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Abstract 15 

Bacteria possess diverse classes of signaling systems that they use to sense and respond to their 16 

environments and execute properly timed developmental transitions. One widespread and 17 

evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also 18 

sometimes termed “eukaryotic-like” due to their homology with eukaryotic kinases. In diverse 19 

bacterial species, these signaling systems function as critical regulators of general cellular 20 

processes such as metabolism, growth and division, developmental transitions such as 21 

sporulation, biofilm formation, and virulence, as well antibiotic tolerance. This multifaceted 22 

regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally 23 

modify the activity of multiple proteins, resulting in the coordinated regulation of diverse 24 

cellular pathways. However, in part due to their deep integration with cellular physiology, to 25 

date we have a relatively limited understanding of the timing, regulatory hierarchy, the 26 

complete list of targets of a given kinase, as well as the potential regulatory overlap between the 27 

often multiple kinases present in a single organism. In this review we discuss experimental 28 

methods and curated datasets aimed at elucidating the targets of these signaling pathways, and 29 

approaches for using these datasets to develop computational models for quantitative 30 

predictions of target motifs.  We emphasize novel approaches and opportunities for collecting 31 

data suitable for the creation of new predictive computational models applicable to diverse 32 

species.  33 

Introduction 34 

Bacteria use signaling systems to sense and respond to their environment. This enables them to 35 

survive their often-changing environments, execute properly timed developmental transitions 36 

including to virulent states, and survive stress and antibiotic treatment. Among these signaling 37 

systems are the Hanks-type Ser/Thr kinases and phosphatases1, also termed “eukaryotic-like” 38 

(or eSTKs/eSTPs) due to their homology to eukaryotic signaling systems. Compared to 39 

eukaryotic systems that began to be characterized over 60 years ago, prokaryotic systems were 40 

only first identified in the early 1990s2, 3.These bacterial kinases are likely evolutionarily ancient, 41 
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sharing a common ancestor with those found in eukarya and archaea4, 5. These signaling 42 

systems typically consist of a receptor kinase that phosphorylates targets on Ser or Thr residues 43 

and a partner phosphatase that provides reversible regulation through dephosphorylation6. 44 

Unlike other phosphorylation-based signaling systems such as bacterial two-component 45 

systems, in which the kinase generally regulates cellular physiology through a dedicated 46 

transcription factor (response regulator)7, the Hanks-type bacterial Ser/Thr kinases can regulate 47 

cellular physiology more broadly through direct phosphorylation of diverse classes of proteins8. 48 

These target proteins are not limited to transcription factors, and often include other types of 49 

proteins such as enzymes in central metabolism, translation factors, enzymatic pathways, and 50 

structural components, in addition to cross regulation of other signaling pathways 6, 9.  In 51 

contrast to Asp phosphorylation in two-component systems, Ser/Thr phosphorylation is 52 

relatively stable, with a typically significantly longer half-life7. Like their homologs in 53 

eukaryotes, prokaryotic Hanks-type Ser/Thr signaling systems also use a separate  phosphatase 54 

(sometimes termed eukaryotic-like phosphatases or eSTPs) to provide reversible regulation8.  55 

Because of their ability to regulate multiple pathways concurrently, in many bacterial species 56 

Hanks-type Ser/Thr signaling can be essential and appears to function as a kind of “master 57 

regulator” for coordinating cell growth and division, metabolism, development, and stress 58 

resistance 8, 10-13. In several species, including clinically important pathogens, this class of kinases 59 

is known to be essential and/or regulate antibiotic resistance, making these pathways an 60 

attractive drug target14, 15. 61 

As the targets of these systems are diverse and demonstrably often critical for cellular 62 

physiology, there has been considerable interest in attempting to identify, characterize, and 63 

predict the regulatory targets of every known kinase. Experimental methods developed for this 64 

aim, while rapidly improving, are often highly labor intensive, especially since the list of targets 65 

can be highly growth state specific. It is therefore highly warranted to develop computational 66 

models for predicting putative targets and their properties directly from genome sequence data. 67 

Critically, such models perform the best when built on large-scale high-quality training data 68 

from robust experimental results. In this review, we will discuss the current availability of such 69 
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experimental data sets and computational models, and highlight the types of data and models 70 

that can have a significant impact on our understanding of these signaling pathways.    71 

In order to train a computational model to predict the targets of a specific kinase, it is necessary 72 

to have significant amounts of robust experimental data on its precise phosphorylation sites. 73 

