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Abstract

In this work, we extend Leighton’s diffusion model describing the turbulent mixing of magnetic footpoints on
the solar wind source surface. The present Lagrangian stochastic model is based on the spherical
Ornstein–Uhlenbeck process with drift that is controlled by the rotation frequency Ω of the Sun, the
Lagrangian integral timescale τL, and the root-mean-square footpoint velocity Vrms. The Lagrangian velocity and
the positions of magnetic footpoints on the solar wind source surface are obtained from the solutions of a set of
stochastic differential equations, which are solved numerically. The spherical diffusion model of Leighton is
recovered in the singular Markov limit when the Lagrangian integral timescale tends to zero while keeping the
footpoint diffusivity finite. In contrast to the magnetic field lines driven by standard Brownian processes on the
solar wind source surface, the interplanetary magnetic field lines are smooth differentiable functions with finite
path lengths in our model. The path lengths of the boundary-driven interplanetary magnetic field lines and their
probability distributions at 1 au are computed numerically, and their dependency with respect to the controlling
parameters is investigated. The path-length distributions are shown to develop a significant skewness as the
width of the distributions increases.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Interplanetary magnetic fields (824)

1. Introduction

The interplanetary magnetic field is an essential component
of the solar–terrestrial connections. The structure of the solar
wind magnetic field is critical to the understanding of solar
energetic particle (SEP) events. In the original work of Parker
(1958), the magnetic field is carried radially outward with the
bulk solar wind that emanates from the rotating Sun as a whole.
This yields the basic spiral structure of the interplanetary
magnetic field lines. Soon after the first diagnosis of turbulence
in the solar wind, Jokipii & Parker (1969) pointed out the
importance of random fluctuations in astrophysical magnetic
fields. On the basis of the Leighton (1964) theory of diffusive
flux transfer on the photosphere, Jokipii & Parker (1969)
argued that the Parker spirals are stochastic, providing a sound
explanation to the longitudinal spread of high-energy particles
released at the Sun. Stochastic Parker spirals in the solar wind
can be represented well by realizations of a spherical Brownian
diffusion process superimposed on the angular drift due to the
solar rotation (Bian & Li 2021). In this picture, multiple field
lines traced back to the Sun from the observer position can
magnetically connect to different locations on the source
surface, although with different probabilities. The resulting
longitudinal spread of interplanetary magnetic field lines and of
SEPs can be described by the circular Gaussian distribution
(Bian & Li 2022a). After the pioneering investigations by Fan
et al. (1968), the angular spread of SEPs has been the subject of
detailed spacecraft measurements, in both longitude (Van
Hollebeke et al. 1975; Cane et al. 1986; Shea & Smart 1990;
Reames 1999; Lario et al. 2006; Mewaldt et al. 2013;

Wiedenbeck et al. 2013; Reames et al. 2013; Dresing et al.

2014; Richardson et al. 2014; Cohen et al. 2017) and latitude

(Zhang et al. 2001, 2003; Dalla et al. 2003). The multipoint

statistical study realized by Cohen et al. (2017) reveals that the

width of the longitudinal distributions of ions only weakly

depends on the charge to mass ratio. It is suggestive that the

angular spread of SEPs relies on processes that are similar to

those responsible for the dispersion of magnetic field lines in

the solar wind.
An extension of the Jokipii & Parker (1969) models was

presented by Giacalone & Jokipii (2004) (see also Giaca-

lone 2001). In the Giacalone & Jokipii (2004) model, the

motions of footpoints are prescribed by the Eulerian surface

velocity field, which is derived from a spherical stream function

on the source surface. The weighting coefficients in the

spherical harmonic decomposition of the stream function can

be constrained from observations of the Eulerian spectrum of

photospheric convection (Hathaway et al. 2000, 2015; Rincon

et al. 2017; Rincon & Rieutord 2018). Giacalone & Jokipii

(2004) performed numerical integration of the footpoint

trajectories and compared the spatial distribution of footpoints

with the solution of a spherical diffusion equation, yielding

values of the footpoint diffusivity ∼1500–2000 km2s−1 close

to those inferred by Leighton (1964). The boundary-driven

model of Giacalone & Jokipii (2004) has also formed the basis

of several studies investigating how stochastic magnetic field

lines impact the interplanetary transport of SEPs (Pei et al.

