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Abstract

Bacteria possess diverse classes of signaling systems that they use to sense and respond to their
environments and execute properly timed developmental transitions. One widespread and
evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also
sometimes termed “eukaryotic-like” due to their homology with eukaryotic kinases. In diverse
bacterial species, these signaling systems function as critical regulators of general cellular
processes such as metabolism, growth and division, developmental transitions such as
sporulation, biofilm formation, and virulence, as well antibiotic tolerance. This multifaceted
regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally
modify the activity of multiple proteins, resulting in the coordinated regulation of diverse
cellular pathways. However, in part due to their deep integration with cellular physiology, to
date we have a relatively limited understanding of the timing, regulatory hierarchy, the
complete list of targets of a given kinase, as well as the potential regulatory overlap between the
often multiple kinases present in a single organism. In this review we discuss experimental
methods and curated datasets aimed at elucidating the targets of these signaling pathways, and
approaches for using these datasets to develop computational models for quantitative
predictions of target motifs. We emphasize novel approaches and opportunities for collecting
data suitable for the creation of new predictive computational models applicable to diverse

species.

Introduction

Bacteria use signaling systems to sense and respond to their environment. This enables them to
survive their often-changing environments, execute properly timed developmental transitions
including to virulent states, and survive stress and antibiotic treatment. Among these signaling
systems are the Hanks-type Ser/Thr kinases and phosphatases!, also termed “eukaryotic-like”
(or eSTKs/eSTPs) due to their homology to eukaryotic signaling systems. Compared to
eukaryotic systems that began to be characterized over 60 years ago, prokaryotic systems were

only first identified in the early 1990s% 3. These bacterial kinases are likely evolutionarily ancient,
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sharing a common ancestor with those found in eukarya and archaea*>. These signaling
systems typically consist of a receptor kinase that phosphorylates targets on Ser or Thr residues
and a partner phosphatase that provides reversible regulation through dephosphorylation®.
Unlike other phosphorylation-based signaling systems such as bacterial two-component
systems, in which the kinase generally regulates cellular physiology through a dedicated
transcription factor (response regulator)’, the Hanks-type bacterial Ser/Thr kinases can regulate
cellular physiology more broadly through direct phosphorylation of diverse classes of proteins®.
These target proteins are not limited to transcription factors, and often include other types of
proteins such as enzymes in central metabolism, translation factors, enzymatic pathways, and
structural components, in addition to cross regulation of other signaling pathways ¢°. In
contrast to Asp phosphorylation in two-component systems, Ser/Thr phosphorylation is
relatively stable, with a typically significantly longer half-life”. Like their homologs in
eukaryotes, prokaryotic Hanks-type Ser/Thr signaling systems also use a separate phosphatase

(sometimes termed eukaryotic-like phosphatases or eSTPs) to provide reversible regulation®.

Because of their ability to regulate multiple pathways concurrently, in many bacterial species
Hanks-type Ser/Thr signaling can be essential and appears to function as a kind of “master
regulator” for coordinating cell growth and division, metabolism, development, and stress
resistance #1013, In several species, including clinically important pathogens, this class of kinases
is known to be essential and/or regulate antibiotic resistance, making these pathways an

attractive drug target!* 1°,

As the targets of these systems are diverse and demonstrably often critical for cellular
physiology, there has been considerable interest in attempting to identify, characterize, and
predict the regulatory targets of every known kinase. Experimental methods developed for this
aim, while rapidly improving, are often highly labor intensive, especially since the list of targets
can be highly growth state specific. It is therefore highly warranted to develop computational
models for predicting putative targets and their properties directly from genome sequence data.
Critically, such models perform the best when built on large-scale high-quality training data

from robust experimental results. In this review, we will discuss the current availability of such
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experimental data sets and computational models, and highlight the types of data and models

that can have a significant impact on our understanding of these signaling pathways.