However, to date comprehensively identifying diverse phosphosites in bacteria and correctly 74 

matching them with the appropriate pathway has been challenging. The optimal scenario 75 

would include a robust method to activate the signaling pathway coupled with a reliable 76 

readout of target activation in live cells. Such methods, however, are not typically available. As 77 

discussed in this review, a multitude of experimental techniques have been used to date in 78 

diverse species, including phosphoproteomics, in vitro kinase assays, genetics, peptide libraries, 79 

and synthetic transcription factors (Table 1). In principle, combining these experimental 80 

methods with new computational techniques could enable a deeper understanding of bacterial 81 

physiology, including in understudied and non-domesticated species, aid in the development of 82 

new antibiotics, as well as develop new regulatory pathways for synthetic biology or industrial 83 

applications. 84 

Experimental approaches  85 

Phosphoproteomics  86 

Given the diverse classes of possible regulatory targets of Hanks-type Ser/Thr kinases, whole 87 

proteome screening for phosphosites has the potential to identify lists of putative target sites 88 

that can then be matched with the appropriate pathway. Furthermore, the relative stability of 89 

Ser/Thr phosphorylation (compared to His/Asp) makes them particularly suitable for 90 

phosphoproteomics. In this technique, bacterial cultures are lysed, and proteins are digested 91 

into peptide fragments (e.g., with trypsin). This is followed by a phosphopeptide enrichment 92 

step to increase the relative proportion of phosphorylated peptides. The resulting peptides are 93 

then analyzed by mass spectrometry to identify mass shifts consistent with phosphorylation16. 94 

This method identifies phosphorylated peptides, regardless of mechanism. However, since 95 
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Hanks-type Ser/Thr kinases are widespread and often abundant in bacterial genomes and have 96 

many putative targets, it is reasonable to assume that a significant (or even predominant) 97 

fraction of the phosphosites identified by phosphoproteomics can be attributed to the Hanks-98 

type signaling pathways 11. Indeed this has been successful in identifying many possible 99 

phosphosites and pathways of interest in diverse organisms ranging from model organisms 100 

such as Bacillus subtilis and Escherichia coli to clinically relevant pathogens such as Mycobacterium 101 

tuberculosis, Acinetobacter baumannii, Clostridium difficile, Staphylococcus aureus, Streptococcus 102 

pyogenes, Listeria monocytogenes, Bordetella pertussis, Streptococcus pneumoniae among many 103 

others, and as reviewed in 17, 18. Across bacterial species, certain pathways and proteins tend to 104 

appear consistently in all data sets, including for example translation factors, enzymes involved 105 

in central metabolism and cell wall synthesis, as well as virulence factors.  106 

With good reason, bacterial phosphoproteomics is believed to suffer from poor coverage of the 107 

proteome. In many studies, a significant fraction of the proteome is not detected, which is a 108 

prerequisite to detecting a phosphopeptide at likely even lower abundance19.  Therefore, the 109 

inability to detect a specific phosphosite may be due to many factors, including issues of protein 110 

abundance and stability, lack of proper pathway activation, as well as intrinsic physical and 111 

chemical differences between peptides causing them to ionize unequally or degrade. Although 112 

the size of the phosphoproteome is not known, close examination of the proteomic data sets 113 

suggests that many proteins and their possible corresponding phosphosites are not being 114 

identified. For example, it is clear that membrane proteins are currently unrepresented in the 115 

data sets, which can be at least partially attributable to technical challenges around mass 116 

spectrometry compatible solubilization 20-22. Recently, advances in phosphoproteomics have 117 

strongly increased the sensitivity and depth of these data sets, resulting in large increases in the 118 

number of phosphosites identified across many bacterial species. For example, whereas early 119 

studies on B. subtilis identified ~103 phosphorylation sites on ~78 proteins 23, approximately 10 120 

years later studies in the same bacterium identified ~1085 phosphorylations on ~488 proteins 19, 121 

providing much larger data sets. In other organisms, improvements in phosphopeptide 122 

enrichment have been shown to increase the number of phosphopeptides identified two to four-123 
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fold for S. pyogenes and L. monocytogenes, resulting in approximately ~400 phosphorylated 124 

proteins per organism 24.  125 

While phosphoproteomics can broadly identify phosphorylation sites, it does not in isolation 126 

directly identify the kinase or kinases responsible. To implicate a specific kinase with the 127 

phosphorylation of potential phosphosites several studies have used kinase and phosphatase 128 

mutants, kinase depletion strains, or specific kinase inhibitors to look for changes in the relative 129 

abundance of identified sites using phosphoproteomics. For some recent examples in various 130 

organisms see M. tuberculosis25, 26, B. subtilis 27, 19 S. aureus 28, 29 L. monocytogenes 30, S. pneumoniae31, 131 