2006; Kelly et al. 2012; Moradi & Li 2019). In this work, we

present a Lagrangian stochastic model describing the turbulent

motions of the magnetic footpoints. Our model is a direct

extension of the Leighton (1964)s diffusion model. It is a

model for the Lagrangian surface velocity on the solar wind

source surface.
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Turbulent magnetic field fluctuations in the solar wind are
expected to affect not only the magnetic connection angles but
also the connection lengths, in particular for SEP events
showing large angular spreads. The connection lengths, which
are the distances traveled by the particles, can be inferred from
the velocity dispersion analysis of SEP events (Lin 1974; Lin
et al. 1981; Krucker & Lin 2000; Tylka et al. 2003; Sáiz et al.
2005; Kahler & Ragot 2006; Reames 2009; Wang et al. 2016)
and also from the fractional velocity dispersion analysis
recently proposed by Zhao et al. (2019). Using recent
observations from the ISeIS instrument on board the Parker
Solar Probe spacecraft, Chhiber et al. (2021) examined how the
random walk of magnetic field lines in the solar wind can affect
the SEP path lengths.

In Section 2, we formulate the Lagrangian stochastic model
extending the Leighton (1964)s model for magnetic flux
diffusion on the photosphere. The results are used in Section 3
to extend the Jokipii & Parker (1969) model of surface-driven
magnetic field lines in the heliosphere. A summary and
conclusions are given in Section 4.

2. Generalized Leighton’s Model for the Motions of
Magnetic Footpoints

The solar wind source surface denotes the inner boundary of
the solar wind magnetic field. It is the outer boundary of the
coronal magnetic field. In the solar corona, magnetic field lines are
an admixture of closed and open field lines all originating from a
common inner boundary: the solar photosphere. Potential Field
Source Surface models (Schatten et al. 1969; Altschuler &
Newkirk 1969; Schrijver & DeRosa 2003; Gombosi et al. 2018)
are commonly used to describe the magnetic field expansion from
the photosphere to the source surface. In this work, we are not
concerned with the coronal expansion of the magnetic field and
hence with the exact location of the solar wind source surface. It
can be chosen to coincide with the location adopted in PFFS
models or taken as the location of the Alfvén critical surface
predicted by DeForest et al. (2014) and Adhikari et al. (2019),
beyond which the solar wind becomes super-Alfvénic. The
magnetic footpoint trajectories on the solar wind source surface
can be described by the solutions of the equation

=^
^ ^

( )
( ) ( )

r
V r

d t

dt
t, , 1


where V⊥( r⊥, t) is the surface velocity field, a function of the

position r⊥ on the source surface and on time t. The position

r⊥(t) of the magnetic footpoints remains on a sphere, and

hence, | r⊥(t)|= r 0 at all times. The velocity V⊥( r⊥, t)

appearing in Equation (1) is the Eulerian surface velocity field

everywhere tangent to the source surface. Let us decompose

this velocity field into a mean component resulting from rigid

body rotation plus turbulent fluctuations as

d= +^ ^ W ^ ^ ^( ) ( ) ( ) ( )V r V r V rt t, , . 2


In the reduced heliographic coordinate system (r = r0, θ, f),

where θ is the latitude and f is the longitude, the secular

rotation velocity of the footpoints is given by q= W fWV ur sin0 ,

where Ω is the solar rotation frequency. Expressed in this

coordinate system, Equation (1) takes the form

q d q f f d q f
q

= = W +q f( ) ( ) ( ) ( )
( )

d t

dt

V t

r

d t

dt

V t

r

, ,
,

, ,

sin
. 3

0 0


There are three fundamental parameters associated with the

turbulent component δV⊥( r⊥, t) of the Eulerian velocity field.

