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Abstract

We present a stochastic field line mapping model where the interplanetary magnetic field lines are described by a
density distribution function satisfying a Fokker–Planck equation that is solved numerically. Due to the spiral
geometry of the nominal Parker field and to the evolving nature of solar wind turbulence, the heliospheric diffusion
of the magnetic field lines is both heterogeneous and anisotropic, including a radial component. The longitudinal
distributions of the magnetic field lines are shown to be close to circular Gaussian distributions, although they
develop a noticeable skewness. The magnetic field lines emanating from the Sun are found to differ, on average,
from the spirals predicted by Parker. Although the spirals remain close to Archimedean, they are here underwound,
on average. Our model predicts a spiral angle that is smaller by ∼5° than the Parker spiral angle at Earth’s orbit for
the same solar wind speed of Vsw= 400 km s−1. It also predicts an angular position on the solar disk of the best
magnetically connected footpoint to an observer at 1 au that is shifted westward by ∼10° with respect to the
Parker’s field model. This significantly changes the angle of the most probable magnetic connection between
possible sources on the Sun and observers in the inner heliosphere. The results have direct implications for the
heliospheric transport of “scatter-free” electrons accelerated in the aftermath of solar eruptions.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Interplanetary magnetic fields (824)

1. Introduction

Understanding the transport of charged particles accelerated
to suprathermal energies in turbulent astrophysical plasma has
been a subject of a long endeavor beginning with the work of
Fermi (1949) on the production of cosmic rays and its
adaptation by Parker & Tidman (1958) to solar flares. The
elucidation of the mechanisms responsible for solar energetic
particle (SEP) events (Reames 1999; Cliver 2000) remains
among the common objectives of the two recently launched
Parker Solar Probe and Solar Orbiter missions (McComas et al.
2019; Rodríguez-Pacheco et al. 2020). In addition to the fleet of
spacecraft orbiting the Sun, these missions provide an
unprecedented source of in situ multipoint measurements of
SEP events and remote stereoscopic observations of their
sources at the Sun. An important transport process is cross-field
diffusion resulting from the interactions between the high-
energy particles and the turbulent magnetic fields (Jokipii
1966). This transport process is equally important for
precipitating energetic particles, and it can be diagnosed
remotely from hard X-ray spectroscopic imaging of flaring
coronal loops (Bian et al. 2011; Kontar et al. 2011).

As pointed out originally by Jokipii & Parker (1969), due to
fluctuations in the solar wind magnetic fields, the Parker spirals
are stochastic. Following the terminology introduced by Bian
& Li (2021), we call them stochastic Parker spirals. On the
basis of the Leighton (1964) model of magnetic flux diffusion
on the photosphere, Jokipii & Parker (1969) developed a
boundary-driven model for the angular diffusion of magnetic

field lines in the heliosphere, providing a sound explanation for
the angular spread of solar cosmic rays (Meyer et al. 1956)
observed by the Pioneer missions (Fan et al. 1968). Since then,
the angular dispersion of SEPs has remained an active subject
of investigation, in both longitude (Van Hollebeke et al. 1975;
Cane et al. 1986; Shea & Smart 1990; Reames 1999; Lario
et al. 2006; Mewaldt et al. 2013; Reames et al. 2013;
Wiedenbeck et al. 2013; Dröge et al. 2014; Dresing et al.
2014; Richardson et al. 2014; Cohen et al. 2017) and latitude
(Zhang et al. 2001; Dalla et al. 2003; Zhang et al. 2003). The
statistical analysis of Cohen et al. (2017) shows that the
longitudinal widths of SEPs are weakly dependent on the
charge-to-mass ratio, suggesting that the angular dispersion of
the suprathermal particles is determined by the angular
dispersion of the magnetic field line as anticipated by Jokipii
& Parker (1969).
In the works of Jokipii & Parker (1969) and Bian & Li

(2021, 2022a), the stochastic Parker spirals are described by a
stochastic process. This stochastic process is the spherical
diffusion process [θ(r), f(r)] for the two heliographic angles,
the latitude and the longitude, as a function of the radial
distance r from the Sun. The spherical diffusion is super-
imposed onto the secular longitudinal drift due to the solar
rotation. The solutions of the drift diffusion equation governing
the longitudinal distribution functions are given by circular
Gaussian distributions. There is no radial diffusion of the
magnetic field lines in the stochastic Parker spiral model
elaborated by Jokipii & Parker (1969) and expanded by Bian &
Li (2021, 2022a). The reason is that there is no source of radial
magnetic field fluctuations in the boundary-driven model of
Jokipii & Parker (1969), which is based on the model of
Leighton (1964), where the motions of the magnetic footpoints
are described by the spherical drift diffusion process [θ(t), f(t)].
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The relation between the two processes, footpoint diffusion on
the photosphere and magnetic field line diffusion in the
heliosphere, is simply given by r= r0+ Vswt—the very same
relation that applies without consideration for the turbulent
diffusion of the magnetic footpoints, as in the case of the Parker
spirals. It is the reason that the boundary-driven stochastic
Parker spirals of Jokipii & Parker (1969) can be constructed
solely from an angular diffusion process with a constant
angular diffusivity that is given by the angular diffusivity of the
footpoints divided by the solar wind speed and that the process
does not involve any radial diffusion of the magnetic field lines.
However, due to the spiral geometry of the Parker (1958) field
and to the evolving nature of in situ solar wind turbulence, the
heliospheric diffusion of magnetic field lines is generally both
heterogeneous and anisotropic. The diffusion process also
includes a radial component resulting from the presence of
radial magnetic field fluctuations in the solar wind. The
turbulent structure of the magnetic field lines, on global
heliospheric scales, is thus more accurately described by a
Fokker–Planck equation with a radially dependent field line
diffusion tensor Dm possessing both radial and off-diagonal
components, in addition to its purely angular components.
These properties lead to unexpected twists in the plot originally
elaborated by Jokipii & Parker (1969) and expanded by Bian &
Li (2021, 2022a).

In Section 2, we extend the diffusive description of magnetic
field lines from local to global scales in the inner heliosphere,
taking into account its inhomogeneous and anisotropic proper-
ties. In Section 3, the results of numerical simulations of the
Fokker–Planck equation describing the turbulent dispersion of
the magnetic field lines in the solar wind are presented. In
Section 4, an analytic circular Gaussian model for the
longitudinal spread of the magnetic field lines around their
mean is discussed and compared with the numerical results. A
summary of the results and a conclusion are given in Section 5.

