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Abstract— Pufferfish privacy (PP) is a generalization of differ-
ential privacy (DP), that offers flexibility in specifying sensitive
information and integrates domain knowledge into the privacy
definition. Inspired by the illuminating formulation of DP in
terms of mutual information due to Cuff and Yu, this work
explores PP through the lens of information theory. We pro-
vide an information-theoretic formulation of PP, termed mutual
information PP (MI PP), in terms of the conditional mutual
information between the mechanism and the secret, given the
public information. We show that MI PP is implied by the
regular PP and characterize conditions under which the reverse
implication is also true, recovering the relationship between
DP and its information-theoretic variant as a special case.
We establish convexity, composability, and post-processing prop-
erties for MI PP mechanisms and derive noise levels for the
Gaussian and Laplace mechanisms. The obtained mechanisms
are applicable under relaxed assumptions and provide improved
noise levels in some regimes. Lastly, applications to auditing
privacy frameworks, statistical inference tasks, and algorithm
stability are explored.

Index Terms— Auditing for privacy, differential privacy, infor-
mation measures, privacy mechanisms, Pufferfish privacy.

I. INTRODUCTION

ITH the exponential increase in personal data shared

online and recent advancements in data mining tech-
niques, privacy concerns have become more pressing than ever.
Statistical privacy frameworks seek to address these threats in
a principled manner subject to formal guarantees [2]. Differen-
tial privacy (DP) [3] is a popular framework, which preserves
the privacy of individual records while enabling aggregate
queries about a database. However, DP only deals with one
type of private information (individual records modeled by
rows of the database) and does not allow to incorporate domain
knowledge into the framework. To address these limitations,
a versatile generalization of DP called Pufferfish Privacy (PP)
was proposed in [4]. PP enables customization of what consti-
tutes private information and explicitly integrates distributional
assumptions into its definition. Nevertheless, the flexibility of
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Fig. 1. 2022-2033 salary data in four departments: HR, IT, PR, R&D. The
goal is to publish the average 2023 salary in each department (the average
of the blue cells) while hiding whether the number raises (marked by red
frames) is < 2 corresponding to g(-) = 0 or > 2 corresponding to g(-) = 1.
The average 2022 salaries (yellow cells) are public knowledge.

the PP definition comes at a cost as the general framework is
hard to work with and derive mechanisms for. This work aims
to circumvent this impasse by proposing a new structured PP
framework along with a natural information-theoretic formula-
tion thereof, which lends well for analysis and enables devising
mechanisms and exploring various additional applications.

A. Pufferfish Privacy

Consider salary data from 2022-2023 at a company with
four departments: HR, IT, PR, and R&D. The company
wants to publish the average 2023 salary in each department
while concealing whether more or less than m employees
got a raise. The average salaries from 2022 are publicly
available. More formally, the goal is to publish f(z) =
L5 #(i,2023) while privatizing whether g(z) = 14,,,
where A, = {|{i : 2(,2022) < 2(i,2023)}] > m},
x € X := {HR,IT,PR,R&D}, and z(7,j) is the salary of
the ith employee during year j in department x. The average
salary from 2022, i.e., w(z) = 2 3" | 2(4,2022)), is public
knowledge. See Fig. 1 for an instance of the described scenario
(n =4 and m = 2).

DP operates by making any pair of neighboring databases
indistinguishable, with the definition of neighbors being
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up to the privacy mechanism designer. In the scenario
above, one may apply a DP-based approach by pairing
as neighbors every two departments between which there
is a difference in the function value g (whether number
of employees getting a raise is more than m). For the
example from Fig. 1 this amounts to the set of pairs
{(HR,PR), (HR,R&D), (IT,PR), IT,R&D)} (marked by
the dashed purple arrows in the figure). However, by following
this approach, we guarantee a stricter privacy requirement than
necessary. Indeed, upon observing the privatized version of
the published query f and assuming w is publicly known,
we only need to make the sets ¢g~'(0) = {PR,R&D} and
g (1) = {HR,IT} indistinguishable (marked by the solid
dark cyan arrow in Fig. 1). The benefit of targeting this
relaxed notion of privacy is that it enables to achieve improved
accuracy and utility. The PP framework is designed to do just
that, by enabling full customization of the events that are
regarded as private. In addition, PP allows integrating into
the framework domain knowledge on the distribution over
databases; by considering the set of all possible distributions,
this reduces back to the worst-case requirement of DP.

However, the generality of the PP also has drawbacks. For
starters, PP does not satisfy general composability [4], [5],
which is regarded as a privacy axiom—a property that any pri-
vacy mechanism should possess. Hence, the outputs of two PP
mechanisms can not always be combined to satisfy PP together
(as a multi-query output), which limits its usage in practice.
In addition, there is a shortage of mechanisms that guarantee
PP. The main attempt in that direction is the Wasserstein
mechanism from [6], which is computationally burdensome
as it requires computing the co-Wasserstein distance between
all pairs of conditional distributions of the mechanism’s output
given any pair of secrets events. Lastly, we note that formal
guarantees for PP mechanisms pertaining to privacy-utility
tradeoffs, sample complexity bounds for private inference
tasks, etc., are largely unavailable due to the hardship of
analyzing this framework in full generality. Our goal is to
address these shortcomings by introducing some structure into
the PP framework to make it more tractable while preserving
versatility, and then study the structured variant using tools
from information theory.

B. Contributions

We first propose a novel structured PP framework, where the
private and public information is modeled as pairs of functions
of the database that are coupled via a bipartite graph. This
framework captures various privacy notions, from DP [3] to
attribute privacy (AP) [7],'as special cases, while lending well
for analysis via tools from information theory. We provide
an information-theoretic formulation of the structured PP
framework in terms of the conditional mutual information

'AP guarantees privacy of functions associated with possibly sensitive
attributes in a database, e.g., race or gender. For instance, referring back to
the example in Fig. 1, if the secret function was the maximum salary of the
year 2023 and no public information of the average 2022 salary was available,
then that setting would fall under the AP framework. We note that the current
example, however, is not captured under AP since the private function is
related to two attributes of the database rather than a single attribute as in AP.
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between the mechanism and the secret function given the
public one. Generally, the e-mutual information PP (e-MI PP)
criteria is implied by e-PP, but we further show that it is sand-
wiched between ¢-PP and (¢, 0)-PP in terms of strength under
appropriate distributional assumptions and parameter values.
The proof relies on representing PP constraints as bounds on
certain divergences,” and comparing those to the Kullback-
Leibler (KL) divergence (and thus mutual information) via
tools like Pinsker’s inequality and the minimax redundancy
capacity theorem.

The information-theoretic formulation of the structured
PP framework enables a comprehensive analysis of proper-
ties, mechanisms, and applications. We begin by establishing
properties of e-MI PP mechanisms, encompassing convexity,
post-processing, and composability. This shows that our MI
PP definition satisfies all the axioms required from a privacy
framework [5], [8]. In particular, while standard PP mecha-
nisms are generally not composable [4], [5], our composability
results for e-MI PP offer greater flexibility especially in the
non-adaptive query setting.

We next study e-MI PP mechanisms, which is another
aspect where the standard PP framework is lacking (the main
available mechanisms for standard PP is the Wasserstein mech-
anism [6], which is computationally intractable). We derive
sufficient conditions on the injected noise level for the Laplace
and Gaussian mechanisms that guarantee e-MI PP, and thus
also e-MI DP as a special case. The derivation of MI PP
mechanisms relies on controlling mutual information via maxi-
mum entropy arguments and the entropy power inequality. The
resulting noise parameter bounds depend on the conditional
variance of the query, which differs from classical results that
typically depend on the ¢!- or £2-sensitivity of the query; cf.
e.g., [9], [10], [11], and [12]. Variance-based parameter bounds
are particularly desirable under the PP framework as it encodes
prior knowledge on the data distribution. Indeed, it may be the
case that sensitivity explodes (e.g., for query functions with
unbounded range) but variance is finite due to concentration
properties of the distribution class. One drawback of the
proposed mechanisms (as well as sensitivity-based ones) is
that the injected noise level grows linearly with the dimen-
sion. To circumvent this effect, we also propose a Gaussian
mechanism that first projects the high-dimensional data onto
a low-dimensional space and then adds noise. We obtain
parameter bounds for this projection mechanism in terms of
the operator norm of conditional covariance matrices and the
conditional mean vectors.

Several applications of e-MI PP are explored, starting
from auditing for DP [13], [14], [15]. Auditing black-box
mechanisms to certify whether they satisfy a target DP
guarantee is challenging, especially in high-dimensional set-
tings. To address this problem, we observe that to audit
for DP violations, it suffices to test whether a relaxed pri-
vacy notion violates the target privacy level [15]. We then
propose a rigorous hypothesis testing framework for DP
violations using the information-theoretic formulation of DP
as our test statistic. Since estimating mutual information

200-Rényi divergence for e-PP and total variation distance for (0, §)-PP.
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between high-dimensional variables is statistically burden-
some, we introduce a further relaxation to privacy based on
sliced mutual information (SMI) [16], [17], which enjoys
parametric empirical convergence rates in arbitrary dimension.
Our auditing approach naturally extends to the PP framework.
Beyond privacy auditing, we also explore multivariate mean
estimation under e-MI PP and derive sample complexity
bounds that adapt to the domain knowledge in the PP frame-
work. Lastly, we study privacy-utility tradeoffs using e-MI
PP and explore its connections to algorithmic stability, which
is a standard tool for establishing generalization bounds in
statistical learning theory [18], [19].

C. Related Work

Connections between statistical privacy and information
theory have gained increased attention [20], [21], [22], [23],
[24], [25], [26] as they enable borrowing tools and ideas
from one discipline to make progress in the study of the
other. In particular, [24] established a two-sided connec-
tion between DP and the conditional mutual information
between the mechanism and any individual record, given the
rest of the database. This mutual information-based privacy
notion (hereafter abbreviated as MI DP) lends well for an
information-theoretic analysis and quantifies privacy via a
common currency using which privacy-utility tradeoffs may
be explored [27]. Privacy metrics based on mutual information
have been leveraged to analyze and provide guarantees for
various inference and learning tasks. MI DP has been used
in [28] to study fundamental privacy-utility tradeoffs in linear
regression problems. Variants of MI DP have also been used
in the context of federated learning study the generalization
error and privacy leakage [29], [30], as well as conver-
gence of privacy-preserving training algorithms [31]. Mutual
information-based privacy leakage metrics have also been
used in other applications, such as optimal battery charging
policies subject to privacy constraints [32], multiple hypothesis
testing [33], and online location tracing [34].

Other widely used average-case privacy notion is Kullback-
Leibler (KL) DP [5], [35] and Rényi DP [26], both of which
serve as relaxations of the classical DP framework. While
the main appeal of such average notions is their analytic
tractability, they have also been utilized for various appli-
cations. KL DP has been applied in settings ranging from
collaborative schemes [36], [37] and smart grids [38] to the
industrial internet of things [39]. It has also been used in
tandem with worst-case privacy notions such as DP [38],
by employing them in different stages of the algorithm/scheme
of interest. This highlights that even in applications where
average-case privacy requirements are not sufficient by them-
selves, combining them in certain (less sensitive) stages of the
system is beneficial, e.g., in terms of utility. KL DP is a special
case of Rényi DP [26] with o = 1. Rényi DP has been applied
to keep track of the privacy budgets in applications including
optimization [40], deep learning [41], and generative adversar-
ial networks [42]. The utility and tractability of privacy notions
like KL DP, Rényi DP, and MI DP serve as inspiration for the
information-theoretic formulation of PP proposed herein.
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D. Organization

The rest of the paper is organized as follows. In Section II,
we introduce notation and preliminaries. The structured PP
framework, its information-theoretic formulation, and the rela-
tion to e- and (e, §)-PP are the focus of Section III. Properties
of the e-MI PP framework and mechanisms are treated in
Sections IV and V, respectively. In Section VI we design a
sample-efficient hypothesis test for privacy auditing based on
e-MI PP. Additional applications to private mean estimation,
algorithmic stability, and privacy-utility tradeoffs are covered
in Section VII. Proofs are given in Section VIII, while
Section IX provides concluding remarks and future directions.