These parameters are the typical amplitude of the fluctuations

Vrms, the correlation length λc=Θ c r0, where Θc represents the

typical angular size of source surface convective structures, and

the correlation time τc, which represents the lifetime of these

structures. Assuming the Eulerian velocity field δV⊥( r⊥, t) is a

Gaussian, homogeneous, stationary, and isotropic random

vector field on the sphere, then the set of parameters

(Ω, Vrms, Θc, and τc) fully determine the statistical properties

of the footpoint trajectories on the solar wind source surface. It

can easily be shown that the turbulent part of the footpoint

motion, describing the deviations δr⊥(t) from rigid body

rotation, is solely controlled by the dimensionless Kubo

number, K= τc Vrms/Θc r0, which represents the typical

lifetime τc of convective structures in units of the turnover time

λc/V rms of footpoints convected by such structures. The

parameters λc and Vrms of the Eulerian surface velocity field

can be constrained from high-resolution spectroscopic imaging

of the Doppler field (Hathaway et al. 1996; Hathaway &

Rightmire 2010).
On the other hand, the properties of the Lagrangian surface

velocity V⊥(t) can be established, for instance, by recording
the position of identifiable moving features as a function of
time on the surface of the Sun (Van Kooten & Cranmer 2017).
Adopting a Lagrangian perspective, Bian & Li (2022b) have
recently described the local structure of stochastic Parker
spirals resulting from in situ turbulence in the solar wind. The
approach adopted by Bian & Li (2022b) affords a resolution to
the long-standing conundrum that magnetic field lines under-
going a heliospheric Brownian diffusion are nowhere differ-
entiable and therefore have infinite path lengths. Our current
problem concerns the effects of source surface turbulence on
the interplanetary magnetic field lines, and we shall here also
base our modeling approach on a Lagrangian perspective. The
Lagrangian velocity V⊥(t) of the magnetic footpoints is related
to the Eulerian velocity field V⊥( r⊥, t) on the solar wind
source surface by

ò d= -^ ^ ^ ^ ^ ^( ) ( ) ( ( )) ( )V V r r r rt t t d, , 4


where r⊥(t) is the solution of Equation (1). In other words, the

Lagrangian velocity V⊥(t)= V⊥( r⊥(t), t) of magnetic

footpoints, which is a function of time only, is the Eulerian

velocity evaluated along the footpoint trajectories. The

Lagrangian integral timescale τL is defined via the relation

ò d d t t t
 ¥

á ñ =^ ^( ) · ( ) ( )V V Vlim
t

0 d . 5
t

0
L rms

2


Note that the Eulerian correlation time τc and the Lagrangian

correlation time τL are fundamentally different characteristic

timescales. The time integral involved in Equation (5) has the

physical dimension of a diffusivity (cm2 s−1
), and it converges

2
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toward a constant, provided the Lagrangian autocorrelation

function 〈δV⊥(0) · δV⊥(τ) 〉 decays sufficiently fast. This con-

stant, denoted here by k t= VL rms
2 , is by definition the spatial

diffusivity of the magnetic footpoints. Indeed, from the

footpoint equation of motion (1), one can derive Taylor’s

relation,

ò
d

d d t t
á ñ

= á ñ^
^ ^

( )
( ) · ( ) ( )V V

d r t

dt
d

1

2
0 , 6

t2

0


which is an exact result connecting the footpoint displacements

variance dá ñ^( )r t2  and the Lagrangian autocorrelation function

〈δV⊥(0) · δV⊥(τ) 〉 , the trace of the Lagrangian autocorrelation

tensor. In the limit when t? τL, Equation (6) yields the

diffusive behavior d tá ñ =^( )r t V t2 L
2

rms
2 . However, when t= τ

L, Equation (6) gives dá ñ =^( )r t V t ,2
rms
2 2  indicating that the

footpoint trajectories are linear functions of time for time

intervals much smaller than the integral timescale τL.