In order to train a computational model to predict the targets of a specific kinase, it is necessary
to have significant amounts of robust experimental data on its precise phosphorylation sites.
However, to date comprehensively identifying diverse phosphosites in bacteria and correctly
matching them with the appropriate pathway has been challenging. The optimal scenario
would include a robust method to activate the signaling pathway coupled with a reliable
readout of target activation in live cells. Such methods, however, are not typically available. As
discussed in this review, a multitude of experimental techniques have been used to date in
diverse species, including phosphoproteomics, in vitro kinase assays, genetics, peptide libraries,
and synthetic transcription factors (Table 1). In principle, combining these experimental
methods with new computational techniques could enable a deeper understanding of bacterial
physiology, including in understudied and non-domesticated species, aid in the development of
new antibiotics, as well as develop new regulatory pathways for synthetic biology or industrial

applications.

Experimental approaches

Phosphoproteomics

Given the diverse classes of possible regulatory targets of Hanks-type Ser/Thr kinases, whole
proteome screening for phosphosites has the potential to identify lists of putative target sites
that can then be matched with the appropriate pathway. Furthermore, the relative stability of
Ser/Thr phosphorylation (compared to His/Asp) makes them particularly suitable for
phosphoproteomics. In this technique, bacterial cultures are lysed, and proteins are digested
into peptide fragments (e.g., with trypsin). This is followed by a phosphopeptide enrichment
step to increase the relative proportion of phosphorylated peptides. The resulting peptides are
then analyzed by mass spectrometry to identify mass shifts consistent with phosphorylation?.

This method identifies phosphorylated peptides, regardless of mechanism. However, since
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Hanks-type Ser/Thr kinases are widespread and often abundant in bacterial genomes and have
many putative targets, it is reasonable to assume that a significant (or even predominant)
fraction of the phosphosites identified by phosphoproteomics can be attributed to the Hanks-
type signaling pathways !*. Indeed this has been successful in identifying many possible
phosphosites and pathways of interest in diverse organisms ranging from model organisms
such as Bacillus subtilis and Escherichia coli to clinically relevant pathogens such as Mycobacterium
tuberculosis, Acinetobacter baumannii, Clostridium difficile, Staphylococcus aureus, Streptococcus
pyogenes, Listeria monocytogenes, Bordetella pertussis, Streptococcus pneumoniae among many
others, and as reviewed in 7 8. Across bacterial species, certain pathways and proteins tend to
appear consistently in all data sets, including for example translation factors, enzymes involved

in central metabolism and cell wall synthesis, as well as virulence factors.

With good reason, bacterial phosphoproteomics is believed to suffer from poor coverage of the
proteome. In many studies, a significant fraction of the proteome is not detected, which is a
prerequisite to detecting a phosphopeptide at likely even lower abundance’. Therefore, the
inability to detect a specific phosphosite may be due to many factors, including issues of protein
abundance and stability, lack of proper pathway activation, as well as intrinsic physical and
chemical differences between peptides causing them to ionize unequally or degrade. Although
the size of the phosphoproteome is not known, close examination of the proteomic data sets
suggests that many proteins and their possible corresponding phosphosites are not being
identified. For example, it is clear that membrane proteins are currently unrepresented in the
data sets, which can be at least partially attributable to technical challenges around mass
spectrometry compatible solubilization 222, Recently, advances in phosphoproteomics have
strongly increased the sensitivity and depth of these data sets, resulting in large increases in the
number of phosphosites identified across many bacterial species. For example, whereas early
studies on B. subtilis identified ~103 phosphorylation sites on ~78 proteins », approximately 10
years later studies in the same bacterium identified ~1085 phosphorylations on ~488 proteins %,
providing much larger data sets. In other organisms, improvements in phosphopeptide

enrichment have been shown to increase the number of phosphopeptides identified two to four-
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fold for S. pyogenes and L. monocytogenes, resulting in approximately ~400 phosphorylated

proteins per organism .

While phosphoproteomics can broadly identify phosphorylation sites, it does not in isolation
directly identify the kinase or kinases responsible. To implicate a specific kinase with the
phosphorylation of potential phosphosites several studies have used kinase and phosphatase
mutants, kinase depletion strains, or specific kinase inhibitors to look for changes in the relative
abundance of identified sites using phosphoproteomics. For some recent examples in various
organisms see M. tuberculosis® 2, B. subtilis 7, S. aureus 2% L. monocytogenes *, S. pneumoniae®,
and E. coli 32 . While this method does not rule out indirect interactions, it does help narrow the

possible targets of interest and specific pathways for further study 3234,

Phosphoproteomics is the only experimental approach that generates large-scale data sets,
which are essential for training modern machine-learning models. Even without attribution to a
specific pathway, experimentally confirmed phosphosites can help to pre-train a model or to
tind effective ways to mathematically represent phosphosites sequences. The improvement in
quality and sensitivity of phosphoproteomics techniques is therefore conducive of developing

better machine-learning models.