II. BACKGROUND AND PRELIMINARIES

We set up the notation used throughout this paper, present
the DP framework along with its information-theoretic formu-
lation from [24], and introduce the PP paradigm.

A. Notation

Sets are denoted by calligraphic letters, e.g. X. For k,n €
N, we use X™** for the database space of m x k matrices
(columns correspond to different attributes while rows to
different individuals). The (i,j)th entry of 2 € &X™*F ig
x(4, 7). The ith row and jth column of x are x(i, -) and z(-, j),
respectively. The image of a function g : X™"*F — R? is
denoted by Im(g). For p > 1, || -||,, designates the ¥ norm on
R?; we omit the subscript when p = 2 (which is our typical use
case). The operator norm for matrices is denoted by || - ||op. For
two numbers a and b, we use the notation a A b = min{a, b}
and a V b = max{a, b}

We denote by (2, F,P) the underlying probability space
on which all random variables (RVs) are defined, with E
designating expectation. RVs are denoted by upper case letters,
e.g., X, with Px representing the corresponding probability
law. For X ~ Px, we interchangeably use spt(X) and
spt(Px) for the support. The joint law of (X,Y") is denoted
by Pxy, while Py x designates the (regular) conditional
probability of Y given X. Conventions for n x k-dimensional
random variables are the same as for deterministic elements.
The space of all Borel probability measures on S C R? is
denoted by P(S). We write P < @ to denote that P is
absolutely continuous with respect to (w.r.t.) Q. The n-fold
product measure of P € P(S) is P®". Indicator function of
a measurable event A € F is denoted by 1 4.

For (X,Y) ~ Pxy, the mutual information between X
and Y is denoted by |(X;Y). The differential entropy of
X is h(X). Conditional versions of the above given a third
(correlated) RV Z are denoted by Z by I(X;Y|Z) and
h(X|Z), respectively. The Kullback-Leibler (KL) divergence
between P, Q € P(X) with P < Q is

D (P1Q) = Er o (55 )|

where % is the Radon-Nikodym derivative of P w.r.t. ). The

total variation (TV) distance is defined as

[P —Qllrv := sup |P(A) = Q(A)],
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where the supremum is over all measurable sets .4. Both
the KL divergence and the TV distance are jointly con-
vex in (P,Q), and are related to one another via Pinsker’s
inequality [43]: [|P — Q|ltv < /0.5DkL(P]|Q). Also recall
that 1(X;Y’) can be expressed in terms of KL divergence
as 1(X;Y) = DkL(Pxy||Px ® Py), where Px and Py
are the respective marginals of X and Y. For 1 < p <
0o, the p-Wasserstein distance between P,@Q € P(X) with
finite pth absolute moments, i.e., Ep[| X|P],Eq[||Y]?] <
o, is Wy(P,Q) = infrencpo) (B-[|X — Y|?])"7,
where TI(P,Q) is the set of couplings of P and Q.
The oo-Wasserstein distance is given by W (P, Q) :=
hII’lp_)oo WP(P’ Q) = infﬂ'EH(P7Q) Supz,yESpt(ﬂ') HiL’ - yH

For multi-index o = (aq,...,aq4) € Ny, the partial
derivative operator of order [laly is D* = ... 525
For an open set Y/ C RY and s € Ny, let C*({) be the
class of functions whose partial derivatives up to order s all
exist and are continuous on . The Holder function class
of smoothness s € Ny and radius b > 0 is then defined
as GG(U) = {f € CU) : maxy o, <s [P fllocy < b}
The restriction of f : R — R to X C RY is denoted
by f|x. For compact X, slightly abusing notation, we set
X)) = supex [l

B. Differential Privacy

DP allows answering queries about aggregate quantities
while protecting the individual entries in the database [3].
To that end, the output of differentially private mechanism
should be indistinguishable for neighboring databases—those
that differ only in a single record (row). Formally, we say that
x, 2’ € X™*F are neighbors, denoted = ~ 2/, if x(i,-) #
2'(i,-) for some i = 1,...,n, and agree on all other rows.

Definition 1 (Differential Privacy). Fix e,d > 0. A randomized
mechanism® M : X"*F — Y is (e, §)-differentially private if
for all z ~ 2’ with z,2’ € X™** and A C ) measurable,
we have

P(M(z) € A) < e P(M(2') € A) + 6. (1)

The formulation of DP can be extended to arbitrary neigh-
boring relations between databases, which is known as generic
DP [5]. Namely, neighbors can be defined as pairs that agree
on all entries except any prespecified portion of the database
(as opposed to just the rows, as in standard DP). For instance,
viewing databases that agree up to their columns as neighbors,
gives rise to a variant of the AP framework [7].

An information-theoretic formulation of DP was proposed
in [24] in terms of the conditional mutual information between
each row of the database and the mechanism, given the rest of
the rows. We next define e-mutual information DP (e-MI DP)
and then recall the main equivalence result of [24].

3A randomized mechanism is described by a (regular) conditional proba-
bility distribution given the data, i.e., Pps|x.
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Definition 2 (e-MI DP). A Randomized mechanism
M : X"k Y is e-MI DP, if

sup (X (0, )i M(X)[(X(j, ), ) Se @

ng€7’1(«\-’"x’“),

Theorem 1 of [24] states that e-DP (i.e., (¢,)-DP with
§ = 0) implies e-MI DP, which further implies (€', /2¢)-DP,
for any € > 0. Thus, e-MI DP is in fact sandwiched between
€-DP and (e, §)-DP in terms of its strength. It was also shown
in [24] that e-MI DP satisfies properties such as convexity,
post-processing, and adaptive/non-adaptive composition.

C. Pufferfish Privacy

For a database space X nxk the PP framework [4] consists
of three components: (i) a set of secrets S, that contains
measurable subsets of X™*F; (i) a set of secret pairs Q C
S x S that needs to be statistically indistinguishable in the
(e,0) sense (see (3)); and (iii) a class of data distributions © C
P(X™*k), that captures prior beliefs or domain knowledge.
As formulated next, the goal of PP is to make all secret pairs
in Q indistinguishable w.r.t. those prior beliefs Px € ©.

Definition 3 (Pufferfish privacy). Fix ¢, > 0. A randomized
mechanism M : X"*F — Y is (e, §)-private in the pufferfish
framework (S, Q,0) if for all Px € ©, (R,7) € Q with
Px(R),Px(T) >0, and A C Y measurable, we have

P(M(X) € A|R) < e P(M(X) € A|T) +34. 3)

DP from Definition 1 is a special case of PP when & =
X"*k O contains all neighboring pairs of databases, and
O = P(X™*k) (ie., no distributional assumptions are made,
and privacy is guaranteed in the worst case). PP also subsumes
any other famework under generic DP [5] (i.e., alternative
neighboring relations) by choosing Q accordingly. Another
special case of PP is AP [7], which privatizes global statistical
properties of data attributes. In this case, S is the value
of a function evaluated on the data, Q contains pairs of
function values, and © captures assumptions on how the data
was sampled and correlations across attributes thereof. These
special cases are discussed in detail in Remark 2 ahead.

III. PUFFERFISH PRIVACY AND MUTUAL INFORMATION

Towards an information-theoretic characterization of PP, it is
convenient to focus on a slightly more structured formulation
that explicitly decomposes pairs of secrets into private and
public parts. The considered PP framework is presented next,
followed by an information-theoretic characterization.

A. Structured Pufferfish Privacy Framework

We focus on a special case of the general framework, where
pairs (R,7) € Q are decomposed into a private part (on
which they should be indistinguishable) and a common part
(interpreted as public information). In Remark 2 we demon-
strate how the considered formulation reduces to popular
privacy notions like DP [3] and AP [7]. Our formulation is
constructed as follows:
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Fig. 2. Function pairs for DP: The ith row of z € X™*F is the private
portion, while the rest of the database is the corresponding public part.

1) Private/public functions: Let G and W be finite sets,
containing functions on X nxk For g € G, we interpret g(X)
as a private feature of the database X ~ Px € O, while
w(X), w € W, represents publicly available information.

2) Function pairs: To encode which private-public function
pairs constitute a secret (i.e., an element of §) we use a
bipartite graph. Consider the graph (G, W, &), where £ is a
given edge set between the two partitions G and W. We write
g ~ w if {g,w} € & for some g € G and w € W. The
operational meaning of an edge g ~ w is that g(X) must
be concealed even if the adversary has access to w(X). For
example, for DP we take g;(x) = x(i,-) as a specific row
of the database and w;(z) = (z(j, ~))j¢i as the rest of the
database, where ¢ = 1,...,n; then set G = {g;}",, W =
{w;}7—, and € = {{g;, wq;}}?zl, as depicted in Figure 2.)

3) Secret event: Each secret event (namely, an element
of &) corresponds to a specific value that a private-public
function pair takes, i.e., for G 3 g ~w € W, a € Im(g), and
¢ € Im(w), S comprises all events of the form Ay ,,(a,c) :=
{9(X) =a, w(X) =c}.

4) Secret event pairs: Elements of @ C § xS are pairs that
share the same public information (i.e., the value for w(X))
but differ in their private portions (the value of g(X)).

We are now ready to define the structured PP framework.

Definition 4 (Structured PP Framework). Fix ¢, > 0 and
consider a bipartite graph (G, W,E) with sets of functions
G and W as described above. A randomized mechanism
M : X"k — Y is (e,6)-private in the structured pufferfish
Sframework (G, W, E,©) if it satisfies Definition 3 with

S={Aguwla,c):G3g~weW,aclIm(g), ceIm(w)}
o= {{Ag@(a, c),Agyw(b,c)} :Gog~weW, ¢ € lm(w),
a,b € Im(g), a #b}

and a set of data distributions © C P(X™*F).

The structured PP framework captures various prominent
privacy notions, such as DP [3] and AP [7].

Remark 1 (Semantics of the Structured PP Framework).
Structured PP framework provides the following privacy guar-
antee: for any database X generated from a distribution in the
class ©, an adversary that knows the function value w(X), for
w € W, and the output of the privatization mechanism M (X)
draws the same conclusions regardless of the value of the
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private function g(X), g € G. This applies to many realistic
scenarios, such as the one described in Section I-A (see
also Fig. 1). Noting that this example indeed falls under the
structured PP framework, we have that the value of g (whether
more than half of the employees in each department received
a raise) is protected even if the adversary has the access to w
(average salaries of year 2022 across the department) and M
(the privatized average 2023 salary).

Remark 2 (Special Cases). The structured PP framework
reduces to various important privacy notions. We provide two
such examples pertaining to DP and AP.

1) DP corresponds to a structured PP framework with © =
P(X™>k), private functions g;(z) = z(i, -), public func-
tions w; () = (a:(j,-))j#, where i = 1,...,n, and an
edge set £ = {{g;, wz}}:;l This construction naturally
extends to any privacy framework where secret events
are singletons (databases). Then, each private function g
acts on some prespecified portion of the database, and is
connected by an edge to a public function w that acts on
the remaining data entries.

2) The AP framework privatizes attributes of the database,
which are captured by certain functions g; : X’ kR of
the columns j = 1,...,k. Following the setup of [3],
we take g;(z) = g;(z(-,4)), for j = 1,...,k; as
AP includes no public information we set W = & =
() and let © be the class of distributions of interest.
Alternatively, one may consider a variant of AP with
public information, which is the portion of the database
except the considered column. In that case, WV is a set of
functions w;(x) = (x(-,i)), ., where j = 1,... k, and

k
5 = {{gj7wj}}j:1‘

Given the definition of the structured PP framework, it is
natural to ask for mechanisms that attain it. The Wasserstein
mechanism from [6] can be used to guarantee general PP.
However, that approach is computationally intractable. A sim-
pler mechanism can be devised by following the approach
of [7, Theorem 1] for AP under appropriate Gaussianity
assumptions. Specifically, fix a query f : X™** — R and
suppose that for any X ~ Px € ©, g € G, and w € W with
g ~ w, we have that the conditional distribution of f(X) given
(9(X),w(X)) is Gaussian. Under this assumption, the con-
ditional variance Var(f(X)|g(X) = a,w(X) = ¢) does not
depend on the values (a,b) and the Gaussian noise-injection
mechanism M (X) = f(X) + Z, with Z ~ N(0,0?) satisfies
(e, d)-structured PP whenever

i35’

2 (e_lA?;’w(c))Z log(1.25/6)

c€lm(w)

— Var(f(X)|g(X) = ap, w(X) = c),
where (ag, o) € Im(g) x Im(w) are arbitrary and

AP

f,g,w(c) = sup

a,b€lm(g)
—E[f(X)]g(X) = b,w(X) = ]|

[E[f(X)]9(X) = a,w(X) = ]
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While the above Gaussianity requirement may hold by assum-
ing, e.g., Gaussian data and linear functions, it is generally
quite restrictive. To devise tractable mechanisms beyond this
Gaussian setting, we next propose an information-theoretic
reformulation of the structured PP framework. This reformu-
lation lends well for analysis and enables deriving sufficient
conditions on parameters of noise-injection mechanism that
guarantee structured PP in general.

