
A preliminary version of this paper appears in the proceedings of the 43rd International Cryptology
Conference (CRYPTO 2023), DOI: 10.1007/978-3-031-38548-3 22. This is the full version.

When Messages Are Keys:

Is HMAC a Dual-PRF?

Matilda Backendal1, Mihir Bellare∗2, Felix Günther1, and Matteo Scarlata1

1Department of Computer Science, ETH Zurich, Zurich, Switzerland
2Department of Computer Science & Engineering, University of California San Diego,

USA

March 3, 2024

Abstract

In Internet security protocols including TLS 1.3, KEMTLS, MLS and Noise, HMAC
is being assumed to be a dual-PRF, meaning a PRF not only when keyed conventionally
(through its first input), but also when “swapped” and keyed (unconventionally) through
its second (message) input. We give the first in-depth analysis of the dual-PRF assumption
on HMAC. For the swap case, we note that security does not hold in general, but completely
characterize when it does; we show that HMAC is swap-PRF secure if and only if keys
are restricted to sets satisfying a condition called feasibility, that we give, and that holds
in applications. The sufficiency is shown by proof and the necessity by attacks. For the
conventional PRF case, we fill a gap in the literature by proving PRF security of HMAC
for keys of arbitrary length. Our proofs are in the standard model, make assumptions only
on the compression function underlying the hash function, and give good bounds in the
multi-user setting. The positive results are strengthened through achieving a new notion of
variable key-length PRF security that guarantees security even if different users use keys of
different lengths, as happens in practice.

∗Supported in part by NSF grant CNS-2154272 and KACST.

1

https://doi.org/10.1007/978-3-031-38548-3_22

Contents

1 Introduction 3
1.1 Background . 3
1.2 Swap-PRF Security of HMAC . 4
1.3 PRF Security of HMAC . 6
1.4 Auxiliary Contributions and Technical Overview 6

2 Related Work 8

3 Notation and Definitions 9
3.1 Notation and Conventions . 9
3.2 Standard Definitions . 10
3.3 New Definitions . 10

4 Background and Modularization of HMAC 12

5 Dual-PRF Security of NMAC 16
5.1 vkl-PRF Security of NMAC� . 16
5.2 Strong Multi-user PRF Security of NMAC . 20

6 Dual-PRF Security of HMAC 23
6.1 Composition Theorem . 23
6.2 Analysis of HSKD . 27
6.3 vkl-PRF Security of HMAC . 33
6.4 vkl-PRF Security of HMAC� . 34

7 Proofs for the rka-PRF Security of h� 35
7.1 Φ-rka-PRF Security of h� . 35
7.2 Φ-rka-PRP Security of Block Ciphers in ICM . 37

A Dual-PRF Assumptions on HMAC in Prior Work 44

B Proofs for the Strong PRF Security of the Cascade 46
B.1 Proof of Lemma 1 . 46
B.2 Proof of Lemma 2 . 48
B.3 Related Work and Techniques . 49

2

1 Introduction

HMAC [8] is a hash-function-based construct taking two inputs to return a fixed-length output.
It was designed to be PRF-secure, a usage in which the first input is the key and the second
is the message. It is standardized by the IETF [39] and NIST [46] and widely used, including
in IPsec, SSH, and TLS. However, its conventional use as a PRF is now being supplemented
with another type of use, as a key combiner, which (additionally) assumes that it is a swap-
PRF, meaning a PRF when keyed by the second input, with the first input regarded as the
message. This is happening in various Internet security protocols including TLS 1.3 [27, 24],
KEMTLS [52], hybrid key-exchange designs [17, 53], post-quantum versions of WireGuard [35]
and Noise [2], and Message Layer Security (MLS) [23]. Overall, then, HMAC is being assumed
to be a dual-PRF; as defined in [5, 6] this means being both a PRF and a swap-PRF.

But is this assumption well-founded? The extensive real-world usage represented by the
above protocols makes this question crucial. Yet, it has not been seriously investigated. And as
an indication that the gap is more than academic, we note that there are concerns on both sides
of the dual-PRF coin, meaning for both swap-PRF and conventional PRF security, as follows.

.HMAC is not swap-PRF secure, but may be for restricted inputs. Simple attacks (described
below) show that HMAC is actually not swap-PRF secure. Luckily, due to the specific inputs
used, these attacks do not endanger the protocols listed above. But that doesn’t mean these
usages are secure. We want to know for what inputs one can prove security and under what
assumptions, and whether current usage assuming swap-PRF security can be validated with
proofs.

.PRF security of HMAC has only been proved for one key length. Meanwhile, our work lead us
to realize that there is a gap in the literature even with regard to the conventional PRF security
of HMAC, namely that it has only been proven for keys of length equal to the block length [5, 6].
Yet, in practice, and in the above applications, HMAC is often used with keys shorter than the
block length, and the standards allow keys of any length. We want to know whether proofs of
PRF security are possible for all allowed key lengths, and under what assumptions.