In vitro kinase assays

The gold standard approach to validating a matched kinase-substrate interaction is the in vitro
kinase assay. In its simplest form, a purified kinase and a substrate are incubated together in the
presence of ATP and magnesium to allow phosphotransfer to occur. Often these reactions are
directly detected using gamma-*2P (or 3P) ATP, phosphoprotein separation using Phos-tag gels,
or less commonly, phospho-specific antibodies (a-phos-Thr or a-phos-Ser) or stains. There are
some important advantages to in vitro kinase assays. Due to the use of purified components, the
reactions can be used to determine specific residues that are phosphorylated on both the kinase
(autophosphorylation) and on the substrate when combined with downstream mass
spectrometry. Since the substrates are purified, this also often results in much higher coverage

of the protein by mass spectrometry, aiding identification of phosphosites. This workflow has
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been used successfully to identify specific target residues in a large variety of organisms. Some
very recent examples include the identification of the phosphorylation sites responsible for the
regulation of the protease PrkA by PrkC in B. subtilis %, phosphorylation sites on the
peptidoglycan hydrolase CwlA by PrkC in C. difficile 3, phosphorylation of GpsB by IreK in E.
faecalis®” 8, and the regulation of capsular polysaccharides in Streptococcus suis through Stk1
phosphorylation of CcpS* and in S. pneumoniae through StkP phosphorylation of CcpA* .
Importantly, this method also allows for the matching of a specific phosphosite on a substrate
with the activity of a specific kinase. Although this method is well known to be potentially
prone to false positives due to unphysical interaction times or stoichiometries, there are ways to
minimize this concern with time dependent concentration titrations, for example as was done
systematically for the PhoB/PhoR TCS system #!. Limiting reaction times has also been used to
identify histidine kinase — response regulator specificity in TCS systems*> %, a technique that has
been successfully used to reveal the specificity of the interaction between the Hanks-type
Ser/Thr kinase PrkC and the response regulator WalR # in B. subtilis . This study demonstrated
specificity for WalR by PrkC even among response regulators with highly conserved amino acid

sequences around the phosphosite.

Although this method can produce the most precise and detailed results, it is important to note
that there are some inherent challenges in attempting high-throughput in vitro kinase assays.
One of the main challenges is the reliable expression and purification of an active Hanks-type
kinase, as expression of these kinases can be highly toxic or difficult to purify in standard
expression systems such as E. coli. This was encountered in a systematic attempt to purify all
known Hanks-type kinases from M. tuberculosis®®. Additionally, in vitro assays often use only the
catalytic domain of the kinase, discarding its extracellular and transmembrane domains. This
can strongly impact kinase activity, as seen for example with the B. subtilis kinase Ser/Thr
YabT* “. In many cases it is difficult to disentangle these effects, as less active kinases can in
principle be less toxic and easier to purify. Finally, in vitro assays are time consuming and often
require system-specific expertise. Still, to date, this remains the most robust method for pairing

the activity of a given kinase with a specific phosphorylated residue on a substrate.
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Once sites are identified, they can often be further validated in vivo using a combination of point
mutants (e.g. in the phosphosite) or kinase and phoshphatase mutants to infer the connection
between a given phenotype and a phosphosite. Often these validations are done using a
combination of methods — for example, immunoprecipitation of a potential phosphoprotein,
followed by phos-tag gel separation and/or blotting with a-phos-Thr or a-phos-Ser antibodies,
or using a phospho-specific stain. Some very recent examples of the success of this workflow
include the regulation of quiescence and antibiotic tolerance in S. aureus associated with EF-G
phosphorylation?, determination of the GpsB phosphosites responsible for cephalosporin
resistance in E. faecalis¥’, and the phosphosites on the transcriptional regulator CodY that

regulate anthrax toxin production in B. anthracis*.