B. Information-Theoretic Formulation

To provide an information-theoretic formulation of the
structured PP framework, we first define e-MI PP.

Definition 5 (¢-MI PP). Let (G, W, &) be a bipartite graph as
in Definition 4 and © C P(X"™*F). A randomized mechanism
M : X"k — Y is e-MI PP in the framework (G, W, &, ©) if

sup  (g(X); M(X)|w(X)) <e.

Px €O,
gEG, WEW:!
g~w
Evidently, e-MI PP as defined above recovers the notion of
e-MI DP from [24] (see Definition 2) by taking (G, W, &, )
as described in Part 1 of Remark 2.

Remark 3 (Revisiting Semantics of the Structured PP). The
e-MI PP formulation explicitly encodes the semantics of the
structured PP framework, as explained in Remark 1. Namely,
for any database distribution Px € ©,G > g ~ w € W,
the mechanism’s output M (X') should not convey more than e
information bits about any secret function g(X), g € G, even
when w(X), w € W, is available as side information.

The following theorem characterizes the relative strength of
the structured PP framework from Definition 4 compared to e-
MI PP, showing that the latter lies between e-PP (i.e., (¢, §)-PP
with 6 = 0) and (e, §)-PP for appropriate parameter values.

Theorem 1 (Relative Strength). Consider the structured (e, 0)-
PP framework (G, W, €, @) from Definition 4. Let ¢ > 0 be
arbitrary and set €' = € \ 3€2. Then

ePP = ¢'-MI PP .
and if © = P(X"*¥), then we further have
PP = ¢’-MI PP = (¢, V/2¢")-PP.
Moreover, the inverse implication

(¢,0)-PP = ¢*-MI PP

holds under either of the following conditions:
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1) |spt (M
e = 2hb((5/)

+ 2§ log <’Spt (M

X))| < 00 or maxgeg [Im(g)| < oo, whence

X))| A (max [tm(g)] + 1))

where hy(a) = —alog(a) — (1 — ) log(l — a), for a €
[0,1], is the binary entropy function in nats and §' =
1-2(1—-0)/(ef+1)€e]0,1].

2) The joint density frr(x),g(x)w(x) and conditional den-
Sity far(x)|g(x),w(x) €xists, whence €* is given in (4), as
shown at the bottom of the page, where

) x|a,c
a;})c = sup fM(X)lg(X) u(X)( la, c)
b, wespt(M (X)) JM(X)|g(x (x\b,c)
fope= inf  DMEOlEOw0(la )
wespt(M (X)) fM(X)|g (x\b,c)
Uae = SUD  far(x)g(x ),w(X)(:c,a,c)

ZI?Gspt(M(X))
Ea c = .a,c).

’ xegpt(M(X)) fM(X)|g( ) (X)(x a C)

Theorem 1 is proven in Section VIII-A. The first implica-
tion follows by reformulating e-PP in terms of the co-Rényi
divergence, translating that to an € bound on the corresponding
KL divergence, and then use joint convexity to arrive at
€’-MI PP. When O is the set of all database distributions,
the second implication is derived via the minimax redundancy
capacity representation and Pinsker’s inequality. The inverse
implications first translates (e,)-PP into a bound on the
TV distance between corresponding conditional distributions
and then employs either continuity of entropy w.r.t. the TV
distance to control mutual information or the reverse Pinsker
inequality.Note that the privacy guarantee provided by e-PP is
stronger than that of e-MI PP, as evident from the implication
e-PP — e-MI PP.

Remark 4 (e-KL PP). e¢-KL DP [5], [35] can be generalized
to the setting of structured PP as follows. Let (G, W,E) be
a bipartite graph as in Definition 4 and © C P(X"*F).
A randomized mechanism M : X™"** — Y is e-KL PP in the
Sframework (G.W,E,0) if VPx €0, G>g~weW, a,be
Im(g), ¢ € Im(w)

Dt (Py(x) A g () | Pr ()1 Ag o (b.0)) < €5

where Ay (a,c) = {g(X) = a, w(X) = c}. KL PP as
defined above sits between the structured PP from Definition 4
and e-MI PP from Definition 5 in terms of strength. This is
evident from the proof of the first implication in Theorem I,
which effectively shows that e-PP —> ¢’-KL PP — ¢"-MI
PP, for €' = e N 62 (see (9) in Section VIII-A). The above

sup
Px €O,

(g,w)EGXW: g~w,

a,belm(g), c€Im(w)

ec+1

e*z(l—

20-0)

1 (log (o,
5 l—aa’b’c

“4)

_ 5a,b,c> A log <Z(L,c>
(9, w)EGXW g~w, o
a€lm(g), c€Im(w)
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observation also applies for an extension of a-Rényi DP [26]
to the structured PP setting.

IV. PROPERTIES OF MI PP

We now explore the properties of e-MI PP, encompassing
convexity, post-processing, and composability (adaptive and
non-adaptive). Modern guidelines for privacy frameworks [8]
pose properties such as convexity and post-processing (also
known as transformation invariance) as base requirements.
Composability is another important property that implies that
the joint distribution of the outputs of (possibly adaptively cho-
sen) privacy mechanisms is in itself private. These properties
are shown to hold for the general e-PP framework in [4]. The
next theorem shows e-MI PP satisfies them as well.

Theorem 2 (Properties of e-MI PP Mechanisms). The follow-
ing properties hold:

1) Convexity: Let ¢ > 0, and My, ..., My be e-MI PP
mechanisms. Take I as a k-ary categorical random variable
with parameters (p1, ..., pk). Then the mechanism M := Mj
(i.e., M = M; with probability p;, for i = 1,...,k) also
satisfies e-MI PP.

2) Post-processing: If mechanism M : X"** — Y satisfies
e-MI PP, then for any randomized function A :' Y — Z, the
processed mechanism A o M also satisfies e-MI PP,

3) Adaptive composability: Let M, ..., My be sequen-
tially and adaptively chosen €1 . . . , €;,-MI PP mechanisms, i.e.,
Vi=1,...,k

sup 1(g(X); M;(X)|w(X), My(X),...,M;—1(X)) <e;.

gEGWEW:
g~w

Then the composition M* =

(M, ...
(SF_ €)-MI PP

, My) satisfies

Theorem 2 is proven in Section VIII-B using basic prop-
erties of mutual information, such as the chain rule, the data
processing inequality, and its nullification under independence.
The simplicity of the argument highlights the virtue of the
information-theoretic formulation of the PP framework.

We move to discuss non-adaptive composition. In this case,
the mechanisms M, ..., M, from property (3) of Theorem 2
are chosen conditionally independent given the database. This
instance is of practical importance since it includes noise
injection mechanisms (e.g., Gaussian and Laplace), that are
the focus on the next section. The following proposition is
proven in Section VIII-C.

Proposition 1  (Non-Adaptive  Composability). Let
My,..., My be MI PP mechanisms with the parameters
€1, ..., €, respectively, which are chosen non-adaptively, i.e.,

PayMiclX = ITi=i Pasijx- Then the composition M* is
(Zq‘,:l € + n)-MI PP, where
k

|(M,(X); M1 (X)|w(X), g(X)),
=2

n= sup
Px €O,

geEG,WEW:
grvw

and ML_I(X) = (M]_(X),,szl(X))
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Proof of Proposition 1 (in Section VIII-C) follows from the
repetitive application of chain rule for mutual information and
by the fact, entropy being reduced by conditioning.

Remark 5 (Bounds on n). If [spt(M;(X))| < oo for each
i =2,...,k then n < Zf:2 log |spt(Mi(X))|. Thus, if the
cardinality of the output of the mechanism is small, then
so is 1. Alternatively, if each mechanism conditioned on the
database X is log-concave (this is satisfied by the Laplace and
Gaussian noise injection mechanisms introduced in Section V)
and its output is one-dimensional, then

1< meVar (M; (X)]g(X), w(X))
"= Piuep@, 2 Z_:E llog ( 4Var (M;(X)|X) )1 '
ge%,ESW: =2

This follows from the Gaussian distribution achieving maxi-
mum entropy under a variance constraint, and the lower bound
for the entropy of log-concave distributions [44].

Remark 6 (Composition When Secret Pairs are Databases). It
was shown in [4] that standard e-PP mechanisms compose in
PP frameworks in which secret pairs (R,T) € Q correspond
to pairs of databases (i.e., when S contains only singletons;
see Definition 3). This also holds for e-MI PP mechanisms by
observing that in this case we have n = 0 in Proposition 1.
Indeed, as (g(X),w(X)) specify a database, the conditional
independence of the mechanism given X nullifies the mutual
information.

The general non-adaptive setting, without assuming that
secrets specify databases, was studied in [4], where it was
shown that composability does not hold in general. Ref-
erence [4] then identified a (rather restrictive) sufficient
condition on the class of distributions ©, termed universally
composable (UC) distributions, under which non-adaptive
composability holds for e-PP. The class of UC distributions
is defined next.

Definition 6 (UC Distributions). The class ©yc of UC dis-
tributions contains all Px € P(X™*F), such that for all
G >9g~w € Wand (a,¢) € Im(g) x Im(w) with
Px (Ag,w(a,c)) > 0, we have Px|a, ,(a,c) = Oz for some
x € X"*k \where 8, is the Dirac measure at .

In words, UC distributions are ones under which the
database is specified by non-null secret events.

e-MI PP also composes under the UC condition, but turns
out to be more stable than the standard PP framework w.r.t.
addition on non-UC distributions to ©. The next corollary,
which follows directly from Proposition 1, quantifies this fact.

Corollary 1 (Universal Composability). Let M, ..., My
be mutual information PP mechanisms with the parameters
€1, ..., €L, respectively, which are chosen non-adaptively. Then
the composition MF is (Zle ei)—MI PP, provided either of
the following conditions holds:
(i) © C Oyc; or
(ii) Ouc € © and M, ..., My satisfy standard PP with the
same €1, ..., € parameters.
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The proof of Proposition 1 is given in Proof VIII-D.
Notably, Case (ii) above states that non-adaptive composability
of e-PP mechanisms holds in the sense of e-MI PP whenever
© contains all UC distributions. This means that e-MI PP
non-adaptive composability is stable to addition of non-UC
distributions to ©, so long that all UC distributions are there
(e.g., when © = P(X™*k)). Standard e-PP does not share this
stability: even if © contains all UC distribution, adding even
a single non-UC distribution to this set will compromise the
composability of the classic PP framework.

V. MECHANISMS

This section leverages the information-theoretic formulation
to devise Laplace and Gaussian noise-injection e-MI PP mech-
anisms whose noise level is specified in terms of elementary
quantities. As a special case of MI PP, we obtain mechanisms
for MI DP—a framework proposed and studied in [24], but
mechanisms were not considered in that work. Mechanisms
achieving MI DP tailored for specific applications, such as
linear regression and coded federated learning, were developed
in [28] and [29]. In contrast, this sequel provides mechanisms
that are applicable in general, under minimal assumptions on
the setting.

A. Laplace Mechanism

Given a query function f : X"*¥ — R and a database
X ~ Px € 0, a noise-injection mechanism for privately
publishing f(X) outputs M(X) = f(X) + Z, where Z
is a noise variable that follows a prescribe distribution with
appropriately turned parameters. The following theorem char-
acterizes parameter values for the Laplace mechanism (i.e.,
when Z follows the Laplace distribution) that guarantee e-
MI PP.

