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Abstract

In this work, we extend Leighton’s diffusion model describing the turbulent mixing of magnetic footpoints on
the solar wind source surface. The present Lagrangian stochastic model is based on the spherical
Ornstein—Uhlenbeck process with drift that is controlled by the rotation frequency {2 of the Sun, the
Lagrangian integral timescale 71, and the root-mean-square footpoint velocity V,s. The Lagrangian velocity and
the positions of magnetic footpoints on the solar wind source surface are obtained from the solutions of a set of
stochastic differential equations, which are solved numerically. The spherical diffusion model of Leighton is
recovered in the singular Markov limit when the Lagrangian integral timescale tends to zero while keeping the
footpoint diffusivity finite. In contrast to the magnetic field lines driven by standard Brownian processes on the
solar wind source surface, the interplanetary magnetic field lines are smooth differentiable functions with finite
path lengths in our model. The path lengths of the boundary-driven interplanetary magnetic field lines and their
probability distributions at 1 au are computed numerically, and their dependency with respect to the controlling
parameters is investigated. The path-length distributions are shown to develop a significant skewness as the
width of the distributions increases.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Interplanetary magnetic fields (824)

1. Introduction

The interplanetary magnetic field is an essential component
of the solar—terrestrial connections. The structure of the solar
wind magnetic field is critical to the understanding of solar
energetic particle (SEP) events. In the original work of Parker
(1958), the magnetic field is carried radially outward with the
bulk solar wind that emanates from the rotating Sun as a whole.
This yields the basic spiral structure of the interplanetary
magnetic field lines. Soon after the first diagnosis of turbulence
in the solar wind, Jokipii & Parker (1969) pointed out the
importance of random fluctuations in astrophysical magnetic
fields. On the basis of the Leighton (1964) theory of diffusive
flux transfer on the photosphere, Jokipii & Parker (1969)
argued that the Parker spirals are stochastic, providing a sound
explanation to the longitudinal spread of high-energy particles
released at the Sun. Stochastic Parker spirals in the solar wind
can be represented well by realizations of a spherical Brownian
diffusion process superimposed on the angular drift due to the
solar rotation (Bian & Li 2021). In this picture, multiple field
lines traced back to the Sun from the observer position can
magnetically connect to different locations on the source
surface, although with different probabilities. The resulting
longitudinal spread of interplanetary magnetic field lines and of
SEPs can be described by the circular Gaussian distribution
(Bian & Li 2022a). After the pioneering investigations by Fan
et al. (1968), the angular spread of SEPs has been the subject of
detailed spacecraft measurements, in both longitude (Van
Hollebeke et al. 1975; Cane et al. 1986; Shea & Smart 1990;
Reames 1999; Lario et al. 2006; Mewaldt et al. 2013;
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Wiedenbeck et al. 2013; Reames et al. 2013; Dresing et al.
2014; Richardson et al. 2014; Cohen et al. 2017) and latitude
(Zhang et al. 2001, 2003; Dalla et al. 2003). The multipoint
statistical study realized by Cohen et al. (2017) reveals that the
width of the longitudinal distributions of ions only weakly
depends on the charge to mass ratio. It is suggestive that the
angular spread of SEPs relies on processes that are similar to
those responsible for the dispersion of magnetic field lines in
the solar wind.