Synthetic peptide target libraries for motif prediction

Like their eukaryotic kinase relatives, bacterial Hanks-type kinases can recognize short peptides
(~13 amino acids), enabling in vitro screening for phosphorylation of libraries of synthesized
peptides using a purified kinase (Figure 1(a)). These data can then be used to identify sequence
motifs for that specific kinase, or can be used to train a more general computational model, as
has been done for related eukaryotic kinases (see for example #°). This approach has been used
for nine kinases of this class found in M. tuberculosis to reveal kinase specific phosphopeptide
motifs ¥ in a combined synthetic library in vitro kinase assay approach. In this work, a small
library (~336) of biotinylated peptides based on sites identified by phosphoproteomics was
created. Each peptide in the library was incubated in the presence of radiolabeled ATP with a
panel of nine purified kinases. The peptides were then bound to streptavidin coated plates,
washed, and assayed for *P incorporation. This highly sensitive method found that roughly
half the peptides could be phosphorylated to some degree by at least one of the nine kinases,
and many peptides could be phosphorylated by most or all of them. A much smaller fraction of
the library (~48 substrates) were phosphorylated by only one kinase in this assay, suggesting
the identification of a kinase-substrate pair. This dataset was used to computationally predict
the preferred substrate motif for the six kinases that were the most active in vitro. Interestingly,

this strategically designed small library revealed the importance of specific residues on the
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target phosphopeptides (e.g., large hydrophobic residues at the +3 and +5 positions relative to

the phosphosite), demonstrating how strategically designed peptide libraries have the potential
to reveal detailed information for bacterial kinase specificity. This approach requires addressing
several experimental challenges, including purification of active kinases, optimization of in vitro

assays, as well as quantitative precision of the readout.

Modular synthetic transcription factors and sensors

Many of the challenges in the in vitro approaches discussed above can be circumvented by in
vivo assays. Extensive interest in measuring kinase activity for related eukaryotic kinases in vivo
lead to the development of genetically encoded FRET-based biosensors for kinase activity that
have single cell resolution *. These sensors have a modular design, consisting of a FRET pair of
fluorophores, a short phosphorylatable substrate sequence, and a forkhead-associated domain
that specifically binds phosphopeptides (Figure 1(b)). Upon phosphorylation of the substrate
sequence, a conformational change occurs, resulting in a change in FRET signal. These sensors
were successfully used for eukaryotic Ser/Thr kinases such as PKC®! and Aurora B > among
more than 20 others®, and their modular nature proved adaptable to the bacterial Hanks-type
Ser/Thr kinase PrkC from B. subtilis 5. This modular design was used to swap the substrate
peptide among four variants and observe sequence-specific changes in phosphorylation

activity.

Prototypical two-component systems have a dedicated response regulator transcription factor.
A straightforward way to assay their activity in vivo is to express a reporter protein from a
promoter that is directly regulated by that transcription factor®. In contrast, Hanks-type Ser/Thr
kinases are not typically the only regulators of a transcription factor®. Therefore, creating a
transcriptional reporter for this family of kinases required the design of a synthetic transcription
factor. Using the design principles of the bacterial FRET sensor and protein engineering, a
modular synthetic transcription factor that specifically responds to PrkC activity in B. subtilis
was created . The design of this transcription factor relies on the ability of Hanks-type kinases

to phosphorylate short substrate peptides. In this case, the substrate peptides are embedded
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within Lacl, the inhibitor of the lac operon (Figure 1(c)). When phosphorylated, these substrates
can bind to a phospho-binding domain (FHA2 originally from Rad53°!) and decrease the
activity of the engineered Lacl, resulting in downstream gene expression. These modular
sensors have been used to demonstrate pathway activation by providing a direct and dynamic
in vivo readout of kinase activity that can be measured in colonies on petri dishes, in bulk liquid

cultures, or by microscopy in single cells.