and E. coli 32 . While this method does not rule out indirect interactions, it does help narrow the 132 

possible targets of interest and specific pathways for further study 32-34.  133 

Phosphoproteomics is the only experimental approach that generates large-scale data sets, 134 

which are essential for training modern machine-learning models. Even without attribution to a 135 

specific pathway, experimentally confirmed phosphosites can help to pre-train a model or to 136 

find effective ways to mathematically represent phosphosites sequences. The improvement in 137 

quality and sensitivity of phosphoproteomics techniques is therefore conducive of developing 138 

better machine-learning models. 139 

In vitro kinase assays  140 

The gold standard approach to validating a matched kinase-substrate interaction is the in vitro 141 

kinase assay. In its simplest form, a purified kinase and a substrate are incubated together in the 142 

presence of ATP and magnesium to allow phosphotransfer to occur. Often these reactions are 143 

directly detected using gamma-32P (or 33P) ATP, phosphoprotein separation using Phos-tag gels, 144 

or less commonly, phospho-specific antibodies (α-phos-Thr or α-phos-Ser) or stains. There are 145 

some important advantages to in vitro kinase assays. Due to the use of purified components, the 146 

reactions can be used to determine specific residues that are phosphorylated on both the kinase 147 

(autophosphorylation) and on the substrate when combined with downstream mass 148 

spectrometry. Since the substrates are purified, this also often results in much higher coverage 149 

of the protein by mass spectrometry, aiding identification of phosphosites.  This workflow has 150 
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been used successfully to identify specific target residues in a large variety of organisms. Some 151 

very recent examples include the identification of the phosphorylation sites responsible for the 152 

regulation of the protease PrkA by PrkC in B. subtilis 35, phosphorylation sites on the 153 

peptidoglycan hydrolase CwlA by PrkC in C. difficile 36, phosphorylation of GpsB by IreK in E. 154 

faecalis37, 38, and the regulation of capsular polysaccharides in Streptococcus suis through Stk1 155 

phosphorylation of CcpS39 and in S. pneumoniae through StkP phosphorylation of CcpA40 . 156 

Importantly, this method also allows for the matching of a specific phosphosite on a substrate 157 

with the activity of a specific kinase. Although this method is well known to be potentially 158 

prone to false positives due to unphysical interaction times or stoichiometries, there are ways to 159 

minimize this concern with time dependent concentration titrations, for example as was done 160 

systematically for the PhoB/PhoR TCS system 41. Limiting reaction times has also been used to 161 

identify histidine kinase – response regulator specificity in TCS systems42, 43, a technique that has 162 

been successfully used to reveal the specificity of the interaction between the Hanks-type 163 

Ser/Thr kinase PrkC and the response regulator WalR 44 in B. subtilis . This study demonstrated 164 

specificity for WalR by PrkC even among response regulators with highly conserved amino acid 165 

sequences around the phosphosite.  166 

Although this method can produce the most precise and detailed results, it is important to note 167 

that there are some inherent challenges in attempting high-throughput in vitro kinase assays. 168 

One of the main challenges is the reliable expression and purification of an active Hanks-type 169 

kinase, as expression of these kinases can be highly toxic or difficult to purify in standard 170 

expression systems such as E. coli. This was encountered in a systematic attempt to purify all 171 

known Hanks-type kinases from M. tuberculosis33. Additionally, in vitro assays often use only the 172 

catalytic domain of the kinase, discarding its extracellular and transmembrane domains. This 173 

can strongly impact kinase activity, as seen for example with the B. subtilis kinase Ser/Thr 174 

YabT45 46. In many cases it is difficult to disentangle these effects, as less active kinases can in 175 

principle be less toxic and easier to purify. Finally, in vitro assays are time consuming and often 176 

require system-specific expertise. Still, to date, this remains the most robust method for pairing 177 

the activity of a given kinase with a specific phosphorylated residue on a substrate. 178 
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Once sites are identified, they can often be further validated in vivo using a combination of point 179 

mutants (e.g. in the phosphosite) or kinase and phoshphatase mutants to infer the connection 180 

between a given phenotype and a phosphosite. Often these validations are done using a 181 

combination of methods – for example, immunoprecipitation of a potential phosphoprotein, 182 

followed by phos-tag gel separation and/or blotting with α-phos-Thr or α-phos-Ser antibodies, 183 

or using a phospho-specific stain. Some very recent examples of the success of this workflow 184 

include the regulation of quiescence and antibiotic tolerance in S. aureus associated with EF-G 185 

phosphorylation29, determination of the GpsB phosphosites responsible for cephalosporin 186 

resistance in E. faecalis47, and the phosphosites on the transcriptional regulator CodY that 187 

regulate anthrax toxin production in B. anthracis48. 188 

Synthetic peptide target libraries for motif prediction  189 

Like their eukaryotic kinase relatives, bacterial Hanks-type kinases can recognize short peptides 190 

