal polygon basevp follow the polygon
base vertex assignments. The top face, depicted in Fig. 3(f), is
a distorted polygon formed by the intersection of the tube and a
plane oriented at an angle θ/2 relative to the proximal base. The
distorted polygon vertices vl,i are located at the intersection of
the vertical line from the corresponding proximal base vertices
and the angled plane

vl,i,x := vp,i,x and vl,i,y := vp,i,y(
R

(
ŵp,

θ
2

)
âp

)T
(vl,i − (dwâp + op)) = 0. (15)

Since θ ∈ (−π, π), dw = r tan θ
2 ∈ R, and (15) always has a

unique solution.
Now we find the crease pattern vertices v′

p,i and v′
l,i. The

proximal vertices v′
p,i are defined with the base perimeter vertex

assignments (4). To preserve the isometry of the edge and the
angle of the truncated prism, we have(
v′
l,i − v′

p,i

)T(
v′
p,i+1 − v′

p,i

)
= (vl,i − vp,i)

T (vp,i+1 − vp,i)

= 0 (16)

||v′
l,i − v′

p,i|| = ||vl,i − vp,i||. (17)

Identical arguments to those for (8) and (9) (i.e., the vertices
v′
l,i are directly above v′

p,i on the crease pattern) now yield a
complete specification of v′

l,i.
Since the top boundary of exposed faces forms an irregular

shape, the remaining material in the tube [gray shaded area
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in Fig. 3(f)] must be tucked away to the interior of the tube.
At a high level, the tucking operation consists of adding extra
creases to the unwanted additional sheet material and folding
it to the inside of the polyhedral surface [53]. The tucks in this
pattern are triangular, as shown in Fig. 3(f). The purpose of these
tucks is to reduce the angle between the crease pattern edges
∠v′

l,i−1v
′
l,iv

′
l,i+1 such that the sum of the remaining angles μ−

i

and μ+
i equals the interior angle of the corresponding vertices

∠vl,i−1vl,ivl,i+1 of the distorted polygon in the folded state.
In other words, the tucks will allow us to fold the (gray) extra
sheet flat on the center plane that splits the elbow joint. We thus
fold the extra material away by introducing two folds: one at
the edge of the triangular material being tucked and one at the
bisector of the triangle. These two folds bring the two yellow
triangles onto each other in the folded state, resulting in the edges
(v′

l,i−1,v
′
l,i) and (v′

l,i,v
′
l,i+1) lying at an angle of μ−

i + μ+
i

apart. The triangular tuck can be placed at any orientation as
long as the sum of μ−

i + μ+
i remains the same, so we choose

to place the bisector vertically in the crease pattern. Thus, the
vertex v′

m,i is at

v′
m,i :=

[
v′l,i,x maxj v

′
l,j,y

]T
(18)

and an additional crease (v′
p,i,v

′
ε,i) is placed at an angle from

the crease (v′
p,i,v

′
m,i), where its vertex v′

m,i is located directly
on the right-hand side of v′

m,i, or

εi :=
(
∠v′

l,i−1v
′
l,iv

′
l,i+1 − ∠vl,i−1vl,ivl,i+1

)
/2

v′
ε,i :=

[
v′l,i,x +

(
v′m,i,y − v′l,i,y

)
tan εi v′m,i,y

]T
. (19)

Algorithm 3 contains the precise steps used to generate the
resulting graph. Specifically, lines 2–10 calculate the position of
the vertices for the crease pattern. The resulting pattern has a size
of nsls × 2lm. Since lm ∝ tan θ

2 , the larger the bending angle
for an elbow fitting is, the longer the tubular sheet is needed for
the construction. Now, observe the following.

Remark One can split a desired bending angle θ into n por-
tions by constructing n identical elbow fittings with rotational
angle θ/n ≤ π/2 and composing the n elbow fittings using
Algorithm 6. In doing so, the total length of the tubular sheet is
reduced. In fact, it is possible to achieve larger bending angles
2π ≥ |θ| ≥ π by splitting the bending angle.

B. Parameterized Rigid Transformation With Origami Joints

Origami joints allow the two rigid bodies they connect to
move relative to each other. We denote the origami joint as J ,
a particular instance of M. We propose two 1-DOF lower pair
joints folded out of tubular sheets: the prismatic and revolute
joints. These two joints are sufficient to compose any desired
kinematic motion [45]. Each of the proposed origami joints
has an initial state where all the facets are flat. When the joint
activates, the folding angles in the origami module change, and
sometimes its facets deform. Creases that change angle during
the joint motion are called active folds. By manipulating the
active folds, we can change the stiffness profiles of the joints.

1) 1-DOF Translation With the Prismatic Joint: The pris-
matic joint is based on a REBO spring [21], [42], an origami
pattern that can store potential energy into both its facets and
folds when compressed. By changing the cone angle β, the layer
height h0, and the number of layers nl, a REBO will exhibit
tunably varied Hookean stiffness (i.e., an approximately linear
selectable force-extension relation) around its zero configuration
d0 ∈ R≥0. Given the desired relaxed configuration length d0, the
single-layer height of REBO can be found as h0 = d0/nl. The
maximum range of motion of the prismatic joint is dm = nlll,
where ll =

h0

2 cscβ.
To constrain the REBO spring from bending radially, we

construct a wall surrounding it, limiting its motion to axial
translation. The wall is a double-layered prism tube constructed
with a crimp fold [54] arranged horizontally to the crease pattern
of a tube, as shown in the lower green area of Fig. 3(d). It has a
length of dm, so the entire range of motion is constrained. The
joint state d+ dm is the distance between the proximal and distal
bases of the prismatic joint, where d ∈ [0, dm]. An example of
the origami prismatic joint, rigid transformation, and its crease
pattern is shown in Fig. 3(d).

a) Rigid transformation: The prismatic joint is a function
of the joint variable d and translates the proximal base for a
distance of d+ dm. The homogeneous transformation is

Ōd := pM d(d)Ōp =

[
I (dm + d)êa

0 1

]
Ōp. (20)

b) Crease pattern: Given the polygon base parameters ns

and r, relaxed configuration length d0, number of layers nl,
and the cone angle β, we construct the crease pattern shown
in Fig. 3(d) with three segments: a REBO spring, a wall, and
an additional inner tube. We start with the REBO structure
colored in blue in Fig. 3(d). Its crease pattern is a function of
the polygon shape parameters ns and r, the cone angle β of the
origami bellows, and the layersnl, and is fully defined in [41]. In
addition, we build a wall that is dm long to constrain the REBO
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structure. Its crease pattern is shown in the lower green area of
Fig. 3(d). We also need an additional inner slider, which is just
an origami prism tube that is dm long. Its crease pattern is shown
in the upper green area of Fig. 3(d). The entire crease pattern is
a sequence of crease patterns of tubes and the REBO structure,
as shown in Fig. 3(d).

Algorithm 4 contains the steps to generate the crease pattern
of the prismatic joint. The main parameters are the height h0 of
each layer from the zero configuration, the maximal distance of
the motion dm, and the angle of the diagonal fold ψ (lines 2 and
3). The resulting pattern has a size of nsls × 4dm.

c) Stiffness: The translational movement of the origami
prismatic joint is due to the deformation of the facets. We
experimentally validate that the stiffness of the REBO spring
is a function of the cone angle β in [21]. Since the origami
prismatic joint contains the same REBO spring, its stiffness can
also be programmed with the cone angle.