2. From Local to Global Diffusion of Magnetic Field Lines
in the Solar Wind

We are interested in the turbulent dispersion of magnetic
field lines emanating from the Sun and diffusing into the
heliosphere. The magnetic field lines are the curves everywhere
tangent to the magnetic field at a given time. They are often
called the lines of force in reference to their ability to guide the
direction of the motions of low-rigidity charged particles. We
are interested in both the dispersion of the magnetic field lines
and the dispersion of particles propagating at a constant speed
along the magnetic field lines in the heliosphere. The equations
for the magnetic field lines can be derived from the equations
of motion for charged particles interacting with magnetic fields
in the limit where the gyroradius of the particles tends to zero.
The Lagrangian of a charged particle is given by

⎛
⎝

⎞
⎠

v r r vL m q t
q

c
A t

1

2
, , , 12 ( ) ( ) · ( )= - F -

where A(r, t) is the magnetic vector potential and Φ(r, t) is the
electric potential. The particle trajectories are determined by
extremizing the action (Feynman 1963)

Ldt 0. 2( )òd =

The kinetic energy of the particle is constrained to be conserved
outside spatially localized acceleration regions near the Sun, a

condition that is satisfied when the electric potential Φ= 0.
From the Euler–Lagrange equations for a massless particle,
with zero gyroradius, we have that

v A r 0, 3( ) ( )´  ´ =

an equation that is, by construction, independent of the charge
and the mass of the particle. Equation (3) is the magnetic field
line equation. It follows that the magnetic field lines are
obtained from a variational principle that consists in extremiz-
ing the action (Morozov & Solov’ev 1966; Cary & Littlejohn
1983; Elsasser 1986)
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r

r
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In other words, the magnetic field line that joins the spatial
points r0 and r1 is obtained from all the possible paths joining
r0 and r1 by selecting the particular path that extremizes the
circulation of the magnetic vector potential, yielding

r Bd 0, 5( )´ =

which also derives from v= dr/dt and B=∇×A in
Equation (3). Equivalently, the magnetic field lines are the
instantaneous family of solutions of the ordinary differential
equation (see, e.g., Longcope 2005)

r
b r

d
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where b(r)= B/B is the unit vector in the magnetic field
direction and s is the arc length. We observe that, when
evaluated along a magnetic field line, the integral in

Equation (3) reads A r A Bd B ds
r

r

s

s

0
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0

1
· ( · )/ò ò= , an expres-

sion involving the magnetic helicity density hm= A ·B. This
line integral is the field line helicity (Antiochos 1987;
Berger 1988). The field line helicity is ill-defined on stochastic
magnetic field lines (Jokipii & Parker 1969) having infinite
path length (Yeates & Hornig 2016). We will not dwell on the
variational principles, which are, however, essential in
constructing a Hamiltonian description of the magnetic field
lines. Our main point here was to draw the connection between
the magnetic field lines and the particle paths in the limit where
the gyroradius is zero.
For a given r(s0= 0)= r0, the ordinary differential

Equation (6) is known to possess a unique solution, represent-
ing the magnetic field line that emanates from the location r0,
only if the magnetic field nowhere vanishes and if it satisfies
certain regularity conditions. Therefore, for a given model of
the heliospheric magnetic field B(r), it is in principle possible
to integrate Equation (6) in order to obtain the magnetic field
lines r(r0, s) which are s-parameterized curves labeled by
r0= r(s= s0). The ensemble of solutions of Equation (6)
defines a deterministic field line mapping that is invertible. We
notice that when the solution r(s, s0) is itself invertible, i.e.,
when r(s, s0) is not multivalued, one can in principle use the
radial distance r instead of s in order to parameterize the
magnetic field lines, which can thus be expressed as [θ(r), f(r)]
in this case. Let us define a magnetic field line density
distribution fm(r, s) from the solution of the continuity equation

b
f

s
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in such a way that the characteristics of this partial differential
equation are the magnetic field lines. Equation (7) is a
continuity equation for the density distribution fm in three-
dimensional space.

We observe that the guiding center trajectories of the
particles, electrons, and ions, propagating at a constant speed v
along the magnetic field lines, are governed by the equation

r
b r

d

dt
v , 8( ) ( )m=

where μ is the pitch-angle cosine. Equation (8) for the guiding
center trajectories derives from Equation (6) by using s= μvt.
Therefore, it can be useful to think of the magnetic field lines as
streams of scatter-free guiding centers moving at a constant
speed and to think of s as time. It follows from Equation (8)
that the guiding center trajectories are the characteristics of the
equation

b
f

t
v f. 0, 9( ) ( )m

¶
¶
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where f (r, t) is the three-dimensional particle density distribu-
tion and both μ and v are here considered to remain constant.
Equation (9) is the common basis of more complex drift kinetic
equations for the particle guiding centers. In Equation (9), only
the effects of field-aligned streaming are retained. As a matter
of fact, setting the pitch-angle cosine μ= 1 in a drift kinetic
equation ought to nullify all the terms related to finite Larmor
radius effects, only maintaining the field-aligned streaming
term. A main tenet in this work is the equivalence between the
magnetic field lines and the particle paths, under the restrictions
invoked above: a vanishingly small gyroradius under scatter-
free conditions.

We emphasize that on most scales of interest the field
intensity B is nonuniform with a direction b that ought to be
changing owing to the solenoidality condition for the magnetic
field. It follows that the Jacobian determinant of the map
r0→ r

s
(r0) generated by Equation (6) is generally nonzero, and

hence the map does not preserve volume on global scales.
Equivalently said, the vector flow generated by nonuniform
magnetic fields via Equation (6) is compressible. The degree of
local compressibility of the flow can be characterized by the
length scale Lb defined by

b
L

B

s
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. 10

B
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The focusing/mirroring length Lb measures the local rate of
exponentiation of the magnetic field strength per unit of the
field-aligned distance. More generally, characterizing how the
magnetic field lines behave locally can be done through the
Jacobian matrix ∇b, the trace of which is LB

1- . The Jacobian
matrix enters the equation describing the separation vector
between pairs of magnetic field lines, which reads
dδr/ds=∇b · δr. The local rate of exponentiation of the
separation distance between pairs of magnetic field lines, per
unit of field-aligned distance s, is the Lyapunov exponent, and
it is defined as L r slnL