Theorem 3 (Laplace Mechanism). Fix € > 0 and a structured
PP framework (G, W,€,0). Let f : X"k — R? be the
query for privatization and consider the Laplace mechanism
M (X) = f(X) + Z_, where ZL ~ Lap(0,b)®¢ is a
d-dimensional product Laplace distribution with the scale
parameter b > 0. If

YL [y Var(f;(0hw(X))
Px €0, weW* d(ed —1) ’

where f;(X) is the jth entry of f(X) = (fl(X),...,fd(X))
and W ={w e W: Jg e g, g~w}, then M is e-MI PP.

b > sup

The derivation of Theorem 3 is presented in Section VIII-E
and relies on the fact that the Laplace distribution maximizes
differential entropy subject to an expected absolute deviation
constraint.

Remark 7 (Comparison With Wasserstein Mechanism). Com-
pared to computing co-Wasserstein distances for each secret
pair for each distribution, variance is an elementary quantity
that can be computed with relative ease. There are also scenar-
ios where the noise level induced by Wasserstein mechanism
is infinite and thus infeasible, while our Laplace mechanism
derives a feasible, finite noise level. For instance, consider the
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setup of AP [7]: if © contains a distribution with respect to
which f(X) and g(X) are jointly Gaussian for some g € G,
variance is finite while co-Wasserstein distance may diverge.*

The next corollary specializes Theorem 3 to e-MI DP (see
Part 1 of Remark 2) by controlling the conditional variance in
terms of ¢!-sensitivity. The proof is deferred to Section VIII-F.

Corollary 2 (Laplace Mechanism for e-MI DP). Under the
setup of Theorem 3, Laplace mechanism with

Z?:1 E [\/Var(fg(X)‘ (X(J7 ))]¢7)J
d(ed —1) ’

b>

sup

PxeP(xmxk)y,
i=1,...,n

is e-MI DP. Furthermore, the the statement remains true if

the right-hand-side (RHS) above is replaced with 21(f)

V2d(ed —1)’
where Ay (f) = maxm: || f(x) — f(')]|.

Remark 8 (Classic Laplace Mechanisms for DP). Classical
Laplace mechanisms achieve e-DP when b > Aq(f)/e [9],
and (€,0)-DP when b > Aq(f)/(e — log(1 — 4)) [10].
Evidently, for small ¢ (termed the ‘high privacy regime’), both
the classic and the e-MI DP mechanism from Corollary 2
induce noise of order O(1/e).

Remark 9 (Domain Knowledge for DP). Compared to
the classic sensitivity-based Laplace mechanisms for DP, the
bound in Corollary 2 depends on the variance of f and
allows to incorporate domain knowledge. Consider the product
Gaussian family

O¢(m, s) = {ﬁel 0 0; :N(/‘ivozz)v ‘ILL'L| <m, Ui2 < 3}7
i=1

and let f(X)=n"1>"" X, be the average of the database
entries (the argument holds for any linear query). The noise
derived from our mechanism is /s/(n(e — 1)) < oo, while
A1(f) = oo here since X has unbounded support. Thus, the
sensitivity-based mechanisms are vacuous for this case, while
our bound provides feasible noise levels. In these situations,
the classic approach involves truncating the space [45] which
is not necessary under our framework, whenever the variance
is finite. In Section VII-A we also discusses the benefits of
domain knowledge for private mean estimation tasks.

B. Gaussian Mechanism

We next characterize parameter values for the Gaussian
e-MI PP mechanism.

Theorem 4 (Gaussian Mechanism). Fix € > 0 and a structured
PP framework (G, W, £,0). Let f : X"** — R? and consider
the Gaussian mechanism Mg (X) := f(X)+ Zg, where Zg ~
N(0,0°%1,) is a d-dimensional isotropic Gaussian of parameter

“Let the said joint distribution Ppix)gx) be N(u,T) with
poo= (ufpg)T and B = [(o']%,pafag); (pofag,og)], Then,
W3 (Pr(x)lg(x)=a> Prx)|gx)=b)) = la = bl0%p? /of — (1 = p?)oF.
When supremized over (a, b) € Im(g), 2-Wasserstein distance diverges. Due
to the monotonicity of Wasserstein distance, indeed co-Wasserstein distance
explodes.
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o>0.1If

sup Z] 1 [Var(f] )|w(X))]
Px €O, weWw* d(67 — 1) ’
with W* = {w € W: Jg € G, g ~ w}, then Mg is eMI
PP.

02>

The derivation of Theorem 4 (Section VIII-G) and uses
the fact that the Gaussian distribution maximizes differential
entropy subject to a second moment constraint.

Remark 10 (Comparison of Laplace and Gaussian Mecha-
nisms for e-MI PP). In the high-privacy regime (i.e., when €
is small), we have e —1 = O(e). The expected noise variance
of Laplace mechanism is E[||Z_||?] = ©(d/€?), while the
Gaussian mechanism has noise variance E[||Zg||?] = ©(d/¢).
The Gaussian e-MI PP mechanism thus injects noise with a
lower variance than the Laplace mechanism in this case. This
is illustrated in Fig. 3a for the setting where f is the average of
each column of a database in the space {0, 1}"*¢ with fixed
n = 100 and varying d. Specifically, the figure shows Laplace
and Gaussian noise variance needed to achieve e-MI DP for
d=1,2,5,10,30.

Corollary 3 (Gaussian Mechanism for DP). Under the setup
of Theorem 4, Gaussian mechanism with

s E [Var( fo(X

o? > 5
d(e’d 1)

sup
PxeP(xnxk)y,
i=1,....,n
is e-MI DP. Furthermore, the the statement remains true if
the RHS above is replaced with Ai(f) where Aq(f) :=

max,~. || f(z) — f(z')|. Addltlonally, if X is compact and
f: X"k - R is continuous, then o2 > Az(f)/(4( 2 _ 1))
is sufficient to achieve e-MI DP.

Remark 11 (Classic Gaussian Mechanisms for DP). By
Theorem 1 with the condition © = P(X™**), which holds
in the DP setting, we have that e-MI DP implies regular
(¢/,7/2¢)-DP, for any ¢ > 0. For comparison, the classi-
cal Gaussian mechanism achieves (€ ,\/ﬂ)—DP with o2 >
210g(1.25/v/2€)AZ(f)/€’* for € < 1[9]. It can be shown that
our mechanism requires a lower noise level than the classic
one whenever ¢/ < 2(d(e?/?—1) 10g(1.25/¢fe))1/2. Fig. 3b
shows the region of (¢, ¢) values for which our mechanism
injects noise of a lower variance for d = 30. We also note
that this region is monotonically decreasing (in the sense of
inclusion) with d.

The noise levels derived in Theorem 4 scales linearly with
the increasing dimension of the query. This may result in
large noise values which may compromise utility. Projecting
the high-dimensional queries to a low-dimensional space may
provide a better privacy-utility tradeoff if the dimension of the
projection space is chosen appropriately.

Theorem 5 (Gaussian Mechanism With Projections). Fix
e > 0, a structured PP framework (G, W,&,0). Let f :
X<k — R be the query function, A € R?*¢ be a projection
matrix with ¢ < d, and consider the Gaussian mechanism
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Fig. 3. (a) Laplace and Gaussian noise variance injected to achieve e-MI DP
for the following setting where f is the average of each column of the database
in the space {0, 1}?*¢ with fixed n = 100 and varying d = 1, 2, 5, 10, 30.
(b) The region where the MI DP Gaussian noise injection mechanism adds
noise with smaller variance compared to classical mechanism for achieving
(€', v/2¢)-DP with d = 30.

ME(X) := ATf(X) + Zg, where Zg ~ N'(0,0°I;). Then
ME™ is e-MI PP if either of the following conditions hold:

1) A =|¢1,...,¢¢ is deterministic and

E [I1S 71w lop] maxi<j<e 1611
(% —1)

o’ > )
Px€©,weWw*
where || - [|op is the operator norm, ¢, is the conditional
covariance matrix of f(X) given w(X), and W* is as in
Theorem 3.
2) A = [®y,...,P/] is random, chosen independently of
the database X and the mechanism M, with E[||®;|*] = 1 and
E[®;]=0forall j=1,...,¢ and

E “|Zf|w||0p + Hﬂf\wH%}

o* > 5
(¥ —1)

Px €O, weWw*

9

where ji7),, = E[f(X)|w(X)].
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Remark 12 (Gaussian Projection Matrix). The random matrix
whose entries are sampled independently from the Gaus-
sian distribution with 0 mean and 1/d variance satisfies the
requirements of Theorem 5, Part (2). A similar approach
was proposed in [46] for the task of estimating distances
between users without being leaking private information. Their
e-DP mechanism first projected the query onto a random
lower-dimensional space via Johnson-Lindenstrauss transform
and then injected Gaussian noise. Theorem 5 thus enables
using e-MI PP in such settings.

Remark 13 (Projection Dimension). For a d-dimensional
query, the Gaussian mechanism without projections (Theo-
rem 4) adds noise proportional to d, which may be prohibitive
when d > 1. Theorem 5 shows that by incorporating a
projection matrix, one may inject noise that is proportional to
£, where ¢ < d. In practice, the projection dimension ¢ should
be tuned to optimize the privacy-utility tradeoff, keeping in
mind that larger £ would typically necessitate larger o values
to guarantee privacy at a prescribed level [46].

C. Mechanisms With Explicit Dependence on Private
Functions

The noise levels derived in Theorem 4 and 3 depend on the
private function class G only through W*. However, it may be
desirable to capture the dependence on G more explicitly. This
is particularly relevant when there is no public information
(e.g., the AP framework from [7]; cf. Remark 2 Part 2) or if
there is a single public function w corresponding to all private
g € G. The following theorem provides noise levels with such
explicit dependence.

Theorem 6 (Gaussian Mechanism With Dependence

on G). Under the setup from Theorem 4 and assuming

infgeg wew: h(f(X)]g(X), w(X)) > —oo, the Gaussian
gr~w

mechanism Mg achieves e-MI PP, if

2 A—de*/'B Vo
g su —_—
= peco, A1)
gegg,wqe)w:

with A = Y0 E[Var(f;(X)|w(X))] and B =
%exp(%h(f(X)’g(X),w(X))—1).

In addition to maximum entropy arguments, the proof of
Theorem 6 uses the entropy power inequality. We may replace
the conditional entropy in B by any lower bound that may be
easier to compute (cf. e.g., [44]), and e-MI PP will still hold.

Remark 14 (Free e-MI PP Regime). The bound in Theorem 6
suggests that if A < de>/?B over the entire optimization
domain, e-MI PP holds without noise injection (i.e., 0 = 0).
It can be shown that A > dB for any Py € P(X"*F)
and functions f, g, and w. The free privacy regime therefore
corresponds to cases where € is large compared to d/2. Since
large € values are rarely of interest in practice, we conclude
that a positive noise level is generally needed for e-MI PP. For
fixed € and d, the above condition is related to how correlated
the query and the private functions are, given the public
information. For instance, if d = 1 and f(X), g(X), and
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w(X) are jointly Gaussian, we have A < d e?*/¢B whenever
the conditional correlation coefficient between f(X) and g(X)
given {w(X) = ¢} satisfies p(f(X),g9(X)|w(X) = ¢) <
v/ (e2¢ — 1)e—2¢. Accordingly, weak correlation may lead to
free privacy since the query leaks little information about the
secret to begin with. Proofs related to the above arguments are
presented in Section VIII-K

A Gaussian mechanism with explicit dependence on the
secret functions was proposed for AP in [7], under a rather
stringent setting. In their AP formulation there are not public
functions (i.e., W = () and taking d = 1, they assume
that f(X) conditioned on g(X) is Gaussian with a constant
variance, i.e., Var(f(X)|g(X) = a) = Var(f(X)|g(X) =
b), for all a,b € Im(g). Theorem 1 of [7] then shows that
(e,9)-AP is achieved by the Gaussian mechanism with

(C'AAP(f)

€

> — Var(f(X)|g(X) =a)| VO,

where C' = /21log(1.25/5) and
Arp(f)= max [E[f(X)|g(X)=a] ~E[f(X)|g(X)=0]].