(~13 amino acids), enabling in vitro screening for phosphorylation of libraries of synthesized 191 

peptides using a purified kinase (Figure 1(a)). These data can then be used to identify sequence 192 

motifs for that specific kinase, or can be used to train a more general computational model, as 193 

has been done for related eukaryotic kinases (see for example 49). This approach has been used 194 

for nine kinases of this class found in M. tuberculosis to reveal kinase specific phosphopeptide 195 

motifs 33 in a combined synthetic library in vitro kinase assay approach. In this work, a small 196 

library (~336) of biotinylated peptides based on sites identified by phosphoproteomics was 197 

created. Each peptide in the library was incubated in the presence of radiolabeled ATP with a 198 

panel of nine purified kinases. The peptides were then bound to streptavidin coated plates, 199 

washed, and assayed for 33P incorporation. This highly sensitive method found that roughly 200 

half the peptides could be phosphorylated to some degree by at least one of the nine kinases, 201 

and many peptides could be phosphorylated by most or all of them. A much smaller fraction of 202 

the library (~48 substrates) were phosphorylated by only one kinase in this assay, suggesting 203 

the identification of a kinase-substrate pair. This dataset was used to computationally predict 204 

the preferred substrate motif for the six kinases that were the most active in vitro. Interestingly, 205 

this strategically designed small library revealed the importance of specific residues on the 206 
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target phosphopeptides (e.g., large hydrophobic residues at the +3 and +5 positions relative to 207 

the phosphosite), demonstrating how strategically designed peptide libraries have the potential 208 

to reveal detailed information for bacterial kinase specificity. This approach requires addressing 209 

several experimental challenges, including purification of active kinases, optimization of in vitro 210 

assays, as well as quantitative precision of the readout. 211 

Modular synthetic transcription factors and sensors 212 

Many of the challenges in the in vitro approaches discussed above can be circumvented by in 213 

vivo assays. Extensive interest in measuring kinase activity for related eukaryotic kinases in vivo 214 

lead to the development of genetically encoded FRET-based biosensors for kinase activity that 215 

have single cell resolution 50. These sensors have a modular design, consisting of a FRET pair of 216 

fluorophores, a short phosphorylatable substrate sequence, and a forkhead-associated domain 217 

that specifically binds phosphopeptides (Figure 1(b)). Upon phosphorylation of the substrate 218 

sequence, a conformational change occurs, resulting in a change in FRET signal. These sensors 219 

were successfully used for eukaryotic Ser/Thr kinases such as PKC51 and Aurora B 52 among 220 

more than 20 others50, and their modular nature proved adaptable to the bacterial Hanks-type 221 

Ser/Thr kinase PrkC from B. subtilis 53. This modular design was used to swap the substrate 222 

peptide among four variants and observe sequence-specific changes in phosphorylation 223 

activity.  224 

Prototypical two-component systems have a dedicated response regulator transcription factor. 225 

A straightforward way to assay their activity in vivo is to express a reporter protein from a 226 

promoter that is directly regulated by that transcription factor54. In contrast, Hanks-type Ser/Thr 227 

kinases are not typically the only regulators of a transcription factor55. Therefore, creating a 228 

transcriptional reporter for this family of kinases required the design of a synthetic transcription 229 

factor. Using the design principles of the bacterial FRET sensor and protein engineering, a 230 

modular synthetic transcription factor that specifically responds to PrkC activity in B. subtilis 231 

was created 53. The design of this transcription factor relies on the ability of Hanks-type kinases 232 

to phosphorylate short substrate peptides. In this case, the substrate peptides are embedded 233 
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within LacI, the inhibitor of the lac operon (Figure 1(c)). When phosphorylated, these substrates 234 

can bind to a phospho-binding domain (FHA2 originally from Rad5351) and decrease the 235 

activity of the engineered LacI, resulting in downstream gene expression. These modular 236 

sensors have been used to demonstrate pathway activation by providing a direct and dynamic 237 

in vivo readout of kinase activity that can be measured in colonies on petri dishes, in bulk liquid 238 

cultures, or by microscopy in single cells. 239 

As related sensors have been successfully used in many similar eukaryotic systems, it is likely 240 

these sensors can be further extended to bacterial systems beyond B. subtilis with some 241 