2) 1-DOF Rotation With the Revolute Joint: The origami
revolute joint is similar to the hinge joint in [24] and allows
the tubes to rotate freely by an angle θ ∈ [− θm

2 , θm
2 ] about the

axis ŵp =
[
0 1 0

]T
(described from Op) that is parallel

to ĉp and perpendicular to âp. The angle limit θm ∈ [0, 2π) is
a design variable that determines the total range of motion of
this joint. An example is shown in Fig. 3(d). In addition, we
can tune the stiffness of the revolute joint by adding additional
crease patterns, as shown in Fig. 4(a).

a) Rigid transformation: Here, the revolute joint is created
after pinching the walls of the tube to form active folds at the
axis of rotation ŵp. When the joint moves, the angle between
âp and âd changes, and the angle is defined as the joint variable
θ ∈ [− θm

2 , θm
2 ]. The limit of the achievable rotational motion

occurs when the two neighboring rectangle facets perpendicular
to ŵp touch each other. Thus, the rigid transformation is a func-
tion of the joint state θ and can be written as the homogeneous

Fig. 4. Stiffness of the revolute joint. (a) Revolute joint in the straight and
bent configuration on top, and the exploded view of the facets of the revolute
joint on the bottom, where the red creases indicate the active folds. (b) Recursive
sink gadget of nz = 1, 2, 3. The close-up of the interested crease pattern area
(v′

p,1,v
′
p,2,v

′
d,2,v

′
d,1) is shown on top, and the hinge around the rotational

axis of the revolute joint is shown at the bottom. The effective fold length
lf is marked on the partial crease pattern. In the hinge close-up, the green
solid arc represents the cross-section of the layered sheet; tf is the effective
thickness of the stacked layers, and λf is the length of the small-length flexural
pivot. (c) Experimental setup to measure the stiffness of the revolute joints. (d)
The top chart shows the experimental mechanical test for an origami revolute
joint design with ns = 4, r = 2

√
2, θm = 4π

3 . Different numbers of recursive
sink gadget layers are applied nz = 1, 2, 3, 4. The specimen is compressed and
pulled between ±1 rad for three cycles. The bottom chart shows the linear-fitted
stiffness from the previous plot concerning nz with a high correlation of
R2 = 0.99.

transformation

Ōd :=
pM d(θ)Ōp=

[
R(ŵp, θ) hr (R(ŵp, θ) + I) êa

0 1

]
Ōp

(21)
where hr = r sin δ tan θm

4 ∈ R>0 is the distance from the prox-
imal (or distal) frame to the rotational axis and is a function of
the desired range of motion θm.

b) Crease pattern: This pattern is inspired by the com-
mercially familiar milk carton design, but its base is generalized
to any even-sided (ns ∈ 2N) regular polygon. Given the even-
sided polygon base parametersns and r and the maximum range
of rotation θm, we construct the crease pattern shown in Fig. 3(d).
In addition, the stiffness of the revolute joint can be programmed
by adding the recursive sink gadget, shown in Fig. 4(a) and (b)
with the boundary edges of (v′

p,i,v
′
p,i+1,v

′
d,i+1,v

′
d,i). A gadget
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is a local graph that replaces an existing patch with the same
boundary edges to add functionality or modify the pattern [55].

The origami revolute joint can be thought of as two ns-gon
pyramids whose apex vertices are connected, with article flaps
to constrain its relative motion. Since the module is symmetric
about the center plane, we again describe only half of the pattern
here. Fig. 3(g) shows an instance of pinching the walls of the
tube to form creases at the axis of rotation in the center and
shows that the origami structure fully covers a ns-gon pyramid.
The pyramid formed by the green facets, as shown in the circled
subfigure in Fig. 3(g), is fully defined with the vertices of the
proximal polygon basevp (which follow the polygon base vertex
assignments), and the apex vertex va as

va := hrâp + op. (22)

The remaining material (highlighted in yellow) joins together at
the axis ŵp to constrain the rotation of the pyramids, or

vm,j ,vl,k ∈ {v|v = tŵp + va, t ∈ R} (23)

where j = 1, ns

2 , ns

2 + 1, ns and k �= j. Additionally, the ver-
tices vm,i, and vl,j also need to satisfy the angle constraints

∠vavm,ivp,i =
π
2 ∀i (24)

∠vavp,jvl,j = ψ ∀k �= j (25)

where ψ = atan2 (ls, 2lm) is the bisector angle of the yellow
triangular flap shown in Fig. 3(g). Since this active fold is a line,
it has 1 DOF that allows revolution of the structure. Thus, all
vertices for the flaps are defined.

The crease pattern of this half module consists of vertices v′
p,

v′
m, v′

a, and v′
l. The crease pattern’s proximal vertices v′

p are
defined with the base perimeter vertex assignments. The height
of the half crease pattern is the height of the triangle of the
ns-gon pyramid, thus

v′m,i,y = v′a,i,y = lm = r sin δ sec θm
4 . (26)

In addition, the x-coordinate of v′
m and v′

a (apex of the isosceles
triangle) can be easily found to be

v′m,i,x := v′p,i,x (27)

v′a,i,x := (v′p,i,x + v′p,i,x)/2. (28)

From (23) to (25), we can see that ||vl,i − vp,i|| ≤ ||vm,i −
vp,i||, showing that triangle 
vavp,ivl,i is always covered by

vavp,ivm,i, and thus, there is extra sheet from the yellow
flaps that extend out to the other side of the center plane, as
shown in the gray area in Fig. 3(g). Since the half module and
its mirrored module have the same amount of extra material,
we can tuck the extra material (see crimp fold form [54]). To
construct this crease, we can find the vertex v′

l,i once we find
the angle γi := ∠vp,ivavl,i.

Algorithm 5 contains the steps used to generate the crease
pattern. The main parameters of interest are half the height of
the origami joint hr, half the height of the crease pattern lm, and
angleψ (lines 2 and 3). The crease pattern vertices are calculated
in lines 4–15. In particular, line 14 constructs the recursive sink
gadget pattern shown in Fig. 4(b), which essentially consists of

concentric polygons centered around the joint axis. The resulting
pattern has a size of nsls × 2lm.

c) Stiffness: The revolute joint is a hinge made with stacks
of sheet materials. Fig. 4(a) shows the exploded view of a
revolute joint with ns = 6, consisting of two sets of yellow
front and back hinge units and (ns − 2) sets of green side hinge
units. The active folds that contribute to the revolute motion are
colored in red. Since all the active folds experience the same
deformation during a bending motion, we can treat them as a
system of torsional springs in parallel. The total stiffness is the
sum of the individual ones. Assume the stiffness of the front or
back hinge (yellow) unit is k0 and the stiffness of the side hinge
(green) unit is kg,1. The stiffness of the side hinge unit can be
modeled as a small-length flexural pivot [26] as

kg,1 = KΘEIfλf
−1 (29)

where KΘ is the nondimensionalized stiffness, E is Young’s
modulus, and λf is the length of the small-length flexural pivot.
The area moment of inertia is If = lf t

3
f/12, where lf is the

effective length and tf is the effective thickness of the active
fold. Fig. 4(b) shows an example of the geometric parameters.
The overall torsional stiffness of a basic revolute jointK1 is then

K1 = (ns − 2)kg,1 + 2k0 = Kg,1 +K0 (30)

where Kg,1 = (ns − 2)kg,1 and K0 = 2k0 for simplicity.
The stiffness of the revolute joint can be programmed by

adding nz sets of recursive fold patterns, or the recursive sink
gadget, to the joints, as shown in Fig. 4(b). The recursive sink
gadget is inspired by the origami combination fold known as the
closed sink. A closed sink is a simple inversion of a coned vertex
formed from a region in the interior of a sheet, turning a coned
mountain peak into a valley and vice versa about a plane. The
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crease of the sink lies on the described plane and runs around
the point being sunk like a road girdling a mountain peak (or
valley). All the fold angles of the creases enclosed by the sink
line are converted to the opposite sign [54]. We can increase the
sets nz of recursive sink creases surrounding the same internal
vertex and sequentially fold them to create multiple sinks.

