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Kinegami: Algorithmic Design of Compliant
Kinematic Chains From Tubular Origami

Wei-Hsi Chen

Abstract—Origami processes can generate both rigid and com-
pliant structures from the same homogeneous sheet material. In
this article, we advance the origami robotics literature by showing
that it is possible to construct an arbitrary rigid kinematic chain
with prescribed joint compliance from a single tubular sheet. Our
“Kinegami” algorithm converts a Denavit—-Hartenberg specifica-
tion into a single-sheet crease pattern for an equivalent serial robot
mechanism by composing origami modules from a catalogue. The
algorithm arises from the key observation that tubular origami
linkage design reduces to a Dubins path planning problem. The
automatically generated structural connections and movable joints
that realize the specified design can also be endowed with indepen-
dent user-specified compliance. We apply the Kinegami algorithm
to a number of common robot mechanisms and hand-fold their
algorithmically generated single-sheet crease patterns into func-
tioning kinematic chains. We believe this is the first completely
automated end-to-end system for converting an abstract manipu-
lator specification into a physically realizable origami design that
requires no additional human input.

Index Terms—Dubins path, kinematic synthesis, origami robot,
programmable compliance.

1. INTRODUCTION

RIGAMI robots are machines whose morphologies and

functions are created by folding locally flat sheets [1]. This
fabrication and assembly process enables rapid construction of
complex 3-D objects and can even incorporate multilayered
materials for regional stiffness [2], [3], [4] and circuit inte-
gration [5], [6], [7]. Folded modules can be used as joints [8]
or near-rigid thin shell structural supports [9]. In this article,
we present and analyze an algorithmic pipeline enabling the
construction of an entire robot consisting of both rigid links and
compliant joints with origami fabrication.
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A. Designing Crease Patterns for Kinematic Mechanisms

The design of origami kinematic structures is more com-
plex than the conventional robot design [10] since it inte-
grates manufacturability with function, requiring 2-D embed-
dable crease patterns that simultaneously fold into complex
spatial shapes [11]. Existing computational methods for auto-
matically generating origami patterns are generally restricted
to rigid shapes [12], [13], [14]. In contrast, robot designs re-
quire fold patterns that achieve not only the desired geometries
but also the desired degrees of freedom. Successful modular
approaches [7], [9], [15], [16] to origami robot design involve
combining simple patterns for structural links or joints to cre-
ate more complicated trusses, linkages, and even continuum
mechanisms [17]. These approaches leverage libraries of crease
patterns generated through in-depth studies of action origami [8],
[18], buckling, and bellows patterns [19], [20], [21], and high-
degree-of-freedom tessellations of both the origami [22] and
kirigami (combining folding and cutting) variety [23], [24].
Partial automation of origami module compositions has been
developed for shapes in [25] (joining the crease patterns of the
unfolded constituent spatial structures along human specified
edges) and to create specific kinematic mechanisms in [16] (al-
lowing their manual joining via discretely constructed hinges or
actuators). Other algorithmic work on origami composition [9],
[15], including algorithmic resolution of geometric conflicts [7],
[16], similarly presumes both prior specification of the modules
to be joined and how they should be combined. This article
aims to advance the systematic design of origami robots through
algorithms that directly translate kinematic specifications into
constituent modules and the corresponding crease pattern com-
positions that fold into the appropriate spatial mechanism.

B. Tunable Compliance in Robots

In addition to kinematic synthesis, a modular design approach
provides the opportunity for programmable compliance in the
resulting mechanism. There is growing interest in both the
analysis [26] and synthesis [21] of origami joints that exploit
tunable [27] and parametrizable [28] compliance, as well as the
dramatic range of stiffnesses [9] achievable with this hybrid soft-
rigid metamaterial. In dynamical tasks, the ability to manage the
kinetic and the potential energy of a robot’s body and environ-
ment allows the robot to manipulate objects using fewer actuated
degrees of freedom (DOF) [29] and negotiate otherwise inac-
cessible environments [30]. Traditionally, dynamical tasks have
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required high-power-density actuators [31], [32], [33] where
output power is generally proportional to mass [34]. A long-
standing tradition of parallel compliance in mechatronics design,
when joined to novel, distributable actuation materials [35], can
open the door to systematic reduction of actuator mass through
the distribution of peak power demand over space and time [36]
with consequently increased specific agility [37]. Impressive
dynamic behaviors in folded sheet machines have been demon-
strated through powerful actuators [38], [39], [40], as well as
in transmitting cascaded power into and from compliant folded
springs [41] for hopping [42] and leaping [43] behaviors driven
by conventional actuators. Again, in all these applications of
origami’s metamaterial properties (i.e., anisotropically tuned
rigid and compliant responses from homogeneous sheets), the
desired structural shapes and stiffnesses have emerged from
painstakingly planned one-off manually generated designs.

C. Contributions

This article addresses these gaps by providing, to our knowl-
edge, the first completely automated end-to-end system for con-
verting an algebraic mechanism specification into a physically
realizable crease pattern that folds to achieve it. Our method
follows the rule that no cuts are allowed in the crease pattern so
that no additional stress will be introduced around the edge of the
cuts. Similar to existing approaches, our system recruits a cata-
logue of parameterized modules. It provides the additional con-
tribution of automatically choosing the relevant modules and de-
sign parameters and composing them into a nonself-intersecting,
single-sheet pattern, thus reducing the design problem into one
abstract specification. The resulting pipeline does not require ad-
ditional human input beyond a Denavit—Hartenberg (D-H) spec-
ification, though its algorithmic steps are sufficiently transparent
to allow the integration of designers’ alternative modules or more
suitably optimized compositions when desired. Specifically, we
present the following.

1) A parameterized catalogue of origami modules for tubular
sheets, including rigid connectors and revolute and pris-
matic joints that exhibit a tunable range of stiffnesses.

2) An algorithm for accessing that catalogue in generating
from a D-H specification of a serial robot a kinematically
equivalent one-piece origami mechanism.

3) A proof that the algorithm is correct up to the yet un-
proven claim (Conj. 7) that our spatial link generator
(Algorithm 9) will never produce a design that intersects
itself.

4) An empirical analysis of how the module parameters
determine their corresponding joints’ compliance.

5) An empirical demonstration of the efficacy of these al-
gorithmic constructions taking the form of a series of
physically realized robot arms.

The rest of this article is organized as fiollows. Section II
defines the design problem and proves a comprehensive reader’s
guide to where each of these contributions is presented. Sec-
tion III introduces the proposed origami modules that act as
building blocks to our algorithm, including their crease patterns
and the folded states. Section IV describes how to connect
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TABLE I
NOMENCLATURE

Key symbols related to D-H specifications

Oi o= {532'7:'31}721'701'}
D := {ai7ai7di)0i}N+1
q€eQ

T:R® > R?
R(&,0):R® > R3

the ¢th joint frame (Sec. I1I-A1)

D-H specification (Sec. II-Al)
joint states (Sec. II-Al)

rigid transformation (Sec. II-Al)
rotational about é for 6 angle (Sec. III)

Key symbols related to origami modules

0 :={a,b,é, 0}
M, T, LK :={V,E)}

module frames (Sec. IIT)

module (Sec. II-A2), joint (Sec. I1I-B),
link (Def. 1), and kinematic chain, (Def. 3)
centerline: module (Sec. III), link (Def. 2)
rigid transformation instantiated by

a module (Sec. III) and a link (Sec. IV-A)

vertex, reference point

(M), (L)
M,L:R% 5 R?

’U,pERS

Key symbols related to crease patterns (often “primed” variables)

F.g:={, &

crease pattern of a module (Sec. 1I-A2),

and a link (Sec. IV-A)
F':R? 5 R? rigid transformation (Sec. IV-A)

o 2 .
v,p €R vertex, reference point

Miscellaneous notation:
Subscripts: p proximal, d distal (Sec. III), ¢ centroid (Sec. V)
Barred variables: O, v,V homogeneous representation (Sec. IILIV)

origami modules into origami links. Section V locates origami
joints to satisfy a given D-H specification. Section VIsynthesizes
the previous steps into a complete algorithm that converts an
arbitrary D-H specification into a foldable kinematic chain.
Section VII presents experimental results, and finally, Sec-
tion VIII concludes this article.

II. PROBLEM FORMULATION

Given a kinematic description of a serial robot, our goal is
to find a crease pattern that folds into a functionally equivalent
kinematic chain. The key symbols are summarized in Table I.

A. Definitions

1) Kinematic Chain: A serial robot, or a robot with a kine-
matic chain mechanism, is a collection of links and joints where
each link is connected by joints to at most two other links. In this
work, we follow the convention [45] of using exclusively 1-DOF
revolute joints (R) and prismatic joints (P) and describe the robot
using the D-H convention. Frames attached to the links track the
change in robot posture affected by each joint [46]. We denote
a frame O = {&, 9, 2, o}, where (£, 9, 2) is the orthonormal
basis and o is the origin. We use the numbering system in [44]
(see Fig. 1) and attach the joint frame O; for the ith joint to the
intersection between the ¢th joint axis and the common normal
of the ith and (i + 1)th joint axes. Using this convention, the
relative position and orientation of the frame O; with respect
to frame O;_; can be described with only four parameters: link
length a;, link twist «;, joint offset d;, and joint angle 6,.

The chain’s configuration space Q is the set of all possible
values of its joint variables and can be written as a Cartesian
product of each joint’s variable range. Here, we define the joint
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Fig. 1. Schematic of links and joints in the origami kinematic chain and its
D-H parameters with the numbering system from [44].

variable as ¢;, where the index ¢ € N denotes the ¢th joint. The
joint state can be represented as ¢ = (q1, g2, . . .q;) € @ = R".
We also define the zero configuration q, € Q of the joint state
to be the state where the robot is initialized. For a revolute joint,
the joint angle is the joint variable f; = ¢; € S*. For a prismatic
joint, the joint offset is the joint variable d; = ¢; € R.In practice,
these joints could have geometrical limits that only allow them
to move on a proper subset of S or R.

Denote by ~!T"; the homogeneous transformation matrix of
the O; frame relative to the O; 1 frame, as given by the D-H
specification D := {a;, a;, d;, 0;}V 1, where N is the number
of joints (and the additional row prescribes the end-effector
frame) [47]. Assuming Oy is the base frame, the forward kine-
matics for the ith joint is then

0; =°T;0y, where °T; =T 'T5 --- i1, (1)

Note that the D-H specification does not specify the complete
morphology of a kinematic chain since the physical location of
a joint does not need to coincide with the joint frame. Given D,
one can realize more than one kinematic chain that satisfies the
specification. We will show in this article one way to construct
an origami kinematic chain robot for a given D.