optimization. Since the sensitivity of the synthetic transcriptional regulator and the FRET sensor 242 

both rely on conformational changes induced by phosphorylation and subsequent binding to a 243 

phosphopeptide binding domain, extending the use of these systems to different bacterial 244 

species should be initially optimized in the context of controls. This is to minimize off target 245 

effects and sensitivity of the sensor to phosphorylation, for example by testing a specific 246 

phosphosubstrate choice using kinase and phosphatase mutant genetic backgrounds, or 247 

performing in vitro or in vivo kinase assays. As an additional consideration, the modular 248 

phosphopeptide binding domain (FHA2) used in the B. subtilis study has been characterized to 249 

be partially sensitive to the choice of amino acid in the +3 position relative to the phosphosite56. 250 

For example, better sensitivity was achieved using an I in the +3 position as a biosensor in both 251 

the PrkC study in B. subtilis53 and was used for a FRET biosensor for Aurora B activity in 252 

eukaryotic cells52. After optimization, the modular nature of this sensor and its single-cell 253 

sensitivity could allow quantitative measurements of the specificity of a large substrate library, 254 

with the high throughput and accuracy required for training machine learning models.  255 

Computational approaches 256 

The availability of large data sets of experimentally verified phosphosites raises the possibility 257 

that machine learning approaches could be used to improve the curation and characterization of 258 

the phosphoproteome. The questions that can potentially be addressed by these approaches 259 

include the prediction that a specific site on a given protein can be substrate for 260 
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phosphorylation (a phosphosite); the prediction that a site is phosphorylated by a given kinase 261 

or kinases; and the quantitative prediction of the likelihood of such events, especially in 262 

quantitative comparison with other potential substrates of the same kinase. While several 263 

attempts have been made to develop such models, the success of available models is limited. 264 

Available datasets 265 

UniProt, the comprehensive resource for protein sequence and data 57, aims to include all 266 

known post-translational modifications for each protein in the database, including those from 267 

bacteria. For each protein in the database, UniProt identifies all known post-translationally 268 

modified (PTM) sites as well as the kinases that catalyze their modification, when these are 269 

known. For bacterial proteins, however, this information is often partial or outdated.  270 

The development of computational approaches to the study of the posphoproteome benefits 271 

from dedicated databases. A plethora of such databases are available for eukaryotic species, 272 

organized by species, by kinase families, by experimental method, and more (for a detailed list 273 

see 58). Broad databases used recently for training large-scale machine-learning models include 274 

dbPTM 59, PhosphoSitePlus 60, and EPSD 61. These databases provide a comprehensive view of 275 

PTM sites by integrating data from multiple other databases. dbPTM includes PTM sites in 276 

bacterial proteins, but like UniProt discussed above, these data are often spotty and outdated.  277 

To our knowledge, only one database that is focused on prokaryotic phosphorylation sites is 278 

actively maintained 62. This database, dbPSP, contains almost 20,000 experimentally validated 279 

phosphosites from more than 2000 bacterial species. While the site provides reference for the 280 

source of information for every identified site, it does not explicitly identify upstream kinases or 281 

phosphatases, even when such information is available. This hinders the use of these data for 282 

development of models that link substrates with their associated regulators.  283 

Since bacterial phosphosites exhibit a high degree of conservation 63 these databases can provide 284 

a useful starting point for proteins that have not been experimentally tested if information is 285 

available for their homologs in related species. This observation could in principle be used as a 286 
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prior for computational models, increasing the confidence that a conserved site acts as a 287 

phosphosite. However, making the quantitative connection between the degree of conservation 288 

and the level of confidence would require detailed experimental data across species for kinase 289 

families that is not currently available.  290 

Prediction of phosphorylation targets 291 

The tasks of identifying phosphosites in a given protein or identifying potential 292 

phosphorylation targets of a specific kinase have attracted machine learning approaches for 293 

more than two decades. Given the availability and accessibility of large data sets for eukaryotic 294 

kinase targets, most of the modeling effort has been focused on eukaryotic kinases (mostly those 295 

in mammals and yeast) 58. Still, some efforts have been made to develop computational tools for 296 

predicting phosphorylation targets in bacteria in general 64-67 and for the B. subtilis Ser/Thr 297 

kinase PrkC in particular 68. 298 

Most computational approaches use the sequence around a potential phosphosite to determine 299 

the likelihood that it is actively phosphorylated. The hypothesis behind these approaches is that 300 

a local signal near the phosphosite is necessary for recognition by the relevant kinase. To predict 301 

new phosphosites, the substrate sequences of known phosphosites are used to learn common 302 

sequence features that could be responsible for molecular recognition. Next, the sequences of 303 

candidate proteins are scanned for sites that distinctively exhibit these features. As described 304 

below, models that take this approach differ in the length of the substrate sequence they use, as 305 

well as in the use of additional information (such as structural or biochemical information).  306 