Contributions in brief. Our contribution is to identify and fill the above gaps. To capture
restrictions on inputs, we let HMAC[S] denote HMAC restricted to keys being drawn from a
subset S of its keyspace. As the more novel and interesting case, we first consider swap-PRF
security, in which case S is a subset of the message space. We give necessary and sufficient
conditions on S for HMAC[S] to be swap-PRF secure, justifying the sufficiency by proof and the
necessity by attack. Sets used in current applications meet our sufficient conditions, hence our
proofs provide guarantees for these usages. Turning to the conventional PRF security of HMAC,
we prove it for keys of any (sufficiently large) length. Our results hold even when different users
use keys of different and adaptively-chosen lengths, as captured formally by a new definition, of
a variable key-length PRF (vkl-PRF), that we give as an auxiliary contribution. In summary,
we emerge with a full picture of the security of HMAC as a dual-PRF.

We stress that all our proofs for HMAC are in the standard model (no idealized assumptions)
and make assumptions only on the compression function underlying the hash function. Also, for
the first time for HMAC, we prove multi-user security with good bounds, for all of our results.
We now look at all this in more detail. A summary of our and prior results is in Table 1;
notation used there is explained below.

1.1 Background

The functions. The starting point is a compression function h : {0, 1}c × {0, 1}b → {0, 1}c,
taking a c-bit chaining variable and b-bit block to return a c-bit result, where c < b. Briefly, one
starts with the cascade h∗ [9], which takes a c-bit key, and message whose length is a multiple
of b, and iterates h to return a c-bit result. (See Figure 3 later in Section 4 for full details.)

3

The hash function H : {0, 1}∗ → {0, 1}c associated to h by the MD transform [44, 25] is H(M)
= h∗(IV,M) where IV ∈ {0, 1}c is a fixed initial vector and M pads M out to a length that is
a multiple of b bits. (The details of the padding, which do matter, are in Section 4.) This is
the design underlying the SHA-2 function family [47], including SHA-256 (c = 256, b = 512),
SHA-384 (c = 384, b = 1024), and SHA-512 (c = 512, b = 1024).

The simplest version of HMAC is HMACb : {0, 1}b×{0, 1}∗ → {0, 1}c, taking a b-bit key and
defined by

HMACb(Kb,M) = H((Kb ⊕ opad)‖H((Kb ⊕ ipad)‖M)),

where ipad, opad ∈ {0, 1}b are distinct constants specified in the standards. The “full” HMAC :
{0, 1}∗×{0, 1}∗ → {0, 1}c as standardized [8, 39, 46] takes a key of arbitrary length and is defined
by HMAC(K ,M) = HMACb(PoHb(K),M), where the “Pad or Hash” function PoHb : {0, 1}∗ →
{0, 1}b is defined by

PoHb(K) =

{
K‖0b−|K| if |K | ≤ b
H(K)‖0b−c otherwise.

To facilitate analysis, Section 4 unravels the above definitions of HMACb and HMAC to view
the functions in a more modular way. The core is NMAC [8], which is applied to the message
with keys derived from the given key via a subkey derivation function HSKD.

PRFs, swap-PRFs and dual-PRFs. Recall that the definition of a function family F : X ×
Y → Z being a PRF views the first input as a key and the second input as a message: we ask
that oracles for F(X , ·) and a random function g : Y → Z be indistinguishable when X ←$ X is
not known to the attacker [31]. The swap of F is the function family F� : Y×X → Z defined by
F�(Y ,X) = F(X ,Y). We say that F is a swap-PRF if F� is a PRF. (That is, F is a PRF when
keyed by the second, or message, input.) The concept of a dual-PRF was introduced in [5, 6].
F is a dual-PRF if F is both a PRF and a swap-PRF. That is, it is a PRF when keyed as usual
by the first input, but also if keyed by the second input.

Prior work. A primary line of work has focused on proving PRF security of HMAC-related
functions in the standard model and making assumptions only on the compression function.
First, BCK [8] showed that NMAC is PRF-secure if the compression function h is PRF-secure
and collision resistant. Bellare [5, 6] showed that PRF security of h alone suffices for the
conclusion, and better bounds were given by GPR [30]. Further [5, 6] showed that HMACb is
PRF-secure assuming NMAC is PRF-secure and h is swap-PRF secure under a simple form of
related-key attack. (This prior work is summarized in Table 1.) We briefly note some gaps
that will be addressed below. Namely, there are no proofs (1) of swap-PRF security for any
of NMAC,HMACb,HMAC, (2) of PRF security of HMAC itself (only of HMACb), (3) with good
bounds in the multi-user setting.

Usage. Key derivation in some prominent Internet security protocols involves combining a
pair of keys K1,K2 into a single key via K ← HMAC(K1,K2). The intent is that (1) if K1 is
good (uniformly random and unknown to the attacker) then so is K regardless of K2 and (2)
vice versa. Requirement (1) is satisfied if HMAC is a PRF, and requirement (2) if HMAC is
a swap-PRF. That is, jointly, the assumption is that HMAC is a dual-PRF. Specifically, this
is happening in TLS 1.3 [27, 24], KEMTLS [52], hybrid key-exchange designs [17, 53], post-
quantum versions of WireGuard [35] and Noise [2], and Message Layer Security (MLS) [23],
representing a large number of real-world use cases. In light of this, it is crucial to evaluate the
dual-PRF security of HMAC.