Whennz = 1, the recursive sink gadget is the same as the side
hinge unit described earlier, and we have the original revolute
joint. When the recursive sink gadget with nz ≥ 2 is introduced,
the effective thickness of the active fold increases discretely as
nztf and the effective active fold length decreases as lf/nz .
Observe that as nz increases, the total length of the neutral line
of the active fold increases to nzλf , as illustrated in Fig. 4(b).
Thus, the stiffness of each recursive sink gadget with nz layers
can be written as

kg,n = KΘE
(

1
12

(
n−1
z lf

)
(nztf )

3
)
(nzλf )

−1 = nzkg,1

(31)
and the total stiffness of the joint is

Kn = (ns − 2)kg,n + 2k0 = (ns − 2)nzkg,1 + 2k0

= nzKg,1 +K0. (32)

To show that the stiffness of the revolute joint is pro-
grammable, we performed a bending test on the mechanical
testing station (MTS Criterion C41 with 1-kN load cell), as
shown in Fig. 4(c). The origami revolute joints use parameters
ns = 4, r = 2

√
2, θm = 4π

3 and are folded out of perforated
8 mil thick Durilla synthetics paper with polyester finish (CTI
Paper, USA). We tested the specimen with different numbers of
recursive sink gadget layers nz = 1, 2, 3, 4. To fully constrain
all the active folds to align in a straight line, we tied a fishing line
around the hinge so that all the active folds are approximately
coaligned. The specimen was compressed and pulled between
±1 rad three times.

The results for the four specimens are shown in the upper
subplot of Fig. 4(d). At the beginning of the test, each specimen
exhibited a Hookean torsion spring behavior. As the cycle pro-
gresses, we start to see hysteresis in every specimen, similar to
that observed in [24]. Although there is hysteresis, each spec-
imen has reliable behavior, and the torque–angle curve aligns
well for the three cycles. We fit a linear regression to the entire
cycle of each curve to find its average slope (torsional stiffness).
The results are summarized in the lower subplot of Fig. 4(d).
A linear fit indicates that the torsional stiffness Kn increases as
an affine function Kn = 0.053 + 0.02nz with R2 = 0.99, and
thus, verifies our prediction that the stiffness is a linear function
of nz with K0 = 0.053.

C. Expanding the Tubular Origami Catalogue

Although we propose only five modules in our tubular origami
catalogue, additional tubular modules can easily be included in
our design approach, provided their corresponding rigid trans-
formations are well characterized. For instance, the Kresling
pattern studied in [17] is a 3-DOF origami joint that enables
sideways bending perpendicular to and a screw motion along

the centerline, and it can be added to the catalogue as a higher
order joint pair.

IV. COMPOSING ORIGAMI MODULES INTO LINKS

The origami modules in Section III can be composed to form
links that instantiate the more general class of rigid transforma-
tions between a desired proximal and distal base. This section
shows that such a relationship can be realized by following a
spatial Dubins path, assuming a sufficient separation between
their origins. We develop a module composition scheme and
show how to factor any rigid transformation that satisfies this
sufficient condition into a product of rigid transformations that
such compositions can algorithmically instantiate.

A. Sequential Composition of Origami Modules

More formally, consider joining two tubular origami modules
M1 = (V1, E1) and M2 = (V2, E2) to generate more complex
structures. Identifying the homogeneous matrix M with a rigid
transformation R3 → R3, we write that a module Mi has been
transformed by M with abuse of notation as

MMi := (MVi, Ei) (33)

that is, every vertex in Mi is transformed by the homogeneous
transformation matrix M (and the edges follow). We write that
two modules have been merged as a union of the graphs

M1 ∪M2 := (V1 ∪ V2, E1 ∪ E2) (34)

where two vertices are considered the same if they occupy the
same coordinates in R3. With these two operations, we define
the module composition of M2 onto M1 as

M1 �M2 := M1 ∪
(
1pM 1dM2

)
(35)

where 1pM 1d is the rigid transformation instantiated by the
module M1 that translates its proximal base to its distal base.
That is to say, M2 composed onto M1 is equivalent to M1

merged with a transformedM2 such that the distal end ofM1 is
coincident with the proximal end ofM2. Note that this operation
is not commutative.

Using the module composition, we can define an origami link,
or link L for short, as follows.

Definition 1 (Origami link): A link is the composition of one
or more tubes, twist fittings, or elbow fittings of the same base.

The superscript k denotes the number of modules of a com-
posed link. In the base case, a link L1 is equivalent to a single
origami module M1 that is one of a tube, a twist fitting, or
an elbow fitting. If Lk−1 and Mk have the same polygon base
shape, we form the link Lk by composing the two said links in
order. In other words

L1 := M1 and Lk := Lk−1 �Mk. (36)

The proximal and distal frames of a link Lk are denoted Op and
Od, respectively, such that its proximal frame is M1’s proximal
frame Op = O1p and its distal frame is Mk’s distal frame Od =
Okd. Observe that the rigid transformation instantiated by a link
is the product of those instantiated by its constituent modules,
as we now state formally:
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Lemma 1 (Rigid transformation of a link): Given a link Lk,
the rigid transformation relating the distal to proximal base
frames, denoted as Lk, is given by

Lk =

k∏
j=1

jpM jd. (37)

Proof: We prove this by induction. First, consider the base
case where k = 1. L1 is simply a module M1, and the transfor-
mation matrix corresponding to the linkage L1 is

L1 = 1pM 1d. (38)

For the inductive step, we assume that (37) is true for link
Lk. Now consider the link Lk+1 = Lk �Mk+1, which is the
composition of a module Mk+1 onto an existing link Lk.
Based on (35), the module Mk+1 is transformed by Lk, which
corresponds precisely to the placement of the link’s distal base
frame. By placing Mk+1 so that its proximal frame coincides
with the distal frame of Lk, we conclude that

Lk+1 =
(
Lk

) (
(k+1)pM (k+1)d

)
=

k+1∏
j=1

jpM jd. (39)

�
Assume Fi is the crease pattern that folds into Mi. Corre-

sponding to (35), we define the crease pattern composition with
abuse of notation as

F1 � F2 := F1 ∪
(
1pF ′

1dF2

)
(40)

where 1pF ′
1d is the rigid transformation R2 → R2 that shifts

the crease pattern such that the proximal origin p′
2p of F2 is

coincident to the distal marker p′
1d of F1, or

1pF ′
1d :=

[
I p′

1d − p′
1p

0 1

]
. (41)

The graph union is computed with any vertices occupying the
exact R2 coordinates being considered identical. With crease
pattern composition, we define a crease pattern Gk recursively
by composing the individual crease pattern Fj of the module
Mj in the order of the module composition of Lk as

G1 := F1 and Gk := Gk−1 � Fk. (42)

Now we show that the link Lk composed with Def. 1 has
no hole or gap, and that Gk folds into this link. We will find
it convenient to denote by Vp

j ⊂ Vj (respectively, Vd
j ⊂ Vj)

the spatial vertices of the proximal (respectively, distal) base
polygons of Mj .

