

1 Experimental measurement and computational prediction of
2 bacterial Hanks-type Ser/Thr signaling system regulatory targets

3 Noam Grunfeld¹, Erel Levine^{1,2#}, Elizabeth Libby^{1#*}

4

5 ¹Department of Bioengineering, Northeastern University, Boston MA USA

6 ²Department of Chemical Engineering, Northeastern University, Boston MA USA

7

8 [#]These authors contributed equally to this work

9 ^{*}Corresponding Author: e.libby@northeastern.edu

10

11

12 **Keywords:** Ser/Thr kinase, Ser/Thr phosphatase, phosphorylation, phosphoproteomics,
13 computational models

14

15 **Abstract**

16 Bacteria possess diverse classes of signaling systems that they use to sense and respond to their
17 environments and execute properly timed developmental transitions. One widespread and
18 evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also
19 sometimes termed “eukaryotic-like” due to their homology with eukaryotic kinases. In diverse
20 bacterial species, these signaling systems function as critical regulators of general cellular
21 processes such as metabolism, growth and division, developmental transitions such as
22 sporulation, biofilm formation, and virulence, as well antibiotic tolerance. This multifaceted
23 regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally
24 modify the activity of multiple proteins, resulting in the coordinated regulation of diverse
25 cellular pathways. However, in part due to their deep integration with cellular physiology, to
26 date we have a relatively limited understanding of the timing, regulatory hierarchy, the
27 complete list of targets of a given kinase, as well as the potential regulatory overlap between the
28 often multiple kinases present in a single organism. In this review we discuss experimental
29 methods and curated datasets aimed at elucidating the targets of these signaling pathways, and
30 approaches for using these datasets to develop computational models for quantitative
31 predictions of target motifs. We emphasize novel approaches and opportunities for collecting
32 data suitable for the creation of new predictive computational models applicable to diverse
33 species.

34 **Introduction**

35 Bacteria use signaling systems to sense and respond to their environment. This enables them to
36 survive their often-changing environments, execute properly timed developmental transitions
37 including to virulent states, and survive stress and antibiotic treatment. Among these signaling
38 systems are the Hanks-type Ser/Thr kinases and phosphatases¹, also termed “eukaryotic-like”
39 (or eSTKs/eSTPs) due to their homology to eukaryotic signaling systems. Compared to
40 eukaryotic systems that began to be characterized over 60 years ago, prokaryotic systems were
41 only first identified in the early 1990s^{2,3}. These bacterial kinases are likely evolutionarily ancient,

42 sharing a common ancestor with those found in eukarya and archaea^{4,5}. These signaling
43 systems typically consist of a receptor kinase that phosphorylates targets on Ser or Thr residues
44 and a partner phosphatase that provides reversible regulation through dephosphorylation⁶.
45 Unlike other phosphorylation-based signaling systems such as bacterial two-component
46 systems, in which the kinase generally regulates cellular physiology through a dedicated
47 transcription factor (response regulator)⁷, the Hanks-type bacterial Ser/Thr kinases can regulate
48 cellular physiology more broadly through direct phosphorylation of diverse classes of proteins⁸.
49 These target proteins are not limited to transcription factors, and often include other types of
50 proteins such as enzymes in central metabolism, translation factors, enzymatic pathways, and
51 structural components, in addition to cross regulation of other signaling pathways^{6,9}. In
52 contrast to Asp phosphorylation in two-component systems, Ser/Thr phosphorylation is
53 relatively stable, with a typically significantly longer half-life⁷. Like their homologs in
54 eukaryotes, prokaryotic Hanks-type Ser/Thr signaling systems also use a separate phosphatase
55 (sometimes termed eukaryotic-like phosphatases or eSTPs) to provide reversible regulation⁸.

56 Because of their ability to regulate multiple pathways concurrently, in many bacterial species
57 Hanks-type Ser/Thr signaling can be essential and appears to function as a kind of “master
58 regulator” for coordinating cell growth and division, metabolism, development, and stress
59 resistance^{8,10-13}. In several species, including clinically important pathogens, this class of kinases
60 is known to be essential and/or regulate antibiotic resistance, making these pathways an
61 attractive drug target^{14,15}.

62 As the targets of these systems are diverse and demonstrably often critical for cellular
63 physiology, there has been considerable interest in attempting to identify, characterize, and
64 predict the regulatory targets of every known kinase. Experimental methods developed for this
65 aim, while rapidly improving, are often highly labor intensive, especially since the list of targets
66 can be highly growth state specific. It is therefore highly warranted to develop computational
67 models for predicting putative targets and their properties directly from genome sequence data.
68 Critically, such models perform the best when built on large-scale high-quality training data
69 from robust experimental results. In this review, we will discuss the current availability of such

70 experimental data sets and computational models, and highlight the types of data and models
71 that can have a significant impact on our understanding of these signaling pathways.

72 In order to train a computational model to predict the targets of a specific kinase, it is necessary
73 to have significant amounts of robust experimental data on its precise phosphorylation sites.
74 However, to date comprehensively identifying diverse phosphosites in bacteria and correctly
75 matching them with the appropriate pathway has been challenging. The optimal scenario
76 would include a robust method to activate the signaling pathway coupled with a reliable
77 readout of target activation in live cells. Such methods, however, are not typically available. As
78 discussed in this review, a multitude of experimental techniques have been used to date in
79 diverse species, including phosphoproteomics, *in vitro* kinase assays, genetics, peptide libraries,
80 and synthetic transcription factors (Table 1). In principle, combining these experimental
81 methods with new computational techniques could enable a deeper understanding of bacterial
82 physiology, including in understudied and non-domesticated species, aid in the development of
83 new antibiotics, as well as develop new regulatory pathways for synthetic biology or industrial
84 applications.

85 Experimental approaches

86 Phosphoproteomics

87 Given the diverse classes of possible regulatory targets of Hanks-type Ser/Thr kinases, whole
88 proteome screening for phosphosites has the potential to identify lists of putative target sites
89 that can then be matched with the appropriate pathway. Furthermore, the relative stability of
90 Ser/Thr phosphorylation (compared to His/Asp) makes them particularly suitable for
91 phosphoproteomics. In this technique, bacterial cultures are lysed, and proteins are digested
92 into peptide fragments (e.g., with trypsin). This is followed by a phosphopeptide enrichment
93 step to increase the relative proportion of phosphorylated peptides. The resulting peptides are
94 then analyzed by mass spectrometry to identify mass shifts consistent with phosphorylation¹⁶.
95 This method identifies phosphorylated peptides, regardless of mechanism. However, since

96 Hanks-type Ser/Thr kinases are widespread and often abundant in bacterial genomes and have
97 many putative targets, it is reasonable to assume that a significant (or even predominant)
98 fraction of the phosphosites identified by phosphoproteomics can be attributed to the Hanks-
99 type signaling pathways¹¹. Indeed this has been successful in identifying many possible
100 phosphosites and pathways of interest in diverse organisms ranging from model organisms
101 such as *Bacillus subtilis* and *Escherichia coli* to clinically relevant pathogens such as *Mycobacterium*
102 *tuberculosis*, *Acinetobacter baumannii*, *Clostridium difficile*, *Staphylococcus aureus*, *Streptococcus*
103 *pyogenes*, *Listeria monocytogenes*, *Bordetella pertussis*, *Streptococcus pneumoniae* among many
104 others, and as reviewed in^{17,18}. Across bacterial species, certain pathways and proteins tend to
105 appear consistently in all data sets, including for example translation factors, enzymes involved
106 in central metabolism and cell wall synthesis, as well as virulence factors.

107 With good reason, bacterial phosphoproteomics is believed to suffer from poor coverage of the
108 proteome. In many studies, a significant fraction of the proteome is not detected, which is a
109 prerequisite to detecting a phosphopeptide at likely even lower abundance¹⁹. Therefore, the
110 inability to detect a specific phosphosite may be due to many factors, including issues of protein
111 abundance and stability, lack of proper pathway activation, as well as intrinsic physical and
112 chemical differences between peptides causing them to ionize unequally or degrade. Although
113 the size of the phosphoproteome is not known, close examination of the proteomic data sets
114 suggests that many proteins and their possible corresponding phosphosites are not being
115 identified. For example, it is clear that membrane proteins are currently unrepresented in the
116 data sets, which can be at least partially attributable to technical challenges around mass
117 spectrometry compatible solubilization²⁰⁻²². Recently, advances in phosphoproteomics have
118 strongly increased the sensitivity and depth of these data sets, resulting in large increases in the
119 number of phosphosites identified across many bacterial species. For example, whereas early
120 studies on *B. subtilis* identified ~103 phosphorylation sites on ~78 proteins²³, approximately 10
121 years later studies in the same bacterium identified ~1085 phosphorylations on ~488 proteins¹⁹,
122 providing much larger data sets. In other organisms, improvements in phosphopeptide
123 enrichment have been shown to increase the number of phosphopeptides identified two to four-

124 fold for *S. pyogenes* and *L. monocytogenes*, resulting in approximately ~400 phosphorylated
125 proteins per organism²⁴.