Assuming, as in Leighton (1964), that the magnetic field

footpoints undergo a Brownian diffusion at all times, their

trajectories obey the drift–diffusion equations given by

zt= +^
W

( )
( ) ( )

r
V

d t

dt
V t , 7L rms
2


where ζ (t) is the two-dimensional unit Gaussian white noise

having the following properties:

z z z d dá ñ = á ¢ ñ = - ¢( ) ( ) ( ) ( ) ( )t t t t t0, . 8i i j ij


Therefore, in the Leighton (1964) model, the Lagrangian

surface velocity, which coincides with the velocity of the

magnetic footpoints, is modeled by the Gaussian white noise

process. A natural extension of the Leighton (1964) diffusion

model consists in modeling the turbulent component of the

Lagrangian surface velocity by a Gaussian process whose

autocorrelation function decays exponentially on a timescale

τL:

d dá ñ =^ ^
-t( ) · ( ) ( )V Vt V e0 . 9rms

2 t
L


The footpoint trajectories on the solar wind source surface thus

satisfy the equations:

z

d= +

=- +d d
t t

W ^
^

^ ^

( )

( ) ( )

( )

( ) ( )

V V t

t

,

. 10

r

V V

d t

dt

d t

dt

t V

L L

rms
2


The second equation above, which is the Langevin equation,

can be rewritten in a compact dimensionless form as

zd
d= - +^
^

˜ (˜)

˜
˜ (˜) (˜) ( )

V
V

d t

dt
t t , 11


where d d=^ ^Ṽ V Vrms and t=t̃ t L. Note that taking the limit

τL→ 0 while keeping the product t k=VL rms
2  finite in

Equation (10) recovers Leighton’s diffusive prescription:

zd t=^( ) ( )V t V tL rms
2 . Equation (10) can be integrated to

give ò zd d t= + ¢ ¢t t
^ ^

- - - ¢( ) ( ) ( )( )V Vt e V e t dt0 t
L

t
t t

rms
2

0

L L ,

and hence, d dá - ñ = -t t
^ ^

- -( ( ) ( ) ) ( )V Vt e V e0 1t t2
rms
2 2L L

Vrms
2  when t? τL. The deviation from solid body rotation

òd d= ¢ ¢^ ^( ) ( )r Vt t dt
t

0
 is a non-Markovian process that can be

expressed as a linear combination of Brownian motions

weighted by an exponential kernel, superimposed on the

contribution due to initial conditions, as δr⊥(t)=

d t - t
^

-( ) ( )V e0 1L
t L + òt - t- - ¢

¢( )( ) WV e d1L

t
t t

trms
2

0

L ,

where Wt denotes the Wiener process. The footpoint

trajectories given by Equation (10) are the integrals of a

continuous stochastic process: the Ornstein–Uhlenbeck pro-

cess. They are thus random functions of time, but nevertheless

they remain differentiable. The spatial distribution P( r⊥, t) of

magnetic footpoints is the Gaussian distribution whose

variance is given by

d t tá ñ = + -^
-t( ) [ ( )] ( )r t V t e2 1 , 12L L

2
rms
2 t

L


which satisfies the two asymptotic constraints imposed by the

Taylor relation (6).
In order to formulate the Lagrangian stochastic model globally

describing the footpoint motions on the spherical source surface,
we can use the following finite difference scheme: r⊥(t+Δt)=
r⊥(t)+ (VΩ+ δV⊥(t))Δt, d d t+ D = - D^( ) ( )[ ( )]V Vt t t t1D

L

zt+ D( )V t Lrms
2 , where ζ is a two-dimensional centered

Gaussian random number with unit variance drawn from
independent identical distributions at each time step Δt and δV
D
(t) is the turbulent component of the footpoint velocity dragged

to r⊥(t+Δt). Therefore, in the reduced heliographic coordinate
system, with uθ and uf as the unit tangent vectors forming an
orthonormal basis, the finite difference formulation of
Equation (10) takes the form:

f f
d
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t
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t
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L

L

L

0

0

0
rms
2

0
rms
2

 The Lagrangian stochastic model given by Equation (13)
describes the trajectories of the magnetic footpoints on the
spherical solar wind source surface of radius r0, taken here at
2.5 solar radii. The turbulent component of the magnetic
footpoint motion is controlled by the two-parameter doublet
(τL, Vrms). Five different realizations of magnetic footpoint
trajectories [θ(t), f(t)] on the source surface, obtained by
numerical integration of Equation (13), are plotted in Figure 1.
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In both panels, Vrms= 1.0 km s−1, with τL= 0.2 (1.0) day in
the left (right) panel. We observe that increasing the
Lagrangian autocorrelation time τL results in smoother
footpoint trajectories and larger angular spread.