1 d= ¶ ¶- . Local exponential separation
between pairs of solutions of ordinary differential equations
such as Equation (6), as δr0→ 0, is the hallmark of the
dynamical system sensitivity to the initial conditions: the

hallmark of chaos (Lorenz 1963). In turbulence, the rate of
separation between pairs of magnetic field lines is faster than
exponential, yielding stochastic instead of chaotic magnetic
field lines (Eyink et al. 2011). The magnetic fields (and the
velocity fields) are not differentiable functions of space in the
infinite Reynolds number limit of the turbulence (Eyink et al.
2011).
The unperturbed magnetic field B(r), in the absence of solar

wind turbulence, is the Parker (1958) field. In the heliographic
coordinate system, a simple representation of the Parker field is
given by
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where Vsw is the solar wind speed, Ω is the equatorial rotation
rate of the Sun, and χ is the (winding) angle between the
magnetic field and the radial direction. The Parker field is
assumed to emanate from a source surface located at a distance
r= r0. It follows from Equation (11) that the magnetic field
direction b can be expressed in terms of χ as

b u ucos sin . 12r ( )c c= - f

The family of Parker spirals generates a simple invertible map
between spatial points in the heliosphere. The magnetic
connection between two spatial points in the heliosphere
can be determined by selecting the curve that extremizes the
circulation of the solar wind magnetic vector potential. It is not
a too difficult task to obtain such a connection in absence of
solar wind turbulence. Indeed, given the spacecraft location,
denoted by rsp, Equation (6), with b given by Equation (12),
can be solved backward to the source surface |r|= r0 in order
to determine the angular location of the “source” at the Sun.
Nevertheless, the magnetic field is turbulent, which signifi-
cantly complicates the problem of determining the magnetic
connection between the observer’s location and the Sun. This
difficulty was originally recognized by Jokipii & Parker (1969),
who showed the importance of considering the statistical
properties of the magnetic field lines in the solar wind. In the
boundary-driven model by Jokipii & Parker (1969), the
magnetic field fluctuations are produced by the turbulent
motions of the magnetic footpoints on the photosphere,
yielding a purely angular diffusion of the magnetic field lines.
In this case, the angular density distribution fma(θ, f,
r)∝ r2fm(θ, f, r) of the magnetic field lines obeys the spherical
drift diffusion equation (Bian & Li 2021)
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where Dma
JP is the angular diffusivity of the magnetic field lines.

The latter is related to the angular diffusivity κa of the magnetic
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footpoints on the source surface by

D
V

. 14
a
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=

It follows from Equation (13) that the boundary-driven
stochastic Parker spirals are the solution of the stochastic
differential equations (Bian & Li 2021)
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The boundary-driven stochastic Parker spirals are sketched in
Figure 7 of Jokipii & Parker (1969), and the solutions of
Equation (15) are plotted in Figures 1 and 2 of Bian & Li
(2021). We emphasize that the “random walk” of the magnetic
field line is purely angular in all these figures. Stochastic Parker
spirals are nowhere differentiable with infinite path lengths.
Nevertheless, we can still use the arc length s along the
unperturbed magnetic field in order to rewrite Equation (15) in
the equivalent form (Bian & Li 2022a)

⎜ ⎟⎛
⎝

⎞
⎠

dr

ds

d

ds

D
D s

d

ds V
D s

cos ,

cos

tan
2 cos

cos
1

sin
2 cos , 16

ma
JP

ma
JP

sw
ma
JP

( )

( ) ( )

c

q c
q

cz

f
c

q
cz

=

= +

= -
W

+

q

f

where we have used a well-known formula for deterministic
and invertible “time changes” of stochastic processes. More-
over, using s= μvt in Equation (16) yields the stochastic
differential equation describing the ballistic transport of the
particle guiding centers along the boundary-driven stochastic
Parker spirals in the solar wind (Bian & Li 2022a). An
important point to observe is that it is generally not appropriate
to parameterize the heliospheric magnetic field line by r when r

(s) becomes multivalued. It is the case when the solar wind
magnetic fields switch back their direction toward the Sun
(Dudok de Wit et al. 2020; Fargette et al. 2021). In situ
turbulence in the solar wind is known to be mostly Alfvénic
(Belcher & Davis 1971), here taken in the sense that it is
dominated by Alfvén polarized fluctuations that are transverse
to the guiding magnetic field (Schekochihin et al. 2009). This
property is often referred to as variance or component
anisotropy of the solar wind turbulence (Oughton et al.
2015). The guiding magnetic field is the Parker field whose
direction becomes increasingly inclined with respect to the
radial direction as the radial distance from the Sun increases;
hence, transverse field fluctuations do possess a radial
component in the solar wind. The presence of radial magnetic
field fluctuations in the solar wind is not only expected from
general considerations about the nature of the solar wind
turbulence; it is also an observed property that has become the
subject of renewed interest, in particular, in the context of
magnetic switchbacks measured by the Parker Solar Probe
(Dudok de Wit et al. 2020; Fargette et al. 2021).

A main objective in this work is to understand, from a
statistical viewpoint, the role played by the radial component of
the magnetic field fluctuations in the dispersion of the solar
wind magnetic field lines and in the dispersion of energetic
particles propagating scatter-free in the turbulent medium. It is
more likely the case for electrons accelerated during solar flares
(Lin 1974; Wang et al. 2011, 2016; Moradi & Li 2019).
Qualitatively, it is expected to read as follows. Radial magnetic
field fluctuations produce radial diffusion of the magnetic field
lines, yielding a radial spread of the field line density
distributions and hence also a radial spread of the guiding
center density distributions, even when the particles propagate
unscattered with μ= 1 along the dispersing magnetic field
lines. Via numerical simulations of the equation describing the
evolution of the three-dimensional magnetic field line density
distribution, we quantify these effects for a given model of the
radial evolution of the solar wind turbulence. They are chiefly
determined by the magnetic field line diffusivity and by
geometrical factors associated with the configuration of the
Parker field.