126 While phosphoproteomics can broadly identify phosphorylation sites, it does not in isolation
127 directly identify the kinase or kinases responsible. To implicate a specific kinase with the
128 phosphorylation of potential phosphosites several studies have used kinase and phosphatase
129 mutants, kinase depletion strains, or specific kinase inhibitors to look for changes in the relative
130 abundance of identified sites using phosphoproteomics. For some recent examples in various
131 organisms see *M. tuberculosis*^{25,26}, *B. subtilis* ^{27, 19} *S. aureus* ^{28,29} *L. monocytogenes* ³⁰, *S. pneumoniae*³¹,
132 and *E. coli* ³². While this method does not rule out indirect interactions, it does help narrow the
133 possible targets of interest and specific pathways for further study ³²⁻³⁴.

134 Phosphoproteomics is the only experimental approach that generates large-scale data sets,
135 which are essential for training modern machine-learning models. Even without attribution to a
136 specific pathway, experimentally confirmed phosphosites can help to pre-train a model or to
137 find effective ways to mathematically represent phosphosites sequences. The improvement in
138 quality and sensitivity of phosphoproteomics techniques is therefore conducive of developing
139 better machine-learning models.

140 *In vitro* kinase assays

141 The gold standard approach to validating a matched kinase-substrate interaction is the *in vitro*
142 kinase assay. In its simplest form, a purified kinase and a substrate are incubated together in the
143 presence of ATP and magnesium to allow phosphotransfer to occur. Often these reactions are
144 directly detected using gamma-³²P (or ³³P) ATP, phosphoprotein separation using Phos-tag gels,
145 or less commonly, phospho-specific antibodies (α -phos-Thr or α -phos-Ser) or stains. There are
146 some important advantages to *in vitro* kinase assays. Due to the use of purified components, the
147 reactions can be used to determine specific residues that are phosphorylated on both the kinase
148 (autophosphorylation) and on the substrate when combined with downstream mass
149 spectrometry. Since the substrates are purified, this also often results in much higher coverage
150 of the protein by mass spectrometry, aiding identification of phosphosites. This workflow has

151 been used successfully to identify specific target residues in a large variety of organisms. Some
152 very recent examples include the identification of the phosphorylation sites responsible for the
153 regulation of the protease PrkA by PrkC in *B. subtilis* ³⁵, phosphorylation sites on the
154 peptidoglycan hydrolase CwlA by PrkC in *C. difficile* ³⁶, phosphorylation of GpsB by IreK in *E.*
155 *faecalis*^{37,38}, and the regulation of capsular polysaccharides in *Streptococcus suis* through Stk1
156 phosphorylation of CcpS³⁹ and in *S. pneumoniae* through StkP phosphorylation of CcpA⁴⁰ .
157 Importantly, this method also allows for the matching of a specific phosphosite on a substrate
158 with the activity of a specific kinase. Although this method is well known to be potentially
159 prone to false positives due to unphysical interaction times or stoichiometries, there are ways to
160 minimize this concern with time dependent concentration titrations, for example as was done
161 systematically for the PhoB/PhoR TCS system ⁴¹. Limiting reaction times has also been used to
162 identify histidine kinase – response regulator specificity in TCS systems^{42,43}, a technique that has
163 been successfully used to reveal the specificity of the interaction between the Hanks-type
164 Ser/Thr kinase PrkC and the response regulator WalR ⁴⁴ in *B. subtilis* . This study demonstrated
165 specificity for WalR by PrkC even among response regulators with highly conserved amino acid
166 sequences around the phosphosite.

167 Although this method can produce the most precise and detailed results, it is important to note
168 that there are some inherent challenges in attempting high-throughput *in vitro* kinase assays.
169 One of the main challenges is the reliable expression and purification of an active Hanks-type
170 kinase, as expression of these kinases can be highly toxic or difficult to purify in standard
171 expression systems such as *E. coli*. This was encountered in a systematic attempt to purify all
172 known Hanks-type kinases from *M. tuberculosis*³³. Additionally, *in vitro* assays often use only the
173 catalytic domain of the kinase, discarding its extracellular and transmembrane domains. This
174 can strongly impact kinase activity, as seen for example with the *B. subtilis* kinase Ser/Thr
175 YabT^{45 46}. In many cases it is difficult to disentangle these effects, as less active kinases can in
176 principle be less toxic and easier to purify. Finally, *in vitro* assays are time consuming and often
177 require system-specific expertise. Still, to date, this remains the most robust method for pairing
178 the activity of a given kinase with a specific phosphorylated residue on a substrate.

179 Once sites are identified, they can often be further validated *in vivo* using a combination of point
180 mutants (e.g. in the phosphosite) or kinase and phosphatase mutants to infer the connection
181 between a given phenotype and a phosphosite. Often these validations are done using a
182 combination of methods – for example, immunoprecipitation of a potential phosphoprotein,
183 followed by phos-tag gel separation and/or blotting with α -phos-Thr or α -phos-Ser antibodies,
184 or using a phospho-specific stain. Some very recent examples of the success of this workflow
185 include the regulation of quiescence and antibiotic tolerance in *S. aureus* associated with EF-G
186 phosphorylation²⁹, determination of the GpsB phosphosites responsible for cephalosporin
187 resistance in *E. faecalis*⁴⁷, and the phosphosites on the transcriptional regulator CodY that
188 regulate anthrax toxin production in *B. anthracis*⁴⁸.

189 Synthetic peptide target libraries for motif prediction

190 Like their eukaryotic kinase relatives, bacterial Hanks-type kinases can recognize short peptides
191 (~13 amino acids), enabling *in vitro* screening for phosphorylation of libraries of synthesized
192 peptides using a purified kinase (Figure 1(a)). These data can then be used to identify sequence
193 motifs for that specific kinase, or can be used to train a more general computational model, as
194 has been done for related eukaryotic kinases (see for example ⁴⁹). This approach has been used
195 for nine kinases of this class found in *M. tuberculosis* to reveal kinase specific phosphopeptide
196 motifs ³³ in a combined synthetic library *in vitro* kinase assay approach. In this work, a small
197 library (~336) of biotinylated peptides based on sites identified by phosphoproteomics was
198 created. Each peptide in the library was incubated in the presence of radiolabeled ATP with a
199 panel of nine purified kinases. The peptides were then bound to streptavidin coated plates,
200 washed, and assayed for ³³P incorporation. This highly sensitive method found that roughly
201 half the peptides could be phosphorylated to some degree by at least one of the nine kinases,
202 and many peptides could be phosphorylated by most or all of them. A much smaller fraction of
203 the library (~48 substrates) were phosphorylated by only one kinase in this assay, suggesting
204 the identification of a kinase-substrate pair. This dataset was used to computationally predict
205 the preferred substrate motif for the six kinases that were the most active *in vitro*. Interestingly,
206 this strategically designed small library revealed the importance of specific residues on the

207 target phosphopeptides (e.g., large hydrophobic residues at the +3 and +5 positions relative to
208 the phosphosite), demonstrating how strategically designed peptide libraries have the potential
209 to reveal detailed information for bacterial kinase specificity. This approach requires addressing
210 several experimental challenges, including purification of active kinases, optimization of *in vitro*
211 assays, as well as quantitative precision of the readout.

212 Modular synthetic transcription factors and sensors

213 Many of the challenges in the *in vitro* approaches discussed above can be circumvented by *in*
214 *vivo* assays. Extensive interest in measuring kinase activity for related eukaryotic kinases *in vivo*
215 lead to the development of genetically encoded FRET-based biosensors for kinase activity that
216 have single cell resolution⁵⁰. These sensors have a modular design, consisting of a FRET pair of
217 fluorophores, a short phosphorylatable substrate sequence, and a forkhead-associated domain
218 that specifically binds phosphopeptides (Figure 1(b)). Upon phosphorylation of the substrate
219 sequence, a conformational change occurs, resulting in a change in FRET signal. These sensors
220 were successfully used for eukaryotic Ser/Thr kinases such as PKC⁵¹ and Aurora B⁵² among
221 more than 20 others⁵⁰, and their modular nature proved adaptable to the bacterial Hanks-type
222 Ser/Thr kinase PrkC from *B. subtilis*⁵³. This modular design was used to swap the substrate
223 peptide among four variants and observe sequence-specific changes in phosphorylation
224 activity.

225 Prototypical two-component systems have a dedicated response regulator transcription factor.
226 A straightforward way to assay their activity *in vivo* is to express a reporter protein from a
227 promoter that is directly regulated by that transcription factor⁵⁴. In contrast, Hanks-type Ser/Thr
228 kinases are not typically the only regulators of a transcription factor⁵⁵. Therefore, creating a
229 transcriptional reporter for this family of kinases required the design of a synthetic transcription
230 factor. Using the design principles of the bacterial FRET sensor and protein engineering, a
231 modular synthetic transcription factor that specifically responds to PrkC activity in *B. subtilis*
232 was created⁵³. The design of this transcription factor relies on the ability of Hanks-type kinases
233 to phosphorylate short substrate peptides. In this case, the substrate peptides are embedded

234 within LacI, the inhibitor of the *lac* operon (Figure 1(c)). When phosphorylated, these substrates
235 can bind to a phospho-binding domain (FHA2 originally from Rad53⁵¹) and decrease the
236 activity of the engineered LacI, resulting in downstream gene expression. These modular
237 sensors have been used to demonstrate pathway activation by providing a direct and dynamic
238 *in vivo* readout of kinase activity that can be measured in colonies on petri dishes, in bulk liquid
239 cultures, or by microscopy in single cells.