An extension of the Jokipii & Parker (1969) models was
presented by Giacalone & Jokipii (2004) (see also Giaca-
lone 2001). In the Giacalone & Jokipii (2004) model, the
motions of footpoints are prescribed by the Eulerian surface
velocity field, which is derived from a spherical stream function
on the source surface. The weighting coefficients in the
spherical harmonic decomposition of the stream function can
be constrained from observations of the Eulerian spectrum of
photospheric convection (Hathaway et al. 2000, 2015; Rincon
et al. 2017; Rincon & Rieutord 2018). Giacalone & Jokipii
(2004) performed numerical integration of the footpoint
trajectories and compared the spatial distribution of footpoints
with the solution of a spherical diffusion equation, yielding
values of the footpoint diffusivity ~1500-2000km?s ' close
to those inferred by Leighton (1964). The boundary-driven
model of Giacalone & Jokipii (2004) has also formed the basis
of several studies investigating how stochastic magnetic field
lines impact the interplanetary transport of SEPs (Pei et al.
2006; Kelly et al. 2012; Moradi & Li 2019). In this work, we
present a Lagrangian stochastic model describing the turbulent
motions of the magnetic footpoints. Our model is a direct
extension of the Leighton (1964)s diffusion model. It is a
model for the Lagrangian surface velocity on the solar wind
source surface.
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Turbulent magnetic field fluctuations in the solar wind are
expected to affect not only the magnetic connection angles but
also the connection lengths, in particular for SEP events
showing large angular spreads. The connection lengths, which
are the distances traveled by the particles, can be inferred from
the velocity dispersion analysis of SEP events (Lin 1974; Lin
et al. 1981; Krucker & Lin 2000; Tylka et al. 2003; Séiz et al.
2005; Kahler & Ragot 2006; Reames 2009; Wang et al. 2016)
and also from the fractional velocity dispersion analysis
recently proposed by Zhao et al. (2019). Using recent
observations from the IS®IS instrument on board the Parker
Solar Probe spacecraft, Chhiber et al. (2021) examined how the
random walk of magnetic field lines in the solar wind can affect
the SEP path lengths.

In Section 2, we formulate the Lagrangian stochastic model
extending the Leighton (1964)s model for magnetic flux
diffusion on the photosphere. The results are used in Section 3
to extend the Jokipii & Parker (1969) model of surface-driven
magnetic field lines in the heliosphere. A summary and
conclusions are given in Section 4.

2. Generalized Leighton’s Model for the Motions of
Magnetic Footpoints

The solar wind source surface denotes the inner boundary of
the solar wind magnetic field. It is the outer boundary of the
coronal magnetic field. In the solar corona, magnetic field lines are
an admixture of closed and open field lines all originating from a
common inner boundary: the solar photosphere. Potential Field
Source Surface models (Schatten et al. 1969; Altschuler &
Newkirk 1969; Schrijver & DeRosa 2003; Gombosi et al. 2018)
are commonly used to describe the magnetic field expansion from
the photosphere to the source surface. In this work, we are not
concerned with the coronal expansion of the magnetic field and
hence with the exact location of the solar wind source surface. It
can be chosen to coincide with the location adopted in PFFS
models or taken as the location of the Alfvén critical surface
predicted by DeForest et al. (2014) and Adhikari et al. (2019),
beyond which the solar wind becomes super-Alfvénic. The
magnetic footpoint trajectories on the solar wind source surface
can be described by the solutions of the equation

dri (1)

dt = VL(rJJ t)’ (l)

where V (r, 1) is the surface velocity field, a function of the
position r, on the source surface and on time ¢. The position
r (1) of the magnetic footpoints remains on a sphere, and
hence, | r,(f)] =r ¢ at all times. The velocity V., ( r, )
appearing in Equation (1) is the Eulerian surface velocity field
everywhere tangent to the source surface. Let us decompose
this velocity field into a mean component resulting from rigid
body rotation plus turbulent fluctuations as

Vilr, t) = Vo(r) + 6V.(r, 1). (2)

In the reduced heliographic coordinate system (r = ry, 6, @),
where 6 is the latitude and ¢ is the longitude, the secular
rotation velocity of the footpoints is given by Vo = (g sin u,
where () is the solar rotation frequency. Expressed in this
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coordinate system, Equation (1) takes the form
dao(t oVy(0, ¢, t do(t oVy(0, ¢, t
() _ %0, ¢ )’ ¢():Q+ 0(.¢ ). 3)
dt 70 dt rosin 6