1.2 Swap-PRF Security of HMAC

Attacks. We first note that there are simple attacks showing HMAC is in fact not swap-PRF
secure. The issue is the well-known fact that the “Pad or Hash” function PoHb is not collision

4

Function Goal Assumptions Comments

HMACb PRF h is PRF, h� is Φio-rka-PRF [5, 6]

HMAC vkl-PRF h is PRF, h� is PRF,
h� is Φzio,a-rka-PRF

Theorem 10

HMAC[S]�

(for S feasible)

vkl-PRF h is PRF, h� is Φpad,a-rka-PRF,
h is CR

Theorem 11

NMAC PRF h is PRF [5, 6, 30], Theorem 5

NMAC� vkl-PRF h is PRF, h� is Φpad,a-rka-PRF Theorem 4

h� Φ-rka-PRF E is Φ-rka-PRP Proposition 12

Table 1: Summary of prior results (in the single-user setting) and our (multi-user) results proving
security for HMACb, HMAC, HMAC[S], and NMAC, as well as results supporting assumptions
made for these.

resistant. (This is also the source of attacks on the indifferentiability of HMAC for arbitrary
keys [26], and the reason for an erratum filed for the HMAC RFC [43, 29].) For example if K1,K

′
1

are keys of length strictly less than b bits such that K ′1 = K1‖0` for some ` ≥ 1, then PoHb(K1)
= K1‖0b−|K1| = K ′1‖0b−|K

′
1| = PoHb(K

′
1), so HMAC(K1,K2) = HMAC(K ′1,K2) for any K2. An

adversary can now violate PRF security of HMAC� by using K1,K
′
1 as messages: it calls its

oracle on K1 and K ′1 and declares “real” if the outputs are the same and “random” otherwise.1

Likewise, if K1 has length more than b, then HMAC(K1,K2) = HMAC(H(K1),K2) for any K2,
leading again to an attack on the swap-PRF security of HMAC using K1,H(K1) as messages.

While this disallows an unqualified assumption of swap-PRF security on HMAC, it does not
negatively impact the security of any of the aforementioned usages of HMAC as a swap-PRF.
This is because, in those uses, the HMAC keys (messages for HMAC�) are limited in some way,
for example prescribed to be of a fixed length, and this precludes the trivial weak-key pairs
exploited above. So the question of practical significance that emerges is whether we can prove
security in these cases.

Swap-PRF security of HMAC[S]. To formalize the question, let HMAC[S] : S × {0, 1}∗ →
{0, 1}c denote the restriction of HMAC to keys from a set S ⊆ {0, 1}∗. Then the question is,
for what choices of S can we prove swap-PRF security of HMAC[S]? We answer this question
by giving a complete characterization of the class of sets S for which swap-PRF security of
HMAC[S] holds. We restrict the attention to sets that are length closed, meaning if L ∈ S then
{0, 1}|L| ⊆ S, a natural condition desirable for applications. Now define S to be feasible if either
(1) S = {0, 1}` for some ` ≤ b or (2) S contains no strings of length ≤ b. Then, in Section 6,
we show:

HMAC[S] is swap-PRF secure if and only if S is feasible.
The “if” is proven (Theorem 11), under assumptions on h discussed below, and the “only if” is
shown by attacks (Proposition 9).

Assumptions. Indifferentiability results on HMAC [26] will imply swap-PRF security of HMAC[S]
for S the set of all keys of a fixed length ` < b, but these results are in the random-oracle model,
meaning they assume a truly random compression function. However, as noted above, prior

1For a running-code example of two distinct messages (one vs. two 0-bytes, as key input) colliding under the
same key (0256, as message input) for HMAC�, type:
$ python3 -c 'import hmac, hashlib; print(

hmac.new(b"\x00" , b"\x00"*32, hashlib.sha256).hexdigest(), "=",

hmac.new(b"\x00\x00", b"\x00"*32, hashlib.sha256).hexdigest())'

5

proofs [8, 5, 6, 30] have shown (conventional) PRF security of NMAC and HMACb in the standard
model while making assumptions only on the compression function h. Ideally, one would do
the same in proofs of swap-PRF security. Our proofs for the “if” above meet this bar. For any
feasible S, Theorem 11 establishes swap-PRF security of HMAC[S] under three assumptions on
h. The first two are from the prior works [8, 5, 6, 30] and can be considered standard, namely
that h is PRF secure and collision resistant (CR). Now recall that the proof of PRF security
of HMACb from [5, 6] assumes h� is a PRF under related-key attack (rka) as defined in [11],
for a related-key-deriving (RKD) function we denote Φio. Our third assumption, in the same
vein, also assumes rka-PRF security of h�, but for a different RKD function Φpad,a. Roughly,
the function Φpad,a allows the adversary to overwrite a suffix of length at most b− a bits of the
b-bit key with padding. The assumption is new but we will validate it through auxiliary proofs.
Intuitively it arises because key material of length ` < b can now be part of the message, which
is padded to block length. We summarize the assumptions in Table 1.