By means of comparison, the following corollary specializes
our Theorem 6 to the setting from [7].

Corollary 4 (Gaussian Mechanism for AP). Under the above
setting, the Gaussian mechanism with the variance parameter

Var(f(X)) = e2Var(f(X)[g(X) = a)

2
o° >
e2e —1

Vo0

sup
PxcO,
geg

satisfies e-MI attribute privacy.

Note that both the mechanisms enter the free privacy regime
when f(X) is independent of g(X) (Remark 14 above argues
that this holds for our mechanism even when there is a weak
dependence between g(X) and f(X)). Under a multivariate
extension of the product Gaussian family from Remark 9, i.e.,

Ok (m,s) = (N (L D"+ = (ur - o) g < m,
%(i,j) < s, vizl,...,n,jzl,...,k}

and for f and g linear functions of the database columns
(say, average of the column entries), Aap(f) is proportional
t0 Max, perm(g) @ — b| and thus diverges to infinity. The
variance-based bound from Corollary 4, on the other hand,
is finite and feasible.

VI. AUDITING FOR PRIVACY

Privacy auditing aims to detect violations in privacy guaran-
tees, reject incorrect algorithms, and provide counterexamples.
This concept has been gaining recent attention for the special
case of DP auditing. In [14], an heuristic approach based on
poisoning attacks was proposed for auditing privacy viola-
tions of DP based stochastic gradient descent. The idea of
formulating DP auditing as a hypothesis test was originally
explored in [13] for univariate queries. An extension to the
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multivariate query setting was proposed in [15] by relaxing
DP to a privacy notion based on kernel Rényi divergence,
and using an empirical version of the latter as a test statistic.
However, all these approaches are tailored for classical DP and
are not applicable beyond that setting, e.g., to PP auditing.

We propose a hypothesis testing pipeline to audit for e-MI
DP which readily extends to the PP setting (see Remark 16
ahead). From relative strength considerations, our approach
can, in turn, audit for any stricter privacy notion, such as
e-KL DP, («, €)-Rényi DP, or e-DP itself. Indeed, since e-MI
DP is a relaxation of e-DP, any mechanism that violates the
former must also violate the latter. Our audit tests between the
null hypothesis Hj, that e-MI DP holds, and the alternative
‘H1 using an estimate of the mutual information from (2) as
the test statistic. If the estimate is larger than the threshold,
we reject the null and declare the mechanism as violating e-MI
DP (and thus also e-DP). When auditing for MI DP, the only
source of error in the decision is the statistical estimation error.
When auditing DP, on the other hand, an extra slackness may
arise from the gap between the DP constraint (say, in terms
of co-Renyi divergence) and the relaxed mutual information-
based one.

The main challenge of the proposed approach lies in the
inherent hardness of estimating mutual information. For con-
tinuous, high-dimensional random variables (which is often
the regime of interest in modern privacy applications), the
sample complexity of estimating mutual information grows
exponentially with dimension [47], [48], making tests based
on e-MI DP infeasible. Fortunately, for auditing purposes we
may further relax the e-MI DP privacy notion in order to
gain sample efficiency of the test. To that end, we propose
to employ sliced mutual information (SMI). Note that this
relaxation also comes at a cost in terms of test power due
to the gap between mutual information and SMI.

A. Sliced Mutual Information

SMI was introduced in [16] as an information measure
that preserves many properties of classic (Shannon) mutual
information, while being amenable to scalable estimation
from high-dimensional samples. SMI is defined as an aver-
age of mutual information terms between one-dimensional
projections of the considered random variables, namely, for
(X,Y) ~ Pxy € P(R% x R%) it is given by

SI(X:Y) = /S /S (67X 6TY)do, (0)dog, (9), (5)

where S4~! := {2z € R? : ||z| = 1} is the unit sphere
in R¢ and o4 is the uniform distribution on it (cf. [17]
for an extension to k-dimensional projections). Proposition
1 of [16] shows that SMI satisfies many properties akin to
classic mutual information, such as identification of indepen-
dence, (sliced) entropy-based decompositions, tensorization,
variational forms, and more. By the data processing inequality,
SMI is always upper bounded by classic mutual information,
ie., SI(X;Y) < I(X;Y), which enables using it to define a
relaxed privacy notion.

We also recall the sliced entropy and conditional SMI.
For (X,Y,Z) ~ Pxyz € P(R% x R% x R%) and
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(0,0,¥) ~ 04, ® 04, @ 04,, the sliced entropy of X, its
conditional version given Y, and the condition SMI between
X and Y given Z are defined, respectively, by

sh(X) := h(OTX|O)
sh(X|Y) := h(©7TX|0,®,3TY)
SI(X;Y|Z) :==(OTX;TY|0,d, U, UTZ).

With these definitions, we have SI(X;Y") = sh(X)—sh(X|Y)
and SI(X;Y,Z) = SI(X;Y) + SI(X; Z|Y"), among others.

B. Sliced Mutual Information Differential Privacy

A randomized mechanism M is said to satisfy e-SMI DP
(w.r.t. the distribution class © C P(X"**) if

S SHX (4, ); M(X)[(X(5,7) ;) < & ©6)

i=1,....,n

here we unfold (X (j, ~))j# into a vector of size k(n—1) and
then project it. Evidently, this is similar to the definition of
e-MI DI from [24] (Definition 2) but with SMI replacing
MI and while allowing for distributional assumptions on the
database (as in the structured PP framework). We hence-
forth make the simplifying assumption that the database is
independent across records. Namely, denoting the marginal
distribution of the ith row X(i,-) by P;, we assume that
X ~Px = H?:1 P;. While the subsequent results are derived
under this restriction, we expect the ideas to naturally extend to
general data distributions and PP frameworks. The following
proposition states the e-SMI DP is a relaxation of e-MI DP.

Proposition 2 (e-MI DP Relaxation). If a randomized mech-
anism M : X"*F — Y is e-MI DP then it is also e-SMI DP.

The proof is immediate since under the independence
assumption (and hence it is omitted), we have

= SI(X(7'7 '); M(X)v (X(.]a .))j;ti)

§ I(X(Za '); M(X)a (X(]a .))jyﬁi)
Thus, we deduce that if M violates e-SMI DP then it cannot
be e-MI DP nor e-DP. In fact, it suffices to find a single
distribution Px € © for which (6) does not hold to reject
the null hypothesis and declare violation of e-DP. These
are the main observations for devising the SMI-based audit
for DP (Section VI-D). Another key component of the test

is scalability with which SMI can be estimated, which is
formulated next.

C. Sliced Mutual Information Estimation

We consider estimating of SMI statistic from the left-hand-
side (LHS) of 6, but for a fixed distribution Px € © (a
further relaxation). Defining the shorthands X, = X(i,-),
Y = M(X), and Z; = (X(j,")),,; our objective is thus

______ n Sl;, where Sl; := SI(X;;Y|Z;). We first describe
a Monte Carlo based estimation procedure for SMI, employ-
ing a generic mutual information estimator between scalar
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variables. Afterwards, we instantiate the generic estimator via
the neural estimation framework of [49] and provide formal
convergence guarantees.

1) Monte Carlo Estimate of SMI: Fix ¢« = 1,...,n, let
{(X7,Y7,Z])}7, be m iid. samples of (X;,Y,Z;), and
proceed as follows:

1) Draw {(©;,®;, ¥;)}"_, ii.d. projection triples from o} ®
0d ® O(n-1)k-

2) For each j = 1,...,m and ¢ = 1,...,p, compute
(O1X7, 0TYI WIZ)).

3) For each ¢/ = 1,...,p, we estimate the mutual
information (O] X;;®]Y,¥]Z;) using the estimate
i((@}Xi)m, (@7Y)™, (V] Z;)™) (to be described shortly),
where

(O Xi)™ i= (OF XL, .., O] X")

and (®]Y)™, (V] Z;)™ are defined similarly.
4) Take a Monte-Carlo average of the above estimates, result-
ing in the SMI estimator:

Si; = ,Z (e1x,)™

5) Set the SMI DP statistic estimator as

J(@TY)™, (VT Z)™). (D)

~m,p om,p

SI' " == max SI; . ®)

2) Neural Estimation of Mutual Information: We now
instantiate the generic mutual information estimator T(-, )
in Step 3 via the neural estimation framework of [49], and
obtain explicit estimation error bounds in terms of m, p, and
the size of the neural network. The appeal of this approach is
twofold: (i) the SMI neural estimator [17] lower bounds the
population objective in the large sample limit, thus serving
as a further relaxation which is in line with the auditing
pipeline; and (ii) neural estimators are efficiently computable
via standard gradient-based optimizers and have low memory
footprint, even for high-dimensional data and massive sample
sets.

Neural estimation of mutual information relies
Donsker-Varadhan (DV) variational form, whereby

— log (IE [ef(U’V)]),

on the

(U;V)=  sup  E[f(U,V)]

fiRAu xRdv —R

where (U, V) ~ Pyy € P(R%™ x R%™), (U, V) ~ Py ® Py,
and f is a measurable function for which the expectations
above are finite. Given i.i.d. data (U1, V7),. .., (Un, Vi) from
Py, the neural estimator parameterizes the DV potential f by
an ¢-neuron shallow network and approximates expectations
by sample means,’ resulting in the estimate

(U™, v™)

1= sup —Zg (Ui, Vi)

geG, M i—1

~log ( Zeqwuvo( >>>

5Negative samples, i.e., from Py ® Py, can be obtained from the positive
ones via (U1, V5(1)), -+, (Um, Vy(m)), where o € Sy, is a permutation
such that o(z) # ¢, foralli =1,...,m
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where the neural network function class is defined as
g: R = R:
9(z) = Zle Bi¢ ((wi, z) + b;) + (wo, 2) + bo,

Ge(a) == maxy<i<e [[will1 V [bi| <1,
maxi<;<e |6z| < %’

[bol, [lwollx < a
with ¢(z) = z V 0 as the ReLU activation, and we set the
shorthand G, = Gy(loglog¥ Vv 1). Inserting |, with U™ =
(O] X;)™ and V™ = ((®]Y)™,(¥]Z;)™) as the generic
mutual information estimator in (7), the neural estimator of

SlZ is

= ¢,m,p

SIL NE a(q);Y)m7(\I’;Zz)m)a

- %ZD((G}X&’"

and the correspondmg SMI DP statlstlc estimator is SINE =

max;=1,..n SIZ NE . Note the Sll NEp is readily implemented
by parallehzmg m f-neuron ReLU nets with inputs in R? and
scalar outputs.

3) Formal Guarantees: Drawing upon the results of [49]
for neural estimation of f-divergences, we provide non-

asymptotic error bounds for SAI(,i,’?’p, subject to certain reg-
ularity assumptions on Px pr(x). Suppose that xnxk
Rk and Y < R? are compact sets and that Pxy
(recall that Y = M(X)) has a Lebesgue density fxy
supported on X™** x Y. For b,n > 0, let F(b,n) C
P(X"*k x ) be the distribution class that contains all
Pxy as above that also satisfy the following property:
dr e Cg(l/{) for some open set U/ O X™** x ), such that
log fxy = r|xnxrxy, and max;—1, » |(X;; M(X), Z;) < n
(namely, the log-density has a smooth extension to an open
set U containing the support). In particular, this class contains
distributions whose densities are smooth and bounded from
above and below and admit the aforementioned smooth exten-
sion condition. This includes uniform distributions, truncated
Gaussians, truncated Cauchy distributions, etc.

We next provide convergence rates for the SMI DP statistic
SAIi,:;n ’p, uniformly over the class F(b,7n), characterizing the
dependence of the error on s, m, and ¢. To simplify the bound
we assume ||X|| = ||| = 1, i.e., that the feature and the
mechanism output spaces are normalized. The results readily
extend to arbitrary compact domains.

Proposition 3 (Neural Estimation Error). For any n,b > 0,
we have

SCnPRA(7E +mmE 4 p7R),

m,p
sup

E|: max Sl _SlNE
Pxyer@,m)

1=1,...,n

where C' is a constant that depend only on n and b.

Proposition 3 follows by bounding

E[ ]giEHSI

and then applying the SMI neural estimation bound from [17]
to the RHS above (cf. [49, Proposition 2]). Further details are
omitted for brevity.