2) Tubular Origami: A tubular folding sheet Pr is a sheet
that is a spatial embedding of the cylinder, S! x [0, 1] < R3.In
other words, Pr is a cylindrical tube in space with “holes” only
at either end and no self-intersections. In practice, a tubular sheet
can be formed by gluing an opposite pair of a rectangular sheet’s
edges together. For ease of visualization, this work depicts Pr
as a flat rectangle with left and right sides identified. A crease
pattern is then a partition of the folding sheet Pr into a finite
set of open polygons bounded by a set of open line segments
bounded by vertices. Each line segment is called a fold or a
crease. Each polygon separated by a cycle of creases and the
boundary of the sheet is called a facet. We describe a crease
pattern as a graph F = (V', &’), where V' = {v,v},..., v},
v =[ v, v, }T is the set of vertices and & = {(i,7) :
v;, v € V'} is the set of edges, or creases. Each crease is asso-
ciated with a spatial (out of plane) fold angle i1 : &' — [—m, 7).
Creases assigned with negative fold angles are called mountain
folds, and creases assigned with positive fold angles are called
valley folds. As with the periodic crease pattern tiles in [48], the
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(— Tubular Origami Catalogue —\

 Tube (Sec. llI-A1, Alg. 1)
Connects modules with a linear offset

Input: D-H Specification

v
~~ Kinegami (Sec. VI, Alg. 10) ="

Joint Placement (Sec. V, Alg. 8 & 9)
Place each joint such that they satisfy /"\\

-~

Twist Fitting (Sec. 11I-A2, Alg. 2)
Connects modules with a twist offset

Elbow Fitting (Sec. I11-A3, Alg. 3)
Connects modules with a bent angle

» %

kinematic and volumetric constraints **
Prismatic Joint (Sec. 1l-B1, Alg. 4) that connects any two bases

v
a Allows one-DOF translation A 4

Link Generation (Sec. IV-B, Alg. 7)
Find the module composition
Revolute Joint (Sec. lll-B2, Alg. 5) Crease Pattern Composition (Sec. IV-A, Alg. 6)
> Allows one-DOF rotation

v
_J Output: Crease Pattern

Fig. 2. Tubular origami catalogue and Kinegami algorithm flowchart.

creases that cross the left and right side borders of Pr must be
continuous straight lines with the same fold angle assignments.

Folding is a sequence of rigid transformations consisting
of rotating facets by the assigned fold angles about creases.
Through folding, each vertex v, in the crease pattern is mapped
toalocationv; = [Viz Uiy Vi ]T in R3. The length of the
creases and the inner angles of each facet are isometric between
the crease pattern and its folded state. Note that this is slightly
different from the standard rigid foldability assumptions in that
faces may deform during the folding process (and subsequent
joint motion), similarly to [48]. We call the final product after
folding an origami module, denoted as M = (V, &), where
V = {vy,...,v,} is the set of spatial vertices and £ = {(i, j) :
v;,v; € V} is the set of edges. (Note that we use “primed”
variables to differentiate between the R? and their corresponding
“unprimed” R? coordinates.)

3) Joint Compliance: It is sometimes desirable for a joint to
exhibit compliance to mediate the dynamical exchange of poten-
tial and kinetic energy, such as in a series elastic actuator [49].
This compliance can be intentionally designed into an origami
joint by taking advantage of material deformation in the folds
and facets [26]. Define the relaxed configuration of a spring
as the configuration where it stores no energy. Henceforth, this
work assumes the zero and relaxed configuration is the same.
Then, locally about the relaxed configuration, we can linearize
the joints’ force-extension relations to get a Hookean stiffness
profile k € RY, or the vector of Hookean stiffnesses of the
corresponding N joints.

B. Problem Statement and Structure of Solution

The main contribution of this article is a solution to the
following problem.

Problem 1: Given a D-H specification of an N-joint serial
robot and its relaxed configuration g, construct a crease pattern
on a tubular sheet Pr that folds into a robot with compliant joints
that is kinematically equivalent to the prescribed one.

Our overall strategy to solve this problem is summarized in
Fig. 2 and consists of two major parts.

1) Tubular Origami Catalogue: An origami module M is a
3-D polyhedral shell folded from Pr that instantiates a spatial
transformation in R? (see Section IIT). We present a catalogue
of modules for translation (see Section III-Al), twisting (see
Section III-A2), constant radius turning (see Section III-A3),
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1-DOF translation (see Section III-B1), and 1-DOF rotation (see
Section III-B2). We find the crease pattern F of each origami
module M by preserving the isometric constraints between the
origami module vertices and the crease pattern vertices.

2) Kinegami Algorithm: A D-H specification D only de-
scribes the frames of the joints, but not their locations. We show
how to algorithmically identify the locations of the joints so that
they satisfy D while remaining sufficiently far away from each
other (see Section V), such that they can be physically connected
using a Dubins-specified link (see Section IV-B)—although
the correctness of this particular algorithm remains conjectural
(Conj. 7). The crease patterns can be “glued” with no gaps (see
Section IV-A) to achieve a single-sheet crease pattern.

Further, we discuss how to specify the stiffnesses of the
compliant joints independently:

Problem 2: Given a desired stiffness profile k and an error
allowance ¢, construct a compliant origami robot such that the
local stiffness profile around the relaxed configuration g lies
within k £ €.

We demonstrate empirically that there are effectively two
methods to manipulate the stiffness of an individual joint: in-
crease the effective thickness of the material by using multiple
layers (see Section III-B2), or increase facet deformation by
manipulating the geometry (see Section III-B1). We defer the
formal algorithmic solution to Problem 2 to future work.

III. ORIGAMI MODULES

We start by constructing the necessary catalogue of origami
modules M. To start, Pr is folded into a right prism origami tube
whose facets are globally flat. The base, or the embedded image
in R3 of S x {0} of the right prism tube, is a regular n4-sided
polygon with a circumradius r. The tube has a total length of
h. We define the proximal and the distal polygon base as the
base located at the starting and the ending edge of an origami
module, respectively (see Fig. 3). Let the proximal frame O,, =
{a,,b,,é,,0,} and the distal frame Oy = {@g, by, &4, 04} lie
at the centers of their respective polygonal bases. We define the
module’s centerline as the curve connecting the base centers o,
and o4 along a path that is equidistant to all facets in the module.
Then, the “centerline axis” @ is perpendicular to the base and
tangent to the centerline. We choose the axis b to lie on the
plane of the polygon base and perpendicular to a selected edge.
Axis ¢ follows the right-hand rule. The frame assignment is not
unique since the polygon has rotational symmetry. To simplify
the notation of the orientation of the polygon base, we define
a reference point p that lies on both the circumference of the
polygon and the positive direction on the b axis, or

p:=(rsind)b+o )

where § = w% is half of the interior polygon angle.

Adding or modifying creases to a tubular origami of this form
can generate multiple geometries, including origami fittings and
origami joints. An origami fitting is a rigid structure connect-
ing nonintersecting tubes with different base orientations. An
origami joint is a mechanism that performs relative motion on

the connecting tubes using active folds. In addition, each origami
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module can be viewed as instantiating a rigid transformation,
PM 4 : R? — R3, that transfers a proximal base to a distal base
according to a set of given geometric variables. Fig. 3 shows
these origami modules, their spatial transformations, and their
crease patterns.

The 3-D shape of the origami module is represented with
Cartesian coordinates v;, where ¢ € 1,...,ng is the index cor-
responding to the vertices of the polygon base. Due to the wrap-
around effects in indexing, we can define v,,_ 41 := v;. First,
we assign the proximal base vertices v,,; recursively through
the polygon base vertex assignments

vy = (rsind)b, + (rcosd)é, + o,

Vpit1 = R(ay, ETT:) (Vp,i — 0p) + 0p 3)
where R(a,,, ii) is the rotational matrix about the unit vector a,,
by an angle 27 ] ns. With this assignment, the reference point p,
is on the midpoint of the edge (v, 1, Vp n, ). Applying a known
rigid transformation” M ; to the proximal base vertices produces
the positions of all distal base vertices v ;. For some origami
modules, additional vertices are required to capture the full 3-D
shape and will be discussed later.

The crease pattern is defined in R? where pp, = [0 o] is
the origin. Intuitively, we can cut the origami module verti-
cally through the reference marker p, and unwrap the tube
into a flat sheet where we align p,, onto pj,. Let v}, ; be the
vertices on the crease pattern that correspond to the proximal
base vertices v, ; in R3. Since the vertices v, are copla-
nar, we can assume without loss of generality that the crease
pattern vertices v;m lie on the x-axis of the crease pattern.
And since neighboring vertices of v,, ; have the same distance
ls := 2r cosd, we can write the base perimeter vertex assign-
ment (using modular arithmetic in the subscripts, 7, here and
henceforth) as

}T

V1 = D)+ [1s/2 O}T

T
Vpi1 =Vt [l 0] )

Since Pr is a developable surface and does not stretch, the
corresponding facets between the crease pattern and the origami
module are isometric [50]. Thus, the crease pattern vertices, vﬁi,i,
that correspond to the distal base vertices, v ;, in the folded state
can be found by satisfying isometry constraints. Specifically,
the edge between any connected vertices and the angle between
any two adjacent edges on a facet must be the same in both the
folded state and their crease pattern. All additional crease pattern
vertices can be found in this way.

A. Rigid Transformations With Origami Modules

The fundamental building block of the tubular origami mod-
ules is the origami tube. We show in this section how to
generate both translational and rotational rigid transformations
by folding this tube in different ways. Together, the three mod-
ules proposed—tube, twist, and elbow fittings—are sufficient to
express any rigid 3-D transformation. Section IV-B shows that
the problem of designing an origami link can thus be reduced to

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 03,2024 at 21:07:14 UTC from IEEE Xplore. Restrictions apply.



1264 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023
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Fig. 3. Folded state of the origami module, its spatial operator representation, and its crease pattern. (a) Origami prism tube in Section III-A1., (b) Twist fitting
in Section III-A2. (c) Elbow fitting in Section III-A3. (d) Prismatic joint in Section III-B1. (e) Revolute joint in Section III-B2. In addition, (f) and (g) show the
lower half portion of the elbow fitting and the revolute joint, and their closed-up crease patterns, respectively. The actual modules in both the folded states and the
crease patterns are colored in green. The crease pattern is drawn on a rectangle with its left and right sides identified, with solid blue lines indicating mountain
folds and red dotted lines indicating valley folds. The proximal base of the module is colored yellow and the distal base is orange. The blue arrow that connects
the two bases is the centerline of the module. In each case, the input specification (the desired rigid transformation from proximal frame O,, to distal frame O)
is represented by red parameters superimposed on the hexagonal base sketch. The polygon circumradius r and the number of sides n ¢ are inputs. The vertices are
marked with numbers in circles and are counted counterclockwise from b. The origin of the embedded image of S x {0}, or where the axis b and the polygon
circumference intersect, is marked with p. Notable spatial vertices of the origami modules and their corresponding crease pattern vertices are represented by black
parameters superimposed on the figures.
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finding a connecting CSC Dubins path [51] and constructing it
from these three module types.

1) Translation With the Origami Tube: Translation along the
length of the tube is achieved using the basic origami tube, a right
regular prism tube of height i € R>( with a regular n,-sided
polygon base whose circumradius is 7. Fig. 3(a) shows the folded
state and crease pattern.

a) Rigid transformation: The origami prism tube instan-
tiates the rigid transformation that translates the proximal base
by some distance h along the axis @, to the distal base. The
corresponding homogeneous transformation is

I ne,| -
e

@d::pMd@p: 0 1 P

(&)

where I is a 3 x 3 identity matrix, O is a 1 x 3 array of 0, é, =

[O 01 ]Tis a, in terms of the body frame O,,, and
o @ b ¢ o ©
o0 01

is the 4 x 4 homogeneous matrix representation of O.

b) Crease pattern: Generating this transformation via
tubular origami is straightforward. Intuitively, since the folded
state is a right prism, we can cut vertically down one of the
edges or facets and unwrap the tube into a flat sheet by laying
each rectangular facet next to each other in sequence.

More formally, given the dimensions of the structure—the
number of sides ng, the circumradius r, and the translated
distance h—we design the crease pattern shown in Fig. 3(a).
The folded state of the origami tube is fully defined by vertices
V = {vp,v4,}. The vertices of the proximal base v, ; are
constrained by the polygon base vertex assignments. The ver-
tices of the distal base v ; can be found with the homogeneous
transformation

I he
Vg, = 0 1a Upi (7)
where ¥ = [ vl 1 }T is the homogeneous coordinate repre-
sentation of an affine spatial point.