240 As related sensors have been successfully used in many similar eukaryotic systems, it is likely
241 these sensors can be further extended to bacterial systems beyond *B. subtilis* with some
242 optimization. Since the sensitivity of the synthetic transcriptional regulator and the FRET sensor
243 both rely on conformational changes induced by phosphorylation and subsequent binding to a
244 phosphopeptide binding domain, extending the use of these systems to different bacterial
245 species should be initially optimized in the context of controls. This is to minimize off target
246 effects and sensitivity of the sensor to phosphorylation, for example by testing a specific
247 phosphosubstrate choice using kinase and phosphatase mutant genetic backgrounds, or
248 performing *in vitro* or *in vivo* kinase assays. As an additional consideration, the modular
249 phosphopeptide binding domain (FHA2) used in the *B. subtilis* study has been characterized to
250 be partially sensitive to the choice of amino acid in the +3 position relative to the phosphosite⁵⁶.
251 For example, better sensitivity was achieved using an I in the +3 position as a biosensor in both
252 the PrkC study in *B. subtilis*⁵³ and was used for a FRET biosensor for Aurora B activity in
253 eukaryotic cells⁵². After optimization, the modular nature of this sensor and its single-cell
254 sensitivity could allow quantitative measurements of the specificity of a large substrate library,
255 with the high throughput and accuracy required for training machine learning models.

256 **Computational approaches**

257 The availability of large data sets of experimentally verified phosphosites raises the possibility
258 that machine learning approaches could be used to improve the curation and characterization of
259 the phosphoproteome. The questions that can potentially be addressed by these approaches
260 include the prediction that a specific site on a given protein can be substrate for

261 phosphorylation (a phosphosite); the prediction that a site is phosphorylated by a given kinase
262 or kinases; and the quantitative prediction of the likelihood of such events, especially in
263 quantitative comparison with other potential substrates of the same kinase. While several
264 attempts have been made to develop such models, the success of available models is limited.

265 [Available datasets](#)

266 UniProt, the comprehensive resource for protein sequence and data ⁵⁷, aims to include all
267 known post-translational modifications for each protein in the database, including those from
268 bacteria. For each protein in the database, UniProt identifies all known post-translationally
269 modified (PTM) sites as well as the kinases that catalyze their modification, when these are
270 known. For bacterial proteins, however, this information is often partial or outdated.

271 The development of computational approaches to the study of the phosphoproteome benefits
272 from dedicated databases. A plethora of such databases are available for eukaryotic species,
273 organized by species, by kinase families, by experimental method, and more (for a detailed list
274 see ⁵⁸). Broad databases used recently for training large-scale machine-learning models include
275 dbPTM ⁵⁹, PhosphoSitePlus ⁶⁰, and EPSD ⁶¹. These databases provide a comprehensive view of
276 PTM sites by integrating data from multiple other databases. dbPTM includes PTM sites in
277 bacterial proteins, but like UniProt discussed above, these data are often spotty and outdated.

278 To our knowledge, only one database that is focused on prokaryotic phosphorylation sites is
279 actively maintained ⁶². This database, dbPSP, contains almost 20,000 experimentally validated
280 phosphosites from more than 2000 bacterial species. While the site provides reference for the
281 source of information for every identified site, it does not explicitly identify upstream kinases or
282 phosphatases, even when such information is available. This hinders the use of these data for
283 development of models that link substrates with their associated regulators.

284 Since bacterial phosphosites exhibit a high degree of conservation ⁶³ these databases can provide
285 a useful starting point for proteins that have not been experimentally tested if information is
286 available for their homologs in related species. This observation could in principle be used as a

287 prior for computational models, increasing the confidence that a conserved site acts as a
288 phosphosite. However, making the quantitative connection between the degree of conservation
289 and the level of confidence would require detailed experimental data across species for kinase
290 families that is not currently available.

291 Prediction of phosphorylation targets

292 The tasks of identifying phosphosites in a given protein or identifying potential
293 phosphorylation targets of a specific kinase have attracted machine learning approaches for
294 more than two decades. Given the availability and accessibility of large data sets for eukaryotic
295 kinase targets, most of the modeling effort has been focused on eukaryotic kinases (mostly those
296 in mammals and yeast)⁵⁸. Still, some efforts have been made to develop computational tools for
297 predicting phosphorylation targets in bacteria in general⁶⁴⁻⁶⁷ and for the *B. subtilis* Ser/Thr
298 kinase PrkC in particular⁶⁸.

299 Most computational approaches use the sequence around a potential phosphosite to determine
300 the likelihood that it is actively phosphorylated. The hypothesis behind these approaches is that
301 a local signal near the phosphosite is necessary for recognition by the relevant kinase. To predict
302 new phosphosites, the substrate sequences of known phosphosites are used to learn common
303 sequence features that could be responsible for molecular recognition. Next, the sequences of
304 candidate proteins are scanned for sites that distinctively exhibit these features. As described
305 below, models that take this approach differ in the length of the substrate sequence they use, as
306 well as in the use of additional information (such as structural or biochemical information).

307 Other approaches focus on other types of information instead or in addition to the substrate
308 sequence, including evolutionary conservation or patterns of phosphorylation events across
309 tissues and experimental conditions. Examples of such approaches applied to eukaryotic
310 kinases are given below. These approaches, however, require large data sets that are only
311 starting to become available for bacteria.

312 Machine learning and bacterial phosphorylation

313 Sequence-based approaches are typically formulated as classification problems: given a short
314 sequence, the task is to determine whether it represents a phosphosite or not, or alternatively
315 whether it is a substrate for a specific kinase or not (Figure 2). The success of such models can be
316 unequivocally evaluated by measuring their ability to correctly predict phosphosites that were
317 not part of their training data. Different implementations of this concept are distinct in two
318 important ways: the representation of the input sequence, and the specific model used for
319 classification. Beyond the obvious need to decide on the length of the sequence used by the
320 model, models can be presented with the amino-acid sequence alone, or with additional
321 information such as chemical properties of each amino acid, structural features, and more.
322 Among the many models available for classification tasks, two approaches – Support Vector
323 Machines (SVMs) and Random Forests – are particularly popular in the computational biology
324 space, because they both work well with data sets that are not very large (10s or 100s of
325 samples). In addition, the structure of these models sometimes allows identifying what
326 sequence features were recognized by the model as the most informative for classifying them as
327 phosphosites.

328 NetPhosBac, one of the earlier attempts ⁶⁹, used a very small set of 140 MS-verified
329 phosphorylation sites in *E. coli* or *B. subtilis* to train a small neural network, which only used a
330 13 amino-acid substrate (5 amino acids on each side of the phosphosite) as input. This model
331 achieved a very limited success. The same data set was used, a few years later, to develop
332 another machine learning predictor, cPhosBac ⁶⁷. The design of this model around a Support
333 Vector Machine (SVM) was more appropriate for such a small data set and showed a mildly
334 improved performance. A similar approach was taken in an attempt to identify targets of a
335 single kinase, PrkC ⁶⁸. This study used as few as 36 experimentally verified phosphorylation
336 sites as a training set. While cross-validation suggested high performance, it would be
337 reasonable to doubt the generalizable predictive power of this model.

338 Finally, a recent model nicknamed MPSite⁶⁴ used a previous version of the dbPSP database
339 mentioned above to establish a training set of more than 1700 phosphorylation substrates, an
340 order of magnitude more than the data used in previous models. The new idea behind this
341 model, which was built on a Random Forest classifier, was to combine multiple encodings of
342 the 21-amino acid substrate sequences. In addition to the primary sequence, these encodings
343 represent chemical and structural properties. The authors of MPSite showed that the
344 combination of multiple representations significantly improve the performance of the model.
345 This represents the current state of the art, with 81% specificity (the true-negative rate), at 41%
346 and 62% accuracy (the fraction of correct predictions) for Phospho-serine and Phospho-
347 threonine sites, respectively.

348 Lessons from eukaryotic models

349 As mentioned above, considerably more data are available for eukaryotic phosphorylation sites,
350 likely at least partially due to the fact eukaryotic systems were discovered much earlier^{2,8}. These
351 data were used to develop multiple machine learning models. Whether these models were
352 trained on a specific kinase, specific organism, or more comprehensive eukaryotic data, they
353 cannot be used to predict bacterial sites⁶⁹.

354 Many research groups developed computational tools for predicting general or kinase-specific
355 phosphosites^{67,70-74}. Two tools that underwent multiple rounds of revisions and updates
356 represent the current state of the art: KinasePhos⁷⁵ is built around a support vector machine
357 (SVM) trained on 41,421 experimentally verified kinase-specific phosphorylation sites from
358 several animals, two species of yeast, and one plant, while Group-based Prediction System⁷⁶
359 (GPS) integrates a logistic regression and a deep neural network trained on 490,762 sites. Both
360 works take the approach of training a general model for predicting phosphosites, and then
361 retraining specific models for individual kinases. KinasePhos 3.0 and GPS 6.0 include
362 respectively 771 and 44,046 models for different kinases, kinase families, and family groups. On
363 average, the accuracy of these models exceeds 87%, with specific models of better-studied
364 kinases reaching up to 98%. While the updated design of these models include some modern

365 algorithms, what makes them truly powerful is the use very large data sets that allow
366 optimization of feature representation, investigation of the power of different features to inform
367 the model, and development of highly specified models⁷⁵.