1.3 PRF Security of HMAC

We turn next to the other side of dual-PRF security, asking about the (conventional) PRF
security of HMAC.

The gap. There appears at first to be no question here; PRF security of HMAC is broadly
assumed and seen as established in prior work [8, 5, 6, 30]. There is, however, a noteworthy
gap in prior results, namely that they only prove security with keys of full block length. More
precisely, in the notation introduced above, what is proved in [5, 6] is PRF security of HMACb,
not HMAC itself. Yet, in practice, HMAC is almost never used with b bit keys. Take for example
HMAC-256, i.e., HMAC instantiated with SHA-256: Its output is c = 256 bits long. When using
it in a protocol for key derivation, it is hence natural to use 256-bit keys throughout. However,
the block length of SHA-256 is b = 512, meaning that 256-bit keys lead to HMAC being keyed
with keys of length less than the block length. This is precisely what is done in protocols like
TLS [49], meaning that even their usage of HMAC as a regular PRF falls outside of the security
guarantees provided in the literature.

Filling the gap. Theorem 10 proves PRF security of HMAC with keys of any (sufficiently
large, of course) length. With regard to assumptions, recall that those made for PRF security
of HMACb were that h is PRF secure and h� is Φio-rka-PRF secure. We likewise assume that h
is PRF secure and h� is Φzio,a-rka-PRF secure, for a function Φzio,a that allows the adversary
to overwrite an at most b − a bits long suffix of the b-bit key with zeroes (cf. Φpad,a for our
HMAC� result) and then to XOR with ipad or opad. This again arises because of key material
of length ` < b bits, to which (in contrast to HMAC�) the XOR is applied in HMAC. As before
we will validate the new assumption through auxiliary proofs. We clarify that unlike in the
swap-PRF case, here there is no restriction of the keys or messages to some subset S; for both
keys and messages, any length is allowed, as per the definition of the full HMAC.

1.4 Auxiliary Contributions and Technical Overview

We obtain the above results via a modular approach that treats swap and conventional PRF
security in a unified way. Along the way we give some definitions and auxiliary results of
independent interest.

Vkl-PRFs, a new definition. Recall that the definition of F : X ×Y → Z being PRF secure
picks a key X ←$ X at random. But for HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}c, the keyspace,
{0, 1}∗, contains keys of many different lengths and it is not clear under what distribution a
random one would be chosen. The first and natural answer, and the one assumed above, is
that one has fixed a key length ` and is drawing a key from {0, 1}` at random. But this fails
to capture different users using HMAC with keys of different lengths, which occurs in practice.

6

These considerations lead us to introduce (in Section 3) a new definition, of a variable key-length
PRF (vkl-PRF). The definition is inherently in the multi-user setting. The adversary can, for
each user, adaptively pick a key length, and the game initializes the key for that user to a
uniformly random string of the chosen length. The rest is as one would expect from the usual
multi-user PRF setting [9]. (A subtle point is that we cannot expect security for too-short keys.
This is handled by having theorems assume a minimum key length.)

Our proof of PRF security for HMAC (Theorem 10) actually proves vkl-PRF security. For
swap-PRF security for HMAC[S], Theorem 11 likewise proves vkl-PRF security of HMAC[S]� :
{0, 1}∗ × S → {0, 1}c. This means that in both cases we give a guarantee that is strong and
better models real-world usage, namely that security holds even when different users use keys
of different and adaptively-chosen lengths.

Results for NMAC. As in prior works, we start with NMAC (Section 5). Beginning with the
swap case, we prove in Theorem 4 that NMAC� : {0, 1}∗×{0, 1}2c → {0, 1}c is vkl-PRF secure.
Unlike for HMAC[S]�, this NMAC result involves no restrictions of inputs to any set S, but
rather holds for all inputs for which the function is defined. The assumptions made are PRF
security of h and Φpad,a-rka-PRF security of h�, with the proof leveraging a lemma (Lemma 1)
that we give on the strong multi-user PRF security of the 2-tier cascade defined in [7]. Due
to targeting vkl-PRF security, the result is directly in the multi-user setting, and the bound in
Theorem 4 is good. That is, it does not degrade with the number of users.

Turning now to the conventional PRF security of NMAC, the proofs in prior works [8, 5, 6, 30]
are for the single-user setting, and it has remained open if one can show security in the multi-
user setting with a bound that does not degrade with the number of users. We resolve this and
give such a proof (Theorem 5). We follow the approach used in GPR [30] to prove single-user
security, but while the latter relied on a lemma on random systems from [42], we give a quite
simple, self-contained game-playing proof, establishing multi-user security.