To map this shape onto a crease pattern, it remains to solve
for the vertices {v}, ;, vy ;}. The crease pattern variables must
satisfy isometry with respect to the folded state variables to
constrain their values [48]. The crease pattern vertices that cor-
respond to the proximal base vertices satisfy the base perimeter
vertex assignments; thus, v}, ; are fully defined. To find the crease
pattern vertices v/, , that correspond to the distal base, the angles

of the facets in the module must be preserved
/ PN /
(vd,i o vp,i) (vp,i-l-l - vp,i)
T
— / / / /
- {Ud»i,x T Upia Vdiy T Up»i,y} {ls 0}
/ /

= (Y0 = Vpia) ls

= (04,0 — Vp,i)" (Vpit1 — Vi) =0 (®)
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Algorithm 1: Tube(ng,,r, h).
Input: polygon shape (n,,r), and height of the tube
Output: crease pattern F, distal marker pii

-2
15<—7rn2* ; I, « 2rcosd;

Ns
2 for i =1 to n, do
1 . T J . T
30| v e [ o] iy e [ 1T
4 end
5 F « connect vertices with edges shown in Fig. 3 (a);

6 pye—Tlonl"

which simplifies to v ; . = vy, ; ... The edge lengths must match

the crease pattern and its folded form, so
| = llvai —vpall =h. (9

— Ul = iy — Vpiy

Without loss of generality, we always set the distal base vertices
to be “above” the proximal base vertices on the crease pattern.
We thus find vj, , — v, = vy, = h, so v ; are also fully
defined.

The solution of the crease pattern consists of rectangular
panels of height h and width [5. Algorithm 1 provides the exact
vertex locations required to generate the graph. Lines 2—4 locate
the crease pattern vertices. In addition, we keep track of the distal
marker p),, the 2-D counterpart to the distal reference point p,
in the folded state (line 6). The x-component of p;, is the lateral
offset from p/, caused by the twist between the two frames O,
and Oy about @, and is 0 for this module. The y-component of
p;, is the height of the crease pattern.

2) Twist With the Twist Fitting: This fitting twists the origami
prism tube about @, by an angle o € S*, with optional height
hy € R>g, as shown in Fig. 3(b).

a) Rigid transformation: The twist fitting instantiates the
rigid transformation of a screw action on the proximal polygon
base with a twist of v and translation h; along @,,. The value of
h¢ can be chosen arbitrarily depending on volume constraints.
The corresponding homogeneous transformation is

R(é,,a) hié,

@dlszd@p: 0 1

O,. (10)

Due to the rotational symmetry of a regular polygon, the distal
polygon transformed after a twist angle of « is the same as
the one transformed with a twist angle of @ = o mod (27 /ny).
To ensure the origami module is a convex antiprism, we take
advantage of the rotational symmetry and rotate the distal base
by only &, but rotate the distal frame by «.

b) Crease pattern: Inspired by the triangulated cylinder
geometry [20], this crease pattern folds into a convex antiprism
for structural stability. Given the polygon base parameters 7
and r, the twist angle o with respect to the axis a, and the height
h, we design the crease pattern shown in Fig. 3(b).

The folded state of the twist fitting consists of proximal base
vertices v, that satisfy the polygon base vertex assignments, and
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Algorithm 2: TwistFitting(ng,r, o, hy).
Input: polygon shape (n,,r), the twist angle « and
height of the twist fitting h;
Output: crease pattern F, distal marker pzi

-2
10« w’l;ns i 1y « 2rcosd;

2 a«—amod(i—w);

s

3 X« (1 — cosa + cot nlsina) %,

4 1 « \/hf+(lscscnlsin(n1—

Q]
S—
w0
=,
=
[NY1e]]
N——
(]

5 for : =1 to n, do

6 | wonie [ 0]

7 U:“ — [ ((i=/2)ls+2) mod nyl, I ]T;

8 end

9 F « connect vertices with edges shown in Fig. 3 (b);

i ngo T
Pq < |:|_—2STr llg+x lt:| ;

—
=]

the distal base vertices v, that meet the transformation

R(é,, o) hié
By = (€0, @) fuéa . an
0 1
The crease pattern can be found by solving the constraints,
where v;,i satisfy the base perimeter vertex assignments, and

”:i,z’ satisfy the isometry constraints, as shown in Fig. 3(c)

105 = Vhill = llva; — vp.ll

||'U:1,j - 'U;),i+1|‘ = [|va,; — vp,it1l| (12)

where j = (i — [ %= |) mod n is the index of the closest distal
polygon vertex to the ith proximal vertex “counting about @,,,”
and || is the floor operator. The two sets of equations, along
with the polygon side length [|v}, ;. — v}, ;|| = [, define the
vertices of a triangle given three known side lengths. As the distal
vertices must be above the proximal vertices vél_’ gy > U;m}y’ it
now follows that vim are uniquely defined.

The steps to generate the graph are shown in Algorithm 2.
The pattern essentially consists of folds connecting the vertices
of the offset proximal and distal prisms into a series of adjacent
triangular facets. The offset x in terms of pattern distance is
a function of the twist angle « as calculated in line 3. Line 4
calculates the height [, of the crease pattern from the height of
the module h. The resulting pattern has a size of nyls x l;. The
twist angle sets a perimeter offset between the pj, and pj;, and
the x-component of the p), can be computed as

Pax = 52l + 2. (13)

3) Rotation With the Elbow Fitting: The elbow fitting bends
an origami prism tube by anangle § € (—, 7) along an arbitrary
axis w,, (described in the proximal frame O,,, where the angle
between w,, and Bp is ¢,) that is perpendicular to the centerline
ap, as shown in Fig. 3(c). Elbow fittings with larger 6 can
be achieved by composing n smaller elbow fittings with 6/n
together (see Section IV for composition).

a) Rigid transformation: The 3-D shape corresponding to
the fitting is essentially two truncated prism tubes joined at an
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angle of # to each other. This rotation requires a minimum
distance d,, = r tan g, which depends on the rotational axis
w,, the bending angle 6, and the circumradius 7. An elbow
fitting can thus be represented as imposing arigid transformation
that translates the proximal base along @, for a distance d,,,
rotates it along the axis W by an angle 6, then translates along
a4 for another distance d,,. The corresponding homogeneous

transformation is

R(w,,0) dy, (R(w,,0)+1I)é.| =

Ouq:="M40, = . Oyp.

(14)
The centerline of the elbow fitting was initially defined as the
two line segments intersecting at the rotational axis. Observe that
(14) gives the same rigid transformation of a constant radius turn
with radius r for an angle 6 about w,, located at the instant center
of rotation, 0;¢, := sgn(0)rR(a,, ), + o,. Henceforth, we
redefine the centerline of an elbow fitting to be a circular arc
centered at 0;., with radius r and angle 6.

b) Crease pattern: The pattern is inspired by Gieseking’s
Crimp-bent tubes [48], [52]. Given the polygon base parameters
n, and r, the rotational axis angle ¢,, of w,, with respect to b,,
and the bending angle 6, we construct the crease pattern shown
in Fig. 3(c). Only half of the module is described, since it is
symmetric about a center plane. The vertices and edges of the
other half can then be generated through mirroring.

As shown in Fig. 3(c) and (f), the pattern essentially consists of
two parts: the green facets that are exposed on the outside and the
gray facets that are hidden away on the interior of the tube. The
exterior faces form a truncated prism with vertices {v,, ;, v, }.
The vertices of the proximal polygon base v,, follow the polygon
base vertex assignments. The top face, depicted in Fig. 3(f), is
a distorted polygon formed by the intersection of the tube and a
plane oriented at an angle 0 /2 relative to the proximal base. The
distorted polygon vertices v; ; are located at the intersection of
the vertical line from the corresponding proximal base vertices
and the angled plane

Vlig = Upie and v,y = Upy

(R ('a’pv g) &p)T (vii —

Since 6 € (—m,7), dy = rtang € R, and (15) always has a
unique solution.

Now we find the crease pattern vertices v;, ; and v} ;. The
proximal vertices 0;7 ; are defined with the base perimeter vertex
assignments (4). To preserve the isometry of the edge and the

angle of the truncated prism, we have

(dwéy +0,)) =0.  (15)

T T
(v;,i - ”;,i) (U;;,i+1 - v,p,i) = (v — Up,i) (Up,i+1 — vp,i)
=0 (16)

vii = Vpall = [Jvri — vpill- (7)
Identical arguments to those for (8) and (9) (i.e., the vertices
v}, are directly above 'u;) ; on the crease pattern) now yield a

complete specification of v} ,.
Since the top boundary of exposed faces forms an irregular
shape, the remaining material in the tube [gray shaded area
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in Fig. 3(f)] must be tucked away to the interior of the tube.
At a high level, the tucking operation consists of adding extra
creases to the unwanted additional sheet material and folding
it to the inside of the polyhedral surface [53]. The tucks in this
pattern are triangular, as shown in Fig. 3(f). The purpose of these
tucks is to reduce the angle between the crease pattern edges
Zv) ;1) ;v ;1 such that the sum of the remaining angles j;
and uj‘ equals the interior angle of the corresponding vertices
Zv;;-1v1,;v; i+1 of the distorted polygon in the folded state.
In other words, the tucks will allow us to fold the (gray) extra
sheet flat on the center plane that splits the elbow joint. We thus
fold the extra material away by introducing two folds: one at
the edge of the triangular material being tucked and one at the
bisector of the triangle. These two folds bring the two yellow
triangles onto each other in the folded state, resulting in the edges
(v],_y.v),;) and (v] ,,v],,) lying at an angle of ji; + jif
apart. The triangular tuck can be placed at any orientation as
long as the sum of y; + /Lj_ remains the same, so we choose
to place the bisector vertically in the crease pattern. Thus, the
vertex v, ; is at

/

vm,i

(18)

e |y o
= [vl_’i’x max; vy ;
/ / 4

p.i» Vs ;) is placed at an angle from
p . ;o .
v;,, ;) Where its vertex v;,, ; is located directly

!
m.is OF

and an additional crease (v
the crease (v}, ,,
on the right-hand side of v

!/ / !/
€j = (41’1,2‘71”171'1’1,#1 - 4Ul,i71”l7ivl,i+l> /2

v, = [v;u + (U;nly — Uf,i,;,) tane; v;mi,y]T (19)

Algorithm 3 contains the precise steps used to generate the
resulting graph. Specifically, lines 2—10 calculate the position of
the vertices for the crease pattern. The resulting pattern has a size
of nyly x 21,,. Since [,,, < tan g, the larger the bending angle
for an elbow fitting is, the longer the tubular sheet is needed for
the construction. Now, observe the following.

Remark One can split a desired bending angle 6 into n por-
tions by constructing 7 identical elbow fittings with rotational
angle 0/n < m/2 and composing the n elbow fittings using
Algorithm 6. In doing so, the total length of the tubular sheet is
reduced. In fact, it is possible to achieve larger bending angles
27 > |0] > 7 by splitting the bending angle.