Other approaches focus on other types of information instead or in addition to the substrate 307 

sequence, including evolutionary conservation or patterns of phosphorylation events across 308 

tissues and experimental conditions. Examples of such approaches applied to eukaryotic 309 

kinases are given below. These approaches, however, require large data sets that are only 310 

starting to become available for bacteria.  311 
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Machine learning and bacterial phosphorylation 312 

Sequence-based approaches are typically formulated as classification problems: given a short 313 

sequence, the task is to determine whether it represents a phosphosite or not, or alternatively 314 

whether it is a substrate for a specific kinase or not (Figure 2). The success of such models can be 315 

unequivocally evaluated by measuring their ability to correctly predict phosphosites that were 316 

not part of their training data. Different implementations of this concept are distinct in two 317 

important ways: the representation of the input sequence, and the specific model used for 318 

classification. Beyond the obvious need to decide on the length of the sequence used by the 319 

model, models can be presented with the amino-acid sequence alone, or with additional 320 

information such as chemical properties of each amino acid, structural features, and more. 321 

Among the many models available for classification tasks, two approaches – Support Vector 322 

Machines (SVMs) and Random Forests – are particularly popular in the computational biology 323 

space, because they both work well with data sets that are not very large (10s or 100s of 324 

samples). In addition, the structure of these models sometimes allows identifying what 325 

sequence features were recognized by the model as the most informative for classifying them as 326 

phosphosites.  327 

NetPhosBac, one of the earlier attempts 69, used a very small set of 140 MS-verified 328 

phosphorylation sites in E. coli or B. subtilis to train a small neural network, which only used a 329 

13 amino-acid substrate (5 amino acids on each side of the phosphosite) as input. This model 330 

achieved a very limited success. The same data set was used, a few years later, to develop 331 

another machine learning predictor, cPhosBac 67. The design of this model around a Support 332 

Vector Machine (SVM) was more appropriate for such a small data set and showed a mildly 333 

improved performance. A similar approach was taken in an attempt to identify targets of a 334 

single kinase, PrkC 68. This study used as few as 36 experimentally verified phosphorylation 335 

sites as a training set. While cross-validation suggested high performance, it would be 336 

reasonable to doubt the generalizable predictive power of this model.  337 
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Finally, a recent model nicknamed MPSite64 used a previous version of the dbPSP database 338 

mentioned above to establish a training set of more than 1700 phosphorylation substrates, an 339 

order of magnitude more than the data used in previous models. The new idea behind this 340 

model, which was built on a Random Forest classifier, was to combine multiple encodings of 341 

the 21-amino acid substrate sequences. In addition to the primary sequence, these encodings 342 

represent chemical and structural properties. The authors of MPSite showed that the 343 

combination of multiple representations significantly improve the performance of the model.  344 

This represents the current state of the art, with 81% specificity (the true-negative rate), at 41% 345 

and 62% accuracy (the fraction of correct predictions) for Phospho-serine and Phospho-346 

threonine sites, respectively.  347 

Lessons from eukaryotic models 348 

As mentioned above, considerably more data are available for eukaryotic phosphorylation sites, 349 

likely at least partially due to the fact eukaryotic systems were discovered much earlier2, 8. These 350 

data were used to develop multiple machine learning models. Whether these models were 351 

trained on a specific kinase, specific organism, or more comprehensive eukaryotic data, they 352 

cannot be used to predict bacterial sites 69.  353 

Many research groups developed computational tools for predicting general or kinase-specific 354 

phosphosites 67, 70-74. Two tools that underwent multiple rounds of revisions and updates 355 

represent the current state of the art:  KinasePhos75  is built around a support vector machine 356 

(SVM) trained on 41,421 experimentally verified kinase-specific phosphorylation sites from 357 

several animals, two species of yeast, and one plant, while Group-based Prediction System 76 358 

(GPS) integrates a logistic regression and a deep neural network trained on 490,762 sites. Both 359 

works take the approach of training a general model for predicting phosphosites, and then 360 

retraining specific models for individual kinases. KinasePhos 3.0 and GPS 6.0 include 361 

respectively 771 and 44,046 models for different kinases, kinase families, and family groups. On 362 

average, the accuracy of these models exceeds 87%, with specific models of better-studied 363 

kinases reaching up to 98%. While the updated design of these models include some modern 364 
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algorithms, what makes them truly powerful is the use very large data sets that allow 365 

optimization of feature representation, investigation of the power of different features to inform 366 

the model, and development of highly specified models 75.  367 

Recent years saw an enormous advance in the application of deep neural network across 368 

biology, including microscopy image processing, protein folding, drug design, and more77-79. 369 