As related sensors have been successfully used in many similar eukaryotic systems, it is likely
these sensors can be further extended to bacterial systems beyond B. subtilis with some
optimization. Since the sensitivity of the synthetic transcriptional regulator and the FRET sensor
both rely on conformational changes induced by phosphorylation and subsequent binding to a
phosphopeptide binding domain, extending the use of these systems to different bacterial
species should be initially optimized in the context of controls. This is to minimize off target
effects and sensitivity of the sensor to phosphorylation, for example by testing a specific
phosphosubstrate choice using kinase and phosphatase mutant genetic backgrounds, or
performing in vitro or in vivo kinase assays. As an additional consideration, the modular
phosphopeptide binding domain (FHA2) used in the B. subtilis study has been characterized to
be partially sensitive to the choice of amino acid in the +3 position relative to the phosphosite®.
For example, better sensitivity was achieved using an I in the +3 position as a biosensor in both
the PrkC study in B. subtilis®®* and was used for a FRET biosensor for Aurora B activity in
eukaryotic cells®2. After optimization, the modular nature of this sensor and its single-cell
sensitivity could allow quantitative measurements of the specificity of a large substrate library,

with the high throughput and accuracy required for training machine learning models.

Computational approaches

The availability of large data sets of experimentally verified phosphosites raises the possibility
that machine learning approaches could be used to improve the curation and characterization of
the phosphoproteome. The questions that can potentially be addressed by these approaches

include the prediction that a specific site on a given protein can be substrate for

10



261  phosphorylation (a phosphosite); the prediction that a site is phosphorylated by a given kinase
262  or kinases; and the quantitative prediction of the likelihood of such events, especially in
263  quantitative comparison with other potential substrates of the same kinase. While several

264  attempts have been made to develop such models, the success of available models is limited.

265 Available datasets

266  UniProt, the comprehensive resource for protein sequence and data %, aims to include all

267  known post-translational modifications for each protein in the database, including those from
268  bacteria. For each protein in the database, UniProt identifies all known post-translationally
269  modified (PTM) sites as well as the kinases that catalyze their modification, when these are

270  known. For bacterial proteins, however, this information is often partial or outdated.

271 The development of computational approaches to the study of the posphoproteome benefits
272 from dedicated databases. A plethora of such databases are available for eukaryotic species,
273  organized by species, by kinase families, by experimental method, and more (for a detailed list
274  see *®). Broad databases used recently for training large-scale machine-learning models include
275  dbPTM %, PhosphoSitePlus ©, and EPSD .. These databases provide a comprehensive view of
276  PTM sites by integrating data from multiple other databases. dbPTM includes PTM sites in

277  bacterial proteins, but like UniProt discussed above, these data are often spotty and outdated.

278  To our knowledge, only one database that is focused on prokaryotic phosphorylation sites is
279  actively maintained ¢2. This database, dbPSP, contains almost 20,000 experimentally validated
280  phosphosites from more than 2000 bacterial species. While the site provides reference for the
281  source of information for every identified site, it does not explicitly identify upstream kinases or
282  phosphatases, even when such information is available. This hinders the use of these data for

283  development of models that link substrates with their associated regulators.

284  Since bacterial phosphosites exhibit a high degree of conservation ¢ these databases can provide
285  auseful starting point for proteins that have not been experimentally tested if information is

286  available for their homologs in related species. This observation could in principle be used as a
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prior for computational models, increasing the confidence that a conserved site acts as a
phosphosite. However, making the quantitative connection between the degree of conservation
and the level of confidence would require detailed experimental data across species for kinase

tamilies that is not currently available.

Prediction of phosphorylation targets

The tasks of identifying phosphosites in a given protein or identifying potential
phosphorylation targets of a specific kinase have attracted machine learning approaches for
more than two decades. Given the availability and accessibility of large data sets for eukaryotic
kinase targets, most of the modeling effort has been focused on eukaryotic kinases (mostly those
in mammals and yeast) . Still, some efforts have been made to develop computational tools for
predicting phosphorylation targets in bacteria in general 7 and for the B. subtilis Ser/Thr

kinase PrkC in particular .

Most computational approaches use the sequence around a potential phosphosite to determine
the likelihood that it is actively phosphorylated. The hypothesis behind these approaches is that
a local signal near the phosphosite is necessary for recognition by the relevant kinase. To predict
new phosphosites, the substrate sequences of known phosphosites are used to learn common
sequence features that could be responsible for molecular recognition. Next, the sequences of
candidate proteins are scanned for sites that distinctively exhibit these features. As described
below, models that take this approach differ in the length of the substrate sequence they use, as

well as in the use of additional information (such as structural or biochemical information).