B. Parameterized Rigid Transformation With Origami Joints

Origami joints allow the two rigid bodies they connect to
move relative to each other. We denote the origami joint as 7,
a particular instance of M. We propose two 1-DOF lower pair
joints folded out of tubular sheets: the prismatic and revolute
joints. These two joints are sufficient to compose any desired
kinematic motion [45]. Each of the proposed origami joints
has an initial state where all the facets are flat. When the joint
activates, the folding angles in the origami module change, and
sometimes its facets deform. Creases that change angle during
the joint motion are called active folds. By manipulating the
active folds, we can change the stiffness profiles of the joints.
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Algorithm 3: ElbowFitting(n,,r, 0, d,,).
Input: Polygon shape (n,,r), bending angle 6, and
rotational axis angle ¢,
Output: Crease pattern F, distal marker p;l

10« 7r"257—;2; ly « 2rcosd;
2 d, < rtan §§
3 fori=1ton, do
4| Giemtt =gy e dy(sing +1);
5 end ’
6 I, — maxl;;
7 for i =1 to ng do
1 . T 1 . T
8 vpi = [0 0] 5 v, &[G 26, ]
o | vy e [Gn 11 o e [ 1]
10 end

11 F « Connect vertices with edges shown in Fig. 3 (c);
12 Find the crease pattern to tuck away the hidden section
[gray shaded area in Fig. 3 (c) and (f)];
1 T
13 pg e [0 20 ],

1) 1-DOF Translation With the Prismatic Joint: The pris-
matic joint is based on a REBO spring [21], [42], an origami
pattern that can store potential energy into both its facets and
folds when compressed. By changing the cone angle 3, the layer
height %, and the number of layers n;, a REBO will exhibit
tunably varied Hookean stiffness (i.e., an approximately linear
selectable force-extension relation) around its zero configuration
do € R>¢. Given the desired relaxed configuration length dy, the
single-layer height of REBO can be found as hg = dg/n;. The
maximum range of motion of the prismatic joint is d,,, = nyl;,
where [; = % csc 3.

To constrain the REBO spring from bending radially, we
construct a wall surrounding it, limiting its motion to axial
translation. The wall is a double-layered prism tube constructed
with a crimp fold [54] arranged horizontally to the crease pattern
of a tube, as shown in the lower green area of Fig. 3(d). It has a
length of d,,, so the entire range of motion is constrained. The
joint state d + d,,, is the distance between the proximal and distal
bases of the prismatic joint, where d € [0, d,,,]. An example of
the origami prismatic joint, rigid transformation, and its crease
pattern is shown in Fig. 3(d).

a) Rigid transformation: The prismatic joint is a function
of the joint variable d and translates the proximal base for a
distance of d 4 d,,,. The homogeneous transformation is

I (dm + d)éa
0 1

Ouq ="M 4(d)O, = O,. (20

b) Crease pattern: Given the polygon base parameters 1,
and r, relaxed configuration length dy, number of layers ny,
and the cone angle 3, we construct the crease pattern shown
in Fig. 3(d) with three segments: a REBO spring, a wall, and
an additional inner tube. We start with the REBO structure
colored in blue in Fig. 3(d). Its crease pattern is a function of
the polygon shape parameters n, and r, the cone angle 3 of the
origami bellows, and the layers n;, and is fully defined in [41]. In
addition, we build a wall that is d,,, long to constrain the REBO
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Algorithm 4: PrismaticJoint(ng,r,dg, n, 3).

Input: Polygon shape (n,,r), zero configuration
length dy, number of layers n;, cone angle (3
Output: Crease pattern F, distal marker p'd

2
19« 7r”25n3 i Iy « 2rcosd;

d A
2 hg « =2 [} « ?Ocscﬁ; dyy, < 20l

ny
s B \.

3g0<—2(1 QCosns),
4 for : =1 to ng do
! i—1/2)l T. i—1a). 4d,, 17
5 vmw—[(z—/z)s 0] ,Tvd,,w—[(z—/z)s 4d,, ] .
1 . ] )
6 Vi = [ G120 dm 175 vpgy « [0 2d, ]
7 for j =1 to n; do

i 1 . T
8 Vil ,i,j < Up2; + [0 (25-1), ] :

I 1 . T
9 — Upg; + [-licote (25-1)0, ] ;

U(rl’i’j I T
— ,UP27i + [0 2jll):| 5

10 Up3,i,j
11 end
12 end

13 F « Connect vertices with edges shown in Fig. 3 (d);
I

!
14 pd<—|:0 4d,,

structure. Its crease pattern is shown in the lower green area of
Fig. 3(d). We also need an additional inner slider, which is just
an origami prism tube that is d,,, long. Its crease pattern is shown
in the upper green area of Fig. 3(d). The entire crease pattern is
a sequence of crease patterns of tubes and the REBO structure,
as shown in Fig. 3(d).

Algorithm 4 contains the steps to generate the crease pattern
of the prismatic joint. The main parameters are the height iy of
each layer from the zero configuration, the maximal distance of
the motion d,,,, and the angle of the diagonal fold 1) (lines 2 and
3). The resulting pattern has a size of nglg x 4d,,.

c) Stiffness: The translational movement of the origami
prismatic joint is due to the deformation of the facets. We
experimentally validate that the stiffness of the REBO spring
is a function of the cone angle 3 in [21]. Since the origami
prismatic joint contains the same REBO spring, its stiffness can
also be programmed with the cone angle.

2) I-DOF Rotation With the Revolute Joint: The origami
revolute joint is similar to the hinge joint in [24] and allows
the tubes to rotate freely by an angle 6 € [—%7 %] about the
axis wy, = [ 0 1 0 ]T (described from O)) that is parallel
to é, and perpendicular to @,. The angle limit 6,,, € [0, 2m) is
a design variable that determines the total range of motion of
this joint. An example is shown in Fig. 3(d). In addition, we
can tune the stiffness of the revolute joint by adding additional
crease patterns, as shown in Fig. 4(a).

a) Rigidtransformation: Here, the revolute joint is created
after pinching the walls of the tube to form active folds at the
axis of rotation w,. When the joint moves, the angle between
a,, and a, changes, and the angle is defined as the joint variable
0 ¢ [—%, 07’"] The limit of the achievable rotational motion
occurs when the two neighboring rectangle facets perpendicular
to W), touch each other. Thus, the rigid transformation is a func-
tion of the joint state € and can be written as the homogeneous
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Fig. 4.  Stiffness of the revolute joint. (a) Revolute joint in the straight and
bent configuration on top, and the exploded view of the facets of the revolute
joint on the bottom, where the red creases indicate the active folds. (b) Recursive
sink gadget of n, = 1, 2, 3. The close-up of the interested crease pattern area
(CARTCAPY 'Uii,zv "’/d,1) is shown on top, and the hinge around the rotational
axis of the revolute joint is shown at the bottom. The effective fold length
Ly is marked on the partial crease pattern. In the hinge close-up, the green
solid arc represents the cross-section of the layered sheet; ¢ is the effective
thickness of the stacked layers, and A f is the length of the small-length flexural
pivot. (c) Experimental setup to measure the stiffness of the revolute joints. (d)
The top chart shows the experimental mechanical test for an origami revolute
joint design withng = 4,r = 2V/2, Om = 4,7". Different numbers of recursive
sink gadget layers are applied n, = 1, 2, 3, 4. The specimen is compressed and
pulled between +1 rad for three cycles. The bottom chart shows the linear-fitted
sti2ffness from the previous plot concerning n, with a high correlation of
R* =0.99.

transformation

5 _ | B(@p,0)

A he (R(p,0) + 1) €éq|
Ou:="M 4(0)0, = (R, 6) + 1)

1 O

2D

where h,. = rsin d tan GZL € R+ g is the distance from the prox-

imal (or distal) frame to the rotational axis and is a function of
the desired range of motion 6,,,.

b) Crease pattern: This pattern is inspired by the com-
mercially familiar milk carton design, but its base is generalized
to any even-sided (ns € 2N) regular polygon. Given the even-
sided polygon base parameters 1, and r and the maximum range
of rotation 6,,,, we construct the crease pattern shown in Fig. 3(d).
In addition, the stiffness of the revolute joint can be programmed
by adding the recursive sink gadget, shown in Fig. 4(a) and (b)
with the boundary edges of (v}, ;, v}, ; 11,V 41, Vy ;). A gadget
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is a local graph that replaces an existing patch with the same
boundary edges to add functionality or modify the pattern [55].

The origami revolute joint can be thought of as two ns-gon
pyramids whose apex vertices are connected, with article flaps
to constrain its relative motion. Since the module is symmetric
about the center plane, we again describe only half of the pattern
here. Fig. 3(g) shows an instance of pinching the walls of the
tube to form creases at the axis of rotation in the center and
shows that the origami structure fully covers a ng-gon pyramid.
The pyramid formed by the green facets, as shown in the circled
subfigure in Fig. 3(g), is fully defined with the vertices of the
proximal polygon base v,, (Which follow the polygon base vertex

assignments), and the apex vertex v, as
Vq 1= hy@p + 0p. (22)

The remaining material (highlighted in yellow) joins together at
the axis W), to constrain the rotation of the pyramids, or

Vg, Vi € {0|v =t +v,,t € R} (23)
where j =1, %, %> + 1,n, and k # j. Additionally, the ver-

tices v, 4, and v; ; also need to satisfy the angle constraints
(24)
(25)

LUV Uy = 5 Vi
= Vk#]

where ¢ = atan2 (I, 2l,,) is the bisector angle of the yellow
triangular flap shown in Fig. 3(g). Since this active fold is a line,
it has 1 DOF that allows revolution of the structure. Thus, all
vertices for the flaps are defined.

The crease pattern of this half module consists of vertices v},
v;,, Uy, and v. The crease pattern’s proximal vertices v;, are
defined with the base perimeter vertex assignments. The height
of the half crease pattern is the height of the triangle of the
ng-gon pyramid, thus

ZvgUp Uy

/ /

Umyiy = Vajiy =

l,, = rsindsec 077". (26)

In addition, the x-coordinate of v/,

triangle) can be easily found to be

and v/, (apex of the isosceles

v = 27)

m,i,x DT

(28)

U:z,z',m = (U;?,i,m + U;),i,ac)/2'

From (23) to (25), we can see that |[v;; — vp || < ||V, —
vp,i||, showing that triangle Av,v, ;v;; is always covered by
Av,vp iV i, and thus, there is extra sheet from the yellow
flaps that extend out to the other side of the center plane, as
shown in the gray area in Fig. 3(g). Since the half module and
its mirrored module have the same amount of extra material,
we can tuck the extra material (see crimp fold form [54]). To
construct this crease, we can find the vertex ”271‘ once we find
the angle v; := Zv,;v,v1;.

Algorithm 5 contains the steps used to generate the crease
pattern. The main parameters of interest are half the height of
the origami joint ., half the height of the crease pattern [,,,, and
angle ¢ (lines 2 and 3). The crease pattern vertices are calculated
in lines 4-15. In particular, line 14 constructs the recursive sink
gadget pattern shown in Fig. 4(b), which essentially consists of
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Algorithm 5: RevoluteJoint(ng,r,0,,,n.).

Input: polygon shape (ng,7), total bending angle 6,
number of recursive sink gadget layers n,
Output: crease pattern F, distal marker p'd

2

10« 7r”2*n i Iy « 2rcosd;
.

Om

2 h, < rsindtan —=;

. 7] .
l,, < 78ind sec =

3 1) « atan2(l, 2l,,);
4 for i =1 to ng do

! . T 1 . T
5 O = [ 0] g e [G1) 26, 7
6 | vme [ 11T v e [t 1]
7 end
s fori+ 1,7, % +1,n, do

ng—4i+2 ),

9 62 — T <—2’ﬂs ),

10 v; « atan2 (\/hf + (rsind;)?, r cos (51»);
u | <—\/h3+(rsin5i)2sec(g—%—1/1);

J . T
12 v < [ 6]
! ) T
13 Vg < [ =12 20—l ]
14 generate vertices and connect edges for the

recursive sink gadget shown in Fig. 4 (b);

15 end

16 F « connect vertices with edges shown in Fig. 3 (e);
17 pii —[o 2, ]T_

concentric polygons centered around the joint axis. The resulting
pattern has a size of ngls x 2[,,.

c) Stiffness: The revolute joint is a hinge made with stacks
of sheet materials. Fig. 4(a) shows the exploded view of a
revolute joint with ns = 6, consisting of two sets of yellow
front and back hinge units and (n, — 2) sets of green side hinge
units. The active folds that contribute to the revolute motion are
colored in red. Since all the active folds experience the same
deformation during a bending motion, we can treat them as a
system of torsional springs in parallel. The total stiffness is the
sum of the individual ones. Assume the stiffness of the front or
back hinge (yellow) unit is k¢ and the stiffness of the side hinge
(green) unit is kg 1. The stiffness of the side hinge unit can be
modeled as a small-length flexural pivot [26] as

kg1 =KeEIsr; " (29)

where Kg is the nondimensionalized stiffness, £ is Young’s
modulus, and A s is the length of the small-length flexural pivot.
The area moment of inertia is [y = [ ftfc /12, where [y is the
effective length and 7 is the effective thickness of the active
fold. Fig. 4(b) shows an example of the geometric parameters.
The overall torsional stiffness of a basic revolute joint K is then

Ky = (ns — 2)kg1 + 2ko = K1 + Ko (30)

where K1 = (ns — 2)kg,1 and Ko = 2k for simplicity.