~{,m,p
I

maX SI 7SINE Sll NE

1=1,...,
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D. Auditing Differential Privacy via SMI DP

We now present the hypothesis testing pipeline for auditing
e-SMI DP. Notably, violations on the latter also implies a viola-
tion of e-DP. We consider a composite hypothesis test between
the null Hy : max;—;, ., Sl; < e (i.e., e-SMI DP holds), and
the alternative H;. Given samples {(X7,Y7, Zf)}g?;;:)(ll)
from the database and the mechanism, we use the maximized
SMI estimator Slyg ~ as our test statistic. An immediate
consequence of Proposition 3 and Markov’s inequality is the

following Type 1 error bound.

Proposition 4 (Type-l1 Error). Fix arbitrary e, > 0 and
consider the above setup. We have

n3k2 1 1

(g—% +m”2 +p_§>,

o0m.p
IE”(SINE > e—l—r‘Ho) <C
where C' is the constant from Proposition 3.

Choosing r and the estimator parameters such thglt 2the error
probability is not significant, for instance, r < C % (6_5 +
mTF + p_%) with o € (0,1), and £ = m = p =< nSk?,
we obtain an hypothesis test with level « significance. Indeed,
under the null, the rejection probability of this test is below
a. A power analysis of the proposed test (namely, the Type II
error) is also of significant interest since it provides guarantees
for identifying privacy violating mechanisms. This, however,
requires more advanced machinery such as a limit distribution
theory for the test statistic using which a power against
local alternatives can be quantified. Since a refined statistical
analysis of SMI estimators is beyond the scope of this work,
we leave the power analysis of the above test for future work.

Remark 15 (Auditing Variants of DP Frameworks). The
above hypothesis test can be used to audit for various privacy
framework, including e-DP, («, €)-Rényi DP [26] with « > 1,
e-MI DP, etc. This is since all these framework are stronger
than (and hence imply) e-SMI DP. Furthermore, when the
database distribution has finite support and a bounded density
that satisfies the conditions from Theorem 1, the implication
(¢/,6') —DP = ¢* — MI DP holds and the hypothesis test
can also audit for (e, §)-DP algorithms.

Remark 16 (Auditing PP Frameworks). These ideas readily
extended to auditing of PP frameworks. In particular, when
W = £ = () in the structured PP framework from Definition 4,
the above procedure can be adapted even without requiring that
the database rows are i.i.d. (as needed in the case of DP).

VII. ADDITIONAL APPLICATIONS

A. Private Mean Estimation

Differentially-private mean estimation is a basic private
statistical inference tasks, which was widely studied under
the classic DP paradigm [45], [50], [S1]. We now revisit
this problem and quantify the sample complexity of e-MI DP
multivariate mean estimation. Potential gains of incorporating
domain knowledge into the framework are also discussed. Let
X ~ Px € P(R?) be d-dimensional random variable with
mean E[X] = p. Given n i.i.d. samples of X, the goal is obtain
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Algorithm 1 e-MI DP Algorithm for Mean Estimation
Input: n i.i.d. data samples X1,...,X,; €; 3
m «— 2001og(1/5)
k—[n/m]
dm?

0'2<*

2n2e

for p=1:m do
i — 3 (Xp-vkr1 o+ Xpk) +Zp, Zp ~ N(0,0%15)

end for

N . m ~
fin, < argming cpa szl ly — Np”
Output: /i,

an accurate estimate /i,, of its mean that also satisfies e-MI DP.
We propose Algorithm 1 as the procedure for doing so.

Proposition 5 (Mean Estimation Under e-MI DP). Fix
a,B,e > 0. Let X ~ Px € P(R?) have mean E[X] = p
and a bounded absolute second moment E [[|X — u?] < oo.
Then Algorithm 1 fed with n > n( data samples, where

ng =0 (log(l/ﬁ) (o(; + aii/é>) ;

outputs an estimated fi,, that satisfies e-MI DP and achieves
P(llfin — pll <) >1-3.

Proposition 5 is proven in Section VIII-L. The argument
uses Theorem 4 to derive noise levels under which Algorithm 1
attains e-MI DP, and then applies median of means techniques
(specifically geometric median) to improve the accuracy of the
estimate.

Remark 17 (Sensitivity-Based Mechanisms). Private mean
estimation under other variants of DP, such as e-DP, (¢, d)-
DP, and p-concentrated DP [52], typically employs standard,
sensitivity-based noise injection mechanisms. However, these
require knowledge of an upper bound on the mean, i.e., R such
that ||| < R. For example, [45] propose a mechanism that is
initiated using a rough proxy of R which is iteratively refined
using the data samples. The e-MI DP mechanism proposed
herein, on the other hand, does not require boundedness
so long that the distribution of interest has finite variance.
This is due to the fact that e-MI DP incorporates domain
knowledge regarding the class of distributions, as opposed to
the aforementioned DP variants that guarantee privacy in the
worst-case (and are hence stricter).

Remark 18. [Computational Complexity of Algorithm 1] For
d = 1, Algorithm 1 boils down to computing the median
of the means obtained from m rounds. In the multivariate
case, our algorithm requires evaluating the geometric median,
which is a computationally hard problem. Nevertheless, there
are near-linear time algorithms for approximate geometric
median computation, i.e., with complexity O (dm(log(1/c))?)
where o > 0 is the approximation parameter [53].% To reduce
the computational burden, one may consider coordinate-
wise median, whose complexity is O (dmlog(m)); the linear
dependence on d can further be alleviated by parallelization.

6 Another approach for computing a multivariate median is the smallest-ball
median method, but it is computationally intractable [54].
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However, the sample complexity needed to to achieve the same
level of accuracy « using the coordinate-wise median worsens
to ng = O(log(d/B)(da=2 + da~te1/2)).

Remark 19 (Sample Complexity of e-DP Algorithms). The
sample complexity of e-differentially private mean estimation
was evaluated in [45], under the assumption that ||u| < R,
for some known R, and that the £ > 2 moment of X ~ Py
is bounded. Their result reads as

no = O <1og(d/5) (;Z? + mzf/ikfl + dlog(R)) ) '

€

The achieving algorithm first truncates the data into a bounded
region so as to limit the amount of injected noise needed for
privacy, and then performs mean estimation in a differentially
private manner. To find the truncation range they use an
iterative procedure which depends on the known R. This
approach, however, becomes computationally infeasible when
dimension is large. While the e-DP sample complexity bound
above grows like 1/¢, the one corresponding to e-MI DP is
on the order of 1/./€ (see Proposition 5). Nevertheless, it is
important to note that the privacy guarantees provided by these
approaches are different, with e-DP being strictly stronger.

B. Algorithmic Stability

Conditional mutual information was used in [19] to study
algorithmic stability and, in turn, generalization of machine
learning models. We next recall the setup from [19], outline
their main stability results, and demonstrate that an algorithm
satisfying e-MI DP is stable in that sense. Consider a (possibly
randomized) learning algorithm A : A"** — ) that takes
as input n samples, each with k features, and outputs an
hypothesis from the class ) (the precise task or loss function
are inconsequential here). Let Q € P(X*) be the data
distribution and draw a 2n-sized dataset X ~ Q%®?". Let
B = (By,...,B,) ~ Ber(0.5)®" be a n-lengthed string of
ii.d. random bits independent of everything else. Using B,
we define an n-sized database Xp, which will be fed into
the learning algorithm as follows. Set Xp(i,-) = X (iB; +
(n+1i)(1—By)), fori =1,...,n, ie., the ith entry of Xp
is X(4,-) of B; =1 and X(n + i,-) otherwise. Note that by
symmetry, the distribution of this database is Xp ~ Q®".

The following conditional mutual information measure,
abbreviated CMI, quantifies how informative the output of an
algorithm is about the selected samples (which are determined
by the string B), given the entire 2n-sized original database.

Definition 7 (CMI [19]). Under the setup above, the CMI of
the algorithm A w.rt. the data distribution Q) is given by

CMIg(4) := I(A(XB);B|X),
while its distribution-free CMI is

CMI(A) := sup

I(A(x B); B).
I€X2”Xk
Several generalization bounds based on the above def-
inition were proven in [19], which roughly behave as
(CMIQ(A)/n)l/2 (or the distribution-free analogue); cf., e.g.,
Theorems 1.2 and 1.3 therein. In addition, [19] showed that DP
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algorithms have bounded distribution-free CMI. Specifically,
an algorithm A that satisfies v/2¢-DP has CMI(A) < en.
The following result shows that e-MI DP also entails a similar
conclusion.

Proposition 6 (CMI Bound via e-MI DP). If the algorithm
A Xk Y satisfies e-MI DP, then we have CMI(A) < en.

This result follows because e-MI DP algorithms also satisfy
e-mutual information stability7 [18], which by [19, Theo-
rem 4.7] further implies the CMI bound above. Consequently,
learning algorithms that satisfy e-MI DP follow the general-
ization bounds from [19].

Remark 20 (Domain Knowledge). Algorithmic stability on
restricted classes of distributions may be of interest when
information about the data generating process is available.
The above ideas and results readily extended to this case
by replacing the set of all possible distributions by a subset
O C P(x™<F).

C. Utility of PP and MI PP Mechanisms

Generally, it may be hard to assess the utility of a given
PP mechanism. However, the MI PP framework can be used
as a proxy to understand the privacy-utility tradeoff in the
mechanism design phase. We showcase another scenario here
where we can borrow the results connected to information the-
ory in making progress in privacy research via MI PP. In this
subsection, we focus on the setup where © = {Px },G = {g}
and W = (), namely, when the database is drawn from a given
distribution and we want to hide one specific function thereof.
Let f(X) be the query and M (X) the output of the private
mechanism. We assume that the ranges of f and g are finite
and cast I(f(X); M (X)) as the utility metric, i.e., how much
information the mechanism’s output has of the query.

Consider the maximal utility of an e-MI PP mechanism
M(X) in two situations: when g(X) is or is not available

at the mechanism design step. Namely, we define
Up(X) := sup I(f(X): M (X))

Prrx))rx),9(x)>
I(M(X);9(X))<e

U (X) : I(f(X); M(X))

sup

Prrx))£(x)>
g(X)—=f(X)—=M(X),
I(M(X);9(X))<e

The following proposition, which relies on [55, Lemma 8],
gives an upper bound on the maximal utility.

Proposition 7 (Lemma 8 of [55]). For any 0 < € <
[(g(X); f(X)), we have

Us(X) <UX) <H(f(X)]g(X)) +e

From Proposition 7, we observe that the maximum util-
ity which could be expected from any e-MI PP mecha-
nism (regardless of the accessibility to g(X)) is at most
H(f(X)|g(X)) + €. Since e-PP implies e-MI PP, all PP

"Given a data set X = (X1,...,Xy) that comprises n i.i.d. samples
from @ € P(X*), an algorithm A is said to be e-mutual information stable

if supgepxk) %Z?:l I(A(X);X(i, -)|(X(j, '))j#) < e
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mechanisms are included in the optimization and we obtain
a maximal utility bound for them as well. In particular, the
bound shows that the increase in utility is at most linear in e.

Through the relation to MI PP, we can also show the
existence of MI PP mechanisms that achieve a certain utility
lower bound.

Proposition 8 (Theorem 2 of [55]). For any 0 < € <
[(g(X); f(X)), we have

Ui(X) = Ly v Ls,

where L{ = H(f(X)|g(X)) — H(g(X)|f(X)) + € and
Ls = H(f(X)|g(X)) — aH(g(X)|f(X)) + € — (1 — o)
(log(l(g(X); fXN+1)+ 4) with o = ¢/H(g(X)).

Proposition 8 implies that there exists an e-MI PP mech-
anism with utility of at least L{ V L§. Notice that when
H(g(X)|f(X)) =0 (i.e., g(X) is deterministic given f(X)),
this lower bound is tight. Under this setting, combining
Propositions 7 and 8, one may deduce that there exists an
e-MI PP mechanism with utility 245 (X) = H(f(X)[g(X)) +e.
We stress, however, that this is merely an existence claim that
does not reveal how to design a mechanism that achieves this
maximum utility.

VIII. PROOFS
A. Proof of Theorem 1
For the first implication, note that e-PP implies that
P(M(X) € A|R)
sup log
A P(M(X) € A|T)

>S67 V(R,T) € Q.