There are three fundamental parameters associated with the
turbulent component 6V, ( r,, f) of the Eulerian velocity field.
These parameters are the typical amplitude of the fluctuations
Vims, the correlation length A. = © . ry, where O, represents the
typical angular size of source surface convective structures, and
the correlation time 7., which represents the lifetime of these
structures. Assuming the Eulerian velocity field 6V (r, ) is a
Gaussian, homogeneous, stationary, and isotropic random
vector field on the sphere, then the set of parameters
(2, Vims» ©,, and 7.) fully determine the statistical properties
of the footpoint trajectories on the solar wind source surface. It
can easily be shown that the turbulent part of the footpoint
motion, describing the deviations 6ér(r) from rigid body
rotation, is solely controlled by the dimensionless Kubo
number, K=7, Vius/O. ro, which represents the typical
lifetime 7. of convective structures in units of the turnover time
Ae/V ms of footpoints convected by such structures. The
parameters A. and Vi, of the Eulerian surface velocity field
can be constrained from high-resolution spectroscopic imaging
of the Doppler field (Hathaway et al. 1996; Hathaway &
Rightmire 2010).

On the other hand, the properties of the Lagrangian surface
velocity V(¢) can be established, for instance, by recording
the position of identifiable moving features as a function of
time on the surface of the Sun (Van Kooten & Cranmer 2017).
Adopting a Lagrangian perspective, Bian & Li (2022b) have
recently described the local structure of stochastic Parker
spirals resulting from in situ turbulence in the solar wind. The
approach adopted by Bian & Li (2022b) affords a resolution to
the long-standing conundrum that magnetic field lines under-
going a heliospheric Brownian diffusion are nowhere differ-
entiable and therefore have infinite path lengths. Our current
problem concerns the effects of source surface turbulence on
the interplanetary magnetic field lines, and we shall here also
base our modeling approach on a Lagrangian perspective. The
Lagrangian velocity V (#) of the magnetic footpoints is related
to the Eulerian velocity field V,( r,, f) on the solar wind
source surface by

Vi) = [Vie 08y — ri@dr, )

where r () is the solution of Equation (1). In other words, the
Lagrangian velocity V, ()= V,( r.(t), f) of magnetic
footpoints, which is a function of time only, is the Eulerian
velocity evaluated along the footpoint trajectories. The
Lagrangian integral timescale 7, is defined via the relation

lim fo (VL) - V(P dr = 1 V2, (5)

Note that the Eulerian correlation time 7. and the Lagrangian
correlation time 7, are fundamentally different characteristic
timescales. The time integral involved in Equation (5) has the
physical dimension of a diffusivity (cm®s~"), and it converges
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toward a constant, provided the Lagrangian autocorrelation
function (6V,(0)- 6V (7)) decays sufficiently fast. This con-
stant, denoted here by x = 7, V2, is by definition the spatial
diffusivity of the magnetic footpoints. Indeed, from the
footpoint equation of motion (1), one can derive Taylor’s
relation,

1d{srim) _ _
A fo (6V,(0) - 6V, (7)) dr, (6)

which is an exact result connecting the footpoint displacements
variance (6r?()) and the Lagrangian autocorrelation function
(6V1(0)- 8V (7)), the trace of the Lagrangian autocorrelation
tensor. In the limit when #>>7;, Equation (6) yields the
diffusive behavior (6r7(t)) = 27, V2,.t. However, when 1 < 7
1> Equation (6) gives (6r%(t)) = V22, indicating that the
footpoint trajectories are linear functions of time for time
intervals much smaller than the integral timescale 7;.
Assuming, as in Leighton (1964), that the magnetic field
footpoints undergo a Brownian diffusion at all times, their
trajectories obey the drift—diffusion equations given by

% = Vo + 7 Vins €0, @)

where (¢ (¢) is the two-dimensional unit Gaussian white noise
having the following properties:

(G(®0) =0, (GOGEN) = &6 — 1) ®)