The stiffness of the revolute joint can be programmed by
adding n, sets of recursive fold patterns, or the recursive sink
gadget, to the joints, as shown in Fig. 4(b). The recursive sink
gadget is inspired by the origami combination fold known as the
closed sink. A closed sink is a simple inversion of a coned vertex
formed from a region in the interior of a sheet, turning a coned
mountain peak into a valley and vice versa about a plane. The
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crease of the sink lies on the described plane and runs around
the point being sunk like a road girdling a mountain peak (or
valley). All the fold angles of the creases enclosed by the sink
line are converted to the opposite sign [54]. We can increase the
sets n, of recursive sink creases surrounding the same internal
vertex and sequentially fold them to create multiple sinks.

When n, = 1, the recursive sink gadget is the same as the side
hinge unit described earlier, and we have the original revolute
joint. When the recursive sink gadget with n, > 2 is introduced,
the effective thickness of the active fold increases discretely as
n.ty and the effective active fold length decreases as Iy /n..
Observe that as n, increases, the total length of the neutral line
of the active fold increases to n,A ¢, as illustrated in Fig. 4(b).
Thus, the stiffness of each recursive sink gadget with n layers
can be written as

kgn = KeE (T12 (n.'ly) (”ztf)g) (nahg) ™" = nakg

(€29)
and the total stiffness of the joint is
K, = (ns — 2)kgn + 2ko = (ns — 2)n kg1 + 2k
= nng’l -+ KQ. (32)

To show that the stiffness of the revolute joint is pro-
grammable, we performed a bending test on the mechanical
testing station (MTS Criterion C41 with 1-kN load cell), as
shown in Fig. 4(c). The origami revolute joints use parameters
ns =4, r =22, 6,, = %’T and are folded out of perforated
8 mil thick Durilla synthetics paper with polyester finish (CTI
Paper, USA). We tested the specimen with different numbers of
recursive sink gadget layers n, = 1,2, 3,4. To fully constrain
all the active folds to align in a straight line, we tied a fishing line
around the hinge so that all the active folds are approximately
coaligned. The specimen was compressed and pulled between
=+1 rad three times.

The results for the four specimens are shown in the upper
subplot of Fig. 4(d). At the beginning of the test, each specimen
exhibited a Hookean torsion spring behavior. As the cycle pro-
gresses, we start to see hysteresis in every specimen, similar to
that observed in [24]. Although there is hysteresis, each spec-
imen has reliable behavior, and the torque—angle curve aligns
well for the three cycles. We fit a linear regression to the entire
cycle of each curve to find its average slope (torsional stiffness).
The results are summarized in the lower subplot of Fig. 4(d).
A linear fit indicates that the torsional stiffness /,, increases as
an affine function K,, = 0.053 + 0.02n, with R? = 0.99, and
thus, verifies our prediction that the stiffness is a linear function
of n, with Ky = 0.053.

C. Expanding the Tubular Origami Catalogue

Although we propose only five modules in our tubular origami
catalogue, additional tubular modules can easily be included in
our design approach, provided their corresponding rigid trans-
formations are well characterized. For instance, the Kresling
pattern studied in [17] is a 3-DOF origami joint that enables
sideways bending perpendicular to and a screw motion along
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the centerline, and it can be added to the catalogue as a higher
order joint pair.

IV. CoMPOSING ORIGAMI MODULES INTO LINKS

The origami modules in Section III can be composed to form
links that instantiate the more general class of rigid transforma-
tions between a desired proximal and distal base. This section
shows that such a relationship can be realized by following a
spatial Dubins path, assuming a sufficient separation between
their origins. We develop a module composition scheme and
show how to factor any rigid transformation that satisfies this
sufficient condition into a product of rigid transformations that
such compositions can algorithmically instantiate.

A. Sequential Composition of Origami Modules

More formally, consider joining two tubular origami modules
My = (V1,&) and My = (Vs, &) to generate more complex
structures. Identifying the homogeneous matrix M with a rigid
transformation R® — R?®, we write that a module M; has been
transformed by M with abuse of notation as

that is, every vertex in M; is transformed by the homogeneous
transformation matrix M (and the edges follow). We write that
two modules have been merged as a union of the graphs

MiUMs = (V1 UVs, &1 Ugg) (34)

where two vertices are considered the same if they occupy the
same coordinates in R3. With these two operations, we define
the module composition of My onto M1 as

MW My := MU (1pM1dM2)

where P M 4 is the rigid transformation instantiated by the
module M; that translates its proximal base to its distal base.
That is to say, My composed onto M; is equivalent to M,
merged with a transformed M such that the distal end of M is
coincident with the proximal end of M. Note that this operation
is not commutative.

Using the module composition, we can define an origami link,
or link £ for short, as follows.

Definition I (Origami link): A link is the composition of one
or more tubes, twist fittings, or elbow fittings of the same base.

The superscript k denotes the number of modules of a com-
posed link. In the base case, a link £! is equivalent to a single
origami module M that is one of a tube, a twist fitting, or
an elbow fitting. If £¥~1 and M, have the same polygon base
shape, we form the link £* by composing the two said links in
order. In other words

L' = M and £F := £F 1w M.

(35)

(36)

The proximal and distal frames of a link £ are denoted O, and
Oy, respectively, such that its proximal frame is M ’s proximal
frame O,, = Oq, and its distal frame is M,’s distal frame Og =
Opq. Observe that the rigid transformation instantiated by a link
is the product of those instantiated by its constituent modules,
as we now state formally:
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Lemma 1 (Rigid transformation of a link): Given a link £*,
the rigid transformation relating the distal to proximal base
frames, denoted as Lk, is given by

k
LF = HJ’Pde. (37)
j=1

Proof: We prove this by induction. First, consider the base
case where k = 1. £ is simply a module M, and the transfor-
mation matrix corresponding to the linkage £ is

L' ='"My,. (38)

For the inductive step, we assume that (37) is true for link
LF. Now consider the link £+ = £F W M., 1, which is the
composition of a module Mj,; onto an existing link L*.
Based on (35), the module M4 is transformed by L*, which
corresponds precisely to the placement of the link’s distal base
frame. By placing M1 so that its proximal frame coincides
with the distal frame of £*, we conclude that

1
L = (L) <(k+1)pM(k+1)d> = H P M jq. (39
Jj=1

[ |

Assume F; is the crease pattern that folds into M. Corre-

sponding to (35), we define the crease pattern composition with
abuse of notation as

FLwFyi=F U (PF 4 F) (40)

where P F' | is the rigid transformation R?2 — R? that shifts
the crease pattern such that the proximal origin pj, of F3 is
coincident to the distal marker p’l g of F1, or

WF = (41

0 1 ’

The graph union is computed with any vertices occupying the
exact R? coordinates being considered identical. With crease
pattern composition, we define a crease pattern G* recursively
by composing the individual crease pattern F; of the module
M in the order of the module composition of LF as

G':=Fand G" :=G" ' W Ty (42)

Now we show that the link £* composed with Def. 1 has
no hole or gap, and that G* folds into this link. We will find
it convenient to denote by VJI-’ C V; (respectively, de c V)
the spatial vertices of the proximal (respectively, distal) base
polygons of M.

Lemma 2 (Sequential composition of tubular origami): The
crease pattern of link £* is G*.

Proof: Denote by 7V; := [j vy f/ﬂ the array of homoge-
neous vector representations of the (proximal and distal) base

vertices of the module M ; with respect to its proximal frame.
Now, from the constructions of Section I1I, observe that

VP =Vyand/V =P M ;/V0 =P M ;qVy  (43)
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Algorithm 6: ComposeCP((F1,p',), (F2,P54))-
Input: two crease patterns in an ordered list with their
distal marker ((F1,p),), (F2,05,))

Output: crease pattern F, distal marker p/,;
1: F <« F1 W Fo;
2: pl < (piq + Phy) mod ngly;

where V), is the homogeneous matrix representation of the base
polygon vertices with respect to the base frame given in (3). For
the link £ = M, we can write

W= [Vo PMuav). (44)

Similarly, for the link £, denote by 'V := [117,13 11?,?}
the array of the homogeneous vector representations of the
(proximal and distal) base vertices of the included module M,
with respect to the proximal frame of £*. It follows that

Wy =LF1hy, = 0! []_/0 kpMdeO}

= [ I (45)
exhibiting that the proximal base vertices of M}, coincide ex-
actly with the distal base vertices of My,_1, or V,LLI = V,f . Thus,
the two polygon bases are identified and there are no seams or
gaps between the two modules.

‘We now use this result to prove the lemma using induction. For
the base step, it is trivial that G! = F; folds into £; = M. For
the induction step, assume G is the crease pattern that folds into
L7, and F 1 folds into M ;1. Now consider the crease pattern
g7t = GJ @ F;41, which is the composition of a crease pattern
Fj+1 onto the existing crease pattern G’ such that the proximal
crease pattern vertices Vj/-il of F; areidentified with the distal
crease pattern vertices V;d of G7. Since the crease pattern base
vertices must correspond to the same spatial vertices, it now
follows that V¢_| = V7. Thus, G/ *! has no gap and it folds into
L+t |

Algorithm 6 describes the steps to compose two crease pat-
terns J; and J, into a new crease pattern F = F; W Fa. The
new distal marker pii is the sum of the two inputs modulo n4/
due to the wrap-around property of a tubular sheet.

B. Link Design as a Dubins Path Problem

We are now prepared to address the problem of constructing
a link that connects two modules (usually joints) with desired
poses in R3. In other words, given the proximal and distal frames
O, and O4in R, find the link £ that produces the corresponding
transformation between these frames. This section shows that
this design problem is related to the Dubins path planning
problem.

Recall from Section III that the centerline of an origami
module is the curve connecting the base centers o0, and oy
along a path that is equidistant to all facets, except for the
elbow fitting, where it is the circular arc centered at 0;., with
endpoints 0, and o,4. In other words, itis a circular arc of radius
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Fig. 5. Dubins-specified tube connecting method. (a) 3-D Dubins path plan-
ning. We want to transform the polygon at O,, to O. The transformation of the
polygon from O, to O can be realized by finding a Dubins path that first takes
the normal vector & of the polygon from O, to Oy and then twists the frame
for an angle o with respect to a4. (b) Dubins-specified tube connection is a
sequence of an elbow fitting, followed by a twist fitting, a tube, and then another
elbow fitting. All the parameters needed for this construction can be found with
the 3-D Dubins path planning.

(denoted by ) for an elbow fitting and a line segment (denoted
by S) for every other origami module (and any origami joint
in its zero configuration), shown as the blue arrows in Fig. 3.
We denote the centerline of the module M; as ¢(M;) C R3,
Similar to (33) and (35), centerlines can be transformed and
composed in correspondence with the composition of their
modules. In particular, the composition of two centerlines is
(M) W e(Mz) := c(My) U (*P M4¢(My)). It follows that
the centerline of the link can be composed of the centerlines of
individual modules.