Other approaches focus on other types of information instead or in addition to the substrate
sequence, including evolutionary conservation or patterns of phosphorylation events across
tissues and experimental conditions. Examples of such approaches applied to eukaryotic
kinases are given below. These approaches, however, require large data sets that are only

starting to become available for bacteria.
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Machine learning and bacterial phosphorylation

Sequence-based approaches are typically formulated as classification problems: given a short
sequence, the task is to determine whether it represents a phosphosite or not, or alternatively
whether it is a substrate for a specific kinase or not (Figure 2). The success of such models can be
unequivocally evaluated by measuring their ability to correctly predict phosphosites that were
not part of their training data. Different implementations of this concept are distinct in two
important ways: the representation of the input sequence, and the specific model used for
classification. Beyond the obvious need to decide on the length of the sequence used by the
model, models can be presented with the amino-acid sequence alone, or with additional
information such as chemical properties of each amino acid, structural features, and more.
Among the many models available for classification tasks, two approaches — Support Vector
Machines (5VMs) and Random Forests — are particularly popular in the computational biology
space, because they both work well with data sets that are not very large (10s or 100s of
samples). In addition, the structure of these models sometimes allows identifying what
sequence features were recognized by the model as the most informative for classifying them as

phosphosites.

NetPhosBac, one of the earlier attempts ¢, used a very small set of 140 MS-verified
phosphorylation sites in E. coli or B. subtilis to train a small neural network, which only used a
13 amino-acid substrate (5 amino acids on each side of the phosphosite) as input. This model
achieved a very limited success. The same data set was used, a few years later, to develop
another machine learning predictor, cPhosBac . The design of this model around a Support
Vector Machine (SVM) was more appropriate for such a small data set and showed a mildly
improved performance. A similar approach was taken in an attempt to identify targets of a
single kinase, PrkC . This study used as few as 36 experimentally verified phosphorylation
sites as a training set. While cross-validation suggested high performance, it would be

reasonable to doubt the generalizable predictive power of this model.
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Finally, a recent model nicknamed MPSite* used a previous version of the dbPSP database
mentioned above to establish a training set of more than 1700 phosphorylation substrates, an
order of magnitude more than the data used in previous models. The new idea behind this
model, which was built on a Random Forest classifier, was to combine multiple encodings of
the 21-amino acid substrate sequences. In addition to the primary sequence, these encodings
represent chemical and structural properties. The authors of MPSite showed that the
combination of multiple representations significantly improve the performance of the model.
This represents the current state of the art, with 81% specificity (the true-negative rate), at 41%
and 62% accuracy (the fraction of correct predictions) for Phospho-serine and Phospho-

threonine sites, respectively.

Lessons from eukaryotic models

As mentioned above, considerably more data are available for eukaryotic phosphorylation sites,
likely at least partially due to the fact eukaryotic systems were discovered much earlier? 8. These
data were used to develop multiple machine learning models. Whether these models were
trained on a specific kinase, specific organism, or more comprehensive eukaryotic data, they

cannot be used to predict bacterial sites .

Many research groups developed computational tools for predicting general or kinase-specific
phosphosites ¢ 7074, Two tools that underwent multiple rounds of revisions and updates
represent the current state of the art: KinasePhos” is built around a support vector machine
(SVM) trained on 41,421 experimentally verified kinase-specific phosphorylation sites from
several animals, two species of yeast, and one plant, while Group-based Prediction System 7
(GPS) integrates a logistic regression and a deep neural network trained on 490,762 sites. Both
works take the approach of training a general model for predicting phosphosites, and then
retraining specific models for individual kinases. KinasePhos 3.0 and GPS 6.0 include
respectively 771 and 44,046 models for different kinases, kinase families, and family groups. On
average, the accuracy of these models exceeds 87%, with specific models of better-studied

kinases reaching up to 98%. While the updated design of these models include some modern
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algorithms, what makes them truly powerful is the use very large data sets that allow
optimization of feature representation, investigation of the power of different features to inform

the model, and development of highly specified models 7.