Lemma 2 (Sequential composition of tubular origami): The
crease pattern of link Lk is Gk.

Proof: Denote by jV̄j :=
[
jV̄p

j
jV̄d

j

]
the array of homoge-

neous vector representations of the (proximal and distal) base
vertices of the module Mj with respect to its proximal frame.
Now, from the constructions of Section III, observe that

jV̄p
j = V̄0 and jV̄d

j = jpM jd
jV̄p

j = jpM jdV̄0 (43)

Algorithm 6: ComposeCP ((F1,p
′
1d), (F2,p

′
2d)).

Input: two crease patterns in an ordered list with their
distal marker ((F1,p

′
1d), (F2,p

′
2d))

Output: crease pattern F , distal marker p′
d

1: F ← F1 � F2;
2: p′

d ← (p′
1d + p′

2d) mod nsls;

where V̄0 is the homogeneous matrix representation of the base
polygon vertices with respect to the base frame given in (3). For
the link L1 = M1, we can write

1V̄1 =
[
V̄0

1pM 1dV̄0

]
. (44)

Similarly, for the link Lk, denote by 1V̄k :=
[
1V̄p

k
1V̄d

k

]
the array of the homogeneous vector representations of the
(proximal and distal) base vertices of the included module Mk

with respect to the proximal frame of Lk. It follows that

1V̄k = Lk−1 kV̄k = Lk−1
[
V̄0

kpM kdV̄0

]
=

[
Lk−1 V̄0 Lk V̄0

]
(45)

exhibiting that the proximal base vertices of Mk coincide ex-
actly with the distal base vertices ofMk−1, orVd

k−1 = Vp
k . Thus,

the two polygon bases are identified and there are no seams or
gaps between the two modules.

We now use this result to prove the lemma using induction. For
the base step, it is trivial that G1 = F1 folds into L1 = M1. For
the induction step, assume Gj is the crease pattern that folds into
Lj , and Fj+1 folds into Mj+1. Now consider the crease pattern
Gj+1 = Gj � Fj+1, which is the composition of a crease pattern
Fj+1 onto the existing crease pattern Gj such that the proximal
crease pattern verticesV′p

j+1 ofFj+1 are identified with the distal
crease pattern vertices V′d

j of Gj . Since the crease pattern base
vertices must correspond to the same spatial vertices, it now
follows that Vd

k−1 = Vp
k . Thus, Gj+1 has no gap and it folds into

Lj+1. �
Algorithm 6 describes the steps to compose two crease pat-

terns F1 and F2 into a new crease pattern F = F1 � F2. The
new distal marker p′

d is the sum of the two inputs modulo nsls
due to the wrap-around property of a tubular sheet.

B. Link Design as a Dubins Path Problem

We are now prepared to address the problem of constructing
a link that connects two modules (usually joints) with desired
poses in R3. In other words, given the proximal and distal frames
Op andOd in R3, find the linkL that produces the corresponding
transformation between these frames. This section shows that
this design problem is related to the Dubins path planning
problem.

Recall from Section III that the centerline of an origami
module is the curve connecting the base centers op and od

along a path that is equidistant to all facets, except for the
elbow fitting, where it is the circular arc centered at oicr with
endpointsop andod. In other words, it is a circular arc of radius r

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 03,2024 at 21:07:14 UTC from IEEE Xplore.  Restrictions apply. 



1272 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Fig. 5. Dubins-specified tube connecting method. (a) 3-D Dubins path plan-
ning. We want to transform the polygon at Op to Od. The transformation of the
polygon from Op to Od can be realized by finding a Dubins path that first takes
the normal vector â of the polygon from Op to Od and then twists the frame
for an angle α with respect to âd. (b) Dubins-specified tube connection is a
sequence of an elbow fitting, followed by a twist fitting, a tube, and then another
elbow fitting. All the parameters needed for this construction can be found with
the 3-D Dubins path planning.

(denoted by C) for an elbow fitting and a line segment (denoted
by S) for every other origami module (and any origami joint
in its zero configuration), shown as the blue arrows in Fig. 3.
We denote the centerline of the module Mi as c(Mi) ⊂ R3.
Similar to (33) and (35), centerlines can be transformed and
composed in correspondence with the composition of their
modules. In particular, the composition of two centerlines is
c(M1) � c(M2) := c(M1) ∪ (1pM 1dc(M2)). It follows that
the centerline of the link can be composed of the centerlines of
individual modules.

Definition 2 (Centerline of a link): The centerline of a link
L1 is denoted as c(L1) = c(M1). The centerline of a link Lk is
the concatenation of the centerlines of Lk−1 and Mk, or

c
(Lk

)
= c

(Lk−1 �Mk

)
:= c

(Lk−1
) � c (Mk) . (46)

Observe that in the absence of twist, the centerline and base of
a module (and thus of a link) are sufficient to identify the module
and its design parameters uniquely. This work shows that any
link can be constructed as the realization of an appropriate path
from Op to Od consisting of C and S.

Specifically, we focus on a subset of paths called CSC paths,
or the bounded-curvature paths commonly computed for Dubins
vehicles [51]. Consider a genericCSC path that connects frames
Op and Od, where we follow a circular arc of radius r starting
at op tangent to âp for a distance θ1, then follow a straight line
segment for a distance ||t|| until we reach the last circular arc of
radius r, then follow that arc for another θ2 until we finish at od

tangent to âd, as shown in Fig. 5(a). The rigid transformation that
takes the vector âp at op to âd at od can be computed directly
from this path. However, this transformation does not constrain
the orientation of the frame, and an additional twist transforma-
tion is needed to fully describe the rigid transformation from
Op to Od. Here, we introduce a new frame to represent the new
target goal, the untwisted distal frame Ou = {âu, b̂u, ĉu,ou},
or the frame whose centerline axis and origin are identical to the
distal frame (âu = âd and ou = od) but not the other two axes.