Definition 2 (Centerline of a link): The centerline of a link
L' is denoted as ¢(L1) = ¢(M). The centerline of a link £* is
the concatenation of the centerlines of £5~1 and My, or

c(LF) =c(LFtwMy) =c(L ) we(My). (46

Observe that in the absence of twist, the centerline and base of
amodule (and thus of a link) are sufficient to identify the module
and its design parameters uniquely. This work shows that any
link can be constructed as the realization of an appropriate path
from O, to Oy consisting of C'and S.

Specifically, we focus on a subset of paths called C'SC paths,
or the bounded-curvature paths commonly computed for Dubins
vehicles [S1]. Consider a generic C'SC' path that connects frames
O, and Og4, where we follow a circular arc of radius r starting
at o, tangent to @, for a distance 61, then follow a straight line
segment for a distance ||t|| until we reach the last circular arc of
radius r, then follow that arc for another 65 until we finish at oy
tangentto a4, as shown in Fig. 5(a). The rigid transformation that
takes the vector @, at o, to a4 at o4 can be computed directly
from this path. However, this transformation does not constrain
the orientation of the frame, and an additional twist transforma-
tion is needed to fully describe the rigid transformation from
O, to Oq4. Here, we introduce a new frame to represent the new
target goal, the untwisted distal frame O, = {a., Bu, Cu, 04},
or the frame whose centerline axis and origin are identical to the
distal frame (a@,, = a4 and o,, = 04) but not the other two axes.
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Frames O, and O, have an angular difference of o about the
a, axis. Therefore

Lemma 3 (Rigid transformation of a C'SC' Dubins path with
twist correction): Suppose a C'SC' Dubins path with turning
radius r staring at o, tangent to @, and finishing at o4 tangent
to a4 exists, with a twist « along the centerline. Then the rigid
transformation from the associated proximal frame O, to the
distal frame O  can be written as

0, e | B 01)  dun(R(&ur,01) + T)ea
d-—
0 1
y R(é,,a) 0| [T |[t||éq
0 1/1]0 1
R(ew(g)/,ﬁz) de(R(eri’QQ)_FI)ea 0,. (@7

Proof: We first consider the problem where there is no twist
about a, (i.e., a = 0), and the problem reduces simply to
transforming the unit normal vectors a,, at o, to a4 at o4. The
homogeneous transformation from the proximal frame O,, to the
untwisted distal frame O,, as shown in the C'SC Dubins path
from Fig. 5(a) can be factored into a sequence of three rigid
transformations as follows. First, start with a turn of constant
radius r over an arc of 6; radians. Second, follow a straight
path of length ||¢|| along the vector ¢ that is tangential to both
circular arcs of the C'SC path. Finally, end with a turn of constant
radius r over an arc of 5 radians. Algebraically, these three
transformations correspond to the product

o . [Beur,01)  dui(R(éwr,00) + Déa | [T |[[t][éa
u - O 1 O 1
% R(ew;,ez) dwg(R(ewgl,HQ)—i—I)ea o, 48)

where €, =[0 0 1 ]T, é.,1 is the rotational axis of the
first circular arc in terms of O,,, €,z is the rotational axis of the
second circular arc in terms of O,,, (the intermediate frame after
the first circular arc and the straight line), d,,; = r tan %, and
dyo = rtan %.

To transform the untwisted frame O,, back to the distal frame
Og4, we perform a twist R(@,,, o) on O, or

- R(é,,a) 0

Od = @u

0 ) (49)

Since the twist operation does not change the shape of the C'SC'
centerline path, we can apply it after the first constant radius turn
before the translation along the straight line component of the
path. The transformation between O, and Oy is then as given in
(47). Since the twist transformation is before the last circular arc,
the rotational axis must be written in the new frame accordingly,
where €, is the unit rotational axis of the second circular arc
observed in the body frame. |

We can generalize the twist transformation into a screw trans-
formation, having twist and translation simultaneously. Then,
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we can rewrite (47) as

. [R(éu,hel) A1 (R(E1,01) + T)é,
’ 0 1

XlR(ém s|t||éa] lI (1= ©)l[t]]é
0 1 0 1

« [R(éw2’7 92) de(R(éw2’7 92) + I)éa Op-

0 1

(50)

where £ € (0,1) is an arbitrary fraction. Essentially, we are
splitting the line segment of the C'SC' path such that the first
portion contains a screw operation (a twist R(é,,«) and a
translation h; = &||t||) and the second portion is a translation
operation (with h = (1 — &)||¢||). Now observe that the four
transformation matrices in (50) are the same as the transforma-
tion matrices of an elbow fitting (14), a twist fitting (10), a tube
(7), and another elbow fitting (14) in sequential multiplication.
Thus, we can construct a physical connection between two
regular polygon bases by connecting the four origami modules
in the mentioned order, where all the geometric parameters can
be found in (50).

Corollary 4: Given (50), the origami link £* = Mep ©
My ¥ My W Mg (with polygon base of circumradius r)
composed of elbow fittings M, M4, a twist fitting My,,,, and
a tube My, instantiates the same given rigid transformation.

Proof: Choosing the base of the link to have a circumradius of
r, the elbow fittings M., and M4 have centerlines of circular
arcs with radius r. The number of polygon sides i, can be chosen
arbitrarily (see Section VI-B). We now combine the elbow fitting
M, (with rotation axis &,,; and angle 6,), twist fitting My,
(with twist angle « and length &||¢|]), tube My, (with length
(1 —¢&J|t]])), and elbow fitting M4 (with rotation axis €,
and angle 6-) to form the link. From Lemma 1, we get the rigid
transformation instantiated by £* through multiplication of (7),
(10), and (14), and again (14) with the aforementioned input
parameters, which is then identical to (50). |

In fact, the centerline of this constructed link is the CSC
path provided in Lemma 3. We can now combine all the results
and provide sufficiency conditions for the existence of a link that
connects a proximal and distal frame O, and O, with a specified
polygon base.

Lemma 5 (Dubins-specified origami link): Given a proximal
frame O, a distal frame Oy, and a regular n,-sided polygon
of circumradius 7, a link connecting frame O, to O4 can be
constructed if there exists a C'SC' Dubins path starting at o,
tangent to a,, and finishing at o4 tangent to a4. Furthermore, the
link £* = M., W My, W My, W Mg (With regular ng-sided
polygon of circumradius r as its base) is composed of elbow
fittings M., Mg, a twist fitting My,,, and a tube My, such
that its centerline is the given Dubins path.

We refer to work in [51], which claims that such a C'SC path
can be computed as long as

llo, — 04l > 4r. 51)
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Algorithm 7: DubinsLink(ns,r, O,, O,).
Input: Polygon shape (n,,r), the proximal frame and
the distal frame O, Oq4
Output: Crease pattern G, distal marker pzi
1 (t,601,0,) « Find variables of a C'SC path, e.g., [51]";
2, — @, X Wy — X ag;
3 Bm « R(wpvel)i)p’ i)u « R(wd792)i)m;
4 < atan2 ((i)u X by) - ég, by - Bd);
5 ¢ < atan2 ((l;p X ,) - &p,Bp . wp);
6 ¢y « atan2 ((f)m X wy) - 1L, b,, - u”;d) -
7 (G,py) « ElbowFitting(n,,r, 01, ¢, );
8 (Fo,poy) « TwistFitting(n,,r, o, 0.2]|t]]);
9 (Fs,p54) < Tube(n,, 7, 0.8[¢[]);
10 (.7:4,p11d) « ElbowFitting(ng, T, 0y, ¢2);
1 fori=2,3,4 do
2 | (G.py) « ComposeCP ((G,py), (Firpia)):
13 end

*Note the change in variables from X7, X5, X, v, vg in the original text
[51] to op, 04, t, Gy, Gg for our work.

Note that not all C'SC' Dubins paths can produce feasible
Dubins-specified links. If the arc angle of either C' portion is
greater than 37 /2, the generated link will self-intersect (we will
discuss self-intersection avoidance in Section V-B). Algorithm 7
shows the entire algorithm for constructing a specified link.
Without loss of generality, we chose £ = 0.2 as an example for
the rest of the study.

V. JOINT PLACEMENT

Having just shown how to compose modules into specified
links, we now address the problem of composing links into speci-
fied kinematic chains. Namely, this section considers the relaxed
configuration (gy = 0) and determines where to place joints
in R? such that their operation realizes the required forward
kinematics specified by D-H parameters D when actualized by
the tubular origami designs. Given an origami joint module 7;
constructed in Section III-B, we define the joint centroid frame
Oic = {ae, bic, éic, 0;c}+. The origin of this frame represents
the midpoint between the proximal and the distal base origins
(0ip, 0iq) in the zero configuration of 7;, as shown in Fig. 6(a)
and (b). For each J;, frames O;., O;),, and O;4 all have the
same orientation, where ¢&;. is defined as the rotation axis for
a revolute joint and G, as the translational axis for a prismatic
joint. Assuming we have all the joint frames O; (they are fixed
frames when given D and its forward kinematics), we want to
solve the following problem.

Problem 3: Given the joint frames O;, identify O, for all
joints such that they satisfy the D-H specification (by sharing
the same joint axis with O;), and a Dubins-specified origami
link can be constructed between any two joints (by ensuring the
joints are sufficiently distant).

For practical purposes, it is desirable to find joint locations
that minimize the volume of the linkage. Thus, this problem
can be formulated as a constrained packing problem. Note that
the problem of finding the optimal placement of the joints
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O(N-1)c
RIS on

o(v-1)p

" Zy_4 axis

Fig. 6. Origami joint placement: The O;. frame and the joint sphere S; of the
(a) revolute and (b) prismatic joints. (c) Joint placement for Jn_;. Section V
proposes a method to ensure each joint is at least a distance d apart from any
other. Each joint is represented as a sphere and can be placed anywhere on its
Z; axis. By is the minimum bounding sphere for Sy U Sy 41. The red path is
the CSC Dubins path that will connect Jx—1 and Jn .

(i.e., such that the distance between joint pairs is minimized)
is NP-hard [56]. However, a feasible nonoptimal solution can be
obtained through an iterative greedy approach.

Given a D-H specification D, the transformation matrix *~T";
that specifies the position and orientation of each joint frame
O, .= {&;,9,, 2i,0;} can be computed directly [47]. Thus, the
forward kinematics for the target linkage is fully specified. Note,
however, that although the frame and the kinematic motion for
each joint are defined through D, the exact joint locations O, are
not. A revolute joint J;, for example, can be placed anywhere
as long as its rotational axis &;. is aligned with 2;; thus we
can assign é&;. := 2; and 0;. := 0; + t2; for any ¢t € R. On
the other hand, a prismatic joint 7; can be placed anywhere
as long as its translational axis @, is aligned with £;; thus we
can assign a;. := 2; and 0, := 0; + t2; for any t € R. The
remaining two axes of O;. do not affect the kinematics of the
mechanism and can be chosen arbitrarily. In this work, we assign
a;. := &; for an origami revolute joint and IA),C := @; for an
origami prismatic joint; the last axis follows the right-hand rule.
Further, due to the rotational symmetry of the origami joint,
we can rotate the frame about ¢&;. by 7 without changing the
kinematics. Due to this flexibility in precise joint location, we
can, therefore, assign O;. = {ac, bic, éic. 0;.} as

Oic i =A{uiZ;, w;&;,9,,0; + t;2;} for a prismatic joint

Oic := {u;i&;, u;G;, 25, 0; + t;2;} for a revolute joint (52)

where the design parameter ¢; € R determines the joint centroid
location and the choice of the scalar u; = 41 dictates whether
the frame has been rotated. In practice, we choose the direction
of a;. to point toward the next joint for a shorter centerline path,
thus reducing the sheet material needed.
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Algorithm 8: JointPlacement(D, ng, 7, qq, Q).