368 Recent years saw an enormous advance in the application of deep neural network across
369 biology, including microscopy image processing, protein folding, drug design, and more⁷⁷⁻⁷⁹.
370 These models are data-hungry and work well only when provided with large sets of labeled
371 data. On the other hand, they are insensitive to noise and can handle experimental inaccuracies
372 relatively well. With the large expansion of available data for eukaryotic kinases, several
373 attempts have been made to develop neural network models for the phosphosite identification
374 ^{70, 80}, including the recent incorporation of a deep neural network into the veteran GPS model⁷⁶
375 ⁸¹. These studies report improvement in accuracy in models that are not kinase specific and are
376 therefore built on large data sets. In addition, it has been suggested that the vast amount of data
377 available for well-studied kinases could also be used to identify potential targets of unknown
378 kinases, using an approach known as zero-shot learning⁸².

379 As mentioned above, other approaches for discovery of PTM interactions and phosphosites do
380 not rely on sequence features. For example, a recent study⁸³ combined data that associates
381 kinases with conserved protein domains with protein co-expression data to express the
382 probability that a given protein is regulated by a kinase as a function of the number of its
383 domains known to interact with the kinase and their level of co-expression. Based on the
384 rationale that PTM sites tend to show higher conservation than the sequence of the protein in
385 which they reside⁶³, DAPPLE^{80, 84} predicts the probability that a query site is phosphorylated by
386 sequence comparison with homolog proteins.

387 Using a different type of conservation, a recent study⁸⁵ used phospho-proteomics data that was
388 collected in different tissues or under different conditions to identify proteins that are co-
389 phosphorylated, namely phosphorylated under the same set of conditions. This model then
390 predicts that all proteins co-phosphorylated with a known target of a kinase are also modified
391 by the same kinase. These predictions can be enhanced using knowledge about functional

392 interactions^{86,87}. Notably, these approaches predict that a protein may be modified by a certain
393 kinase, but do not necessarily identify the relevant phosphosite.

394 The success of these models rely on the breadth of data available in the eukaryotic field. As
395 more data emerges from bacterial system, similar techniques may be applicable to bacterial
396 systems. Moreover, advances in transfer learning may allow to pre-train models using data
397 from eukaryotic systems, and adapting the models to bacterial systems by fine-tuning them
398 with smaller sets of experimental data from bacteria.

399 **Outlook**

400 Ever since the first bacterial Hanks-type Ser/Thr signaling pathway was identified in *M. Xanthus*
401³, whole genome sequencing has demonstrated that these evolutionarily ancient pathways are
402 widespread in bacteria. Subsequently, it was discovered that these signaling systems can
403 perform regulation on diverse cellular processes by directly phosphorylation of proteins.
404 Experimentally, this was largely accomplished using a combination of phosphoproteomics and
405 targeted *in vitro* validation of individual phosphosites. Over roughly the last decade, the
406 emergence of several additional experimental advances are poised to enable rapid progress in
407 phosphosite identification. These include technical improvements in bacterial
408 phosphoproteomics, leading to more comprehensive identification of phosphopeptides, and
409 new synthetic approaches using libraries of short peptides *in vitro* enabling precise sequence
410 specific testing of kinase-substrate interactions, and modular transcription factors *in vivo* as a
411 method to demonstrate the effect of substrate sequence on the timing and abundance of
412 phosphorylation. Together these advances have the potential to create much larger and higher
413 quality data sets than were previously available and provide the tools for detailed testing of
414 computational model predictions. However, a lack of uniformity and the limited scope of the
415 data that associates prokaryotic kinases with their respective phosphosite targets hinders the
416 ability to develop robust predictive models.

417 The use of machine learning models for prediction and discovery of kinase phosphosites has
418 increased with the development of high-throughput experimental methods. The increasing
419 success of models focused on eukaryotic kinases suggests that the expansion in data size and
420 diversity will ultimately allow the development of robust models for bacterial kinases. This
421 would require a community effort to create a well-curated, well-labeled, freely accessible
422 database. Such effort should include standardizing data reporting for the field asking for
423 example that experimental results include species, sites, responsible kinase, experimental
424 method, growth condition, etc. In addition, it would be useful to associate each phosphosite
425 with a well-defined quantitative score that indicates the strength of the observed
426 phosphorylation activity at that site. These data could then be used to train models to identify
427 features that distinguish high-occupancy from low-occupancy sites, as well as to distinguish
428 between true low-occupancy sites and experimental noise. Such standardized well-curated
429 databases would be instrumental in enabling bacterial-specific predictive models for kinase-
430 substrate predictions.

431 Despite the incompatibility of models designed for eukaryotic kinases in predicting targets of
432 bacterial Ser/Thr kinases, recent progress in transfer learning opens up the possibility of
433 utilizing these models as a foundation for constructing dedicated models for bacterial kinases.
434 This is particularly attractive since the current data sets from related eukaryotic systems are
435 much larger than the bacterial ones and could therefore facilitate productive use of the much
436 smaller bacterial data sets. To our knowledge, this has not yet been attempted, in part because
437 of the lack of easily accessible well-curated and labeled bacterial data. In addition, lessons
438 learned from multi-dimensional representation of query sequences, which includes structural
439 and biochemical properties in addition to primary sequence, could be incorporated into
440 bacteria-focused models with minimal modification.

441 Many factors influence whether a specific kinase phosphorylates a potential phosphosite. These
442 include externals factors, such as environmental signals and growth conditions, and internal
443 ones, such as the abundance of co-factors and competing targets. The computational approaches
444 discussed here aim to identify all possible phosphosites, realizing that some of them may not be

445 phosphorylated under certain conditions. Moreover, it is possible that some families of targets
446 that are not phosphorylated in the conditions used to train the computational models and will
447 be absent from its predictions. A future challenge is to develop a computational model tasked
448 with predicting the probability that a phosphosite is phosphorylated under given conditions.
449 Developing such models would require detailed characterization of phosphorylation
450 abundance across multiple conditions of different types.

451 Being able to identify and define the regulatory targets of a Hanks-type kinase is an important
452 first step towards several important goals. First, these signaling pathways are involved in
453 regulating cellular growth and survival, and the ability to follow the regulatory dynamics of
454 these targets can expose novel physiological mechanisms. Second, since these pathways have
455 been implicated in antibiotic resistance, knowing the targets involved can help in devising
456 novel strategies to robustly interfere with the emergence of resistance and guide development
457 of synergistic therapies. Finally, kinases have been empirically discovered as potentially
458 efficient drug targets (e.g., *M. tuberculosis* PknB is an essential protein⁸⁸⁻⁹⁰), and the knowledge of
459 their affected targets can reveal mechanisms of action of such drugs. In all these applications,
460 the availability of real-time *in vivo* reporters can be instrumental in uncovering causal
461 interactions and pathway dynamics.

462 Strategic use of new technical advances in experimental techniques, such as improved
463 phosphoproteomics, new *in vivo* techniques using synthetic biology, and cheap library
464 generation and sequencing can therefore enable large strides in our ability to generate
465 predictive machine-learning based models for the targets of bacterial Hanks-type Ser/Thr
466 signaling systems. This will take on particular importance as understanding bacterial
467 physiology becomes increasingly important in industrial and medical applications on
468 undomesticated or poorly genetically tractable strains.

469

470 **Acknowledgments**

471 We thank Jonathan Dworkin for helpful comments. This work was supported by NIH grant
472 R35GM147429 to EAL and by NSF grant MCB1946944 to EL.

473 The authors declare no conflict of interest. Figure 1 was partially created with the aid of
474 Biorender.

475 **Figure and table legends**

476 **Table 1. Summary of current experimental techniques and their respective
477 advantages/disadvantages for building computational models**

478

479 **Figure Legends**

480 **Figure 1. High-throughput and synthetic reporter of kinase activity.** **A)** *in vitro* kinase assays
481 typically involve purified kinases and a purified substrate – either full length protein targets
482 (top), or short synthetic peptides (bottom). **B)** *in vivo* FRET sensors have been adapted from
483 homologous eukaryotic systems and shown to function in bacteria. They rely on the
484 conformational change of the protein sensor induced by a phosphorylated substrate binding to
485 a forkhead-associated domain (FHA2), resulting in loss of efficient fluorescence energy transfer
486 between the two fluorophores (decrease in FRET). **C)** Synthetic transcription factors have been
487 engineered to specifically respond to Hanks-type Ser/Thr kinase activity *in vivo*. The lac
488 repressor (LacI) was translationally fused to a forkhead-associated domain (FHA2) and a
489 phosphorylatable substrate, creating a synthetic transcription factor. Upon phosphorylation of
490 the substrate by a specific kinase, repression of the promoter is reduced, resulting in reporter
491 gene expression.

492

493 **Figure 2. Computational workflow from input data to testable predictions.** Various types of
494 input data from sequencing, experimental determined phosphosites, structural properties,
495 evolutionary conservation, and co-phosphorylation patterns can be used as inputs in a
496 computational model. The model outputs can include (but is not limited to) testable predictions
497 about the presence of a phosphosite, associated kinase, and similarity to related systems.

498

499

500 **References**

501 1. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and
502 deduced phylogeny of the catalytic domains. *Science*. 1988;241(4861):42-52. doi:
503 10.1126/science.3291115. PubMed PMID: 3291115.