Frames Ou and Od have an angular difference of α about the
âd axis. Therefore

Lemma 3 (Rigid transformation of a CSC Dubins path with
twist correction): Suppose a CSC Dubins path with turning
radius r staring at op tangent to âp and finishing at od tangent
to âd exists, with a twist α along the centerline. Then the rigid
transformation from the associated proximal frame Op to the
distal frame Od can be written as

Ōd :=

[
R(êw1, θ1) dw1(R(êw1, θ1) + I)êa

0 1

]

×
[
R(êa, α) 0

0 1

][
I ||t||êa
0 1

]

×
[
R(êw2′ , θ2) dw2(R(êw2′ , θ2)+I)êa

0 1

]
Ōp. (47)

Proof: We first consider the problem where there is no twist
about âd (i.e., α = 0), and the problem reduces simply to
transforming the unit normal vectors âp at op to âd at od. The
homogeneous transformation from the proximal frameOp to the
untwisted distal frame Ou as shown in the CSC Dubins path
from Fig. 5(a) can be factored into a sequence of three rigid
transformations as follows. First, start with a turn of constant
radius r over an arc of θ1 radians. Second, follow a straight
path of length ||t|| along the vector t that is tangential to both
circular arcs of theCSC path. Finally, end with a turn of constant
radius r over an arc of θ2 radians. Algebraically, these three
transformations correspond to the product

Ōu :=

[
R(êw1, θ1) dw1(R(êw1, θ1) + I)êa

0 1

][
I ||t||êa
0 1

]

×
[
R(êw2, θ2) dw2(R(êw2, θ2)+I)êa

0 1

]
Ōp (48)

where êa =
[
0 0 1

]T
, êw1 is the rotational axis of the

first circular arc in terms of Op, êw2 is the rotational axis of the
second circular arc in terms of Om (the intermediate frame after
the first circular arc and the straight line), dw1 = r tan θ1

2 , and
dw2 = r tan θ2

2 .
To transform the untwisted frame Ou back to the distal frame

Od, we perform a twist R(âu, α) on Ou, or

Ōd :=

[
R(êa, α) 0

0 1

]
Ōu. (49)

Since the twist operation does not change the shape of the CSC
centerline path, we can apply it after the first constant radius turn
before the translation along the straight line component of the
path. The transformation between Op and Od is then as given in
(47). Since the twist transformation is before the last circular arc,
the rotational axis must be written in the new frame accordingly,
where êw2′ is the unit rotational axis of the second circular arc
observed in the body frame. �

We can generalize the twist transformation into a screw trans-
formation, having twist and translation simultaneously. Then,
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we can rewrite (47) as

Ōd :=

[
R(êw1, θ1) dw1(R(êw1, θ1) + I)êa

0 1

]

×
[
R(êa, α) ξ||t||êa

0 1

][
I (1− ξ)||t||êa
0 1

]

×
[
R(êw2′ , θ2) dw2(R(êw2′ , θ2) + I)êa

0 1

]
Ōp.

(50)

where ξ ∈ (0, 1) is an arbitrary fraction. Essentially, we are
splitting the line segment of the CSC path such that the first
portion contains a screw operation (a twist R(êa, α) and a
translation ht = ξ||t||) and the second portion is a translation
operation (with h = (1− ξ)||t||). Now observe that the four
transformation matrices in (50) are the same as the transforma-
tion matrices of an elbow fitting (14), a twist fitting (10), a tube
(7), and another elbow fitting (14) in sequential multiplication.
Thus, we can construct a physical connection between two
regular polygon bases by connecting the four origami modules
in the mentioned order, where all the geometric parameters can
be found in (50).

Corollary 4: Given (50), the origami link L4 = Mep �
Mtw �Mtu �Med (with polygon base of circumradius r)
composed of elbow fittings Mep, Med, a twist fitting Mtw, and
a tube Mtu instantiates the same given rigid transformation.

Proof: Choosing the base of the link to have a circumradius of
r, the elbow fittings Mep and Med have centerlines of circular
arcs with radius r. The number of polygon sidesns can be chosen
arbitrarily (see Section VI-B). We now combine the elbow fitting
Mep (with rotation axis êw1 and angle θ1), twist fitting Mtw

(with twist angle α and length ξ||t||), tube Mtu (with length
(1− ξ||t||)), and elbow fitting Med (with rotation axis êw2′

and angle θ2) to form the link. From Lemma 1, we get the rigid
transformation instantiated by L4 through multiplication of (7),
(10), and (14), and again (14) with the aforementioned input
parameters, which is then identical to (50). �

In fact, the centerline of this constructed link is the CSC
path provided in Lemma 3. We can now combine all the results
and provide sufficiency conditions for the existence of a link that
connects a proximal and distal frameOp andOd with a specified
polygon base.

Lemma 5 (Dubins-specified origami link): Given a proximal
frame Op, a distal frame Od, and a regular ns-sided polygon
of circumradius r, a link connecting frame Op to Od can be
constructed if there exists a CSC Dubins path starting at op

tangent to âp and finishing at od tangent to âd. Furthermore, the
link L4 = Mep �Mtw �Mtu �Med (with regular ns-sided
polygon of circumradius r as its base) is composed of elbow
fittings Mep, Med, a twist fitting Mtw, and a tube Mtu, such
that its centerline is the given Dubins path.

We refer to work in [51], which claims that such a CSC path
can be computed as long as

‖op − od‖ ≥ 4r. (51)

Note that not all CSC Dubins paths can produce feasible
Dubins-specified links. If the arc angle of either C portion is
greater than 3π/2, the generated link will self-intersect (we will
discuss self-intersection avoidance in Section V-B). Algorithm 7
shows the entire algorithm for constructing a specified link.
Without loss of generality, we chose ξ = 0.2 as an example for
the rest of the study.

V. JOINT PLACEMENT

Having just shown how to compose modules into specified
links, we now address the problem of composing links into speci-
fied kinematic chains. Namely, this section considers the relaxed
configuration (q0 = 0) and determines where to place joints
in R3 such that their operation realizes the required forward
kinematics specified by D-H parameters D when actualized by
the tubular origami designs. Given an origami joint module Ji

constructed in Section III-B, we define the joint centroid frame
Oic = {âic, b̂ic, ĉic,oic}. The origin of this frame represents
the midpoint between the proximal and the distal base origins
(oip,oid) in the zero configuration of Ji, as shown in Fig. 6(a)
and (b). For each Ji, frames Oic, Oip, and Oid all have the
same orientation, where ĉic is defined as the rotation axis for
a revolute joint and âic as the translational axis for a prismatic
joint. Assuming we have all the joint frames Oi (they are fixed
frames when given D and its forward kinematics), we want to
solve the following problem.

Problem 3: Given the joint frames Oi, identify Oic for all
joints such that they satisfy the D-H specification (by sharing
the same joint axis with Oi), and a Dubins-specified origami
link can be constructed between any two joints (by ensuring the
joints are sufficiently distant).

For practical purposes, it is desirable to find joint locations
that minimize the volume of the linkage. Thus, this problem
can be formulated as a constrained packing problem. Note that
the problem of finding the optimal placement of the joints
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Fig. 6. Origami joint placement: The Oic frame and the joint sphere Si of the
(a) revolute and (b) prismatic joints. (c) Joint placement for JN−1. Section V
proposes a method to ensure each joint is at least a distance d apart from any
other. Each joint is represented as a sphere and can be placed anywhere on its
ẑi axis. BN is the minimum bounding sphere for SN ∪ SN+1. The red path is
the CSC Dubins path that will connect JN−1 and JN .

(i.e., such that the distance between joint pairs is minimized)
is NP-hard [56]. However, a feasible nonoptimal solution can be
obtained through an iterative greedy approach.