A dual composition theorem. To lift the above results to HMAC, we give a dual composition
theorem (Theorem 6, in Section 6). HMAC(X ,Y) can be seen as deriving keys Xi‖Xo ←
HSKD(X) for NMAC via a key-derivation function HSKD (shown in Figure 3) and then returning
NMAC(Xi‖Xo,Y). We write this as HMAC = Comp[NMAC,HSKD]. Theorem 6 implies that

(1) if NMAC is PRF secure and HSKD is a variable seed-length (vsl) PRG, then HMAC =
Comp[NMAC,HSKD] is vkl-PRF secure, and

(2) if NMAC� is vkl-PRF secure, and the restriction HSKD[S] of HSKD to inputs in set S is
collision resistant, then HMAC[S]� = Comp[NMAC,HSKD[S]]� is vkl-PRF secure.

Let us explain. It is folklore understanding that the composition preserves PRF security
assuming PRG security of the key-derivation. Result (1) casts this in our variable key-length
setting, which involves introducing the definition of a vsl-PRG, but we see the result as expected.
Result (2) is more interesting, saying that the composition equally well preserves swap-PRF
security if we switch the assumption on key-derivation to collision resistance Put together, we
get a simply-stated, unified result, saying that the composition preserves dual-PRF security
assuming key-derivation is a collision-resistant PRG.

Security of the HSKD key-derivation function. To complete the circle we need to es-
tablish the security assumed of HSKD in the composition theorems, which we also do in Sec-
tion 6. Proposition 7 shows vsl-PRG security of HSKD assuming PRF security of h and h�, and
Φzio,a-rka-PRF security of h�. The function is not collision resistant on its full domain (leading
to the above-discussed attacks on the swap-PRF security of HMAC), but Proposition 8 shows
collision resistance of HSKD[S] for all feasible S, assuming collision resistance of h. Putting all
the above together gives our results on the PRF and swap-PRF security of HMAC.

Validation of rka-PRF assumptions on h�. HMAC is mainly used with the SHA-256,
SHA-384, and SHA-512 hash functions. Here the compression function is a Davies–Meyer one,

7

h(X , L) = E(L,X)⊕X for a block cipher E : {0, 1}b×{0, 1}c → {0, 1}c. Resistance to related-key
attacks is a commonly studied goal for block ciphers, see e.g. [14, 38, 36, 11, 48, 34, 15, 28, 55,
16, 37, 19, 18, 4], so we ask if this assumption implies ours. Curiously, being in the swap set-
ting helps us here and enables such a reduction. The reason is that when considering rka-PRF
security of h�, the key L, which is the message for h, becomes the key for E. Exploiting this,
Proposition 12 (in Section 7) shows that if E is Φ-rka-PRP secure, then h� is also Φ-rka-PRF
secure.

These results are strengthened by introducing (in Section 3) an extension of the single-
user rka-PRF/PRP definitions of [11] to a multi-user setting; the novel element is that the
RKD functions have a user-dependent input. Finally, one must be careful that, due to attacks
from [11], Φ-rka-PRP security of the block cipher E does not hold for all Φ, so we need to
verify it for the functions we introduce and use. This final step is done through an analysis
that models E as an ideal cipher. We stress that idealized assumptions are made only on E and
limited to this one step; all other security proofs are in the standard model.

Organization

Section 2 provides a more extensive discussion of related work. Section 3 introduces notation
and definitions (including our new vkl-PRF notion). Section 4 introduces the modularization of
HMAC functions we use in our analysis, as well as some basic results on cascades of h. We then
turn to our main results. Section 5 studies the dual-PRF security of NMAC. Based on this,
Section 6 takes on the dual-PRF security of HMAC, along the way establishing the necessary
properties of the subkey derivation function HSKD, including the characterization of the feasible
key sets for which HMAC is swap-PRF secure. Finally, in Section 7, we validate the assumptions
on h�, showing that it is an rka-PRF for the RKD functions Φpad,a and Φzio,a.

2 Related Work

Dual-PRF assumptions on HMAC. Several works [27, 24, 52, 17, 53, 35, 23] (as indicated
above) have explicitly or implicitly assumed dual-PRF security of HMAC. For example, for TLS
1.3, [27, Section 2.4] says “we however need to deploy stronger assumptions which we recap here.
The first assumption is concerned with the use of HMAC as a dual-PRF (cf. [5, 6]).” While
the cited paper [5, 6] introduces dual-PRF security, it does not establish swap-PRF security for
HMAC, and as we noted, not even conventional PRF security for all key sizes. For KEMTLS,
SSW [52], in the context of their proof of Theorem 4.1, perform game hops “under the PRF-
security or dual-PRF-security [5, 6] of HKDF”, the latter in this mode is HMAC. In Appendix A,
we give an account of where dual-PRF assumptions on HMAC show up in prior work and when
they are supported by our results.

HKDF. The extraction mode of Krawczyk’s HKDF [40] uses HMAC with a salt as first input
and key material as second input. This has computational extraction properties under certain
assumptions, including that the first input (the salt) is random [40]. However, it does not
justify key-combiner usage of HMAC in protocols, because here the first input to HMAC may
be adversarially influenced. Swap-PRF security of HMAC, in contrast, allows the first input to
be adversarially chosen. This is where swap and dual-PRF security shows up in protocols built
on HKDF, motivating our study.