Recent years saw an enormous advance in the application of deep neural network across
biology, including microscopy image processing, protein folding, drug design, and more” 7.
These models are data-hungry and work well only when provided with large sets of labeled
data. On the other hand, they are insensitive to noise and can handle experimental inaccuracies
relatively well. With the large expansion of available data for eukaryotic kinases, several
attempts have been made to develop neural network models for the phosphosite identification
70.80, including the recent incorporation of a deep neural network into the veteran GPS model”
81, These studies report improvement in accuracy in models that are not kinase specific and are
therefore built on large data sets. In addition, it has been suggested that the vast amount of data
available for well-studied kinases could also be used to identify potential targets of unknown

kinases, using an approach known as zero-shot learning .

As mentioned above, other approaches for discovery of PTM interactions and phosphosites do
not rely on sequence features. For example, a recent study % combined data that associates
kinases with conserved protein domains with protein co-expression data to express the
probability that a given protein is regulated by a kinase as a function of the number of its
domains known to interact with the kinase and their level of co-expression. Based on the
rationale that PTM sites tend to show higher conservation than the sequence of the protein in
which they reside %, DAPPLE 834 predicts the probability that a query site is phosphorylated by

sequence comparison with homolog proteins.

Using a different type of conservation, a recent study % used phospho-proteomics data that was
collected in different tissues or under different conditions to identify proteins that are co-
phosphorylated, namely phosphorylated under the same set of conditions. This model then
predicts that all proteins co-phosphorylated with a known target of a kinase are also modified

by the same kinase. These predictions can be enhanced using knowledge about functional
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392  interactions % %. Notably, these approaches predict that a protein may be modified by a certain

393  kinase, but do not necessarily identify the relevant phosphosite.

394  The success of these models rely on the breadth of data available in the eukaryotic field. As
395 more data emerges from bacterial system, similar techniques may be applicable to bacterial
396  systems. Moreover, advances in transfer learning may allow to pre-train models using data
397  from eukaryotic systems, and adapting the models to bacterial systems by fine-tuning them

398  with smaller sets of experimental data from bacteria.

399  Outlook

400  Ever since the first bacterial Hanks-type Ser/Thr signaling pathway was identified in M. Xanthus
401 3, whole genome sequencing has demonstrated that these evolutionarily ancient pathways are
402  widespread in bacteria. Subsequently, it was discovered that these signaling systems can

403  perform regulation on diverse cellular processes by directly phosphorylation of proteins.

404  Experimentally, this was largely accomplished using a combination of phosphoproteomics and
405  targeted in vitro validation of individual phosphosites. Over roughly the last decade, the

406  emergence of several additional experimental advances are poised to enable rapid progress in
407  phosphosite identification. These include technical improvements in bacterial

408  phosphoproteomics, leading to more comprehensive identification of phosphopeptides, and
409  new synthetic approaches using libraries of short peptides in vitro enabling precise sequence
410  specific testing of kinase-substrate interactions, and modular transcription factors in vivo as a
411  method to demonstrate the effect of substrate sequence on the timing and abundance of

412 phosphorylation. Together these advances have the potential to create much larger and higher
413  quality data sets than were previously available and provide the tools for detailed testing of
414  computational model predictions. However, a lack of uniformity and the limited scope of the
415  data that associates prokaryotic kinases with their respective phosphosite targets hinders the

416  ability to develop robust predictive models.
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417  The use of machine learning models for prediction and discovery of kinase phosphosites has
418  increased with the development of high-throughput experimental methods. The increasing
419  success of models focused on eukaryotic kinases suggests that the expansion in data size and
420  diversity will ultimately allow the development of robust models for bacterial kinases. This
421  would require a community effort to create a well-curated, well-labeled, freely accessible

422  database. Such effort should include standardizing data reporting for the field asking for

423  example that experimental results include species, sites, responsible kinase, experimental
424  method, growth condition, etc. In addition, it would be useful to associate each phosphosite
425  with a well-defined quantitative score that indicates the strength of the observed

426  phosphitylation activity at that site. These data could then be used to train models to identify
427  features that distinguish high-occupancy from low-occupancy sites, as well as to distinguish
428  between true low-occupancy sites and experimental noise. Such standardized well-curated
429  databases would be instrumental in enabling bacterial-specific predictive models for kinase-

430  substrate predictions.