3. The Path Lengths of Boundary-driven Interplanetary
Magnetic Field Lines

Due to the very high electrical conductivity of the solar wind
plasma, the magnetic field can be considered to be frozen in the
solar wind, and hence each source surface-driven magnetic

field line is determined by the position of fluid elements

continuously ejected over time by the solar wind from a given

moving magnetic footpoint. Therefore, the solar wind velocity,

which is assumed here to be purely radial and equal to a

constant Vsw= 400 km s−1, provides a one-to-one map

between the footpoint trajectories [θ(t), f(t)] on the source

surface and the boundary-driven magnetic field lines [r(t)= r

0+ Vsw t, θ(t), f(t)] in the heliosphere, which are here

parameterized by t. The boundary-driven magnetic field lines

corresponding to the turbulent footpoint trajectories displayed

Figure 1. Five realizations of footpoint trajectories on the source surface r = r0 resulting from the numerical integration of Equation (13). In both panels, Vrms = 1
km s−1, while τL = 0.2 day in the left panel and τL = 1.0 day in the right panel.

Figure 2. Top: five realizations of boundary-driven solar wind magnetic field lines corresponding to the footpoint trajectories displayed in Figure 1. Middle: their
projections into the XY plane. Bottom: their projections into the XZ plane.
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in Figure 1 are plotted in Figure 2. The two upper panels are

representations of the magnetic field lines in three dimensions,

the two middle panels are projections of the field lines into the

XY plane, and the two lower panels are projections of the field

lines into the XZ plane.
While these field lines are stochastic, they are smooth

differentiable functions of r (or t). Their path length L(r) from

the source surface to an observer located at a distance r is thus a

well-defined random function of r given by

ò
q q

f
= + +⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠
( )

( ) ( )
( )

( ) ( )
( )

14

L r dt V r t
d t

dt
r t t

d t

dt
sin ,

r V

0
sw
2 2

2
2 2

2
sw

where r(t)= r0+ Vsw t. It should be noted that we ignored the

effects of in situ turbulence resulting in the motions of the solar

wind parcels perpendicular to the background field. Inclusion

of such effects will be examined in a future paper. The

probability distribution functions P(L, r= 1 au) of the magnetic

connection length L at the distance r= 1au are plotted in

Figure 3. The nominal Parker field line length is L0; 1.17 au at

1 au. The rms speed Vrms is equal to 0.6, 1.0, and 2.0 km s−1 in

the left, middle, and right panels, respectively. In each panel,

the PDFs are plotted for five different values of the Lagrangian

integral timescale τL: 0.6, 2.4, 4.8, 12, and 24 hr, which are

labeled by different colors. The deviations from Gaussian-like

distributions increase as the width of the PDFs increases and

the positive skewness becomes more pronounced. From the N

realizations of the stochastic magnetic field lines, we compute

the average L̄, the standard deviation σ, and the skewness m̃3,

given by

å å

å

s

m
s

= = -

=
-

⎜ ⎟⎛
⎝

⎞
⎠

¯ ( ¯)

˜
( ¯)

( )

L
N

L
N

L L

N

L L

1
,

1
,

1
, 15

i

i

i

i

i

i

2

3

3


of each path-length distribution. These three quantities are

compiled in Table 1. As we can see from the table, as

τL increases at fixed Vrms, the average path length remains the

same while the standard deviation and skewness increase. For

the case of Vrms= 1.0 km s−1 in the middle panel, the PDFs are

similar to the cases of Vrms= 0.6 km s−1 with =L̄ 1.3 au for
all five values of τL and larger standard deviation and

skewness. For fixed τL, the skewness is the largest when the

speed Vrms is the largest, here Vrms= 2.0 km s−1. For fixed

Vrms, the skewness is the largest when the decorrelation time τL

Figure 3. The probofability distribution function P(L, r = 1 au) of the magnetic path length L at 1 au. The left panel corresponds to V rms = 0.6 km. s−1 at the solar
surface, the middle panel to Vrms = 1.0 km s−1, and the right panel to Vrms = 2.0 km. s−1.