2.1. The Local Magnetic Field Line Diffusivity

The local dispersion of the magnetic field lines due to solar
wind turbulence can be characterized by a magnetic field line
diffusivity Dm estimated locally from measurements of the
magnetic field fluctuations δBr, δBθ, and δBf at the spacecraft
position. Solar wind turbulence can be considered locally
homogeneous and stationary. Therefore, let us adopt a local
Cartesian coordinate system at the spacecraft position, whose
unit vector z coincides with the direction b of the Parker field as

z b

y b x

x u

,

,

, 17( )

=
= ´
= q

where uθ is the latitudinal direction. In this local coordinate
system, the turbulent magnetic field can be decomposed
according to

B z BB , 180 ( )d= + ^

where the turbulent magnetic fluctuations δB⊥ are transverse to
z. We neglected the small contribution of δBz= δB⊥. It follows
from the decomposition in Equation (18) that locally the
magnetic field lines are the solutions of the ordinary differential
equations

r B r
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,
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( ) ( )
( )
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where r⊥= (x, y). Now eliminating s in this system results in
the field line equation in the form

r B rd z

dz

z

B

,
. 20

0

( ) ( )
( )

d
=^ ^ ^

Equation (20) can be restated in terms of the z-component of the
fluctuating vector potential, explicitly showing its Hamiltonian
structure (Morrison 2000; Bian et al. 2011). Given that in the local
frame the magnetic field lines r⊥(z) do not cross twice the same
plane perpendicular to the direction z, it is thus possible to define
the magnetic field fluctuations evaluated along the magnetic field
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lines as δB⊥(z)= ∫δB⊥(r⊥, z)δ(r⊥− r⊥(z))dr⊥, where r⊥(z)

satisfies Equation (20). Let us Fourier decompose the latter
according to B Bz e k dkik z( ) ( ) òd d=^

-
^ and define the parallel

wavenumber spectrum EB(k∥) as

B BE k e z z z d z
1

2
, 21B

ik z( ) ( ) · ( ) ( ) òp d d= á + D ñ DD
^ ^

an expression that involves the trace of the autocorrelation
tensor. We emphasize that EB(k∥) is the spectrum of the
magnetic field fluctuations evaluated along the magnetic field
lines. It is different from EB(kz), the spectrum of the magnetic
field fluctuations evaluated along the direction z of the guiding
magnetic field. In the solar wind, the spectrum EB(k∥) given by
Equation (21) is measured to behave as a power law k

a- with
α close to 2 in the inertial range (Horbury et al. 2008;
Podesta 2009; Wicks et al. 2010). The spectral index α= 2 is
predicted by theories elucidating the importance of the critical
balance condition in Alfvénic turbulence (Goldreich &
Sridhar 1995; Boldyrev 2006). Using Equation (6), it can be
shown that (Jokipii & Parker 1969)

D
d x z

dz B
B B z d z

1
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1
0 , 22m x x
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( ) ( ) ( )ò d dº

á ñ
= á D ñ D

¥

which is, by definition, the expression for the magnetic field
line diffusivity Dm. Therefore, the magnetic field line
diffusivity Dm can be expressed in terms of the parallel
wavenumber spectrum as (Bian & Li 2022b)

D
E k

B2

0
, 23m

B

0
2

( )
( )

p
=

=

involving the value of the spectral energy density EB(k∥) at
k∥= 0. Local axisymmetry of the magnetic field fluctuations in
the plane perpendicular to z is implicitly assumed here. It
follows that Dm can equivalently be defined in terms of the
trace of the autocorellation tensor appearing in Equation (21),
hence the factor of one-half difference between Equation (23)
and the definition of Dm previously adopted in Bian & Li
(2022b). The magnetic field line diffusivity is a function of
space, and its radial dependence can in principle be obtained
directly by spacecraft measurements of Dm made at various
distances from the Sun. However, extraction of the spectrum
EB(k∥) from the time series of magnetic field fluctuations
recorded by spacecraft in the solar wind requires a complex
wavelet analysis of the data set (Horbury et al. 2008;
Podesta 2009; Wicks et al. 2010). Given the apparent difficulty
in measuring the spectrum EB(k∥) and in extrapolating it to
k∥= 0, it has become standard to estimate the field line
diffusivity Dm from the spectrum EB(kz, k⊥), which is easier to
measure. Certain model assumptions are, however, needed in
this case in order to functionally relate EB(kz, k⊥) to the value
EB(k∥= 0), which ultimately determines the magnetic field line
diffusivity Dm. These model assumptions are almost invariably
based on the Corrsin (1959) hypothesis introduced by
Matthaeus et al. (1995) in the context of magnetic field line
diffusion. The Corrsin (1959) hypothesis relates Eulerian and
Lagrangian statistics (Bian & Li 2022b): it relates the statistical
properties of the magnetic field fluctuations in the Eulerian

frame to those of the magnetic field fluctuations evaluated
along the magnetic field lines.
On local scales, the dispersion of magnetic field lines can be

described by the diffusion equation (Chandrasekhar 1943;
Jokipii & Parker 1969),

f

z
D f , 24m
m m· ( ) ( )

¶
¶
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where fm(r⊥, z) represents the local magnetic field line
distribution function, Dm is the scalar constant given in
Equation (23), and ∇⊥ is the transverse component of the
∇-operator in the slab. The solution of Equation (24) including
a source term in the form of δ(r⊥)δ(z) on the right-hand side is
the two-dimensional Gaussian distribution. We can define the
average magnetic field line from the first moment of the
magnetic field line distribution function fm, which is the
solution of Equation (24), as
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r r
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Multiplying Equation (24) by r⊥ and taking on both sides the
integral over the perpendicular spatial coordinates yields

rd z

dz
0, 26

( )
( )

á ñ
=^

after two integrations by parts. This proves that the average

magnetic field line does not drift from the direction z along the
guiding magnetic field. We note that each individual magnetic
field line emanating from the point source can be represented
by the realization of a two-dimensional Wiener process
r Wz D z2i

m
i( ) ( )=^ , where the superscript i labels a given

realization. The sum r z Ni
N i

1 ( )å = ^ is a function of z

converging pointwise to 0 when N→∞ , which is another
way of showing that r z 0( )á ñ =^ . Since the process underlying
Equation (24) is Gaussian, magnetic field line dispersion is
uniquely characterized by the second-order moment of the
magnetic field line distribution function, which obeys
r z D z4 m
2 ( )á ñ =^ . These well-known properties of the isotropic

diffusion process with a spatially constant diffusivity do not
generalize to the inhomogeneous case (Cherstvy et al. 2013)
that will be considered below. Before this, let us again discuss
the equivalence between the spatial dispersion of particles in
stochastic magnetic fields, in the limit of a zero gyroradius, and
that of the magnetic field lines. Jokipii (1966) and Jokipii &
Parker (1969) established that the guiding center density
distribution satisfies the kinetic equation
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where D is the perpendicular spatial diffusivity of the particles
and Dμμ is the pitch-angle diffusivity resulting from turbulent
scattering. The guiding magnetic field is taken to be uniform and
directed along z, and thus there is no need to consider the
mirroring/focusing effect resulting from the conservation of the
first adiabatic invariant (Roelof 1969; Earl 1976; Litvinenko
2012). Equation (27) is the same as Equation (31) in Jokipii &
Parker (1969). Jokipii (1966) has shown that the perpendicular
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diffusivity D can be split into two contributions arising from the
spatial diffusion of the magnetic field lines and from the resonant
scattering of the particles. The resonant scattering contribution to
D is a finite Larmor radius effect, as is Dμμ, which vanishes for
μ= 1. Taking μ= 1 in Equation (27) yields

f

t z
vf D f. . 28( ) ( ) ( )