Input: D-H parameter table D, polygon shape (ng,r),
the maximum revolute joint range q,,,, and the
zero configuration q
Output: List of origami joint centroid frame O,
1 Find the joint frames O; with forward kinematics
assuming ¢; = 0 for all 4;
2 Syyp < ball (oni1,7); Byi1r < Syaas
3 O(n+1)e < elements from Oy, such that d(y41)c
represents the end effector approach direction;
4 fori=N to1do
5 r;s < assign with Eq. (53);
6 O, < assign Eq. (52) with (¢;,u;) such that
t; « t* that minimizes (o, +t*2;) — O(i+1)c S:t.
dist (O(i+1)B’ o; + t*iz) = T(i+1)B+4r+ris;
u; < 1 or -1 s.t.
a T
a;. normal (Oic7o(i+1)c) > 0;
7 S’L — ball(oic,ris);
8 B; « ball(0;3,7;5) that encloses S; U B;1;
9 end
10 O, « {Olca Oacy ey Ones O(N+1)c}.

A. General Joint Placement

Problem 3 thus reduces to identifying for each joint 7; the
offset ¢; required to guarantee that a connecting link can be con-
structed. We propose a greedy iterative approach to solving this
problem (Algorithm 8), wherein joint locations are determined
iteratively such that each new joint location is a distance of at
least 47 away from all the previous joints, spreading the joints
out to make room for a Dubins-specified link (51), as illustrated
in Fig. 6(b). Since this procedure creates longer (hence, heavier)
links in later iterations, we place the joints in reverse order such
that longer links are closer to the base.

Denote by ball(o, r) the set of points at a distance of at most
r from o. We define a joint sphere S; := ball(0;.,1;s) for an
origami joint J;, shown in Fig. 6(a), where its radius is chosen
such that the proximal and distal origins both lie on the sphere
surface, i.e.,

(ns—2)m

tan %= for a revolute joint
2n, 4

rg 1= rsin

7s == +do(2 + csc 3) for a prismatic joint. (53)

Denote by 5; := ball(0;3, ;3) the minimum bounding sphere
that encloses all the joint spheres from S; to Sy41. For two
compact sets S1, S C R?, denote by dist(S;, Sy) the shortest
distance between S; and Sa, and normal (S, Sz) the vector from
apoint in S; to a point in Sy such that the length is dist(S7, S).
Denote by line(o, n) the line that passes through the point o in
the direction of 7.

Lemma 6: Algorithm 8 solves Problem 3.

Proof: The proof must show that for all N € N, Algorithm 8
accepts D, a D-H list of length N + 1, and returns a list of
joint centroid frames O, that realize the kinematic mapping (1)
specified by D at rest configuration gy, and that each pair of
consecutive joint centroid frames is far enough for a Dubins-
specified link to exist between them. We will prove this by
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induction on N. For the base case, N = 1, there are two entries
in D, the final end effector in row N + 1 = 2 and the single
joint in row N + 0 = 1. In this case, Algorithm 8 uses (53) to
place O, at the center of ball(0s, 7, ), which serves as both
the joint sphere, So, and the ball, Bs. Algorithm 8 then assigns
the joint centroid frame, Oy, at a distance 4r + r1 ; from Bo
along the specified line line(o1, £1), and then, updates B; to
enclose S U B; as depicted in Fig. 6(c). For the inductive step,
assume that the proposition holds for any specification, D, of
length N. Given a specification D of length N + 1, strip its first
row (which we number row 1) and apply Algorithm 8 to D, its
subsequent N rows. Once again, apply Algorithm 8 to adjoin a
joint centroid frame, O, at a distance 47 + 7| s from the final
ball, B associated with D, along the specified line line(0g, £),
and then update B; to enclose S; U B, completing the list O,
as required. |

B. Avoiding Self-Intersection

Algorithm 8 only ensures that joints are placed in locations
such that C'SC paths can be constructed between them. There
is no guarantee that the resulting links do not intersect with
themselves or each other. To start, if an elbow fitting has a
bending angle greater than 7, the two links will intersect. We
conjecture that it is possible to construct a C'SC' path such that
both the arc angles are less than 7. Denote by P := plane(o, 71)
the plane that passes through the point o with the normal vector
71 and denote by P the half-space divided by P that contains
all nonnegative values.

Conjecture 7 (Constrained CSC Dubins path): Given a prox-
imal frame O, and a distal frame Oy, if there exist two parallel
planes P, := plane(o,) and P, := plane(og, 1), such that (1)
dist(P,, Pg) > 4r,(2) 7' @, > 0,and (3) 2’ a4 > 0, then there
exists a shortest C'SC path of radius r starting at o, tangent to
a, and finishing at o4 tangent to G4 whose circular arcs both
subtend angles less than 7 radians.

Assuming the conjecture is true, we now introduce a proce-
dure to spread out the joint spheres so that no two links can cross.
This is done by introducing waypoints to reroute the centerline
of the link to avoid path intersections. A waypoint JV has a frame
Oy and can be treated as a particular joint that allows no motion
and has no volume. Its joint sphere is a point (radius rs = 0)
and its crease pattern can be constructed with tube(ng,r,0).
We propose Algorithm 9 to identify O;. for every joint and
add waypoints to reroute the centerline of a link such that the
constructed link that connects any two joints does not intersect
with itself or any other links.

VI. ORIGAMI KINEMATIC CHAIN

With the origami links £ and joints 7 defined, we now define
the origami kinematic chain recursively as

Definition 3 (Origami kinematic chain): A Kinegami chain
is the composition of N + 1 links and N joints of the same
polygon base in alternating order.

In the case of N = 0, we define the base link £, although it
cannot move, as an instance of an origami kinematic chain /Cy. A
kinematic chain [y, with k joints can then be formed through the
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Algorithm 9: JointPlacement2(D, ng,r,qq, dpm ).

Input: D-H parameter table D, polygon shape (n,,r),
the maximum revolute joint range ¢q,,,, and the
zero configuration g
Output: list of origami joint centroid frame O,
1 Find the joint frames O; with forward kinematics
assuming ¢; = 0 for all 4;
Sn+1 < ball(ony1,7); Bys1 < Syt
O(n+1)c < elements from Oy, such that @ y41)c
represents the end effector approach direction;

w N

4 for i = N to 1 do
5 r;s < assign with Eq. (53);
6 | Ty« —ajc; /% denote j:=i+1l x/
7 | Pi < plane(o;g + 7871, 71 );
8 P}, « plane (0js + (1 +4r + 1)1, Py );
9 oW1 < line(%cvﬁil) N Pix;
10 Oiw1 < {d]’mbjméjcvoﬂ/\/l};
1 if line(o;, 2;) NPiy = @ then
12 Mo — —Z2;;
13 Pi2 — plane(oﬂg + legﬁig, ﬁiQ);
14 Py — plane(o;p + (7jp + 41 + 15 )T0, Tj2);
15 0wz < line(ojny + 11, M) N Pigs
16 Oiwa < {R(fin X Az, T)[ aje bie &5c ], 0012}
17 else
18 ‘ (ﬁi27pi27pi,270iw2) « (ﬁilvpilvpz"lvoin);
19 end
20 O;. « assign Eq. (52) with (¢;,u;) such that

t; « t* that minimises (0; + t*2;) — 0,12

subject to (o; + t*2;) C Pia;

uy < 1 or -1 such that —a,;.” n;s 2 0;
21 Oic < {Oic, Oipva, O, Ojc};
22 Sz — ball(oic, Tis);
23 B; < ball(o,z,r;5) that encloses S; U B,;

24 end

composition of the previous kinematic chain Kj_1, an origami
joint Jj, and a link L. In other words

Ko := Ly, and Ky := K1 & T U Ly. 54)

The crease pattern of a kinematic chain is constructed through
the composition of the crease patterns of the corresponding links
and joints (Lemma 2). Finally, we combine all previous results
and algorithms to produce Algorithm 10, or the “Kinegami” al-
gorithm, for generating a kinematic chain mechanism. Note that
the number of the polygon sides n, must be even if the proposed
kinematic chain consists of revolute joints (see Section I1I-B2).
Now we present our main result.

Theorem 8 (Kinegami): Algorithm 10 solves Problem 1.

Proof: We prove this by induction. For the base step, line 1
generates the crease pattern Gy that folds into a tube of length
lp, which is the base case of a kinematic chain Ky. For the
inductive step, assume G;_; folds into a kinematic chain K;_;.
Since the joint location of J; is assigned with Algorithm 8, it
satisfies the constraints in Problem 3. According to Lemma 5,
we can then generate a Dubins-specified link £; that connects
the consecutive pair of joints J;_1,J;. By composing C;_,
Jj, and L, we have the kinematic chain K;. In the special case
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Algorithm 10: Kinegami(D,ng,r, qq,q,,).

Input: D-H parameter table D, polygon shape (ng,r),
the maximum revolute joint range g,,,, and the
zero configuration g
Output: Crease pattern G
1 (g()ap’d) < TUbe(ns7 T lb);
2 O, « JointPlacement(D,ng, 7, qo, G );
3 find O, and O, given O, and r;,;
4fori=1to N+1do
5 (F,,p;,) « crease pattern according to joint type:
RevoluteJoint(ng,r,60,,,n,) for an R joint,
PrismaticJoint(ng,r, dg,n;, 3) for a P joint,
Tube(n,,r,0) for a waypoint;
6 | (Gi.py) < ComposeCP ((Gi-1,pa), (Fi,Pia) ):
7 | (Gic\Pica) « DubinsLink(ng, r,Oig, Oir1yp )i
8
9

(Gi,Py) < ComposeCP ((Gi, Py). (Gic,Pica)):
end

of the joint being a waypoint (see Section V-B), the algorithm
generates a tube with no length, essentially composing the new
link onto the previous kinematic chain. The crease pattern of J;
and L; is F; and G, respectively. Based on Lemma 2, crease
pattern G; = G;_1 W F; W G;, folds into ;. u

Lemma 9: Algorithm 10 outputs a crease pattern with O(N)
vertices and edges.

Proof: Forrigid connections, Algorithms 1-3 produce crease
patterns for origami modules with O(n;) vertices and edges.
Each Dubins-specified link consists of up to four origami mod-
ules, and thus, Algorithm 7 also produces a crease pattern with
O(ns) vertices and edges. For joints, Algorithm 4 produces a
prismatic joint with O(ny) vertices and edges. The parameter n;
is a variable that can be chosen arbitrarily by the designer and
does not need to scale with the problem. Algorithm 5 produces
arevolute joint with O(nsn,) vertices and edges. The recursive
sink gadget adds additional vertices and edges for every n, layer
in every n iteration. Thus, the size of each module is at most
O(nsn) vertices and edges.

Algorithm 10 connects N pairs of joints and Dubins-specified
links and thus produces at most O(Nngn. ) vertices and edges.
Note that ng is a design variable and does not need to scale with
the proposed problem. Equation (32) shows that the number of
layers of the recursive sink gadget in the revolute joint is approx-
imately proportional to its effective stiffness (i.e., k < n,), and
Algorithm 10 produces a crease pattern with O (N k) vertices and
edges. For applications without stiffness constraints, we have
O(N) vertices and edges. |

Lemma 10: Algorithm 10 runs in O(N) time.