Therefore, in the Leighton (1964) model, the Lagrangian
surface velocity, which coincides with the velocity of the
magnetic footpoints, is modeled by the Gaussian white noise
process. A natural extension of the Leighton (1964) diffusion
model consists in modeling the turbulent component of the
Lagrangian surface velocity by a Gaussian process whose
autocorrelation function decays exponentially on a timescale
TL:

(8VL.(1) - 6VL(0)) = VE e . )

The footpoint trajectories on the solar wind source surface thus
satisfy the equations:

L0 = Vo + 6VL(0),

S SV, 2 S
déZL(t) = MO LV (g, (10)
t TL L

The second equation above, which is the Langevin equation,
can be rewritten in a compact dimensionless form as

dév, (i - g

LD _ v, + ¢, (an
df

where 6V, = 6V, /Vims and 7 = t/7;. Note that taking the limit

7. —0 while keeping the product 7, V2 = finite in

Equation (10) recovers Leighton’s diffusive prescription:
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oV (1) = «/TLVr%nSC (). Equation (10) can be integrated to
give 6V.(t) = 6V (0)e /™ + 1 V2, fot e~ =/n g (e,
and hence, ((6V.(t) — 6V (0)e /™)) = V2 (1 — e /™)
— V2 when ¢>>7;. The deviation from solid body rotation

or (1) = fo ' 6V, (¢")dt' is a non-Markovian process that can be
expressed as a linear combination of Brownian motions
weighted by an exponential kernel, superimposed on the
contribution due to initial conditions, as ér (f)=
VLT — e/m) 41V (1 = e =0/ m)aw,
where W, denotes the Wiener process. The footpoint
trajectories given by Equation (10) are the integrals of a
continuous stochastic process: the Ornstein—Uhlenbeck pro-
cess. They are thus random functions of time, but nevertheless
they remain differentiable. The spatial distribution P( r, f) of
magnetic footpoints is the Gaussian distribution whose
variance is given by

(5rE (1)) = 2L V[t + (e — D], (12)

which satisfies the two asymptotic constraints imposed by the
Taylor relation (6).

In order to formulate the Lagrangian stochastic model globally
describing the footpoint motions on the spherical source surface,
we can use the following finite difference scheme: r (¢ + Af) =
ri )+ Vo + 6V ()AL 6V (t + Ar) = §VP(0)[1 — (At/7)]
+4/ Vﬁm(At/ 7)€, where ( is a two-dimensional centered
Gaussian random number with unit variance drawn from
independent identical distributions at each time step Ar and 6§V
D(1) is the turbulent component of the footpoint velocity dragged
to r, (¢t + Af). Therefore, in the reduced heliographic coordinate
system, with uy and u, as the unit tangent vectors forming an
orthonormal basis, the finite difference formulation of
Equation (10) takes the form:

At) = Q
o0+ A ¢(t)+( +rosint9(t)

V() o,

o

8§V, (1) ) A

0t + Ar)=0(t) +

SVt + A = V(1 — 20y + 8§V, (1)cos O(r)

TL
oV,
oo+ O Jars a2
rosin 0 (z) TL

SVt + An) =8V, () (1 — ﬂ) — §Vp(t)cos O(1)
T

oV (1) ) [ At
QO+ ——— 1A Vims] — | €
X ( + "o sin9(t)) r+ rms( . )Cdi

13)

The Lagrangian stochastic model given by Equation (13)
describes the trajectories of the magnetic footpoints on the
spherical solar wind source surface of radius ry, taken here at
2.5 solar radii. The turbulent component of the magnetic
footpoint motion is controlled by the two-parameter doublet
(71, Vims)- Five different realizations of magnetic footpoint
trajectories [0(r), ¢(f)] on the source surface, obtained by
numerical integration of Equation (13), are plotted in Figure 1.
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Figure 1. Five realizations of footpoint trajectories on the source surface r = r, resulting from the numerical integration of Equation (13). In both panels, Vs =1

kms™!