¶
¶
+
¶
¶

=  ^ ^

Dividing Equation (28) by the constant speed v, introducing the
traveled length s= vt along the guiding magnetic field, and
identifying the particle density distribution function f with the
magnetic field line distribution function fm results in the three-
dimensional convection–diffusion equation

f

s

f

z
D f D

D

v
. ,

1
, 29m m

m m m( )
( )

( )
m¶

¶
+
¶
¶

=   =
=

^ ^

which provides essentially the same information as the two-
dimensional diffusion Equation (24). We emphasize, however,
that fm is a three-dimensional density distribution (cm(−)3

) in
Equation (29). It is given by
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Substituting s= vt in the right-hand side of Equation (30)
yields the particular solution f (x, y, z, μ= 1, t) of Equation (27)
obtained by setting Dμμ= 0. It describes the time evolution of
the three-dimensional density distribution function of scatter-
free particles after being released with μ= 1 at the origin of
this Cartesian coordinate system. We note that all the particles
cross the plane z= cst at the same time despite the
perpendicular dispersion. This is not an important issue when
it comes to the modeling of the spatial spread, but it is one that
needs to be taken into consideration in order to accurately
model the effect of cross-field diffusion on the arrival times of
the particles. The apparent paradox boils down to the fractal
structure of the Brownian magnetic field lines having no
definite length. It follows from the Fokker–Planck
Equation (29) that the realizations of the stochastic magnetic
field lines are obtained by solving the stochastic differential
equations

dz

ds
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ds
D s
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where ζx(s) and ζy(s) are unit Gaussian white noises. The
solutions of Equation (31) are represented by the two-
dimensional Wiener process

r Wz D z2 . 32m( ) ( ) ( )=^

The stochastic magnetic field lines have been “extracted” from
a model of stochastic particle motions by taking the limit of a
vanishingly small gyroradius, i.e., by taking μ= 1 in the
kinetic equation describing the particle motions as a function
of time. We used here the kinetic equation established by
Jokipii (1966) and Jokipii & Parker (1969) in a local slab. The

very same procedure can be generalized and applied to global
heliospheric scale transport models.

2.2. Global Magnetic Field Line Dispersion in the Heliosphere

Our starting point is the global scale generalization of
Equation (27) studied by Strauss & Fichtner (2015), Strauss
et al. (2017), and Strauss & le Roux (2019). It reads
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where D is the guiding center diffusivity tensor, b(r) is the
direction of the background magnetic field given here by
Equation (12), and LB is the focusing length given by
Equation (10). Setting μ= 1 cancels all the finite Larmor
radius effects in Equation (33), leaving us with an equation for
the magnetic field lines. Therefore, the diffusion of stochastic
Parker spirals on global heliospheric scales in the solar wind
can be described by the convection–diffusion equation

b D
f

s
f f , 34m
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¶
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where fm(r, s) is the heliospheric magnetic field line distribution
function and Dm(r) is the field line diffusion tensor. Let us first
observe that Equation (34) with Dm= 0 reduces to
Equation (7), whose characteristics are the Parker spirals.
Therefore, s can be interpreted as the arc length along the
Parker field. A physical interpretation of s is not mandatory in
order to obtain the solutions of the convection–diffusion
Equation (34). Its nature need not even be specified provided
that it parameterizes the magnetic field lines. More importantly,
we observe that because both b and Dm are functions of r, the
solutions of the convection–diffusion Equation (34) are
generally not Gaussian distributions. Multiplying
Equation (34) by r and carrying an integration over space
yields

r
D b r

d s

ds
f d , 35m m

( )
[ ( · )] ( )ò

á ñ
=  +

which should be compared with Equation (26). In
Equation (35), ∇ ·Dm plays a role similar to b, showing that
the direction of the average magnetic field line r s( )á ñ may not

generally coincide with the direction b of the background
magnetic field.
It remains to relate the form of the diffusion tensor Dm

entering Equation (34) to the local magnetic field line
diffusivity Dm. In the global heliographic coordinate system,
the diffusion tensor Dm in Equation (34) takes the form of a
3 × 3 matrix that is generally not diagonal. The nine
components of Dm in the heliographic coordinate system can
be obtained by noticing that in the local Cartesian frame given
by Equation (17) the diffusion tensor is diagonal and given by
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36m
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for Alfvénic magnetic field fluctuations transverse to z.
Therefore, the form of the field line diffusion tensor Dm

entering Equation (34), expressed in the heliographic coordi-
nate system, can be obtained from Dm

L in Equation (36) by
applying the transformation

D RD R , 37m m
L T ( )=

where the superscript T denotes the transpose operation and R

represents the Parker angle rotation,
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It follows from expressing the convection–diffusion
Equation (34) in the heliographic coordinate system that the
heliospheric magnetic field line density distribution fm obeys
the equation
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where the various components Dm
ij, with i, j= r, θ, f, are given

in Equation (39). Equation (40) constitutes the general model
describing the diffusion of magnetic field lines on global
heliospheric scales in the case where the background magnetic
field is the Parker field. We observe from the expression for the
diffusion tensor Dm given by Equation (39) the existence of a
purely radial component and the presence of nondiagonal drift
components. The radial component D Dm

rr
m

2c~ and the

nondiagonal components D D Dm
r

m
r

mc= ~f f close to the Sun
where χ= 1.