Proof: Calculating joint placement in Algorithm 8 requires
solving a nonlinear program in line 6 and 8 for each joint. The
scale of the equations does not change with the complexity of
the serial manipulator and solves in O(1). Since the process is
repeated for all NV joints, this algorithm takes O (V) time. All
modules are constructed vertex by vertex directly from the input
parameters, and thus the time to build any individual module is
O(nsn. ). Computing a Dubins-specified link requires solving a
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set of nonlinear equations in time independent of the complexity
of the serial manipulator and thus takes O(1). Composing crease
patterns with Algorithm 6 takes O(1), since shifting a graph in
R2 is an addition operation. This process is repeated for all N +
11links, so the entire process takes at most O (N ngn., ) time. Since
ng is a design parameter, the time complexity of Algorithm 10

is O(N). |

A. Programmable Compliance

We demonstrated that our revolute and prismatic joints have
programmable stiffness in Section III-B. Although the precise
relationship between parameters and stiffness has not yet been
fully characterized, we observe that the stiffness of the revolute
joint was approximately proportional to the number of sink folds
n, and the cone angle 8. Denote k the desired stiffness, E the
Young’s modulus of the given material, and e the error allowance.
Assume there exist some functions f and g that map &, E, and €
to the geometric parameters 7, for the revolute joint and 3 for the
prismatic joint, respectively. We then introduce this conjecture
to be explored in future work:

Conjecture 11: With additional functions n, := f(k, ¢, E)
and 3 := g(k, ¢, E), Algorithm 10 solves Problem 2, where we
can construct the compliant origami robot such that the local
stiffness profile is bounded within k £ €. The pattern requires
O(Nk) time to compute and has O(Nk) vertices and edges.

B. Selection of Polygon Shape

In general, the shape of the regular polygon base is a free
design choice. Appendix A shows that for a fixed circumfer-
ence tubular sheet, Pr, the second moment of the associated
regular polygon prism tube—and hence, its ability to withstand
bending—grows with n,. However, crease pattern complexity
increases with ng (Lemmas 9 and 10), lengthening fabrication
time respecting both computational and human folding effort.
Finally, r directly affects the length scale and physical volume
of the folded Kinegami output, particularly after imposing the
sufficient conservative condition guaranteeing the existence of
the Dubins-specified link.

VII. PHYSICAL EXAMPLES

The proposed “Kinegami” algorithm accepts an algebraic
specification (D-H description) of a serial robot and outputs a
single-sheet crease pattern that can be folded into an origami
kinematic chain that is kinematically equivalent to the specifi-
cation. The algorithm was implemented in MATLAB and can
be found in our GitHub repository (https://github.com/weinitor/
Kinegami). This section illustrates the use of Kinegami by phys-
ically constructing several common kinematic specifications.
Specifically, in Section VII-A, we automatically generate and
manually construct Kinegami implementations of some familiar
robot arms that incorporate higher DOF lower pair joints. In Sec-
tion VII-B, we illustrate the complexity challenge of this prob-
lem domain by exhibiting a faulty (self-intersecting) Kinegami
chain produced by the naive link generator (Algorithm 8). We
replace it with a feasible but conservatively bulky crease pattern
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automatically produced by our conjecturally correct link gener-
ator (Algorithm 9). Entrusting the optimization step to human
intervention instead, we suggest the ergonomic efficacy of the
prior pipeline steps by exhibiting a feasible, correct, and more
usefully compact design resulting from manually replacing in
Algorithm 10 the call to Algorithm 8 (on line 2) with an intu-
itively generated selection of the joint centroid frames. Finally,
we suggest the long-term value of origami robotics for exploiting
cascaded power trains [36] by automatically generating, man-
ually constructing, and empirically testing a 1-DOF Kinegami
catapult. All the resulting origami robots are constructed out
of 8-mil thick Durilla synthetics paper with polyester finish
(CTT Paper, USA). The crease patterns are cut out and the folds
perforated using a laser cutter. The sheet is then manually folded
into shape and glued together with 3 M 467MP adhesive transfer
tape. The manual folding time is roughly about NV x 10 min.

A. Higher DOF Lower Pair Joints

We construct origami serial robots that are kinematically
equivalent to higher DOF lower pair joints. Let the polygon
shape of the tubular origami be {ns,r} = {4,0.02 m} and the
maximum rotation angle for all the revolute joints be 6,,, = .

1) Cylindrical Manipulator: A cylindrical joint permits slid-
ing parallel to and rotation about its joint axis. Our cylindrical
arm robot consists of a revolute and a prismatic joint, where both
the joint axes coincide. Fig. 7(A)-(a) summarizes its kinematic
diagram and D-H specification, where [y =l =0.1m, [; =
0.08 m, and 6; o = 0. Fig. 7(A)-(b) shows its crease pattern,
where the ith joint 7; is highlighted in green and the ith link £;
uncolored. Fig. 7(A)-(c) shows the final product, where the ith
joint axis 2; is marked to show that the folded Kinegami chain
is kinematically equivalent to the proposed robot.

2) Planar Manipulator: A planar joint permits arbitrary
translation on and rotation perpendicular to a plane. Our 3-DOF
manipulator arm is constructed with three parallel revolute
joints, shown in Fig. 7(B), where o =1y =1ls =13 =0.15m
and 619 = 69 = 03,0 = 0. Here, we choose 6,, = 37/2 to
show a different range of motions for the revolute joint.

3) Spherical Wrist: A spherical joint permits arbitrary ro-
tation for one link with respect to the other one. In our 3-
DOF manipulator arm, we chose three orthogonal rotational
axes, shown in Fig. 7(C), where I; =l = 0.1 m, 61 9 = 0, and
02,0 = 03,0 = /2. This example demonstrates that Algorithm 8
can assign origami joints to avoid collisions, even with three
theoretically collocated joints.

B. Self-Intersection and Compactness

As discussed in Section V-B, Algorithm 8 does not guarantee
a nonself-intersecting linkage. We illustrate this issue and a
potential solution by designing a 6-DOF PUMA arm (D-H
specification from [47]), providing empirical support that Al-
gorithm 9 will generate a physically valid kinegami chain over
Algorithm 8. In Fig. 8(a), the centerline of the robot associated
with Algorithm 8 incurs a self-intersection between two of its
links, so the robot is not feasible. In contrast, in Fig. 8(b), the
centerline created with Algorithm 9 has no intersection since it
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Fig. 7. Kinegami results of a (A) Cylindrical, (B) Planar, and (C) Spherical
manipulator. Each of the figures have subplots: (a) Coordinate frames and
the D-H representation. The green cylinder represents the revolute joint, and
the hexahedron represents the prismatic joint. (b) Crease pattern generated by
Kinegami. The green shadowed parts indicate the joints, and the remainders
indicate the links. The gray hatched area indicates the adhesive area to create
the tubular sheet. The crease pattern for the tuck section of the elbow fitting is
not shown for simplicity. (c) Folded state of the origami robot.

is rerouted via additional waypoints and is consequently longer.
Of course, neither of the outputs of these greedy algorithms is the
optimal joint placement, as we now demonstrate by contrast with
a human-generated design that also illustrates the user-friendly
aspects of the earlier pipeline steps.

Instead of locating the joints through line 2 in Algorithm 10,
the user can directly specify joint centroid frames O, as an
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(a) (b)

10 cm yn‘)m'

10cm » @

(©)

10 cm ' gl

Fig.8. Kinegami PUMA arm: Schematic drawing of the Kinegami output with
joint placement using (a) Algorithm 8, (b) Algorithm 9, and (c) Human-specified
joint location. Joint spheres are shown colored, with purple at the end effector.
Frames without spheres indicate the waypoints in (b). The centerline of the links
is in black. (d) Folded Kinegami from (c).

input. Using this “human-specified joint location” method, it is
possible to place the joints closer to each other while maintaining
a non-self-intersecting centerline, as shown in Fig. 8(c) and (d).
Additional higher DOF joints as discussed in Section I1I-C could
also be used to reduce the volume of the kinematic chain by
combining multiple joints with coincident joint frames together.
Given its known combinatorial complexity, heuristic approaches
to the problem of optimizing feasible joint placement subject to
the CSC path validity represent a very inviting open research
domain.

C. Demonstration of Actuation

Finally, we show how the compliant joints can be used
to store and release energy in a 1-DOF catapult. The robot
weighs 0.3 kg, with the paper kinematic chain structure (with
{ns,r} = {4,0.05 m}) contributing 50% of the total mass. The
joint centroid frames of the revolute joint and the end effector
are assigned manually. We also provide intermediate waypoints
Wi, ..., Wy (see Section V-B) that the origami structure must
pass through to form a broad base, as shown in Fig. 9(a).

The revolute joint (g, = 7/2, n, = 2) is actuated by a
tendon-driven servo motor with a latch mechanism adapted
from [43]. One end of the tendon is attached to the distal side
of the revolute joint, and the other is attached to the latch
mechanism located at the base, as shown in Fig. 9(b). When
the servo motor shaft turns, the tendon between the distal and
the proximal end of the revolute joint is shortened and thus bends
the revolute joint towards the tendon side. Once the servo motor
rotates to the desired angle, the tendon is let loose, thus releasing
the energy stored in the compliant revolute joint and launching
the payload. The time-lapse photos of the catapult throwing a 3-g
ping-pong ball and a 50-g rubber ball are shown in Fig. 9(c) and
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Tendon

Latch
mechanism

Arduino (hidden)

Fig. 9. Origami catapult. (a) Schematic drawing of the joint assignment.
(b) Folded catapult with actuator attached. The time-lapse photos of the catapult
motion throwing a (c) 3-g ping-pong ball with an interval of 1/24 s and a (d)
50-g rubber ball with an interval of 1/12 s.

(d). Using “Tracker” (https://physlets.org/tracker/) to measure
the projectile trajectories, we estimate that 35 mlJ of energy is
transferred to the rubber ball by the compliant revolute joint in
66.7 ms, resulting in an average mechanical power output of
525 mW (i.e., a robot power density of roughly 1.75 W/kg).

VIII. CONCLUSION

This article established the design feasibility and demon-
strated the rapid fabrication of an origami serial robot mecha-
nism generated from well-established kinematic specifications.
Work now underway aims to prove the remaining conjecture
required to guarantee that the algorithm we presented will always
generate a viable (nonself-intersecting) kinematic chain whose
reachable poses form an open set within the joint configuration
space. Similarly, inspired by the present empirical demonstration
of tunably compliant joints, ongoing work aims to develop a
careful stiffness model that can be used to prove our conjecture
that extensions of these algorithms can yield folded structures
with arbitrarily specified compliance.

Origami-inspired compliant structures open up opportunities
for increasing the agility of a robot by more effectively dis-
tributing actuator power spatially in the robot and temporally
throughout a given task [36]. This article offered a sugges-
tive illustration of that idea by using a low mass, low power,
conventional actuator to load energy into a 1-DOF Kinegami
catapult, achieving a 525-mW transfer of 35 mJ into a ballistic
payload that was 16% of the robot’s mass. The integration of
novel smart material actuators [57], [58] with the flat sheet
substrates underlying the compliant robot structure [7] as a
potential method for increasing the robot power density will
be the focus of future work.

APPENDIX A
SECOND MOMENT OF INERTIA OF A PRISM TUBE

Given a ng-sided regular polygon of circumradius r and ver-

tices parameterized as (v; ., vi,) = (7 cos (22), rsin (270)),

Ns Ns
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its second moment of inertia with respect to the z-axis [59]
is

Ly(na,r) = 2 (4sin (2—”) +sin (4—”» . (AD)
The perimeter of the regular polygon is 2n4r cos (%)

Assuming the perimeter is a fixed constant L, its circumscribed

circle radius can be calculated to be r;, = ﬁ csc nl

Now assume a thin wall regular polygon prism with n sides,
a circumscribed circle of the neutral line of the wall of radius
rr,, and a wall thickness of ¢. The second moment of inertia of
this thin-wall regular polygon prism is

Lt (ne,rp,t) i=Ip (ng,rp + 5) — I (ns,r0 + %) (A2)

which is a monotonically increasing function. Thus, I, ; gets
larger as ns grows.
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