(@) Vims = 1.0 km/s, T = 0.2 day

, while 7, = 0.2 day in the left panel and 7, = 1.0 day in the right panel.
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Figure 2. Top: five realizations of boundary-driven solar wind magnetic field lines corresponding to the footpoint trajectories displayed in Figure 1. Middle: their

projections into the XY plane. Bottom: their projections into the XZ plane.

In both panels, V,ms=1.0 kms™', with 7, =0.2 (1.0) day in
the left (right) panel. We observe that increasing the
Lagrangian autocorrelation time 7, results in smoother
footpoint trajectories and larger angular spread.

3. The Path Lengths of Boundary-driven Interplanetary
Magnetic Field Lines

Due to the very high electrical conductivity of the solar wind
plasma, the magnetic field can be considered to be frozen in the
solar wind, and hence each source surface-driven magnetic

field line is determined by the position of fluid elements
continuously ejected over time by the solar wind from a given
moving magnetic footpoint. Therefore, the solar wind velocity,
which is assumed here to be purely radial and equal to a
constant V,, =400 km s, provides a one-to-one map
between the footpoint trajectories [6(¢), ¢(f)] on the source
surface and the boundary-driven magnetic field lines [r(f) =r
o+ Vsw 1, 0(t), ¢()] in the heliosphere, which are here
parameterized by 7. The boundary-driven magnetic field lines
corresponding to the turbulent footpoint trajectories displayed
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Vims = 0.6 km/s

Vims =1.0 km/s
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Figure 3. The probofability distribution function P(L, r = 1 au) of the magnetic path length L at 1 au. The left panel corresponds to V ;s = 0.6 km. s

surface, the middle panel to Vs = 1.0 km s~

in Figure 1 are plotted in Figure 2. The two upper panels are
representations of the magnetic field lines in three dimensions,
the two middle panels are projections of the field lines into the
XY plane, and the two lower panels are projections of the field
lines into the XZ plane.

While these field lines are stochastic, they are smooth
differentiable functions of r (or #). Their path length L(r) from
the source surface to an observer located at a distance r is thus a
well-defined random function of r given by

o= " d’J Va+ 2(:)(”’0(”) + rz(z>sm29(r>(d¢§’)) ,

(14)

where r(t) = ro + Vi t. It should be noted that we ignored the
effects of in situ turbulence resulting in the motions of the solar
wind parcels perpendicular to the background field. Inclusion
of such effects will be examined in a future paper. The
probability distribution functions P(L, r = 1 au) of the magnetic
connection length L at the distance r= lau are plotted in
Figure 3. The nominal Parker field line length is Ly~ 1.17 au at
1 au. The rms speed V., is equal to 0.6, 1.0, and 2.0 km s i

the left, middle, and right panels, respectively. In each panel,
the PDFs are plotted for five different values of the Lagrangian
integral timescale 7;: 0.6, 2.4, 4.8, 12, and 24 hr, which are
labeled by different colors. The deviations from Gaussian-like
distributions increase as the width of the PDFs increases and
the positive skewness becomes more pronounced. From the N
realizations of the stochastic magnetic field lines, we compute
the average L, the standard deviation o, and the skewness fi3,

Path Length (au)

1.2

Path Length (au)

~1 at the solar

1 4 16 14 1.6 18 2.0

!, and the right panel to Vs = 2.0 km. s~ '

Table 1
The Average Length L, the Standard Deviation o, Both in Astronomical Units,
and the Skewness fi; (Dimensionless) Corresponding to the PDFs in Figure 3

7, (hr) Vims = 0.6 km s ™! Vins=1.0kms™" Vi =2.0kms™!
L, o, fiy L, o, fiy L, o, fiy
0.6 1.27, 0.01, 0.04 1.30, 0.02, 0.08 1.40, 0.03, 0.15
24 1.27, 0.02, 0.09 1.30, 0.03, 0.16 1.40, 0.06, 0.31
4.8 1.27, 0.03, 0.12 1.30, 0.05, 0.21 1.40, 0.08, 0.41
12 1.27, 0.04, 0.17 1.30, 0.07, 0.30 1.40, 0.12, 0.57
24 1.27, 0.05, 0.20 1.30, 0.09, 0.33 1.40, 0.16, 0.63
given by
| 5
[={SL o= [T5- IR,