504 2. Bakal CJ, Davies JE. No longer an exclusive club: eukaryotic signalling domains in
505 bacteria. *Trends Cell Biol*. 2000;10(1):32-8. doi: 10.1016/s0962-8924(99)01681-5. PubMed PMID:
506 10603474.

507 3. Munoz-Dorado J, Inouye S, Inouye M. A gene encoding a protein serine/threonine
508 kinase is required for normal development of *M. xanthus*, a gram-negative bacterium. *Cell*.
509 1991;67(5):995-1006. doi: 10.1016/0092-8674(91)90372-6. PubMed PMID: 1835671.

510 4. Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in
511 bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. *Genome Res*.
512 1998;8(10):1038-47. doi: 10.1101/gr.8.10.1038. PubMed PMID: 9799791.

513 5. Stancik IA, Sestak MS, Ji B, Axelson-Fisk M, Franjevic D, Jers C, Domazet-Loso T,
514 Mijakovic I. Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a
515 Common Evolutionary Origin Deeply Rooted in the Tree of Life. *J Mol Biol*. 2018;430(1):27-32.
516 Epub 20171111. doi: 10.1016/j.jmb.2017.11.004. PubMed PMID: 29138003.

517 6. Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. *Curr Opin
518 Microbiol*. 2015;24:47-52. Epub 20150124. doi: 10.1016/j.mib.2015.01.005. PubMed PMID:
519 25625314; PMCID: PMC4380854.

520 7. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. *Annu Rev
521 Biochem*. 2000;69:183-215. doi: 10.1146/annurev.biochem.69.1.183. PubMed PMID: 10966457.

522 8. Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases
523 in bacteria. *Microbiol Mol Biol Rev*. 2011;75(1):192-212. doi: 10.1128/MMBR.00042-10. PubMed
524 PMID: 21372323; PMCID: PMC3063355.

525 9. Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by
526 serine/threonine protein kinases. *Trends Microbiol*. 2022;30(6):553-66. Epub 20211124. doi:
527 10.1016/j.tim.2021.11.005. PubMed PMID: 34836791.

528 10. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like
529 serine/threonine kinases in bacterial cell division and morphogenesis. *FEMS Microbiol Rev*.
530 2016;40(1):41-56. Epub 20150930. doi: 10.1093/femsre/fuv041. PubMed PMID: 26429880.

531 11. Mijakovic I, Macek B. Impact of phosphoproteomics on studies of bacterial physiology.
532 FEMS Microbiol Rev. 2012;36(4):877-92. Epub 20111128. doi: 10.1111/j.1574-6976.2011.00314.x.
533 PubMed PMID: 22091997.

534 12. Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I. Protein
535 post-translational modifications in bacteria. Nat Rev Microbiol. 2019;17(11):651-64. Epub
536 20190904. doi: 10.1038/s41579-019-0243-0. PubMed PMID: 31485032.

537 13. Janczarek M, Vinardell JM, Lipa P, Karas M. Hanks-Type Serine/Threonine Protein
538 Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various
539 Environments. Int J Mol Sci. 2018;19(10). Epub 20180921. doi: 10.3390/ijms19102872. PubMed
540 PMID: 30248937; PMCID: PMC6213207.

541 14. Pensinger DA, Schaenzer AJ, Sauer JD. Do Shoot the Messenger: PASTA Kinases as
542 Virulence Determinants and Antibiotic Targets. Trends Microbiol. 2018;26(1):56-69. Epub
543 20170719. doi: 10.1016/j.tim.2017.06.010. PubMed PMID: 28734616; PMCID: PMC5741517.

544 15. Bonne Kohler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of
545 protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett. 2020;594(15):2339-69.
546 Epub 20200617. doi: 10.1002/1873-3468.13797. PubMed PMID: 32337704.

547 16. Macek B, Mijakovic I. Site-specific analysis of bacterial phosphoproteomes. Proteomics.
548 2011;11(15):3002-11. Epub 20110704. doi: 10.1002/pmic.201100012. PubMed PMID: 21726046.

549 17. Richter E, Mostertz J, Hochgrafe F. Proteomic discovery of host kinase signaling in
550 bacterial infections. Proteomics Clin Appl. 2016;10(9-10):994-1010. Epub 20160909. doi:
551 10.1002/prca.201600035. PubMed PMID: 27440122; PMCID: PMC5096009.

552 18. Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes.
553 Microorganisms. 2023;11(4). Epub 20230403. doi: 10.3390/microorganisms11040931. PubMed
554 PMID: 37110354; PMCID: PMC10145908.

555 19. Ravikumar V, Nalpas NC, Anselm V, Krug K, Lenuzzi M, Sestak MS, Domazet-Loso T,
556 Mijakovic I, Macek B. In-depth analysis of *Bacillus subtilis* proteome identifies new ORFs and
557 traces the evolutionary history of modified proteins. Sci Rep. 2018;8(1):17246. Epub 20181122.
558 doi: 10.1038/s41598-018-35589-9. PubMed PMID: 30467398; PMCID: PMC6250715.

559 20. Helbig AO, Heck AJ, Slijper M. Exploring the membrane proteome--challenges and
560 analytical strategies. J Proteomics. 2010;73(5):868-78. Epub 20100121. doi:
561 10.1016/j.jprot.2010.01.005. PubMed PMID: 20096812.

562 21. Gilmore JM, Washburn MP. Advances in shotgun proteomics and the analysis of
563 membrane proteomes. J Proteomics. 2010;73(11):2078-91. Epub 20100823. doi:
564 10.1016/j.jprot.2010.08.005. PubMed PMID: 20797458.

565 22. Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for
566 improving the identification of membrane proteins by mass spectrometry. *Anal Bioanal Chem.*
567 2015;407(17):4893-905. Epub 20150513. doi: 10.1007/s00216-015-8732-0. PubMed PMID: 25967148.

568 23. Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M. The
569 serine/threonine/tyrosine phosphoproteome of the model bacterium *Bacillus subtilis*. *Mol Cell*
570 *Proteomics*. 2007;6(4):697-707. Epub 20070110. doi: 10.1074/mcp.M600464-MCP200. PubMed
571 PMID: 17218307.

572 24. Birk MS, Charpentier E, Frese CK. Automated Phosphopeptide Enrichment for Gram-
573 Positive Bacteria. *J Proteome Res.* 2021;20(10):4886-92. Epub 20210902. doi:
574 10.1021/acs.jproteome.1c00364. PubMed PMID: 34473931; PMCID: PMC8491273.

575 25. Carette X, Platig J, Young DC, Helmel M, Young AT, Wang Z, Potluri LP, Moody CS,
576 Zeng J, Prsic S, Paulson JN, Muntel J, Madduri AVR, Velarde J, Mayfield JA, Locher C, Wang T,
577 Quackenbush J, Rhee KY, Moody DB, Steen H, Husson RN. Multisystem Analysis of
578 *Mycobacterium tuberculosis* Reveals Kinase-Dependent Remodeling of the Pathogen-
579 Environment Interface. *mBio*. 2018;9(2). Epub 20180306. doi: 10.1128/mBio.02333-17. PubMed
580 PMID: 29511081; PMCID: PMC5845002.

581 26. Zeng J, Platig J, Cheng TY, Ahmed S, Skaf Y, Potluri LP, Schwartz D, Steen H, Moody
582 DB, Husson RN. Protein kinases PknA and PknB independently and coordinately regulate
583 essential *Mycobacterium tuberculosis* physiologies and antimicrobial susceptibility. *PLoS*
584 *Pathog.* 2020;16(4):e1008452. Epub 20200407. doi: 10.1371/journal.ppat.1008452. PubMed PMID:
585 32255801; PMCID: PMC7164672.

586 27. Ravikumar V, Shi L, Krug K, Derouiche A, Jers C, Cousin C, Kobir A, Mijakovic I, Macek
587 B. Quantitative phosphoproteome analysis of *Bacillus subtilis* reveals novel substrates of the
588 kinase PrkC and phosphatase PrpC. *Mol Cell Proteomics*. 2014;13(8):1965-78. Epub 20140105.
589 doi: 10.1074/mcp.M113.035949. PubMed PMID: 24390483; PMCID: PMC4125730.

590 28. Prust N, van der Laarse S, van den Toorn HWP, van Sorge NM, Lemeer S. In-Depth
591 Characterization of the *Staphylococcus aureus* Phosphoproteome Reveals New Targets of Stk1.
592 *Mol Cell Proteomics*. 2021;20:100034. Epub 20210111. doi: 10.1074/mcp.RA120.002232. PubMed
593 PMID: 33444734; PMCID: PMC7950182.

594 29. Huemer M, Mairpady Shambat S, Hertegonne S, Bergada-Pijuan J, Chang CC, Pereira S,
595 Gomez-Mejia A, Van Gestel L, Bar J, Vulin C, Pfammatter S, Stinear TP, Monk IR, Dworkin J,
596 Zinkernagel AS. Serine-threonine phosphoregulation by PknB and Stp contributes to quiescence
597 and antibiotic tolerance in *Staphylococcus aureus*. *Sci Signal.* 2023;16(766):eabj8194. Epub
598 20230103. doi: 10.1126/scisignal.abj8194. PubMed PMID: 36595572.