Given a D-H specificationD, the transformation matrix i−1T i

that specifies the position and orientation of each joint frame
Oi := {x̂i, ŷi, ẑi,oi} can be computed directly [47]. Thus, the
forward kinematics for the target linkage is fully specified. Note,
however, that although the frame and the kinematic motion for
each joint are defined throughD, the exact joint locationsOic are
not. A revolute joint Ji, for example, can be placed anywhere
as long as its rotational axis ĉic is aligned with ẑi; thus we
can assign ĉic := ẑi and oic := oi + tẑi for any t ∈ R. On
the other hand, a prismatic joint Jj can be placed anywhere
as long as its translational axis âic is aligned with ẑj ; thus we
can assign âic := ẑi and oic := oi + tẑi for any t ∈ R. The
remaining two axes of Oic do not affect the kinematics of the
mechanism and can be chosen arbitrarily. In this work, we assign
âic := x̂i for an origami revolute joint and b̂ic := x̂i for an
origami prismatic joint; the last axis follows the right-hand rule.
Further, due to the rotational symmetry of the origami joint,
we can rotate the frame about ĉic by π without changing the
kinematics. Due to this flexibility in precise joint location, we
can, therefore, assign Oic = {âic, b̂ic, ĉic,oic} as

Oic := {uiẑi, uix̂i, ŷi,oi + tiẑi} for a prismatic joint

Oic := {uix̂i, uiŷi, ẑi,oi + tiẑi} for a revolute joint (52)

where the design parameter ti ∈ R determines the joint centroid
location and the choice of the scalar ui = ±1 dictates whether
the frame has been rotated. In practice, we choose the direction
of âic to point toward the next joint for a shorter centerline path,
thus reducing the sheet material needed.

A. General Joint Placement

Problem 3 thus reduces to identifying for each joint Ji the
offset ti required to guarantee that a connecting link can be con-
structed. We propose a greedy iterative approach to solving this
problem (Algorithm 8), wherein joint locations are determined
iteratively such that each new joint location is a distance of at
least 4r away from all the previous joints, spreading the joints
out to make room for a Dubins-specified link (51), as illustrated
in Fig. 6(b). Since this procedure creates longer (hence, heavier)
links in later iterations, we place the joints in reverse order such
that longer links are closer to the base.

Denote by ball(o, r) the set of points at a distance of at most
r from o. We define a joint sphere Si := ball(oic, ris) for an
origami joint Ji, shown in Fig. 6(a), where its radius is chosen
such that the proximal and distal origins both lie on the sphere
surface, i.e.,

rs := r sin (ns−2)π
2ns

tan θm
4 for a revolute joint

rs :=
1
4d0(2 + cscβ) for a prismatic joint. (53)

Denote by Bj := ball(ojB, rjB) the minimum bounding sphere
that encloses all the joint spheres from Sj to SN+1. For two
compact sets S1,S2 ⊂ R3, denote by dist(S1,S2) the shortest
distance betweenS1 andS2, and normal(S1,S2) the vector from
a point in S1 to a point in S2 such that the length is dist(S1,S2).
Denote by line(o, n) the line that passes through the point o in
the direction of n̂.

Lemma 6: Algorithm 8 solves Problem 3.
Proof: The proof must show that for all N ∈ N, Algorithm 8

accepts D, a D-H list of length N + 1, and returns a list of
joint centroid frames Oc that realize the kinematic mapping (1)
specified by D at rest configuration q0, and that each pair of
consecutive joint centroid frames is far enough for a Dubins-
specified link to exist between them. We will prove this by
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induction on N . For the base case, N = 1, there are two entries
in D, the final end effector in row N + 1 = 2 and the single
joint in row N + 0 = 1. In this case, Algorithm 8 uses (53) to
place O2c at the center of ball(o2, r2 s), which serves as both
the joint sphere, S2, and the ball, B2. Algorithm 8 then assigns
the joint centroid frame, O1c, at a distance 4r + r1 s from B2

along the specified line line(o1, ẑ1), and then, updates B1 to
enclose S1 ∪ B2 as depicted in Fig. 6(c). For the inductive step,
assume that the proposition holds for any specification, D, of
length N . Given a specification D̃ of length N + 1, strip its first
row (which we number row 1) and apply Algorithm 8 to D, its
subsequent N rows. Once again, apply Algorithm 8 to adjoin a
joint centroid frame, O1c, at a distance 4r + r1 s from the final
ball, B2 associated with D, along the specified line line(o0, ẑ0),
and then update B1 to enclose S1 ∪ B2, completing the list Oc

as required. �

B. Avoiding Self-Intersection

Algorithm 8 only ensures that joints are placed in locations
such that CSC paths can be constructed between them. There
is no guarantee that the resulting links do not intersect with
themselves or each other. To start, if an elbow fitting has a
bending angle greater than π, the two links will intersect. We
conjecture that it is possible to construct a CSC path such that
both the arc angles are less than π. Denote by P := plane(o, n̂)
the plane that passes through the point o with the normal vector
n̂ and denote by P+ the half-space divided by P that contains
all nonnegative values.

Conjecture 7 (Constrained CSC Dubins path): Given a prox-
imal frame Op and a distal frame Od, if there exist two parallel
planesPp := plane(opn̂) andPd := plane(od, n̂), such that (1)
dist(Pp,Pd) ≥ 4r, (2) n̂T âp ≥ 0, and (3) n̂T âd ≥ 0, then there
exists a shortest CSC path of radius r starting at op tangent to
âp and finishing at od tangent to âd whose circular arcs both
subtend angles less than π radians.

Assuming the conjecture is true, we now introduce a proce-
dure to spread out the joint spheres so that no two links can cross.
This is done by introducing waypoints to reroute the centerline
of the link to avoid path intersections. A waypointW has a frame
OW and can be treated as a particular joint that allows no motion
and has no volume. Its joint sphere is a point (radius rs = 0)
and its crease pattern can be constructed with tube(ns, r, 0).
We propose Algorithm 9 to identify Oic for every joint and
add waypoints to reroute the centerline of a link such that the
constructed link that connects any two joints does not intersect
with itself or any other links.

VI. ORIGAMI KINEMATIC CHAIN

With the origami links L and joints J defined, we now define
the origami kinematic chain recursively as

Definition 3 (Origami kinematic chain): A Kinegami chain
is the composition of N + 1 links and N joints of the same
polygon base in alternating order.

In the case of N = 0, we define the base link L0, although it
cannot move, as an instance of an origami kinematic chainK0. A
kinematic chainKk with k joints can then be formed through the

composition of the previous kinematic chain Kk−1, an origami
joint Jk, and a link Lk. In other words

K0 := L0, and Kk := Kk−1 � Jk � Lk. (54)

The crease pattern of a kinematic chain is constructed through
the composition of the crease patterns of the corresponding links
and joints (Lemma 2). Finally, we combine all previous results
and algorithms to produce Algorithm 10, or the “Kinegami” al-
gorithm, for generating a kinematic chain mechanism. Note that
the number of the polygon sides ns must be even if the proposed
kinematic chain consists of revolute joints (see Section III-B2).
Now we present our main result.