15)

et

of each path-length distribution. These three quantities are
compiled in Table 1. As we can see from the table, as
7, increases at fixed Vi, the average path length remains the
same while the standard deviation and skewness increase. For
the case of Vs = 1.0 km s~ ! in the middle panel, the PDFs are
similar to the cases of Vs =0.6kms ™' with L = 1.3 au for
all five values of 7, and larger standard deviation and
skewness. For fixed 7;, the skewness is the largest when the
speed V. is the largest, here V,,s=2.0 km s~ 1. For fixed
Vims, the skewness is the largest when the decorrelation time 7,
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is the largest, here 7, =24 hr. This is expected because the
standard deviation o of the path length distribution increases
with the footpoint diffusivity x = 7, V2. A large o implies a
large skewness fi;, because the distribution of L is positive
(indeed L > 1 au) and the mean L remains almost constant.
It should be noted that, when the diffusivity is increased,
there are more realizations of magnetic field lines with path
lengths smaller than 1.2 au, the nominal Parker field path
length.

The path-length distributions shown in Figure 3 share some
similarities with those obtained earlier by Moradi & Li (2019)
based on the Eulerian model of Giacalone (2001) and
Giacalone & Jokipii (2004), where the surface stream
function is decomposed into a sum of spherical harmonics.
The amplitudes of the different spherical harmonic modes
(I,m) in this model are constrained by observations of the
supergranular component of the photospheric convection
spectrum. There are three controlling parameters in this
Eulerian model: the rms speed V,,; the Eulerian correlation
timescale 7.; and [.x, which represents the highest wave-
number in the spherical harmonic decomposition. The
wavenumber [, corresponds to the smallest resolved
angular scale of the stream function in Giacalone (2001)
and Moradi & Li (2019), which is ~27/l.x. The Eulerian
timescale 7. considered in Giacalone (2001) and Moradi & Li
(2019) represents the typical lifetime of supergranular
convective cells, with the latter being much less accurately
constrained from Doppler measurements than are Vi, and A..
In comparison, the turbulent part of the present Lagrangian
stochastic model is governed by the rms speed Vi, and the
Lagrangian autocorrelation time 7;. By construction, there is
no explicit spatial scale similar to A, entering as a control
parameter in the present Lagrangian stochastic model given
by Equation (13). We finally observe that, while the
introduction of a stream function in the Eulerian model of
Giacalone (2001) and Giacalone & Jokipii (2004) relies on
the assumption of incompressible surface flows on the
photosphere, the Leighton (1964) model and its general-
ization presented in this work do not require such a
hypothesis.

4. Summary and Conclusions

Leighton (1964) introduced a zeroth-order Lagrangian
stochastic model describing turbulent mixing on the photo-
sphere, which is the spherical analog of the Brownian motion
superimposed on the secular drift due to the solar rotation. In
the heliographic coordinate system, the stochastic formulation
of the Leighton (1964) spherical drift—diffusion equation is
(Bian & Li 2021)

0@ 2w
T e V260
ro sin 0(r) 220 W) = Qrosinf() + V2R G0, (16)

where « is the turbulent diffusivity of the magnetic footpoints
on the source surface, which can be related to the Lagrangian

Li & Bian
integral timescale 7, by

K= TLVrms (17)