These models are data-hungry and work well only when provided with large sets of labeled 370 

data. On the other hand, they are insensitive to noise and can handle experimental inaccuracies 371 

relatively well. With the large expansion of available data for eukaryotic kinases, several 372 

attempts have been made to develop neural network models for the phosphosite identification 373 

70, 80, including the recent incorporation of a deep neural network into the veteran GPS model76 374 

81.  These studies report improvement in accuracy in models that are not kinase specific and are 375 

therefore built on large data sets. In addition, it has been suggested that the vast amount of data 376 

available for well-studied kinases could also be used to identify potential targets of unknown 377 

kinases, using an approach known as zero-shot learning 82.  378 

As mentioned above, other approaches for discovery of PTM interactions and phosphosites do 379 

not rely on sequence features. For example, a recent study 83 combined data that associates 380 

kinases with conserved protein domains with protein co-expression data to express the 381 

probability that a given protein is regulated by a kinase as a function of the number of its 382 

domains known to interact with the kinase and their level of co-expression. Based on the 383 

rationale that PTM sites tend to show higher conservation than the sequence of the protein in 384 

which they reside 63, DAPPLE 80, 84 predicts the probability that a query site is phosphorylated by 385 

sequence comparison with homolog proteins.  386 

Using a different type of conservation, a recent study 85 used phospho-proteomics data that was 387 

collected in different tissues or under different conditions to identify proteins that are co-388 

phosphorylated, namely phosphorylated under the same set of conditions. This model then 389 

predicts that all proteins co-phosphorylated with a known target of a kinase are also modified 390 

by the same kinase. These predictions can be enhanced using knowledge about functional 391 
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interactions 86, 87. Notably, these approaches predict that a protein may be modified by a certain 392 

kinase, but do not necessarily identify the relevant phosphosite.  393 

The success of these models rely on the breadth of data available in the eukaryotic field. As 394 

more data emerges from bacterial system, similar techniques may be applicable to bacterial 395 

systems. Moreover, advances in transfer learning may allow to pre-train models using data 396 

from eukaryotic systems, and adapting the models to bacterial systems by fine-tuning them 397 

with smaller sets of experimental data from bacteria.  398 

Outlook 399 

Ever since the first bacterial Hanks-type Ser/Thr signaling pathway was identified in M. Xanthus 400 

3 , whole genome sequencing has demonstrated that these evolutionarily ancient pathways are 401 

widespread in bacteria. Subsequently, it was discovered that these signaling systems can 402 

perform regulation on diverse cellular processes by directly phosphorylation of proteins.  403 

Experimentally, this was largely accomplished using a combination of phosphoproteomics and 404 

targeted in vitro validation of individual phosphosites. Over roughly the last decade, the 405 

emergence of several additional experimental advances are poised to enable rapid progress in 406 

phosphosite identification. These include technical improvements in bacterial 407 

phosphoproteomics, leading to more comprehensive identification of phosphopeptides, and 408 

new synthetic approaches using libraries of short peptides in vitro enabling precise sequence 409 

specific testing of kinase-substrate interactions, and modular transcription factors in vivo as a 410 

method to demonstrate the effect of substrate sequence on the timing and abundance of 411 

phosphorylation. Together these advances have the potential to create much larger and higher 412 

quality data sets than were previously available and provide the tools for detailed testing of 413 

computational model predictions. However, a lack of uniformity and the limited scope of the 414 

data that associates prokaryotic kinases with their respective phosphosite targets hinders the 415 

ability to develop robust predictive models.  416 
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 The use of machine learning models for prediction and discovery of kinase phosphosites has 417 

increased with the development of high-throughput experimental methods. The increasing 418 

success of models focused on eukaryotic kinases suggests that the expansion in data size and 419 

diversity will ultimately allow the development of robust models for bacterial kinases. This 420 

would require a community effort to create a well-curated, well-labeled, freely accessible 421 

database. Such effort should include standardizing data reporting for the field asking for 422 

example that experimental results include species, sites, responsible kinase, experimental 423 

method, growth condition, etc. In addition, it would be useful to associate each phosphosite 424 

with a well-defined quantitative score that indicates the strength of the observed 425 

phosphitylation activity at that site. These data could then be used to train models to identify 426 

features that distinguish high-occupancy from low-occupancy sites, as well as to distinguish 427 

between true low-occupancy sites and experimental noise.  Such standardized well-curated 428 

databases would be instrumental in enabling bacterial-specific predictive models for kinase-429 

substrate predictions.  430 

Despite the incompatibility of models designed for eukaryotic kinases in predicting targets of 431 

bacterial Ser/Thr kinases, recent progress in transfer learning opens up the possibility of 432 

utilizing these models as a foundation for constructing dedicated models for bacterial kinases. 433 