Theorem 8 (Kinegami): Algorithm 10 solves Problem 1.
Proof: We prove this by induction. For the base step, line 1

generates the crease pattern G0 that folds into a tube of length
lb, which is the base case of a kinematic chain K0. For the
inductive step, assume Gj−1 folds into a kinematic chain Kj−1.
Since the joint location of Jj is assigned with Algorithm 8, it
satisfies the constraints in Problem 3. According to Lemma 5,
we can then generate a Dubins-specified link Lj that connects
the consecutive pair of joints Jj−1,Jj . By composing Kj−1,
Jj , and Lj , we have the kinematic chain Kj . In the special case
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of the joint being a waypoint (see Section V-B), the algorithm
generates a tube with no length, essentially composing the new
link onto the previous kinematic chain. The crease pattern of Jj

and Lj is Fj and GjL, respectively. Based on Lemma 2, crease
pattern Gj = Gj−1 � Fj � GjL folds into Kj . �

Lemma 9: Algorithm 10 outputs a crease pattern with O(N)
vertices and edges.

Proof: For rigid connections, Algorithms 1–3 produce crease
patterns for origami modules with O(ns) vertices and edges.
Each Dubins-specified link consists of up to four origami mod-
ules, and thus, Algorithm 7 also produces a crease pattern with
O(ns) vertices and edges. For joints, Algorithm 4 produces a
prismatic joint with O(ns) vertices and edges. The parameter nl

is a variable that can be chosen arbitrarily by the designer and
does not need to scale with the problem. Algorithm 5 produces
a revolute joint with O(nsnz) vertices and edges. The recursive
sink gadget adds additional vertices and edges for every nz layer
in every ns iteration. Thus, the size of each module is at most
O(nsnz) vertices and edges.

Algorithm 10 connectsN pairs of joints and Dubins-specified
links and thus produces at most O(Nnsnz) vertices and edges.
Note that ns is a design variable and does not need to scale with
the proposed problem. Equation (32) shows that the number of
layers of the recursive sink gadget in the revolute joint is approx-
imately proportional to its effective stiffness (i.e., k ∝ nz), and
Algorithm 10 produces a crease pattern withO(Nk) vertices and
edges. For applications without stiffness constraints, we have
O(N) vertices and edges. �

Lemma 10: Algorithm 10 runs in O(N) time.
Proof: Calculating joint placement in Algorithm 8 requires

solving a nonlinear program in line 6 and 8 for each joint. The
scale of the equations does not change with the complexity of
the serial manipulator and solves in O(1). Since the process is
repeated for all N joints, this algorithm takes O(N) time. All
modules are constructed vertex by vertex directly from the input
parameters, and thus the time to build any individual module is
O(nsnz). Computing a Dubins-specified link requires solving a

set of nonlinear equations in time independent of the complexity
of the serial manipulator and thus takesO(1). Composing crease
patterns with Algorithm 6 takes O(1), since shifting a graph in
R2 is an addition operation. This process is repeated for all N +
1 links, so the entire process takes at mostO(Nnsnz) time. Since
ns is a design parameter, the time complexity of Algorithm 10
is O(N). �

A. Programmable Compliance

We demonstrated that our revolute and prismatic joints have
programmable stiffness in Section III-B. Although the precise
relationship between parameters and stiffness has not yet been
fully characterized, we observe that the stiffness of the revolute
joint was approximately proportional to the number of sink folds
nz and the cone angle β. Denote k the desired stiffness, E the
Young’s modulus of the given material, and ε the error allowance.
Assume there exist some functions f and g that map k, E, and ε
to the geometric parametersnz for the revolute joint andβ for the
prismatic joint, respectively. We then introduce this conjecture
to be explored in future work:

Conjecture 11: With additional functions nz := f(k, ε, E)
and β := g(k, ε, E), Algorithm 10 solves Problem 2, where we
can construct the compliant origami robot such that the local
stiffness profile is bounded within k ± ε. The pattern requires
O(Nk) time to compute and has O(Nk) vertices and edges.

B. Selection of Polygon Shape

In general, the shape of the regular polygon base is a free
design choice. Appendix A shows that for a fixed circumfer-
ence tubular sheet, PT , the second moment of the associated
regular polygon prism tube—and hence, its ability to withstand
bending—grows with ns. However, crease pattern complexity
increases with ns (Lemmas 9 and 10), lengthening fabrication
time respecting both computational and human folding effort.
Finally, r directly affects the length scale and physical volume
of the folded Kinegami output, particularly after imposing the
sufficient conservative condition guaranteeing the existence of
the Dubins-specified link.

VII. PHYSICAL EXAMPLES

The proposed “Kinegami” algorithm accepts an algebraic
specification (D-H description) of a serial robot and outputs a
single-sheet crease pattern that can be folded into an origami
kinematic chain that is kinematically equivalent to the specifi-
cation. The algorithm was implemented in MATLAB and can
be found in our GitHub repository (https://github.com/weinitor/
Kinegami). This section illustrates the use of Kinegami by phys-
ically constructing several common kinematic specifications.
Specifically, in Section VII-A, we automatically generate and
manually construct Kinegami implementations of some familiar
robot arms that incorporate higher DOF lower pair joints. In Sec-
tion VII-B, we illustrate the complexity challenge of this prob-
lem domain by exhibiting a faulty (self-intersecting) Kinegami
chain produced by the naive link generator (Algorithm 8). We
replace it with a feasible but conservatively bulky crease pattern
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automatically produced by our conjecturally correct link gener-
ator (Algorithm 9). Entrusting the optimization step to human
intervention instead, we suggest the ergonomic efficacy of the
prior pipeline steps by exhibiting a feasible, correct, and more
usefully compact design resulting from manually replacing in
Algorithm 10 the call to Algorithm 8 (on line 2) with an intu-
itively generated selection of the joint centroid frames. Finally,
we suggest the long-term value of origami robotics for exploiting
cascaded power trains [36] by automatically generating, man-
ually constructing, and empirically testing a 1-DOF Kinegami
catapult. All the resulting origami robots are constructed out
of 8-mil thick Durilla synthetics paper with polyester finish
(CTI Paper, USA). The crease patterns are cut out and the folds
perforated using a laser cutter. The sheet is then manually folded
into shape and glued together with 3 M 467MP adhesive transfer
tape. The manual folding time is roughly about N × 10 min.

A. Higher DOF Lower Pair Joints

We construct origami serial robots that are kinematically
equivalent to higher DOF lower pair joints. Let the polygon
shape of the tubular origami be {ns, r} = {4, 0.02 m} and the
maximum rotation angle for all the revolute joints be θm = π.

1) Cylindrical Manipulator: A cylindrical joint permits slid-
ing parallel to and rotation about its joint axis. Our cylindrical
arm robot consists of a revolute and a prismatic joint, where both
the joint axes coincide. Fig. 7(A)-(a) summarizes its kinematic
diagram and D-H specification, where l0 = l2 = 0.1 m, l1 =
0.08 m, and θ1,0 = 0. Fig. 7(A)-(b) shows its crease pattern,
where the ith joint Ji is highlighted in green and the ith link Li

uncolored. Fig. 7(A)-(c) shows the final product, where the ith
joint axis ẑi is marked to show that the folded Kinegami chain
is kinematically equivalent to the proposed robot.