The convection–diffusion Equation (40) can be reformulated
as a Fokker–Planck equation for the magnetic field line
probability distribution function r rP s r f s, sin ,2

m( ) ( )q= , and
hence the magnetic field lines r(s) are the solutions of a set of
stochastic differential equations. The differential equations for
the stochastic Parker spirals are cumbersome, and thus they will
not be written down here. Nevertheless, the two approaches
based on the Fokker–Planck equation, which is a partial
differential equation for P(r, s), and based on the differential
equation for its stochastic characteristics r(s) are equivalent. The
present field line mapping model differs from the ballistic field
line mapping models adopted in the past (Schatten et al. 1968;
Nolte & Roelof 1973; Li et al. 2016) in that the deviations
from the Parker field, or from any other fields chosen to be
the background (Fisk 1996, 2001; Burger et al. 2008) in our

model, are due to statistical effects resulting from solar wind
turbulence combined with those of the background field
geometry.

3. Numerical Solutions

Equation (40) is solved numerically in the equatorial plane
corresponding to θ= π/2, where it reduces to
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For the simulations shown in this section we assume, as a first
approach, generic solar minimum values of the various plasma
quantities relevant to this study. This is motivated by the fact
that both large-scale plasma quantities such as the solar wind
speed and helisopheric magnetic field magnitude
(see, e.g., Owens & Forsyth 2013) and small-scale turbulence
quantities such as magnetic variances (see, e.g., Zhao et al.
2018; Burger et al. 2022) vary considerably less during periods
of lower solar activity. Therefore, we adopt a Parker field
produced by a solar wind speed of 400 km s−1. The radial
dependence of the magnetic field line diffusivity Dm(r) is
calculated using the approach outlined by Strauss et al. (2017),
where a theoretically (Matthaeus et al. 2007) and observation-
ally motivated piecewise continuous two-dimensional spectrum
EB(k⊥) is used and scaled with turbulence observations
corresponding to solar minimum conditions, including the
radial dependence of the magnetic field fluctuation variance
B r2 ( )dá ñ^ . The method is based on the earlier approach of

Engelbrecht & Burger (2015). Note that although the
turbulence parameters that Dm depends on are known to be
solar cycle dependent, this dependence may not be so
significant owing to the fact that Dm is a function of the ratio
of the magnetic variance to the background magnetic field
magnitude. Therefore, such a solar cycle dependence would
have to come from the weaker solar cycle dependence
seen in the magnetic correlation scale (e.g., Engelbrecht &
Wolmarans 2020) and may not significantly influence the
results presented here. At the inner boundary r0= 0.05 au, the
following condition is specified:

⎡⎣ ⎤⎦f r r s C g s, , exp , 42m 0
2

0

2( ) ( ) ( )
( )f= = - f f
s
-

representing a Gaussian longitudinal source with narrow
broadness σ= 5° centered at f0= 90° at the Sun. The function
g(s) is taken either as a delta-function g(s)= δ(s) or as a
constant g(s)= 1. The constant C is a normalization factor. At
the outer boundary rout= 10 au, the absorbing boundary
condition

f r r s, , 0 43m out( ) ( )f= =

7

The Astrophysical Journal, 962:186 (13pp), 2024 February 20 Bian et al.



is specified. It follows that the magnetic field lines or the
particles escaping the outer boundary cannot reenter the
simulation domain.

Let us first consider the solution f (r, s) of Equation (41) in
the case where g(s)= δ(s). We define the moment

r s . 44
rf r drd

f r drd

m

m

2

2
( ) ( )

òò
òò

á ñ =
f

f

For a given s, r s( )á ñ represents the mean value of the field line
distribution. Therefore, the function r s( )á ñ also represents the
average magnetic field line emanating from the source at the
Sun. We recall that, in the stochastic differential equation
formulation of the same diffusion problem, the average field

line can equivalently be defined as r rs s Ni
N i

1( ) ( )á ñ = å = ,
where r

i
(s) are N→∞ realizations of the stochastic process

representing the magnetic field lines emanating from the same
source at the Sun. Figure 1 displays the magnetic field line
distribution function fm(r, f, s) for increasing values of s. The
nominal Parker spiral emanating from the source located at
f= 90° at the Sun is represented by the white curve. We
observe that as s increases the magnetic field line distribution
becomes broader in longitude. The magnetic field line
distribution becomes also radially broader. The longitudinal
broadening and radial broadening of the distribution are due to
the longitudinal and radial components of the diffusion process.
They enter as the diagonal components of Dm in Equation (39).
Radial broadening of the distribution is substantial although

Figure 1. Diffusion of stochastic Parker spirals in the solar wind. The contour plot represents the magnetic field line distribution function in the equatorial plane for
increasing values of s in astronomical units. The nominal Parker spiral emanating at f = 90° is represented by the white curve. The squares and circles correspond to
the most probable and the mean values of the field line distribution, respectively.
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less pronounced than longitudinal broadening. There is also a
noticeable shift of the distribution counterclockwise. This shift
is due to the effects of the drift terms corresponding to the
nondiagonal components of the field line diffusion tensor in
Equation (39). The squares and circles in Figure 1 correspond
to the most probable and mean values of the field line
distribution, respectively. They are both shifted with respect to
the Parker field line. Therefore, the results show that the mean
r s( )á ñ is different from the Parker spiral, which is obtained by
solving the same equation with the field line diffusivity set to
zero, i.e., it is different from the solution of the purely
deterministic component of its characteristic equation given by
Equation (6), with b given by Equation (12). The observed
phenomenon is due to the spatial inhomogeneity of the
diffusion tensor Dm. The phenomenon can be pinpointed
through the ∇ ·Dm term in Equation (35) governing the first-
order moment. The distributions displayed in Figure 1 can be
interpreted as the spatial distributions of particle guiding
centers, electrons and ions, promptly injected with a pitch-
angle cosine μ= 1 from the solar source and propagating
scatter-free outward at a constant speed v along the diffusing
magnetic field lines. In this interpretation, time is measured in
units of the traveled distance according to

t
s

v
, 45( )=

where the speed v of the injected particles is constant. Despite
the absence of pitch-angle scattering, the radial broadening of
the particle distribution function appears similar to that of
pitch-angle scattering. It follows that due to the radial diffusion
of the magnetic field lines, we expect a dispersion in the
crossing times of the particles at a distance r from the
source similar to, but nevertheless distinct from, the delay-
time distribution resulting from pitch-angle scattering