We note that in HKDF’s extraction mode, the key-material in the second input may be
a non-uniformly-distributed source of entropy such as a Diffie–Hellman shared secret in a key
exchange protocol, and HMAC is supposed to return a computationally uniform key. Our results
do not cover such usage; in dual-PRF security, keys are assumed to be uniformly distributed.

Multi-user security. The setting of protocols like TLS involves many users and it is well
understood that this is better modeled by multi-user (mu) security than by single-user security

8

(su). For most primitives, su implies mu via a hybrid argument, but the adversary advantage
grows by a factor of the number u of users [41]. This has led to dedicated analyses and schemes
for many primitives, aiming to show mu security with good bounds, meaning degradation of the
advantage with u is avoided [21, 33, 7]. Our work follows this, aiming for, and obtaining, good
bounds in the mu setting. In particular we fill a gap in the literature by showing PRF security
of NMAC with good mu bounds in Theorem 5. We also show vkl-prf of HMAC with good mu
bounds in Theorem 10.

Uniform and non-uniform assumptions. The conference version of Bellare’s work [5] showed
(su) PRF security of NMAC and HMAC (with good bounds) assuming PRF security of the com-
pression function against non-uniform adversaries. The journal version [6] added proofs under
uniform assumptions but with a degraded bound. The gap was filled by Gaži, Pietrzak and
Rybár [30], who showed (su) PRF security with bounds as good as in [5] but under uniform
assumptions. All our results use uniform assumptions and are shown with blackbox reductions.
The proofs explicitly build adversaries against the assumptions from the given adversary against
the target.

Building new dual-PRFs. A new template for building dual-PRFs was given in BL [12]. It
combines a computational extractor with a collision-resistant function and can be instantiated
to obtain dual-PRFs assuming collision-resistant functions or One-Way Permutations (OWP)s.
The BL template was extended in ADKPRY [3] to add an output transformation, leading to
further instantiations. However, what is in use in the real world as a dual-PRF is HMAC and
thus we focus on it rather than on new constructions. We note that determining the dual-PRF
security of HMAC is stated as an open question in ADKPRY [3] and resolved in our work.

On the theoretical side, while the existence of One-Way Functions (OWF)s is known to
imply the existence of PRFs [32], it is not known whether OWFs imply dual-PRFs. This is an
intriguing open question.

3 Notation and Definitions

We recall some notation, including for game-playing, recap some standard definitions, and then
give our new ones, namely variable key-length PRFs (vkl-PRFs), variable seed-length PRGs
(vsl-PRGs) and multi-user rka-PRF security.

3.1 Notation and Conventions

Let N = {0, 1, 2, . . .} be the set of non-negative integers. Let ε be the empty string. For
n ∈ N let {0, 1}n be the set of all strings of length n, {0, 1}>n the set of all strings of length
greater than n, and let {0, 1}∗ be the set of all strings of any length n ≥ 0. For b ∈ N let
{0, 1}b∗ = {X ∈ {0, 1}∗ : |X| mod b = 0} be the set of all strings whose length is a multiple of
b. If a is a string, then |a| denotes its length, a[i] denotes its i-th bit and a[i..j] = a[i] . . . a[j].
(The last is the empty string ε when j < i.) Similarly, if X is a vector then |X| denotes its length
(the number of its coordinates) and X[i] its i-th element. The empty vector has length 0 and is
also written ε. We let X[1..i] denote (X[1], . . . ,X[i]) for 1 ≤ i ≤ |X|. If i = 0 then X[1..i] = ε.

For a string A ∈ {0, 1}b∗ the operator
b←− splits it into b-bit blocks and places them in a vector.

For example, if |A| ≥ 2b, then X
b←− A results in X[1] = A[1..b] and X[2] = A[b+ 1..2b], etc.

We say that a set S ⊆ {0, 1}∗ is length closed if for every n ∈ N it is the case that S ∩{0, 1}n
is either {0, 1}n or ∅. This condition is made on key and message spaces. For sets S1 and
S2, let FUNC[S1,S2] denote the set of all functions f : S1 → S2 and PERM[S1] the set of all
permutations on S1. The shorthand S1

∪←− S2 denotes S1 ← S1 ∪ S2.
For a finite set S, we let x←$ S denote sampling x uniformly at random from S. We let

y ← A(x1, . . . ; r) denote executing algorithm A on inputs x1, . . . and coins r and letting y be the

9

result. We let y←$A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).
Algorithms are randomized unless otherwise indicated. Running time is worst case.

We use the code-based game playing framework of [13]. (See Fig. 1 for an example.) Games
have procedures, also called oracles, with Init and Finalize being optional. In executing an
adversary A with a game G, oracle Init, if present, executes first. Then the adversary, given
the outputs of Init, can query other oracles at will. If Finalize is present, only one query to it
is allowed, and this must be the last query the adversary makes. The output of the execution
is defined as the output of Finalize if the latter is present and the output of the adversary
otherwise. By G(A) ⇒ y we denote the event that the execution of game G with adversary A
results in output y. We write Pr[G(A)] as shorthand for Pr[G(A) ⇒ 1], the probability that
the execution returns 1. We write QOr(A) for the number of queries made by adversary A to
an oracle Or in the game with which A is executed. Our convention is that running time of an
adversary executed with some game includes the time for the game procedures to respond to
oracle queries.