599 30. Kelliher JL, Grunenwald CM, Abrahams RR, Daanen ME, Lew CI, Rose WE, Sauer JD.
600 PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall
601 stress responses, cytosolic survival, and virulence in *Listeria monocytogenes*. *PLoS Pathog.*

602 2021;17(10):e1009881. Epub 20211008. doi: 10.1371/journal.ppat.1009881. PubMed PMID:
603 34624065; PMCID: PMC8528326.

604 31. Ulrych A, Fabrik I, Kupcik R, Vajrychova M, Doubravova L, Branny P. Cell Wall Stress
605 Stimulates the Activity of the Protein Kinase StkP of *Streptococcus pneumoniae*, Leading to
606 Multiple Phosphorylation. *J Mol Biol.* 2021;433(24):167319. Epub 20211021. doi:
607 10.1016/j.jmb.2021.167319. PubMed PMID: 34688688.

608 32. Sultan A, Jers C, Ganief TA, Shi L, Senissar M, Kohler JB, Macek B, Mijakovic I.
609 Phosphoproteome Study of *Escherichia coli* Devoid of Ser/Thr Kinase YeaG During the
610 Metabolic Shift From Glucose to Malate. *Front Microbiol.* 2021;12:657562. Epub 20210406. doi:
611 10.3389/fmicb.2021.657562. PubMed PMID: 33889145; PMCID: PMC8055822.

612 33. Prsic S, Dankwa S, Schwartz D, Chou MF, Locasale JW, Kang CM, Bemis G, Church
613 GM, Steen H, Husson RN. Extensive phosphorylation with overlapping specificity by
614 *Mycobacterium tuberculosis* serine/threonine protein kinases. *Proc Natl Acad Sci U S A.*
615 2010;107(16):7521-6. Epub 20100405. doi: 10.1073/pnas.0913482107. PubMed PMID: 20368441;
616 PMCID: PMC2867705.

617 34. Kobir A, Poncet S, Bidnenko V, Delumeau O, Jers C, Zouhir S, Grenha R, Nessler S,
618 Noirot P, Mijakovic I. Phosphorylation of *Bacillus subtilis* gene regulator AbrB modulates its
619 DNA-binding properties. *Mol Microbiol.* 2014;92(5):1129-41. Epub 20140429. doi:
620 10.1111/mmi.12617. PubMed PMID: 24731262.

621 35. Zhang A, Lebrun R, Espinosa L, Galinier A, Pompeo F. PrkA is an ATP-dependent
622 protease that regulates sporulation in *Bacillus subtilis*. *J Biol Chem.* 2022;298(10):102436. Epub
623 20220828. doi: 10.1016/j.jbc.2022.102436. PubMed PMID: 36041628; PMCID: PMC9512850.

624 36. Garcia-Garcia T, Poncet S, Cuenot E, Douche T, Giai Gianetto Q, Peltier J, Courtin P,
625 Chapot-Chartier MP, Matondo M, Dupuy B, Candela T, Martin-Verstraete I. Ser/Thr Kinase-
626 Dependent Phosphorylation of the Peptidoglycan Hydrolase CwlA Controls Its Export and
627 Modulates Cell Division in *Clostridioides difficile*. *mBio.* 2021;12(3). Epub 20210518. doi:
628 10.1128/mBio.00519-21. PubMed PMID: 34006648; PMCID: PMC8262956.

629 37. Iannetta AA, Minton NE, Uitenbroek AA, Little JL, Stanton CR, Kristich CJ, Hicks LM.
630 IreK-Mediated, Cell Wall-Protective Phosphorylation in *Enterococcus faecalis*. *J Proteome Res.*
631 2021;20(11):5131-44. Epub 20211021. doi: 10.1021/acs.jproteome.1c00635. PubMed PMID:
632 34672600; PMCID: PMC10037947.

633 38. Minton NE, Djoric D, Little J, Kristich CJ. GpsB Promotes PASTA Kinase Signaling and
634 Cephalosporin Resistance in *Enterococcus faecalis*. *J Bacteriol.* 2022;204(10):e0030422. Epub
635 20220912. doi: 10.1128/jb.00304-22. PubMed PMID: 36094306; PMCID: PMC9578390.

636 39. Tang J, Guo M, Chen M, Xu B, Ran T, Wang W, Ma Z, Lin H, Fan H. A link between STK
637 signalling and capsular polysaccharide synthesis in *Streptococcus suis*. *Nat Commun.*

638 2023;14(1):2480. Epub 20230429. doi: 10.1038/s41467-023-38210-4. PubMed PMID: 37120581;
639 PMCID: PMC10148854.

640 40. Kant S, Sun Y, Pancholi V. StkP- and PhpP-Mediated Posttranslational Modifications
641 Modulate the *S. pneumoniae* Metabolism, Polysaccharide Capsule, and Virulence. *Infect*
642 *Immun.* 2023;91(4):e0029622. Epub 20230306. doi: 10.1128/iai.00296-22. PubMed PMID:
643 36877045; PMCID: PMC10112228.

644 41. Gao R, Stock AM. Probing kinase and phosphatase activities of two-component systems
645 in vivo with concentration-dependent phosphorylation profiling. *Proc Natl Acad Sci U S A.*
646 2013;110(2):672-7. Epub 20121224. doi: 10.1073/pnas.1214587110. PubMed PMID: 23267085;
647 PMCID: PMC3545780.

648 42. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. Two-component signal
649 transduction pathways regulating growth and cell cycle progression in a bacterium: a system-
650 level analysis. *PLoS Biol.* 2005;3(10):e334. Epub 20050927. doi: 10.1371/journal.pbio.0030334.
651 PubMed PMID: 16176121; PMCID: PMC1233412.

652 43. Fisher SL, Kim SK, Wanner BL, Walsh CT. Kinetic comparison of the specificity of the
653 vancomycin resistance VanSfor two response regulators, VanR and PhoB. *Biochemistry.*
654 1996;35(15):4732-40. doi: 10.1021/bi9525435. PubMed PMID: 8664263.

655 44. Libby EA, Goss LA, Dworkin J. The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the
656 Essential WalRK Two-Component System in *Bacillus subtilis*. *PLoS Genet.* 2015;11(6):e1005275.
657 Epub 20150623. doi: 10.1371/journal.pgen.1005275. PubMed PMID: 26102633; PMCID:
658 PMC4478028.

659 45. Bidnenko V, Shi L, Kobir A, Ventroux M, Pigeonneau N, Henry C, Trubuil A, Noirot-
660 Gros MF, Mijakovic I. *Bacillus subtilis* serine/threonine protein kinase YabT is involved in spore
661 development via phosphorylation of a bacterial recombinase. *Mol Microbiol.* 2013;88(5):921-35.
662 Epub 20130502. doi: 10.1111/mmi.12233. PubMed PMID: 23634894; PMCID: PMC3708118.

663 46. Shi L, Cavagnino A, Rabefiraisana JL, Lazar N, Li de la Sierra-Gallay I, Ochsenbein F,
664 Valerio-Lepiniec M, Urvoas A, Minard P, Mijakovic I, Nessler S. Structural Analysis of the
665 Hanks-Type Protein Kinase YabT From *Bacillus subtilis* Provides New Insights in its DNA-
666 Dependent Activation. *Front Microbiol.* 2018;9:3014. Epub 20190108. doi:
667 10.3389/fmicb.2018.03014. PubMed PMID: 30671027; PMCID: PMC6333020.

668 47. VanZeeland NE, Schultz KM, Klug CS, Kristich CJ. Multisite Phosphorylation Regulates
669 GpsB Function in Cephalosporin Resistance of *Enterococcus faecalis*. *J Mol Biol.*
670 2023;435(18):168216. Epub 20230728. doi: 10.1016/j.jmb.2023.168216. PubMed PMID: 37517789;
671 PMCID: PMC10528945.

672 48. Gangwal A, Sangwan N, Dhasmana N, Kumar N, Keshavam CC, Singh LK, Bothra A,
673 Goel AK, Pomerantsev AP, Leppla SH, Singh Y. Role of serine/threonine protein phosphatase

674 PrpN in the life cycle of *Bacillus anthracis*. *PLoS Pathog.* 2022;18(8):e1010729. Epub 20220801.
675 doi: 10.1371/journal.ppat.1010729. PubMed PMID: 35913993; PMCID: PMC9371265.

676 49. Hutt JE, Jarrell ET, Chang JD, Abbott DW, Storz P, Toker A, Cantley LC, Turk BE. A
677 rapid method for determining protein kinase phosphorylation specificity. *Nat Methods.*
678 2004;1(1):27-9. doi: 10.1038/nmeth708. PubMed PMID: 15782149.

679 50. Gonzalez-Vera JA, Morris MC. Fluorescent Reporters and Biosensors for Probing the
680 Dynamic Behavior of Protein Kinases. *Proteomes.* 2015;3(4):369-410. Epub 20151104. doi:
681 10.3390/proteomes3040369. PubMed PMID: 28248276; PMCID: PMC5217393.

682 51. Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter
683 reveals oscillatory phosphorylation by protein kinase C. *J Cell Biol.* 2003;161(5):899-909. Epub
684 20030602. doi: 10.1083/jcb.200302125. PubMed PMID: 12782683; PMCID: PMC2172956.