(Bian & Emslie 2019, 2020). Radial diffusion of the magnetic
field lines thus constitutes an additional source of interpreta-
tions of the results obtained from velocity dispersion analysis
applied to the onset time of SEP events (Lin 1974; Krucker &
Lin 2000; Tylka et al. 2003; Sáiz et al. 2005; Wang et al. 2016;
Zhao et al. 2019), which is based on Equation (45).
We now repeat the calculations with g(s)= 1. The numerical

code is run until the solution fm of Equation (41) becomes
independent of s. The result is shown in the left panel of
Figure 2 as a contour plot of the distribution fm. The
longitudinal distributions at different radial distances are
shown in the right panel. The distribution shown in the left
panel can be interpreted as the spatial distribution of scatter-
free particles steadily injected with μ= 1 at the solar source
and steadily removed at the outer boundary. The angular
distributions in the right panel of Figure 2 can thus be
interpreted as steady-state longitudinal distributions of scatter-
free particles at various values of r. We also compute the mean
and variance of the longitudinal distributions. Their depend-
ence on r is plotted in the left panel of Figure 3. Also shown is
the longitudinal position of the nominal Parker magnetic spiral
(blue dashed line). The right panel of the figure shows the
nominal Parker spiral (solid line) compared to the curve given
by the longitudinal mean value (dashed line) as a function of r.
They both represent Archimidean spirals. However, it is clearly
apparent that the average magnetic field line computed from the
obtained distribution is underwound with respect to the
unperturbed Parker field line. The spiral angle at Earth's orbit
obtained from the model is 43° at 1 au compared to 47° for the
Parker spiral at the same solar wind speed. For an observer
looking at the Sun, the position of the most probable
connecting magnetic field line on the solar disk, after
accounting for solar wind turbulence, is shifted by about 10°
westward with respect to prediction of the Parker (1958)
model. After accounting for solar wind turbulence in the model,
the Archimedean spiral best connecting the observer to the Sun

Figure 2. The left panel shows the simulated steady-state solution of fm as a contour plot in the equatorial plane of the heliosphere. A nominal Parker magnetic field
line is again shown as the solid white line. The right panel shows the field line angular distributions at various radial distances r, corresponding to the results displayed
in the left panel.
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is shorter than the Parker spiral. The length of the Parker spiral
is 1.21 au at 1 au for a solar wind speed of 400 km s−1. In our
model, the best connecting magnetic field line is more radial. It
has a length of 1.14 au at 1 au, a value that is about 5% shorter
than in the Parker model.

4. Longitudinal Diffusion

Let us make the ansatz that the longitudinal distribution of
magnetic field lines around its mean value obeys the circular
diffusion equation

f

r
D r

f
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where the coefficient Dma(r) represents the field line long-
itudinal diffusivity that is related to the component D rm ( )ff by
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Applying the method of images, the solution of Equation (46)
can be expressed as a wrapped Gaussian distribution (Bian &
Li 2022a) given by
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where r( )f f fD = - á ñ is the deviation from the mean
r( )fá ñ. The circular distribution in Equation (48) is an infinite

sum of Gaussian distributions, all having a common variance
given by

r r D r dr2 . 49
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At small enough longitudinal spread, the distribution fma(Δf, r)
in Equation (48) can be approximated by its n= 0 component
in the sum. Equation (49) predicts the radial evolution of the
longitudinal variance of the angular distribution. We computed
the radial derivative of the numerically obtained longitudinal
variance σ2(r), i.e., the radial derivative of the red curve in the
left panel of Figure 3. The result is plotted in Figure 4 and
compared with twice the angular diffusivity Dma(r)=Dm(r)/r2,
which is used as input in the numerical simulations. These two
quantities are shown to compare relatively well for not too
large angular spreads, where the Gaussian approximation to the
circular Gaussian remains valid. The large angle saturation of
the variance is a geometrical effect: it is a natural consequence
of the periodic geometry that is accounted for by the circular
Gaussian model but not by the Gaussian model. The wrapped
Gaussian model cannot, however, account for the western
skewness, which, albeit not being too pronounced, is never-
theless appreciable in the angular distributions displayed in the
right panel of Figure 2. A more accurate fit of the angular
distributions could in principle be obtained by wrapping a
skew-Gaussian distribution around the circle.

5. Discussions and Conclusion

In their seminal works, Jokipii (1966) and Jokipii & Parker
(1969) established the drift kinetic equation for the time
evolution of the three-dimensional guiding center density
distribution function f (r, μ, t),
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where μ is the pitch-angle cosine and v the constant particle
speed. The two scalar coefficients Dμμ and D are the pitch-

Figure 3. Left: mean (green line) and variance (red line) of the simulated angular field line distribution as a function of radial distance using the results of Figure 2.
The nominal Parker spiral (blue dashed line) is also shown. Right: the nominal Parker spiral (solid line) and the mean value of the magnetic field distribution from the
simulations (dashed line) shown in the equatorial plane. The circle shows Earth’s orbit for reference.
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angle diffusivity and the perpendicular diffusivity, respectively.
This guiding center transport equation is written in a local slab
where the guiding magnetic field points in the z-direction and
where the magnetic field fluctuations responsible for the
diffusion of the magnetic field lines are perpendicular to the
guide field direction. In this local slab model, where D is a
constant,

x t y t 0, 51( ) ( ) ( )á ñ = á ñ =

meaning that, on average, the guiding center position does not
drift, as a function of time, with respect to the constant
direction of the guiding magnetic field. Moreover, z(t)= μvt

when μ= cst. The global scale generalization of the previous
transport equation reads (Strauss & Fichtner 2015)
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where b(r) is the spatially varying direction of the background
magnetic field, here given by the Parker field, LB(r) is the
focusing length, and D(r) is the guiding center diffusivity
tensor. In this work, we have shown that the particle guiding
centers experience a drift across the direction of the Parker field
even in the limit where all the finite Larmor radius effects
vanish.

Setting μ= 1 cancels all the finite Larmor radius effects 33,
leaving us with an equation for the magnetic field lines.
Therefore, the diffusion of stochastic Parker spirals on global
heliospheric scales in the solar wind can be described by the
convection–diffusion equation
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where fm(r, s) is the three-dimensional magnetic field line
density distribution and Dm(r) is the magnetic field line
diffusion tensor. Diffusion of the magnetic field lines is
assumed to be transverse to the direction of the Parker field.
Therefore, the diffusion tensor Dm can be expressed in the
heliographic coordinate system as
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where χ is the angle between the Parker field and the radial
direction. In addition to the geometrical factors depending on χ,
the expression for the diffusion tensor Dm involves the local
magnetic field line diffusivityDm, a scalar that can be inferred from
measurements at the spacecraft location via (Bian & Li 2022b)
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where EB(k∥) is the spectrum of the perpendicular magnetic
field fluctuations evaluated along the magnetic field lines.
Thanks to the wavelet analysis of Horbury et al. (2008),
Podesta (2009), Wicks et al. (2010), and others, the radial
dependence of Dm(r) can in principle be constrained from
spacecraft measurements of EB(k∥) at various distances from
the Sun. We are not aware of any direct evaluation of the local
magnetic field line diffusivity via extrapolation to zero k∥ of the
measured EB(k∥). For simplicity, we adopted here the model
assumptions described by Strauss et al. (2017) in order to
constrain from observations the radial dependence of the
diffusivity Dm(r). Future work could also employ outputs from
turbulence transport models (see, e.g., Zank et al. 2017, 2018;
Oughton & Engelbrecht 2021) to constrain the spatial
dependence of the field line angular diffusivity coefficient, in
an approach similar to that of, e.g., Adhikari et al. (2022). The
angular diffusivity Dma(r)=Dm(r)/r2, which is used as input in
the model, is plotted in Figure 4.
Expressing the magnetic field line diffusion model in the