In writing game or adversary pseudocode, it is assumed that Boolean variables are initialized
to 0, integer variables are initialized to 0, and set-valued variables are initialized to the empty
set ∅. The distinguished symbol ⊥ stands for “undefined” and is used as a placeholder value
for uninitialized variables and to signal errors. Table entries are assumed initialized to ⊥. Let
[[cond]] denote the boolean (1 or 0) result of evaluating condition cond. For example, [[d∗ = 1]]
returns 1 if variable d∗ equals 1, and 0 otherwise.

3.2 Standard Definitions

Collision resistance. A collision for a function F : X → Y is a pair of distinct points X ,X ′ ∈
X such that F(X) = F(X ′). Let game GCR

F consist only of procedure Finalize that given
X ,X ′ ∈ X , returns 1 if X ,X ′ are a collision for F, and 0 otherwise. We define the advantage of
an adversary A against the CR security of F as AdvCR

F (A) = Pr
[
GCR

F (A)
]
. The probability

is over the coins of the adversary.
To accurately model cryptographic hash functions like SHA-256, SHA-384, SHA-512, which

are keyless, our syntax is also keyless. The theoretical issue of existence of an adversary that
violates CR security by hard-wiring a collision into its code is circumvented in the usual way.
Namely, those of our results which assume CR of some F give explicit constructions of CR
adversaries based on the given adversary, so a practical attack against the scheme leads to a
practical attack against F. This was popularized as the “human ignorance” approach in [50].

PRFs. Let F : X ×Y → Z be a function family, where X and Y are length closed sets. We recall
the definition of it being a PRF via the games on the left of Figure 1. They are parameterized
by a bit d ∈ {0, 1}, with d = 1 indicating the “real” game and d = 0 the “random” game.
We let AdvPRF

F (A) = Pr[GPRF-1
F (A)] − Pr[GPRF-0

F (A)] be its advantage. This definition is
in the multi-user setting [9], with the original single-user setting [31] recovered by considering
adversaries making only one New query.

3.3 New Definitions

vkl-PRFs. We extend the usual definition of PRF security to allow keys of variable, adversary-
determined length, in the multi-user setting. Let F : X × Y → Z be a function family as
above, where X and Y are length closed sets. Consider games Gvkl-PRF

F in the middle of
Figure 1, parameterized by d ∈ {0, 1} as above. The advantage of an adversary A is defined
as Advvkl-PRF

F (A) = Pr[Gvkl-PRF-1
F (A)] − Pr[Gvkl-PRF-0

F (A)]. Let us now explain. The game is
in the multi-user setting. By calling New with a length `, the adversary initializes a new user
with a key whose length ` is determined by the adversary. The game checks that ` is in the
set of allowed key lengths F.KL, which we define to be F.KL = {` : {0, 1}` ∩ X 6= ∅}. That
is, F.KL is the set of integers which appears as lengths of keys in the key space of F. The Fn

10

Game GPRF-d
F :

New

1 n← n+ 1

2 Xn←$ X

Fn(i,Y)

3 If T[i,Y] = ⊥ then:

4 If d = 1 then:

5 T[i,Y]← F(Xi,Y)

6 Else T[i,Y]←$ Z
7 Return T[i,Y]

Game Gvkl-PRF-d
F :

New(`)

1 Assert: ` ∈ F.KL

2 n← n+ 1

3 `n ← ` ; Xn←$ {0, 1}`

Fn(i,Y)

4 If T[i,Y] = ⊥ then:

5 If d = 1 then:

6 T[i,Y]← F(Xi,Y)

7 Else T[i,Y]←$ Z
8 Return T[i,Y]

Game Gvsl-PRG-d
G :

Fn(`)

1 Assert ` ∈ G.KL

2 s←$ {0, 1}`; r1 ← G(s)

3 r0←$R
4 Return rd

Figure 1: Left and middle: PRF and variable key-length PRF security games (d ∈ {0, 1}) for
function family F : X ×Y → Z. Right: Variable seed-length PRG games (d ∈ {0, 1}) for PRG
G : S → R.

oracle as usual allows the adversary to obtain either results of F on a chosen message under a
previously initialized key, or random strings. Note that the lengths of keys can be determined
by the adversary adaptively.

Minimal and maximal key length. The vkl-PRF game allows keys of any length. In par-
ticular, it does not preclude even a one-bit key, as long as such keys are in the keyspace of F.
But clearly, if very short keys are allowed, no practically useful security is achieved. This is
not a problem with the definition or to be dealt with here; it is handled, rather, in theorems.
There, we will as usual consider various resource parameters for an adversary A, such as the
number of queries to the oracles. Now, additionally, there will be a minimal key length `min(A),
defined as the shortest ` for which it makes a New(`) query. Bounds in the theorem statement
will be a function of `min(A). In practice, we would then ask that applications use key lengths
for which the bounds are good, which in particular will dictate large-enough choices of minimal
key length. We may also speak of a maximal key length, denoted `max(A), of a given adversary,
which affects the resources of adversaries constructed from it.

vsl-PRGs. A variable seed-length pseudorandom generator (PRG) is a function G : S → R.
We assume that the seed space S is length closed and let the set of allowed seed lengths of G
be G.KL = {` : {0, 1}` ∩ S 6= ∅}.