685 52. Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV, Tobelmann P, Brautigan
686 DL, Stukenberg PT, Kapoor TM. Midzone activation of aurora B in anaphase produces an
687 intracellular phosphorylation gradient. *Nature.* 2008;453(7198):1132-6. Epub 20080507. doi:
688 10.1038/nature06923. PubMed PMID: 18463638; PMCID: PMC2724008.

689 53. Zheng CR, Singh A, Libby A, Silver PA, Libby EA. Modular and Single-Cell Sensors of
690 Bacterial Ser/Thr Kinase Activity. *ACS Synth Biol.* 2021;10(9):2340-50. Epub 20210831. doi:
691 10.1021/acssynbio.1c00250. PubMed PMID: 34463482; PMCID: PMC8498941.

692 54. Scharf BE. Summary of useful methods for two-component system research. *Curr Opin
693 Microbiol.* 2010;13(2):246-52. doi: 10.1016/j.mib.2010.01.006. PubMed PMID: 20138001.

694 55. Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine
695 kinases and phosphatases in Gram-positive bacterial pathogens. *Virulence.* 2014;5(8):863-85.
696 doi: 10.4161/21505594.2014.983404. PubMed PMID: 25603430; PMCID: PMC4601284.

697 56. Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ,
698 Yaffe MB. The molecular basis of FHA domain:phosphopeptide binding specificity and
699 implications for phospho-dependent signaling mechanisms. *Mol Cell.* 2000;6(5):1169-82. doi:
700 10.1016/s1097-2765(00)00114-3. PubMed PMID: 11106755.

701 57. UniProt C. UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Res.*
702 2021;49(D1):D480-D9. doi: 10.1093/nar/gkaa1100. PubMed PMID: 33237286; PMCID:
703 PMC7778908.

704 58. Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, Yao X, Ren J. A summary of computational
705 resources for protein phosphorylation. *Curr Protein Pept Sci.* 2010;11(6):485-96. doi:
706 10.2174/138920310791824138. PubMed PMID: 20491621.

707 59. Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, Pang Y, Wang Z, Wang R, Ma R, Yu J, Huang
708 Y, Zhu X, Cheng Q, Feng H, Zhang J, Wang C, Hsu JB, Chang WC, Wei FX, Huang HD, Lee TY.
709 dbPTM in 2022: an updated database for exploring regulatory networks and functional
710 associations of protein post-translational modifications. *Nucleic Acids Res.* 2022;50(D1):D471-
711 D9. doi: 10.1093/nar/gkab1017. PubMed PMID: 34788852; PMCID: PMC8728263.

712 60. Hornbeck PV, Kornhauser JM, Latham V, Murray B, Nandhikonda V, Nord A, Skrzypek
713 E, Wheeler T, Zhang B, Gnad F. 15 years of PhosphoSitePlus(R): integrating post-translationally
714 modified sites, disease variants and isoforms. *Nucleic Acids Res.* 2019;47(D1):D433-D41. doi:
715 10.1093/nar/gky1159. PubMed PMID: 30445427; PMCID: PMC6324072.

716 61. Lin S, Wang C, Zhou J, Shi Y, Ruan C, Tu Y, Yao L, Peng D, Xue Y. EPSD: a well-
717 annotated data resource of protein phosphorylation sites in eukaryotes. *Brief Bioinform.*
718 2021;22(1):298-307. doi: 10.1093/bib/bbz169. PubMed PMID: 32008039.

719 62. Shi Y, Zhang Y, Lin S, Wang C, Zhou J, Peng D, Xue Y. dbPSP 2.0, an updated database
720 of protein phosphorylation sites in prokaryotes. *Sci Data.* 2020;7(1):164. Epub 20200529. doi:
721 10.1038/s41597-020-0506-7. PubMed PMID: 32472030; PMCID: PMC7260176.

722 63. Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M. Phosphoproteome
723 analysis of *E. coli* reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.
724 *Mol Cell Proteomics.* 2008;7(2):299-307. Epub 20071015. doi: 10.1074/mcp.M700311-MCP200.
725 PubMed PMID: 17938405.

726 64. Hasan MM, Rashid MM, Khatun MS, Kurata H. Computational identification of
727 microbial phosphorylation sites by the enhanced characteristics of sequence information. *Sci
728 Rep.* 2019;9(1):8258. Epub 20190604. doi: 10.1038/s41598-019-44548-x. PubMed PMID: 31164681;
729 PMCID: PMC6547684.

730 65. Wang M, Wang T, Wang B, Liu Y, Li A. A Novel Phosphorylation Site-Kinase Network-
731 Based Method for the Accurate Prediction of Kinase-Substrate Relationships. *Biomed Res Int.*
732 2017;2017:1826496. Epub 20171012. doi: 10.1155/2017/1826496. PubMed PMID: 29312990;
733 PMCID: PMC5660750.

734 66. Liu Y, Wang M, Xi J, Luo F, Li A. PTM-ssMP: A Web Server for Predicting Different
735 Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. *Int
736 J Biol Sci.* 2018;14(8):946-56. Epub 20180522. doi: 10.7150/ijbs.24121. PubMed PMID: 29989096;
737 PMCID: PMC6036757.

738 67. Li Z, Wu P, Zhao Y, Liu Z, Zhao W. Prediction of serine/threonine phosphorylation sites
739 in bacteria proteins. *Adv Exp Med Biol.* 2015;827:275-85. doi: 10.1007/978-94-017-9245-5_16.
740 PubMed PMID: 25387970.

741 68. Zhang QB, Yu K, Liu Z, Wang D, Zhao Y, Yin S, Liu Z. Prediction of prkC-mediated
742 protein serine/threonine phosphorylation sites for bacteria. *PLoS One.* 2018;13(10):e0203840.

743 Epub 20181002. doi: 10.1371/journal.pone.0203840. PubMed PMID: 30278050; PMCID:
744 PMC6168130.

745 69. Miller ML, Soufi B, Jers C, Blom N, Macek B, Mijakovic I. NetPhosBac - a predictor for
746 Ser/Thr phosphorylation sites in bacterial proteins. *Proteomics*. 2009;9(1):116-25. doi:
747 10.1002/pmic.200800285. PubMed PMID: 19053140.

748 70. Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, Xu D. MusiteDeep: a deep-learning
749 framework for general and kinase-specific phosphorylation site prediction. *Bioinformatics*.
750 2017;33(24):3909-16. doi: 10.1093/bioinformatics/btx496. PubMed PMID: 29036382; PMCID:
751 PMC5860086.

752 71. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell
753 signaling interactions using short sequence motifs. *Nucleic Acids Res.* 2003;31(13):3635-41. doi:
754 10.1093/nar/gkg584. PubMed PMID: 12824383; PMCID: PMC168990.

755 72. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-
756 translational glycosylation and phosphorylation of proteins from the amino acid sequence.
757 *Proteomics*. 2004;4(6):1633-49. doi: 10.1002/pmic.200300771. PubMed PMID: 15174133.

758 73. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M. PHOSIDA
759 (phosphorylation site database): management, structural and evolutionary investigation, and
760 prediction of phosphosites. *Genome Biol.* 2007;8(11):R250. doi: 10.1186/gb-2007-8-11-r250.
761 PubMed PMID: 18039369; PMCID: PMC2258193.

762 74. Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification
763 database. *Nucleic Acids Res.* 2011;39(Database issue):D253-60. Epub 20101116. doi:
764 10.1093/nar/gkq1159. PubMed PMID: 21081558; PMCID: PMC3013726.

765 75. Ma R, Li S, Li W, Yao L, Huang HD, Lee TY. KinasePhos 3.0: Redesign and expansion of
766 the prediction on kinase-specific phosphorylation sites. *Genomics Proteomics Bioinformatics*.
767 2022. Epub 20220630. doi: 10.1016/j.gpb.2022.06.004. PubMed PMID: 35781048.

768 76. Chen M, Zhang W, Gou Y, Xu D, Wei Y, Liu D, Han C, Huang X, Li C, Ning W, Peng D,
769 Xue Y. GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in
770 proteins. *Nucleic Acids Res.* 2023;51(W1):W243-W50. doi: 10.1093/nar/gkad383. PubMed PMID:
771 37158278; PMCID: PMC10320111.

772 77. Sapoval N, Aghazadeh A, Nute MG, Antunes DA, Balaji A, Baraniuk R, Barberan CJ,
773 Dannenfelser R, Dun C, Edrisi M, Elworth RAL, Kille B, Kyrillidis A, Nakhleh L, Wolfe CR, Yan
774 Z, Yao V, Treangen TJ. Current progress and open challenges for applying deep learning across
775 the biosciences. *Nat Commun.* 2022;13(1):1728. Epub 20220401. doi: 10.1038/s41467-022-29268-7.
776 PubMed PMID: 35365602; PMCID: PMC8976012.

777 78. Eraslan G, Avsec Z, Gagneur J, Theis FJ. Deep learning: new computational modelling
778 techniques for genomics. *Nat Rev Genet.* 2019;20(7):389-403. doi: 10.1038/s41576-019-0122-6.
779 PubMed PMID: 30971806.

780 79. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence
781 to deep learning: machine intelligence approach for drug discovery. *Mol Divers.*
782 2021;25(3):1315-60. Epub 20210412. doi: 10.1007/s11030-021-10217-3. PubMed PMID: 33844136;
783 PMCID: PMC8040371.