Equation (17) is a direct consequence of Taylor’s relation (6)
at large time r. Taylor’s relation is an exact result that
connects the late-time asymptotics of the footpoint displace-
ment variance to the Lagrangian autocorrelation function of
the velocity field. We observe that Equation (17) is the
definition of the diffusivity s entering the Leighton (1964)
model. Equation (17) is different from the expression x ~ A,
Vimss Where A, denotes the typical size of source surface
convective structures, used by Leighton (1964) to describe
the footpoint diffusivity. However, these two different
expressions for the turbulent diffusivity coincide when
Ae =T Vims, corresponding to Kubo numbers on the order
of unity. On the basis of the Leighton (1964) description of
magnetic footpoint motions, Jokipii & Parker (1969)
established a surface-driven model in which the stochastic
magnetic field lines are obtained by expanding radially
outward in the heliosphere, and at the solar wind speed, the
trajectories of magnetic footpoints on the solar source
surface. Assuming that the footpoint motions on the photo-
sphere are Brownian, the boundary-driven stochastic Parker
spirals in the solar wind are the solutions of the equations
(Bian & Li 2021):

dr(t) _v
dl‘ SW»
9@ 2w
0 dr tan 6 (¢) - m%([)’
rosin0(t) d“;i’) = Qrosin(t) + V26, (1. (18)

The surface-driven magnetic field lines in the heliosphere are
given by the curves [r(z), ¢(f), 6(¢)], here parameterized by the
time ¢ it takes for a fluid parcel to travel a radial distance r.
Because the magnetic field lines given by Equation (18) are not
differentiable functions of ¢, their path lengths given by

L(r)

:for/vsw dzJV

2@)( 9()) 4—r20)mn200)(d¢(”) ,

19)

are infinite for the dO()/dr and d¢(t)/dt given by
Equation (18). Furthermore, it is a well-known fact that the
diffusion approximation contradicts Taylor’s exact relation
[Equation (6)] on timescales smaller than 7;. Based on these
considerations, we have here extended the works of Leighton
(1964) and Jokipii & Parker (1969) in order to develop a model
consistent with smooth differentiable footpoint trajectories and
hence smooth boundary-driven stochastic Parker spirals in the
solar wind. The model is based on the spherical version of the
Ornstein—-Uhlenbeck process for the Lagrangian surface
velocity, which, expressed in the heliographic coordinate
system, results in boundary-driven magnetic field lines
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described by the stochastic differential equations:

ar@) _,,
dt SW»
do(®) _ ¢ 6V (1)
dt rosin0(t) ’
o) _ Va(t)
dt B ro ’
dVo®) _ % sy (1)cos0(r)
dt TL
AG) V2
QO _rms
X( + rosinﬂ(t)) * L )
Vs _ V%W gy ycos 00r)
dt TL
8V,(1) 1=
Q _ e\ rms . 20
X( + rosine(t))+ o <¢(f) (20)

In this generalization of the Jokipii & Parker (1969) model, the
path length L(r) given by Equation (19) is always bounded. The
finite difference formulation of Equation (20), given by
Equation (13), was integrated numerically to yield the magnetic
footpoint trajectories illustrated in Figure 1 and the boundary-
driven interplanetary magnetic field lines illustrated in Figure 2.
The path-length distributions P(L, r =1 au) of magnetic field
lines traced from the Sun to the Earth’s orbit are also computed.
These probability distribution functions are displayed for
various values of the controlling parameters Vs and 7, in
Figure 3.

Because the present Lagrangian stochastic model is a refined
description of the Lagrangian velocity, which is the Eulerian
velocity field evaluated along the fluid parcel trajectories, the
typical size ). of the surface convective cells does not explicitly
enter as a control parameter in the model, which is instead
controlled by the Lagrangian integral timescale 7, in addition to
Vims- The Lagrangian integral timescale 7, is generally different
from the Eulerian correlation timescale 7,.. Nevertheless, Eulerian
and Lagrangian parameters can be related for Kubo numbers on
the order of unity. The present Lagrangian stochastic model
differs from the Eulerian models (Giacalone 2001; Moradi &
Li 2019), which rely on the assumption of incompressibility of
the surface convective flows. It also offers substantial improve-
ments over previous Lagrangian models (Leighton 1964; Jokipii
& Parker 1969), which assume that the magnetic footpoint
trajectories are Brownian motions yielding infinite path lengths
of the magnetic field lines.
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