431  Despite the incompatibility of models designed for eukaryotic kinases in predicting targets of
432 bacterial Ser/Thr kinases, recent progress in transfer learning opens up the possibility of

433 utilizing these models as a foundation for constructing dedicated models for bacterial kinases.
434  This is particularly attractive since the current data sets from related eukaryotic systems are
435  much larger than the bacterial ones and could therefore facilitate productive use of the much
436  smaller bacterial data sets. To our knowledge, this has not yet been attempted, in part because
437  of the lack of easily accessible well-curated and labeled bacterial data. In addition, lessons

438  learned from multi-dimensional representation of query sequences, which includes structural
439  and biochemical properties in addition to primary sequence, could be incorporated into

440  bacteria-focused models with minimal modification.

441  Many factors influence whether a specific kinase phosphorylates a potential phosphosite. These
442  include externals factors, such as environmental signals and growth conditions, and internal
443 ones, such as the abundance of co-factors and competing targets. The computational approaches

444  discussed here aim to identify all possible phosphosites, realizing that some of them may not be
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phosphorylated under certain conditions. Moreover, it is possible that some families of targets
that are not phosphorylated in the conditions used to train the computational models and will
be absent from its predictions. A future challenge is to develop a computational model tasked
with predicting the probability that a phosphosite is phosphorylated under given conditions.
Developing such models would require detailed characterization of phosphorylation

abundance across multiple conditions of different types.

Being able to identify and define the regulatory targets of a Hanks-type kinase is an important
tirst step towards several important goals. First, these signaling pathways are involved in
regulating cellular growth and survival, and the ability to follow the regulatory dynamics of
these targets can expose novel physiological mechanisms. Second, since these pathways have
been implicated in antibiotic resistance, knowing the targets involved can help in devising
novel strategies to robustly interfere with the emergence of resistance and guide development

of synergistic therapies. Finally, kinases have been empirically discovered as potentially

efficient drug targets (e.g., M. tuberculosis PknB is an essential protein®-°), and the knowledge of

their affected targets can reveal mechanisms of action of such drugs. In all these applications,
the availability of real-time in vivo reporters can be instrumental in uncovering causal

interactions and pathway dynamics.

Strategic use of new technical advances in experimental techniques, such as improved
phosphoproteomics, new in vivo techniques using synthetic biology, and cheap library
generation and sequencing can therefore enable large strides in our ability to generate
predictive machine-learning based models for the targets of bacterial Hanks-type Ser/Thr
signaling systems. This will take on particular importance as understanding bacterial
physiology becomes increasingly important in industrial and medical applications on

undomesticated or poorly genetically tractable strains.
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Table 1. Summary of current experimental techniques and their respective

advantages/disadvantages for building computational models
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Figure Legends

Figure 1. High-throughput and synthetic reporter of kinase activity. A) in vitro kinase assays
typically involve purified kinases and a purified substrate — either full length protein targets
(top), or short synthetic peptides (bottom). B) in vivo FRET sensors have been adapted from
homologous eukaryotic systems and shown to function in bacteria. They rely on the
conformational change of the protein sensor induced by a phosphorylated substrate binding to
a forkhead-associated domain (FHA?2), resulting in loss of efficient fluorescence energy transfer
between the two fluorophores (decrease in FRET). C) Synthetic transcription factors have been
engineered to specifically respond to Hanks-type Ser/Thr kinase activity in vivo. The lac
repressor (Lacl) was translationally fused to a forkhead-associated domain (FHA2) and a
phosphorylatable substrate, creating a synthetic transcription factor. Upon phosphorylation of
the substrate by a specific kinase, repression of the promoter is reduced, resulting in reporter

gene expression.

Figure 2. Computational workflow from input data to testable predictions. Various types of
input data from sequencing, experimental determined phosphosites, structural properties,
evolutionary conservation, and co-phosphorylation patterns can be used as inputs in a
computational model. The model outputs can include (but is not limited to) testable predictions

about the presence of a phosphosite, associated kinase, and similarity to related systems.
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