2) Planar Manipulator: A planar joint permits arbitrary
translation on and rotation perpendicular to a plane. Our 3-DOF
manipulator arm is constructed with three parallel revolute
joints, shown in Fig. 7(B), where l0 = l1 = l2 = l3 = 0.15 m
and θ1,0 = θ2,0 = θ3,0 = 0. Here, we choose θm = 3π/2 to
show a different range of motions for the revolute joint.

3) Spherical Wrist: A spherical joint permits arbitrary ro-
tation for one link with respect to the other one. In our 3-
DOF manipulator arm, we chose three orthogonal rotational
axes, shown in Fig. 7(C), where l1 = l2 = 0.1 m, θ1,0 = 0, and
θ2,0 = θ3,0 = π/2. This example demonstrates that Algorithm 8
can assign origami joints to avoid collisions, even with three
theoretically collocated joints.

B. Self-Intersection and Compactness

As discussed in Section V-B, Algorithm 8 does not guarantee
a nonself-intersecting linkage. We illustrate this issue and a
potential solution by designing a 6-DOF PUMA arm (D-H
specification from [47]), providing empirical support that Al-
gorithm 9 will generate a physically valid kinegami chain over
Algorithm 8. In Fig. 8(a), the centerline of the robot associated
with Algorithm 8 incurs a self-intersection between two of its
links, so the robot is not feasible. In contrast, in Fig. 8(b), the
centerline created with Algorithm 9 has no intersection since it

Fig. 7. Kinegami results of a (A) Cylindrical, (B) Planar, and (C) Spherical
manipulator. Each of the figures have subplots: (a) Coordinate frames and
the D-H representation. The green cylinder represents the revolute joint, and
the hexahedron represents the prismatic joint. (b) Crease pattern generated by
Kinegami. The green shadowed parts indicate the joints, and the remainders
indicate the links. The gray hatched area indicates the adhesive area to create
the tubular sheet. The crease pattern for the tuck section of the elbow fitting is
not shown for simplicity. (c) Folded state of the origami robot.

is rerouted via additional waypoints and is consequently longer.
Of course, neither of the outputs of these greedy algorithms is the
optimal joint placement, as we now demonstrate by contrast with
a human-generated design that also illustrates the user-friendly
aspects of the earlier pipeline steps.

Instead of locating the joints through line 2 in Algorithm 10,
the user can directly specify joint centroid frames Oc as an
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Fig. 8. Kinegami PUMA arm: Schematic drawing of the Kinegami output with
joint placement using (a) Algorithm 8, (b) Algorithm 9, and (c) Human-specified
joint location. Joint spheres are shown colored, with purple at the end effector.
Frames without spheres indicate the waypoints in (b). The centerline of the links
is in black. (d) Folded Kinegami from (c).

input. Using this “human-specified joint location” method, it is
possible to place the joints closer to each other while maintaining
a non-self-intersecting centerline, as shown in Fig. 8(c) and (d).
Additional higher DOF joints as discussed in Section III-C could
also be used to reduce the volume of the kinematic chain by
combining multiple joints with coincident joint frames together.
Given its known combinatorial complexity, heuristic approaches
to the problem of optimizing feasible joint placement subject to
the CSC path validity represent a very inviting open research
domain.

C. Demonstration of Actuation

Finally, we show how the compliant joints can be used
to store and release energy in a 1-DOF catapult. The robot
weighs 0.3 kg, with the paper kinematic chain structure (with
{ns, r} = {4, 0.05 m}) contributing 50% of the total mass. The
joint centroid frames of the revolute joint and the end effector
are assigned manually. We also provide intermediate waypoints
W1, . . . ,W4 (see Section V-B) that the origami structure must
pass through to form a broad base, as shown in Fig. 9(a).

The revolute joint (qm = π/2, nz = 2) is actuated by a
tendon-driven servo motor with a latch mechanism adapted
from [43]. One end of the tendon is attached to the distal side
of the revolute joint, and the other is attached to the latch
mechanism located at the base, as shown in Fig. 9(b). When
the servo motor shaft turns, the tendon between the distal and
the proximal end of the revolute joint is shortened and thus bends
the revolute joint towards the tendon side. Once the servo motor
rotates to the desired angle, the tendon is let loose, thus releasing
the energy stored in the compliant revolute joint and launching
the payload. The time-lapse photos of the catapult throwing a 3-g
ping-pong ball and a 50-g rubber ball are shown in Fig. 9(c) and

Fig. 9. Origami catapult. (a) Schematic drawing of the joint assignment.
(b) Folded catapult with actuator attached. The time-lapse photos of the catapult
motion throwing a (c) 3-g ping-pong ball with an interval of 1/24 s and a (d)
50-g rubber ball with an interval of 1/12 s.

(d). Using “Tracker” (https://physlets.org/tracker/) to measure
the projectile trajectories, we estimate that 35 mJ of energy is
transferred to the rubber ball by the compliant revolute joint in
66.7 ms, resulting in an average mechanical power output of
525 mW (i.e., a robot power density of roughly 1.75 W/kg).

VIII. CONCLUSION

This article established the design feasibility and demon-
strated the rapid fabrication of an origami serial robot mecha-
nism generated from well-established kinematic specifications.
Work now underway aims to prove the remaining conjecture
required to guarantee that the algorithm we presented will always
generate a viable (nonself-intersecting) kinematic chain whose
reachable poses form an open set within the joint configuration
space. Similarly, inspired by the present empirical demonstration
of tunably compliant joints, ongoing work aims to develop a
careful stiffness model that can be used to prove our conjecture
that extensions of these algorithms can yield folded structures
with arbitrarily specified compliance.

Origami-inspired compliant structures open up opportunities
for increasing the agility of a robot by more effectively dis-
tributing actuator power spatially in the robot and temporally
throughout a given task [36]. This article offered a sugges-
tive illustration of that idea by using a low mass, low power,
conventional actuator to load energy into a 1-DOF Kinegami
catapult, achieving a 525-mW transfer of 35 mJ into a ballistic
payload that was 16% of the robot’s mass. The integration of
novel smart material actuators [57], [58] with the flat sheet
substrates underlying the compliant robot structure [7] as a
potential method for increasing the robot power density will
be the focus of future work.

APPENDIX A
SECOND MOMENT OF INERTIA OF A PRISM TUBE

Given a ns-sided regular polygon of circumradius r and ver-
tices parameterized as (vi,x, vi,y) = (r cos ( 2πins

), r sin ( 2πins
)),
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its second moment of inertia with respect to the x-axis [59]
is

Ix(ns, r) =
nsr

4

48

(
4 sin

(
2π
ns

)
+ sin

(
4π
ns

))
. (A1)

The perimeter of the regular polygon is 2nsr cos (
π(ns−2)

2ns
).

Assuming the perimeter is a fixed constant L, its circumscribed
circle radius can be calculated to be rL = L

2ns
csc π

ns
.

Now assume a thin wall regular polygon prism with ns sides,
a circumscribed circle of the neutral line of the wall of radius
rL, and a wall thickness of t. The second moment of inertia of
this thin-wall regular polygon prism is

Ix,t (ns, rL, t) := Ix
(
ns, rL + t

2

)− Ix
(
ns, rL + t

2

)
(A2)

which is a monotonically increasing function. Thus, Ix,t gets
larger as ns grows.
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