Table 1

The Average Length L̄ , the Standard Deviation σ, Both in Astronomical Units,
and the Skewness m̃3 (Dimensionless) Corresponding to the PDFs in Figure 3

τL (hr) Vrms = 0.6 km s−1
Vrms = 1.0 km s−1

Vrms = 2.0 km s−1

L̄ , σ, m̃3 L̄ , σ, m̃3 L̄ , σ, m̃3

0.6 1.27, 0.01, 0.04 1.30, 0.02, 0.08 1.40, 0.03, 0.15

2.4 1.27, 0.02, 0.09 1.30, 0.03, 0.16 1.40, 0.06, 0.31

4.8 1.27, 0.03, 0.12 1.30, 0.05, 0.21 1.40, 0.08, 0.41

12 1.27, 0.04, 0.17 1.30, 0.07, 0.30 1.40, 0.12, 0.57

24 1.27, 0.05, 0.20 1.30, 0.09, 0.33 1.40, 0.16, 0.63
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is the largest, here τL= 24 hr. This is expected because the

standard deviation σ of the path length distribution increases

with the footpoint diffusivity k t= VL rms
2 . A large σ implies a

large skewness m̃3, because the distribution of L is positive

(indeed L> 1 au) and the mean L̄ remains almost constant.

It should be noted that, when the diffusivity is increased,

there are more realizations of magnetic field lines with path

lengths smaller than 1.2 au, the nominal Parker field path

length.
The path-length distributions shown in Figure 3 share some

similarities with those obtained earlier by Moradi & Li (2019)

based on the Eulerian model of Giacalone (2001) and

Giacalone & Jokipii (2004), where the surface stream

function is decomposed into a sum of spherical harmonics.

The amplitudes of the different spherical harmonic modes

(l,m) in this model are constrained by observations of the

supergranular component of the photospheric convection

spectrum. There are three controlling parameters in this

Eulerian model: the rms speed Vrms; the Eulerian correlation

timescale τc; and lmax, which represents the highest wave-

number in the spherical harmonic decomposition. The

wavenumber lmax corresponds to the smallest resolved

angular scale of the stream function in Giacalone (2001)

and Moradi & Li (2019), which is p~ l2 max. The Eulerian

timescale τc considered in Giacalone (2001) and Moradi & Li

(2019) represents the typical lifetime of supergranular

convective cells, with the latter being much less accurately

constrained from Doppler measurements than are Vrms and λc.

In comparison, the turbulent part of the present Lagrangian

stochastic model is governed by the rms speed Vrms and the

Lagrangian autocorrelation time τL. By construction, there is

no explicit spatial scale similar to λc entering as a control

parameter in the present Lagrangian stochastic model given

by Equation (13). We finally observe that, while the

introduction of a stream function in the Eulerian model of

Giacalone (2001) and Giacalone & Jokipii (2004) relies on

the assumption of incompressible surface flows on the

photosphere, the Leighton (1964) model and its general-

ization presented in this work do not require such a

hypothesis.

4. Summary and Conclusions

Leighton (1964) introduced a zeroth-order Lagrangian

stochastic model describing turbulent mixing on the photo-

sphere, which is the spherical analog of the Brownian motion

superimposed on the secular drift due to the solar rotation. In

the heliographic coordinate system, the stochastic formulation

of the Leighton (1964) spherical drift–diffusion equation is

(Bian & Li 2021)

q k
q

k z

q
f

q k z

= +

= W +

q

f

( )

( )
( )

( )
( )