This is particularly attractive since the current data sets from related eukaryotic systems are 434 

much larger than the bacterial ones and could therefore facilitate productive use of the much 435 

smaller bacterial data sets. To our knowledge, this has not yet been attempted, in part because 436 

of the lack of easily accessible well-curated and labeled bacterial data. In addition, lessons 437 

learned from multi-dimensional representation of query sequences, which includes structural 438 

and biochemical properties in addition to primary sequence, could be incorporated into 439 

bacteria-focused models with minimal modification.  440 

Many factors influence whether a specific kinase phosphorylates a potential phosphosite. These 441 

include externals factors, such as environmental signals and growth conditions, and internal 442 

ones, such as the abundance of co-factors and competing targets. The computational approaches 443 

discussed here aim to identify all possible phosphosites, realizing that some of them may not be 444 
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phosphorylated under certain conditions. Moreover, it is possible that some families of targets 445 

that are not phosphorylated in the conditions used to train the computational models and will 446 

be absent from its predictions. A future challenge is to develop a computational model tasked 447 

with predicting the probability that a phosphosite is phosphorylated under given conditions. 448 

Developing such models would require detailed characterization of phosphorylation 449 

abundance across multiple conditions of different types.  450 

Being able to identify and define the regulatory targets of a Hanks-type kinase is an important 451 

first step towards several important goals. First, these signaling pathways are involved in 452 

regulating cellular growth and survival, and the ability to follow the regulatory dynamics of 453 

these targets can expose novel physiological mechanisms. Second, since these pathways have 454 

been implicated in antibiotic resistance, knowing the targets involved can help in devising 455 

novel strategies to robustly interfere with the emergence of resistance and guide development 456 

of synergistic therapies. Finally, kinases have been empirically discovered as potentially 457 

efficient drug targets (e.g., M. tuberculosis PknB is an essential protein88-90), and the knowledge of 458 

their affected targets can reveal mechanisms of action of such drugs. In all these applications, 459 

the availability of real-time in vivo reporters can be instrumental in uncovering causal 460 

interactions and pathway dynamics.  461 

Strategic use of new technical advances in experimental techniques, such as improved 462 

phosphoproteomics, new in vivo techniques using synthetic biology, and cheap library 463 

generation and sequencing can therefore enable large strides in our ability to generate 464 

predictive machine-learning based models for the targets of bacterial Hanks-type Ser/Thr 465 

signaling systems. This will take on particular importance as understanding bacterial 466 

physiology becomes increasingly important in industrial and medical applications on 467 

undomesticated or poorly genetically tractable strains.    468 

 469 
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Figure Legends 479 

Figure 1. High-throughput and synthetic reporter of kinase activity. A) in vitro kinase assays 480 

typically involve purified kinases and a purified substrate – either full length protein targets 481 

(top), or short synthetic peptides (bottom). B) in vivo FRET sensors have been adapted from 482 

homologous eukaryotic systems and shown to function in bacteria. They rely on the 483 

conformational change of the protein sensor induced by a phosphorylated substrate binding to 484 

a forkhead-associated domain (FHA2), resulting in loss of efficient fluorescence energy transfer 485 

between the two fluorophores (decrease in FRET). C) Synthetic transcription factors have been 486 

engineered to specifically respond to Hanks-type Ser/Thr kinase activity in vivo.  The lac 487 

repressor (LacI) was translationally fused to a forkhead-associated domain (FHA2) and a 488 

phosphorylatable substrate, creating a synthetic transcription factor. Upon phosphorylation of 489 

the substrate by a specific kinase, repression of the promoter is reduced, resulting in reporter 490 

gene expression.  491 

 492 

Figure 2. Computational workflow from input data to testable predictions. Various types of 493 

input data from sequencing, experimental determined phosphosites, structural properties, 494 

evolutionary conservation, and co-phosphorylation patterns can be used as inputs in a 495 

computational model. The model outputs can include (but is not limited to) testable predictions 496 

about the presence of a phosphosite, associated kinase, and similarity to related systems. 497 

 498 

  499 
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