The left-hand side above is the infinite order Rényi divergence.
By monotonicity of Rényi divergences w.r.t. their order [56],
we have Dy (PM(X)\R”PM(X)\T) < e. Then,

H(g(X); M(X)|w(X))

= E [Dit (Par(x0)19() .00 | Par 0y )]

< B [Drw (Par()19(6).000) | Prr) g6y wx)) ] (9)
where the inequality uses convexity of KL divergence, with
¢(X) as an i.i.d. copy of g(X). Recalling that under the struc-
tured PP framework secret pairs are (Ag, . (a,c), Agw(b,c)),

with A, (a,c) = {g(X) = a, w(X) = ¢}, eMI PP follows
by the KL divergence bound.

Assuming © = P(X"*F), the second implication follows
by the minimax redundancy capacity theorem [57], which
gives

sgpl(g(X);M(Xﬂw(X) =c)<e =

inf max Diew (Par(x)g(x)=a.u(x)=e[|@) S € (10)

Let @* achieve the infimum on the RHS. Since M is e-MI PP
by assumption, we have Dk (PM(X)M(X):%“,(X):CHQ*) <,
for all a € Im(g). Applying Pinsker’s inequality together with
the triangle inequality, we obtain

[ Par(x)19(x)=aw(x)=c = Pr(x)1g(x)=baw(x)=c |l 1y < V26,
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which implies that M is (0, v/2¢)-PP and hence (¢, v/2¢)-PP
(recall Definition 3 for ¢/ > 0.

For the third implication, in both part we rely on an
adaptation of Property 3 from [24] from DP (as considered
therein) to PP. Specifically, that (e, d)-PP implies (0,¢’)-PP,
with &' = 1 — 2(1 —d)/(e® + 1). Having that, for Part (1),
we follow the argument from the proof of [24, Lemma 3]
to show that if |spt(M(X))| < oo or maxgeg [Im(g)| <
oo, then (0,d)-PP implies e*-MI PP with € as stated in
Theorem 1.

For Part (2), we recall that (0,0")-PP is equivalent to the
TV bound V(a,b) € Im(g), ¢ € Im(w)

(| Pz (x0)19()=as(x)=e = Prt(x)1a(x)=bw(x)=c|| 1y < s

and then control the mutual information term of interest by
the above TV norm. To obtain the first component of the
€* expression, we use the reverse Pinsker inequality from
[58, Theorem 1] to translate the above TV bound into the

following bound the KL divergence:

Dt (Par(x)lg(x)=a,u(x)=e || Par(x)19(x) =b,w(x)=c)

/ 1 -1
< il sup (Og G - ﬁa,b,c> = €.

2 Px €O, 1- Qg b.c
(9,w)EGXW: g~w,
a,belm(g), c€Im(w)

Having that, we bound the mutual information as in (9) to
obtain €7-MI PP. For the second component of the €* expres-
sion, we use the following Lemma which follows directly from
Corollary 12 of [59].

Lemma 1. If joint density frr(x),qg(x)w(x) exists, then we
have

1(g(X); M(X)|w(X) = c)
<(c;9,w, Px)
X E [l Par(x)jw(x)=c — Par(x)jw(x)=c.g(x) I Tv] (1)

where
rY(C 9, W, PX)
= sup log (S“pzespuM(X)) FM(x),000,w(0) (2, 0,€) )
a€lm(g) Infrespo(nm(x)) fa(x),90x),w(x) (25 @, €)

Lemma 1 together with the fact that (e, d)-PP
(0,6")-PP implies MI PP with parameter

x . 5l
€ =10

—

sup
PxcO,
(g, w)EGXW: gw,
c€lm(w)

V(C;ngaPX)'

Taking €* = €] A €5 yields the result.

B. Proof of Theorem 2

For (1), let I be a k-ary categorical random variable with
the probabilities pi, ..., px. Then

1(g(X); M(X)|w(X)) < 1(g(X); M(X), I|w(X))
W (g(x); M(X)|w(X), 1)

.
23 b 1o M0 [w(X)
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where (a) and (b) follow from the independence of I
and (X, My(X),..., M(X)). The claim now follows since
My, ..., My satisfy e-MI PP.

Part (2) directly follows from the chain rule of mutual
information

I(g(X

); M*|w(X))

BS—

while Part (3) is a consequence of the data processing inequal-
ity
H(g(X); A(M (X)) |w(X)

M17 (X3} Mifl)a

) < 1(g(X); M(X)|w(X)).

C. Proof of Proposition 1

First use induction to prove that

m

I(g(X); MF(X)|w(X)) < e +1,

=1

(12)

where

k
= Y I(Mi(X); My(X), ...,
=2

Given this inequality, supremizing over Py € © and G 3> g ~
w € W yields the result of Theorem 1.
For k = 2, consider

|(M:(X), M2(X): g(X)|w(X))

M1 (X)w(X), g(X)).

= 1(M(X); g(X)|w(X)) (13)
+ 1(Ma(X); g(X)w(X), My(X)) (14)
< e+ 1(My(X); g(X)|w(X), My (X)), (15)

where the last step uses the fact that M; is €;-MI PP. For the
second above, we have

H(Ma(X); 9(X)[w(X), M1 (X))
= h(Ms(X)|w(X), M; (X))
— h(Ma(X)w(X), My(X), 9(X))
< h(Mz(X)[w(X)) — h(Mz(X)|w(X), M1(X), 9(X))
ih(M ’w ),g(X))
= I(MQ(X |w (X))
+|( 2(X) |w )

<e+ |(M1(X),M2( )| w(X 79(X)),

where the last step is since My is eo-MI PP. Collecting the
terms, proves the claim for & = 2.

Assume that the result holds for £ = m, i.e.,

ZQ +77//

(g(X): M™ (X (16)

with

=Y U (M(X); My(X),...

=2

aMi—l(X)‘w(X)vg(X))a
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and consider the following for kK = m + 1:
(g(X): MM H(X)w (X))

= (g(X); M™(X)|w(X))
1 (Mo (X); 9(X))]

m
< ZQ—FTIN—F

(b) m
<> e+ + emga

=1

M™(X), w(X))

My 1 (X); g(X)| M™ (X)), w(X))

A1 (M1 (X); 9(X) | M™(X), w(X)),

where (a) uses the induction assumption, while (b) follows
since M,,11 iS €,41-MI PP. This establishes (12) and the
proof is concluded by supermizing the RHS over Px € ©
andGog~weW.

D. Proof of Proposition 1

Part (i): We prove this part by induction. Fix Px € © and
G > g~ weée W. For k = 2, we use the chain rule together
with the fact that M7 is €1-MI PP to first obtain

1(g(X); M1(X), Ma(X)|w(X))

< e+ 1(g(X); Ma(X)|w(X), My(X)).  (17)

Then, notice that under the assumption that © C Oy, for any
Px € O, we have
1(g(X); M2(X)|w(X), M1 (X))
< h(Mg(X)|w(X)) — h(MQ (X) |w
= 1(g(X); Ma(X)|w (X))
< €y,

X),9(X), M1(X))

where the penultimate equality follows since My(X) «
(9(X),w(X)) < M;(X) forms a Markov chain whenever
Px is a UC distribution, while the last step is due to M, sat-
isfying e-MI PP. Combining the above, the statement for
k = 2 follows.

Assume that for £k = m, we have

m

I(g(X); M™(X)|w(X)) <> e

i=1
For k = m + 1, consider

1(g(X); M™H(X)|w(X))
= I(g(X)a Mm(X)a Mm+1|w(X))

m
< Zéi + €m+1,
i=1

where the inequality follows from the & = 2 case applied to
the mechanisms (M™, M,,+1). By induction, we deduce that

E €is

and the claim follows by supremizing the LHS over Px € ©
andGog~weW.

1(g(X); M*(X
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Part (ii): Define the shorthand fa,c =
Phry (x), M2 (X)g(X)=a,w(X)=c and  fa. =
Pur(x),Ma(X)g(X)=d,w(X)=c- We again use induction.

Fix Px € © and G 2 g ~ w € W, and for k = 2 first note
that

1(g(X); My1(X), Ma(X)|w(X

)=o)

< /DKL (farel| fa.c) dPy(x)wix) (@le) dPy(x)pw(x) (@lc)

which follows by convexity of the KL divergence. Observe
that

P, (x),M5 ()19 (x),w(x) (*|a, ©)

:APkll(X),Mr_;(X)|X('|5L')dPX|g(X),w(X)($|aaC)

(which  uses the  conditional independence  of
(M1(X), M3(X)) from (g(X),w(X)) given X itself)
and leverage convexity once more to bound

DKL (fa,c”f&,c)
< /DKL(PMl(X),A42(X)\X:z||PM1(X),M2(X)|X:5)

dPx|g(x).w(x) (2]a; €) dPx|g(x) w(x) (T]a, €)

< / |:DKL(PM1(gc)||PM1(5c)) + Dk (PMz(a:)||P1Wg(i)):|

dPx|g(x).w(x) (]a; €) dPx|g(x) w(x) (T]a; €)

where the last step is due to the conditional independence of
M;(X) and M»(X) given X and tensorization of KL diver-
gence. Recall that by definition of UC distributions, for any
(7,%) € spt(Px|g(xX)=a,w(X)=c) XSPt(Px|g(x)=d,w(X)=c) W€
have Ao, + (1 — A\)dz € Oyc for A € (0,1). Since Part
(ii) assumes Oyc C O, the fact that M;, for i = 1,2, is €;-
PP in the framework with distribution class ©, we obtain
Dke (Pari(w)|| Prrs(z)) < €. Inserting this into the bounds
above yields

1(g(X); M1 (X), Ma(X)|w(X)) < €1 + €2,
which is the desired claim for k = 2.

The induction assumption for k = m reads as

E €is

(g(X); M™(X

and for £k = m + 1, we have

l(g(X

Mm+1 ’w ))
X)s M™(X), M1 (X) [w(X))

,\\_/

(

€iy

IA
'Mt

=1

where the inequality follows by the k¥ = 2 case as before.
We conclude again by induction and taking the appropriate
supremum.
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E. Proof of Theorem 3
Let Z\ = (Zi,...,Zq), with Z; ~ Lap(0, b) i.i.d. We have

h(f(X) + Z|w(X))

< i [ 0600 + 2, = my()ulx
?i J1o8 (26 15,00)
“E |:\/Var(fj(X) w(X

= )dPy(x)

—mj;()+ Zj| |w(X =']>de(x)

(©)
< dlog | 2e

))} +o |,
(18)

where (a) uses the chain rule, the fact that conditioning cannot
increase differential entropy, and its translation invariance with
m;j(c) == E[f;(X)|w(X) = c]; (b) is because the Laplace dis-
tribution maximizes differential entropy subject to an expected
absolute deviation constraint; while (c) follows from Jensen’s
inequality, along with E[|Z;]] = b and E[|X|]? < E[X?].

Combining (18) with h(f(X) + Zi|g(X),w(X)) >
h(ZL) = dlog(2be) yields:

H(g(X); Mi(X)|w(X))

=h(f(X) + Zi|w(X)) = h(f(X) + Z[g(X), w(X))
< dlog | 2e E[\/Var(fj(X w(X))| +b
~ dlog(2be).
(19)

To conclude, further upper bound (19) by e and solve for b.

F. Proof of Corollary 2

Using the fact that Var(Z) =
i.i.d. copy of Z, we have

1E[(Z — Z')?] for Z' an

X) ‘ (X (%, '))k;ﬁz‘: ((k, ))k;éz)

1 ;

=3 E:I]E J(X))Q‘(X(k’ '))k;ﬁi: ((k, '))kyéi:|
d

%]E |:z_; fj ))2 (X(kv'))k?gi: (x(kv'))k?éi

A% (7).

(20)

where the last step comes from the definition of ¢2- sensitivity.
Insert (20) into the entropy bound from (18) and use the fact
1(g(X); ML(X)|w(X))
A
< dlog (26 ( 1)

that Ao (f) < Aq1(f) to obtain
7 )) — dlog(2be).