( ) ( ) ( )

r
d t

dt t
t

r t
d t

dt
r t t

2

tan
2 ;

sin sin 2 , 16

0

0 0


where κ is the turbulent diffusivity of the magnetic footpoints

on the source surface, which can be related to the Lagrangian

integral timescale τL by

k t= ( )V . 17L rms
2


Equation (17) is a direct consequence of Taylor’s relation (6)

at large time t. Taylor’s relation is an exact result that

connects the late-time asymptotics of the footpoint displace-

ment variance to the Lagrangian autocorrelation function of

the velocity field. We observe that Equation (17) is the

definition of the diffusivity κ entering the Leighton (1964)

model. Equation (17) is different from the expression κ∼ λc

Vrms, where λc denotes the typical size of source surface

convective structures, used by Leighton (1964) to describe

the footpoint diffusivity. However, these two different

expressions for the turbulent diffusivity coincide when

λc= τL Vrms, corresponding to Kubo numbers on the order

of unity. On the basis of the Leighton (1964) description of

magnetic footpoint motions, Jokipii & Parker (1969)

established a surface-driven model in which the stochastic

magnetic field lines are obtained by expanding radially

outward in the heliosphere, and at the solar wind speed, the

trajectories of magnetic footpoints on the solar source

surface. Assuming that the footpoint motions on the photo-

sphere are Brownian, the boundary-driven stochastic Parker

spirals in the solar wind are the solutions of the equations

(Bian & Li 2021):

q k
q

k z

q
f

q k z

=

= +

= W +

q

f

( )

( )

( )
( )

( )
( )

( ) ( ) ( )

dr t

dt
V

r
d t

dt t
t

r t
d t

dt
r t t

,

2

tan
2 ,

sin sin 2 . 18

sw

0

0 0


The surface-driven magnetic field lines in the heliosphere are

given by the curves [r(t), f(t), θ(t)], here parameterized by the

time t it takes for a fluid parcel to travel a radial distance r.

Because the magnetic field lines given by Equation (18) are not

differentiable functions of t, their path lengths given by

ò
q

q
f

= + +⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )
( )

( ) ( )
( )

19

L r

dt V r t
d t

dt
r t t

d t

dt
sin ,

r V

0 sw
2 2

2
2 2

2
sw

are infinite for the dθ(t)/dt and df(t)/dt given by

Equation (18). Furthermore, it is a well-known fact that the

diffusion approximation contradicts Taylor’s exact relation

[Equation (6)] on timescales smaller than τL. Based on these

considerations, we have here extended the works of Leighton

(1964) and Jokipii & Parker (1969) in order to develop a model

consistent with smooth differentiable footpoint trajectories and

hence smooth boundary-driven stochastic Parker spirals in the

solar wind. The model is based on the spherical version of the

Ornstein–Uhlenbeck process for the Lagrangian surface

velocity, which, expressed in the heliographic coordinate

system, results in boundary-driven magnetic field lines
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described by the stochastic differential equations:

f d
q

q d
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f f
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dt
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,
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,
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L

L

L

L
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0

0

0

rms
2

0

rms
2


In this generalization of the Jokipii & Parker (1969) model, the

path length L(r) given by Equation (19) is always bounded. The

finite difference formulation of Equation (20), given by

Equation (13), was integrated numerically to yield the magnetic

footpoint trajectories illustrated in Figure 1 and the boundary-

driven interplanetary magnetic field lines illustrated in Figure 2.

The path-length distributions P(L, r= 1 au) of magnetic field

lines traced from the Sun to the Earth’s orbit are also computed.

These probability distribution functions are displayed for

various values of the controlling parameters Vrms and τL in

Figure 3.
Because the present Lagrangian stochastic model is a refined

description of the Lagrangian velocity, which is the Eulerian
velocity field evaluated along the fluid parcel trajectories, the
typical size λc of the surface convective cells does not explicitly
enter as a control parameter in the model, which is instead
controlled by the Lagrangian integral timescale τL in addition to
Vrms. The Lagrangian integral timescale τL is generally different
from the Eulerian correlation timescale τc. Nevertheless, Eulerian
and Lagrangian parameters can be related for Kubo numbers on
the order of unity. The present Lagrangian stochastic model
differs from the Eulerian models (Giacalone 2001; Moradi &
Li 2019), which rely on the assumption of incompressibility of
the surface convective flows. It also offers substantial improve-
ments over previous Lagrangian models (Leighton 1964; Jokipii
& Parker 1969), which assume that the magnetic footpoint
trajectories are Brownian motions yielding infinite path lengths
of the magnetic field lines.
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