heliographic coordinate system yields
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Figure 4. Numerical test of the validity of Equation (49). The radial derivative
of the variance σ2(r) measuring the angular spread of magnetic field lines vs.
twice the angular diffusivity Dma(r) = Dm(r)/r2 is used as input in the magnetic
field line transport model.
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The heliospheric magnetic field line density distribution does
not only spread in the angles θ and f; it also spreads in r owing
to the radial diffusion. The radial diffusion of the magnetic field
lines is the consequence of the presence of radial magnetic field
fluctuations in the solar wind. The heliospheric magnetic field
line distribution fm(r, s) emanating from a point source at the
Sun is obtained by numerically solving the drift diffusion
Equation (56) in the ecliptic plane θ= 0. The radial depend-
ence of the angular distribution of the magnetic field lines is
determined, showing that the field line angular distributions
remain close to circular Gaussian distributions, although
developing a skewness that is not described by a Gaussian
model. It is also shown that in the radially evolving solar wind
turbulence the magnetic field lines emanating from the Sun
differ, on average, from the spirals predicted by Parker. These
spirals remain Archimedean but are underwound. Our model
predicts a spiral angle that is smaller by ∼5° than the Parker
spiral angle of ∼47° at Earth’s orbit for the same solar wind
speed of Vsw= 400 km s−1. It also predicts an angular position
on the solar disk of the best magnetically connected footpoint
to an observer at 1 au that is shifted westward by ∼10° with
respect to the Parker’s model.

At first glance the result presented here of a ∼5° under-
wound field relative to the standard Parker model appears to
contradict the findings of Smith & Bieber (1991), who, after an
analysis of 23 yr worth of hourly spacecraft observations of the
heliospheric magnetic field winding angle, conclude that the
observed winding angle is on average larger than expected
from the standard Parker model. It should, however, be noted
that the parameter choices made in the present model are
applicable to solar minimum conditions. When the observa-
tions of Smith & Bieber (1991) during periods of low solar
activity are considered, it can be seen from Figure 2 of that
study that the observed winding angle is actually several
degrees smaller than the nominal Parker value, thereby
providing a possible observational confirmation of our analysis.
Subsequent studies, although providing confirmation of the
solar-cycle-dependent behavior of the winding angle, report
values closer to the nominal Parker angle during solar
minimum periods (e.g., Hanneson et al. 2020; Chang et al.
2022). Nevertheless, our results are consistent with the recent
analysis by Fargette et al. (2021) showing that as the Parker
Solar Probe’s distance to the Sun decreases, the magnetic field
directional data of the quiet solar wind deviate, on average,
from the Parker spiral model predictions. The spiral is observed
to be less tightly wound than predicted by Parker on the basis
of the measurements of the radial solar wind speed processed
with a 2 hr low-pass filter.

The magnetic field line density distributions displayed in
Figure 1 can equivalently be interpreted as the density
distributions of particle guiding centers, electrons and ions,
promptly injected from the solar source and propagating
ballistically with a constant pitch angle along the diffusing
magnetic field lines. The four different panels in Figure 1 thus
correspond to four different times after injection at the Sun.
Moreover, the magnetic field line density distribution displayed
in Figure 2 can equivalently be interpreted as a steady-state
density distribution of particles injected at the solar source,
under scatter-free conditions. The above results show that, due
to solar wind turbulence, the average guiding center trajectory
drifts westward, from the nominal Parker field line it emanates

from at the Sun, by an amount of the order of ∼10° at 1 au.
Therefore, the presence of turbulence can significantly change
the angle of best magnetic connection between possible sources
of particle acceleration at the Sun and observers of SEP events
in the inner heliosphere. These results are the most pertinent to
the transport of scatter-free electrons (Lin 1974) accelerated
during solar flares.
We have shown that a substantial amount of radial

broadening of the particle density distributions can be
attributed to the radial diffusion of the magnetic field lines
alone, without the need to invoke the role of pitch-angle
scattering in order to explain it. Pitch-angle scattering produces
radial diffusion of the emitted particles, which affects the
timing of their arrival at the observer’s position. Radial
diffusion of the magnetic field lines thus constitutes an
additional source of interpretations of the results obtained from
velocity dispersion analysis applied to the onset time of SEP
events (Lin 1974). While the terms responsible for pitch-angle
diffusion and cross-field diffusion are easily distinguished in
transport models, disentangling their roles in the transport of
the fast particles is a more complicated task. This is the reason
we have based our analysis on the idealized case of scatter-free
transport along stochastic magnetic field lines, i.e., we focused
on the global structure of the stochastic magnetic field lines in
the heliosphere. Disentangling the role of magnetic field line
diffusion from that of pitch-angle scattering in the transport of
SEPs will be the subject of forthcoming investigations. A
specific question we are interested in answering is, can the
finite Larmor radius effect of turbulent pitch-angle scattering
increase the amount of angular spread of the SEPs with respect
to that of the dispersing magnetic field lines, say, at 1 au, by
increasing the time spent by the particles between the emission
region and the observer position? The three-dimensional
particle transport model suggests that pitch-angle scattering
may decouple the particle paths from the magnetic field lines.
This property cannot emerge from one-dimensional field-
aligned transport models, where the particles are tied to a given
meandering magnetic field line. If pitch-angle scattering can
decouple the particle paths from the magnetic field lines, it
remains to evaluate in which amounts in the three-dimensional
model. An important observational constraint is that the angular
spreads of the particles do not depend substantially on the
charge-to-mass ratio (Cohen et al. 2017).
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