To conclude, proceed as in the proof of Theorem 3 to find the
parameter b.
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G. Proof of Theorem 4

We follow a similar argument to that in the proof of
Theorem 3. Denote the conditional covariance matrix of f(X)
given {w(X) = c} by X ¢|,—. and consider

h(f(X) + Zg|w(X))

(@) 1
< /f log ((27re)d det(E . + 0%1a))dP,y(x)

@ d
/ log | (27e) H a;(- +J) APy (x)

)

gg/log 2me ;z_:lvaf(fj(X)}w(X):-)Jra? AP, (x)
(d) d

< 5 log | 2me Z [Var fi( )’w(X)ﬂ +o2| ],

ey

where (a) follows from the Gaussian distribution maximiz-
ing differential entropy subject to a variance constant, with
|K| denoting the determinant of K; (b) denotes a;(c) :=
Var (f;(X)|w(X) = c) and uses | K| < [[_; K(j, 7). which
applies to any positive semi-definite matrix; and (c)-(d) from
concavity of x — log x and Jensen’s inequality.

Combining (21) with h(f(X) + Zg|g(X
h(Zg) = £log(2mea?) yields

1(g(X); Mo(X)|w(X))

d
é Z E {Var(fj(X
j=1

d
~5 log(2mea?).

w(X)) =

d
—log | 2me

<3 )w(X)] +0?

Upper bounding the RHS above by ¢ and solving for o2
concludes the proof.

H. Proof of Corollary 3

We first insert the upper bound from (20) into (21) to obtain
an (?-sensitivity bound on h(f(X) + Zgjw(X)). Combining
this with h(f(X) + Zny) > h(Zg) = §log(2mea?) yields

(X (2, ); Me(X)[(X (R, -)) .z)
d d
log ( ( s ) )) —35 log(2mea?).

Upper bounding the RHS above by ¢ and solving for o2 pro-
duces the result.

For the case when X is compact and f : X"** — R is of
continuous, we apply the Popoviciu inequality for variance to
obtain

Var (fj(X)‘(X(ka '))k;éi = (x(k, ))k#)

o

_ 830,
- 4

< <fup i (i), k) ) = i () (R, -))k;,éi))
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Applying this relation and proceeding with the same argument
as above leads to the desired result.

L. Proof of Theorem 5
Invoking Theorem 4 for the query function g(X) =

ATf(X), where A = [¢1, ..., d¢], we obtain
¢ T
2> sup > E [Var(fjf(X)’w(X))] @
Px €0, wew* LleT —1)

Recall that 3¢, denotes the conditional covariance matrix of
f(X) given w(X) by, and bound Vj =1 ..., ¢

E [Var (] f(X)]|w(X))]
= E[¢]Sju0;]
< E[IZ 1w llopll¢5117]-

Combining the above with (22) shows the sufficiency of the
variance parameter in Part (1) of the theorem.

For a random projection matrix A = [®q,..., D],
since ®; is centered and independent of X, we have
E[¢] f(X)|w(X)] = 0. Recalling the notation fisp, :=
E[f(X)|w(X)], we consequently have

E[Var(®] f(X)|w(X))]
:E[@}E[f(X)fX |w(X)}q>j}
= E[‘I’} (Esw + Nf|wﬂ}|w)‘1’j]
<E[IZ10llop + l1ts1al?]

where the last step uses E[[|®;]|?] = 1 and the fact that
laaT|lop < |la||?, for any vector @ € RZ. Given the vari-
ance bound, we proceed as in the proof of the deterministic
projection case to obtain the result.

J. Proof of Theorem 6

First, rewrite (21) in terms of A given in Theorem 6,

to obtain
d A
—log (2 —+02)).
20g<ﬂ'e(d—|—a>)

From entropy power inequality, we have

A (X)+Z6l9(X) (X)) > o 3R(FOlg(X)w(X)) | o3

h(J(X) + Zo|w(X)) <

(Ze)

Noting that h(Zg) = 0.5dlog(2mec?) and by the choice of B
in the statement of the theorem, we arrive at

h(f(X) + Zg|g(X), w(X)) > 0.5 dlog (2me(B + ¢°)),
which combined with the above yields
I(g(X); F(X) + Zg|w(X))

Cglog (27re (2 + 02>> - Cglog (2me(B + o?)).

Upper bounding the RHS by ¢ and solving for o completes
the proof.
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K. Proofs Related to Remark 14

We first show that A > dB holds for any Py € P(X"*F)
and functions f, g € G, and w € W with g ~ w. Reusing the
notation Xy, for the conditional covariance matrix of f(X)
given w(X), we have

h(f(X)|w(X), g(X))
< h(f(X)|w(X))

where (a) is since the Gaussian distribution maximizing
entropy under finite variance constraint; (b) uses |K| <
H?Zl K(j,7), which applies to any positive semidefinite
matrix; and the last two steps follow from Jensen’s inequality.
Substituting the above bound in place of B in Theorem 6
yields the result.

Next, we show that when d = 1 and (f(X), g(X),w(X))
are jointly Gaussian, we indeed have A < d e2¢/4 B under the
said correlation coefficient bound. Under this Gaussian setting,
we have Ve € Im(w)

A =E[Var(f(X)|lw(X))] = Var(f(X)|w(X) = ¢c).
Similarly, joint Gaussianity of the involved variables implies
Y(a,c) € Im(g) x Im(w)

B = Var(f(X)|w(X) = ¢,g(X) = a).
Inserting this into the inequality A < de*/¢B with d = 1,
while observing that
Var(f(X)’w(X) =c¢g(X)= a)
2
= (1= (p (/(X), 9(X) [w(X) =€))?) Var(£(X)|w(X) =)

completes the proof.

L. Proof of Proposition 5

We show that the estimate produced by Algorithm 1 satisfies
e-MI DP, and establish that given n > ny samples, the
estimator also achieves accuracy « with high probability.
Denote ¢ := E[||X — u[?] < oo and notice that the noisy
mean estimates (fiq, ..., fm) produced during the m rounds
of Algorithm 1 are i.i.d. Further assume that n = mk
(otherwise, simple modifications of the subsequent argument
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Privacy analysis: For privacy, we first show that each fi,,
p = 1,...,m, is eMI DP. Having that, we argue that
M™(X) = (fi1,...[m) is private in the same sense via
composition, and finally deduce the privacy of the geometric
median /i, via post-processing (Property (2) of Theorem 2).
Consider fi; and notice that it satisfies e-MI DP by Corollary 3.
Indeed, foreach¢=1,...,kand / =1,...,d, we have
1 m2c
Var (7i1(0)] (X)) = 73 Var(Xa(0) < 2,
where the first equality is since X7, ..., X} are i.i.d. and the
second uses the 2nd moment bound. Therefore,

d -
2o Var (“1(5)‘()(3')1‘%\{1'}) < dme
d(ed —1) = 2n2%¢’
where we have used e* > 1 + x. By Corollary 3 we now see
that the noise level stated in Algorithm 1 suffices to guarantee
e-MI DP of ji;. By symmetry, the same hold for all fi,, p =
1,....,m.
Next, we show that (fi1, ... fi;,) is e-MI DP w.r.t. the entire
database (Xi,...,X,). Fix ¢ = 1,...,n and let p(i) €
{1,...,m} be such that i € A,(;). Then consider

V(X5 fins oo i | (X))

= 1( X5 fip(ay | (X5) ;25) + 1 X5 (ig) gzt | (X) 24 (i)
(@) _

= (X3 ip(n | (X)) e 4,00\ (1))

(b)

<€

where (a) follows since (X, i) < (Xj)jea,\(i} <
(Xj)jga,. and X; — ((X;)ji, fip(i) < (fig)gzp(i) form
Markov chains, while (b) is since fi,; satisfies e-MI DP.
Maximizing the LHS above over ¢ = 1,...,n yields

sup I(Xi;/llv s 7/177L|(Xj)j;éi) <e

i=1,....,n
which shows that (fi, ..., fim) is e-MI DP. Recalling that
post-processing preserves e-MI DP (cf. Property (3) of
Theorem 2), we conclude that the geometric median of

(i1, - .-, fim) also satisfies e-MI DP.
Accuracy analysis: We first derive a lower bound on k (the
number of samples used to evaluate fi, foreachp =1,...,m)

such that the mean estimate fi, is closer to true mean g
with high probability. Then, we invoke [60, Theorem 3.1] on
confidence boosting via geometric medians to argue that the
geometric median of these m estimates satisfies the accuracy
level of accuracy stated in the theorem.

The following lemma states the lower bound on k for a
single iteration of Algorithm 1, i.e., for each 1,...,m.

Lemma 2. [Accuracy of a single iteration of Algorithm 1]
Fix p=1,...,m and suppose that

d d
using ceiling/floor operation may be needed). Furthermore k>0 </2 + /\[> .
denote A, :={(p—1)k+1,...,pk } forp=1,...,m, and @ ave
note that U;nzl A, ={1,...,n}. We first establish privacy of Then the mean estimate [i, produced by the pth iteration of

the mechanism and then analyze its accuracy.

Algorithm 1 satisfies P(|f, — pl| < ') > 0.8.
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Proof: We first bound the empirical mean estimation
error. By Chebyshev’s inequality and since the second moment
is bounded by ¢, we have

a/
> —_
;)

1
¥ (H“ T F 2aica, N

2
4B - £ s, X
<
— a2
4dc
< T 90
= ka?
Setting k >  4dc/(0.1¢/*) guarantees that |l —
1 Dica, X;i|| < o’/2 at least with probability 0.9.
Next, consider the error due to noise injection for privacy
with parameter 0> = dc/(2k?e). Using the tail bounds for
d-dimensional Gaussian vector we have

Oz/ 0/2
P (an > 2) < 2exp (—wd) :

Choosing k£ > id\;e\/log(%) guarantees that || Z,| < %/ at
least with probability 0.9.
The choice of k as stated in the Lemma is sufficient to

satisfy both bounds. Now consider

P(tp — ] < o)

1 o o
> —_ - < — <
_P(M A ieApXZ < 5o llZpl < 5
>1-P(||lu-1 x> e (2> L
- H k i€A, ¢ 2 P 2

The result follows by recalling that each term on the RHS is

less than 0.1. O
From Lemma 2, we have P(||, — pl| > o) < 0.2 for
all p = 1,...,m, so long that k satisfies the prescribed

lower bound. Applying Theorem 3.1 of [60] on boosting
the confidence via geometric medians, with our choice of
m = 2001og(1/3) yields®

P(||ftn — pll = 1.040") < B.

Setting o = 1.04’ and noticing that n = km completes the
proof of the accuracy guarantee.

IX. CONCLUDING REMARKS AND FUTURE DIRECTIONS

This work established an information-theoretic characteriza-
tion, termed e-MI PP, of the structured PP framework, where
private information is modeled by functions of the database.
The characterization was leveraged to derive properties of
e-MI PP and obtain sufficient conditions for noise-injection
(Laplace and Gaussian) mechanisms. Our results highlight the
virtues of an information-theoretic perspective on PP, enabling
more flexible composability theorems and variance-dependent
noise parameter bounds that exploit the distributional assump-
tions in the PP framework. As applications of e-MI PP we
explored auditing privacy frameworks, statistical inference
tasks, and privacy-utility tradeoffs.

Future research directions are abundant. First, we aim to
better and strengthen the reverse implication in Theorem 1, i.e.,
derive relaxed and general conditions under which e-MI PP

8Specifically, adapting to their notation, we invoke [60, Theorem 3.1] with
p=20.2e=0a,and a = 0.21.
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implies PP in the classic sense. This is a non-trivial endeavour
as mutual information is an average quantity, while classic pri-
vacy notions are typically worst-case. We also target a power
(namely, Type II error) analysis of the auditing hypothesis test
in Section VI. A possible direction from which to tackle this
question is to derive a limit distribution theory under the alter-
native for the test statistic and use that to analyze the power
of the test under local alternatives via LeCam’s Third Lemma.
Lastly, we are interested in further exploring to privacy-utility
tradeoffs [55], [61], [62] via e-MI PP and connect those
to tradeoffs for standard PP mechanisms (preliminary results
in this direction are found in Section VII-C). In particular,
we aim to characterize the achievable privacy-utility region for
PP mechanisms and design optimal mechanisms for different
points in that region.
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