784 80. Luo F, Wang M, Liu Y, Zhao XM, Li A. DeepPhos: prediction of protein phosphorylation
785 sites with deep learning. *Bioinformatics.* 2019;35(16):2766-73. doi:
786 10.1093/bioinformatics/bty1051. PubMed PMID: 30601936; PMCID: PMC6691328.

787 81. Lin M, Xiao D, Geddes TA, Burchfield JG, Parker BL, Humphrey SJ, Yang P. SnapKin: a
788 snapshot deep learning ensemble for kinase-substrate prediction from phosphoproteomics data.
789 *bioRxiv.* 2021:2021.02.23.432610. doi: 10.1101/2021.02.23.432610.

790 82. Deznabi I, Arabaci B, Koyuturk M, Tastan O. DeepKinZero: zero-shot learning for
791 predicting kinase-phosphosite associations involving understudied kinases. *Bioinformatics.*
792 2020;36(12):3652-61. doi: 10.1093/bioinformatics/btaa013. PubMed PMID: 32044914; PMCID:
793 PMC7320620.

794 83. Qin GM, Li RY, Zhao XM. PhosD: inferring kinase-substrate interactions based on
795 protein domains. *Bioinformatics.* 2017;33(8):1197-204. doi: 10.1093/bioinformatics/btw792.
796 PubMed PMID: 28031187.

797 84. Trost B, Maleki F, Kusalik A, Napper S. DAPPLE 2: a Tool for the Homology-Based
798 Prediction of Post-Translational Modification Sites. *J Proteome Res.* 2016;15(8):2760-7. Epub
799 20160713. doi: 10.1021/acs.jproteome.6b00304. PubMed PMID: 27367363.

800 85. Ayati M, Wiredja D, Schlatzer D, Maxwell S, Li M, Koyuturk M, Chance MR. CoPhosK:
801 A method for comprehensive kinase substrate annotation using co-phosphorylation analysis.
802 *PLoS Comput Biol.* 2019;15(2):e1006678. Epub 20190227. doi: 10.1371/journal.pcbi.1006678.
803 PubMed PMID: 30811403; PMCID: PMC6411229.

804 86. Yilmaz S, Ayati M, Schlatzer D, Cicek AE, Chance MR, Koyuturk M. Robust inference of
805 kinase activity using functional networks. *Nat Commun.* 2021;12(1):1177. Epub 20210219. doi:
806 10.1038/s41467-021-21211-6. PubMed PMID: 33608514; PMCID: PMC7895941.

807 87. Ayati M, Yilmaz S, Chance MR, Koyuturk M. Functional characterization of co-
808 phosphorylation networks. *Bioinformatics.* 2022;38(15):3785-93. doi:
809 10.1093/bioinformatics/btac406. PubMed PMID: 35731218; PMCID: PMC9344848.

810 88. Chawla Y, Upadhyay S, Khan S, Nagarajan SN, Forti F, Nandicoori VK. Protein kinase B
811 (PknB) of *Mycobacterium tuberculosis* is essential for growth of the pathogen in vitro as well as

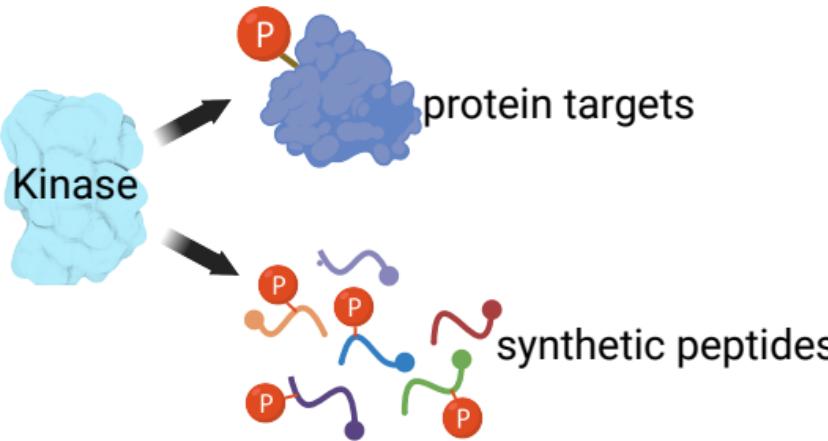
812 for survival within the host. *J Biol Chem.* 2014;289(20):13858-75. Epub 20140404. doi:
813 10.1074/jbc.M114.563536. PubMed PMID: 24706757; PMCID: PMC4022859.

814 89. Fernandez P, Saint-Joanis B, Barilone N, Jackson M, Gicquel B, Cole ST, Alzari PM. The
815 Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. *J Bacteriol.*
816 2006;188(22):7778-84. Epub 20060915. doi: 10.1128/JB.00963-06. PubMed PMID: 16980473;
817 PMCID: PMC1636329.

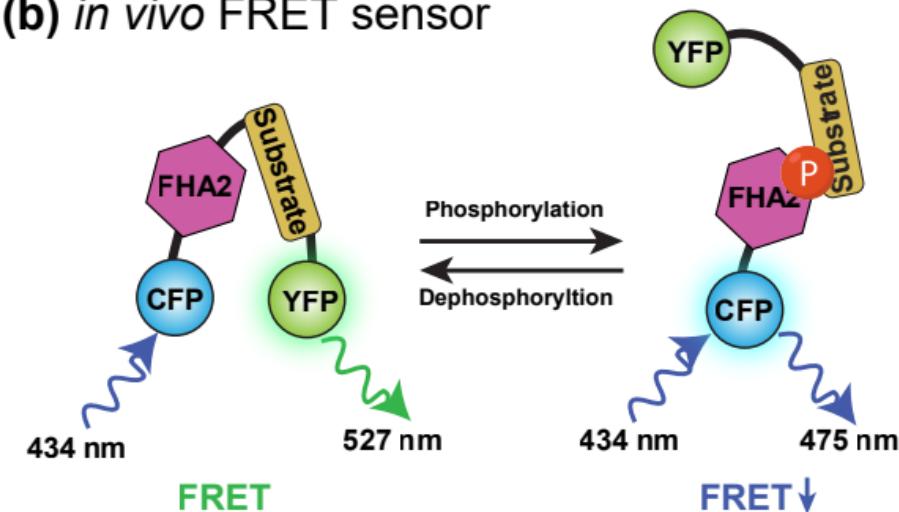
818 90. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by
819 high density mutagenesis. *Mol Microbiol.* 2003;48(1):77-84. doi: 10.1046/j.1365-2958.2003.03425.x.
820 PubMed PMID: 12657046.

821

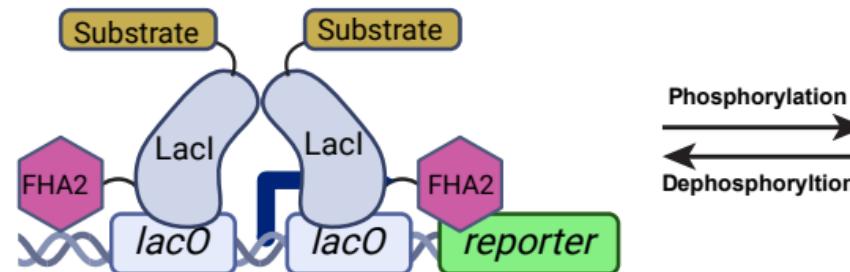
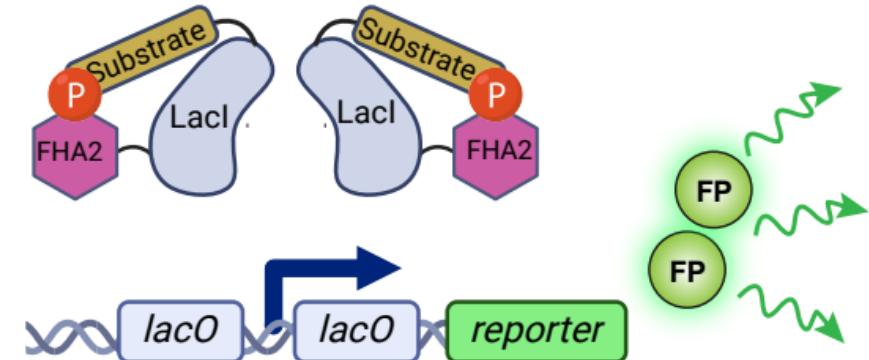
(a) *in vitro* Kinase assays



(b) *in vivo* FRET sensor



(c) *in vivo* synthetic transcription factor



Input: experimental data

Model: machine learning

Results: testable predictions

Primary Sequence

IPEDDEA**T**KAIPIIT

Chemical, Structural Properties

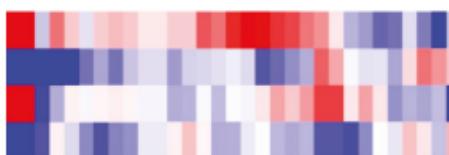
HHPPPPHPPPHHHHHP

====

Evolutionary Conservation

IPED**E**A**T**KAIPIIT

Co-phosphorylation patterns



Support vector
machine (SVM)

Random Forest (RF)

Deep Neural
Network (DNN)

Phosphosite?
(binary classification: yes/no)

Targeted by which kinase?
In what conditions or cell types?
(multi-class classification)

Similar to what other substrates?
(Conservation analysis, few-shot learning)