Analogously to vkl-PRF security, we extend the usual definition of PRG security [20, 54] to
allow seeds of variable, adversary-determined length. The games defining this new notion are on
the right of Figure 1, again for d ∈ {0, 1}. We let the advantage of an adversary A against the
vsl-PRG security of G be defined as Advvsl-PRG

G (A) = Pr[Gvsl-PRG-1
G (A)]− Pr[Gvsl-PRG-0

G (A)].
As for vkl-PRFs, the vsl-PRG security provided by G in some usage will depend crucially on

the length of the shortest allowed seed. To quantify, we define the minimal seed length `min(A)
of an adversary A to be the shortest ` for which the adversary makes a Fn(`) query. Also the
maximal seed length `max(A), defined as the longest ` for which the adversary makes a Fn(`)
query, will arise in resource considerations.

RKA Definitions. We extend the definitions of PRF and PRP security under related-key
attacks [11] (rka-PRF resp. rka-PRP) to the multi-user setting, beginning with rka-PRF.

Let F : X × Y → Z be a function family, and Φ : Λ1 × Λ2 × X → X ∪ {⊥} a function. We
call Φ the related-key-deriving function. It takes as input two parameters, which specify the
transformation that will be applied to the key X ∈ X . The multi-user aspect is captured by

11

Game Grka-PRF-d
Φ,F :

New(α)

1 n← n+ 1; Xn←$ X ; αn ← α

Fn(i, β,Y)

2 Assert: Φαi,β(Xi) 6= ⊥
3 X ′ ← Φαi,β(Xi) � Derived key

4 If T[i,X ′,Y] 6= ⊥ then:

5 Return T[i,X ′,Y]

6 If d = 1 then: T[i,X ′,Y]← F(X ′,Y)

7 Else T[i,X ′,Y]←$ Z
8 Return T[i,X ′,Y]

Game Grka-PRP-d
Φ,E :

New(α)

1 n← n+ 1 ; Ln←$K; αn ← α

2 For all L ∈ K do:

3 Πn,L←$ PERM[X]

Fn(i, β,X)

4 Assert: Φαi,β(Li) 6= ⊥
5 L′ ← Φαi,β(Li) � Derived key

6 If d = 1 then:

7 Return E(L′,X)

8 Else return Πi,L′(X)

Figure 2: Left: Related-key attack PRF security game (d ∈ {0, 1}) for function family
F : X×Y → Z and RKD function Φ. Right: Related-key attack PRP security game (d ∈ {0, 1})
for a block cipher E : K ×X → X and RKD function Φ.

the first parameter, α ∈ Λ1, which will depend on the user. The second parameter β ∈ Λ2 in
turn specifies the function within the function family belonging to each user. Mapping back
to [11], for each α ∈ Λ1 and β ∈ Λ2, we let Φα,β : X → X be the related-key deriving function
Φ(α, β, ·).

The rka-PRF security game Grka-PRF-d
Φ,F (d ∈ {0, 1}) shown in Figure 2, provides the adversary

with two oracles: New and Fn. Oracle New takes as input α ∈ Λ1, setting the RKD parameter
αi associated to the new user instance i. Oracle Fn takes as input a user index i, a β ∈ Λ2,
and a function input Y ∈ Y. It returns F(Φαi,β(Xi),Y) if d = 1 or a consistently sampled
random string from Z if d = 0. We define the advantage of an adversary A against the
PRF security under Φ-restricted related-key attacks as Advrka-PRF

Φ,F (A) = Pr[Grka-PRF-1
Φ,F (A)] −

Pr[Grka-PRF-0
Φ,F (A)].

Analogously, we extend the single-user rka-PRP definition from [11] to the multi-user/key
setting. For a block cipher E : K × X → X , the resulting game Grka-PRP-d

Φ,E (d ∈ {0, 1}) is
shown on the right in Figure 2, and the corresponding advantage of an adversary A defined as
Advrka-PRP

Φ,E (A) = Pr[Grka-PRP-1
Φ,E (A)]− Pr[Grka-PRP-0

Φ,E (A)].

4 Background and Modularization of HMAC

Our analyses rely on seeing HMAC as built from lower-level functions in a particular modular
way. Here we present this view of HMAC. Then we state results on some tools that we will use
in our proofs.

Padding. We fix integers c, b representing the chaining-variable length and block length, respec-
tively, and assume b > c. HMAC-related functions may pad inputs to lengths a multiple of b. We
discuss the padding in some detail because it matters to ensure that the modular and standard
definitions of HMAC are indeed the same. Also it needs to be handled explicitly in analyses of
swap-PRF security. (This was not the case for prior analyses of PRF security [8, 5, 6, 30].)

We fix a padding function pad, parameterized by a maximum encoding length le ∈ N.
Function pad takes as input a length ` < 2le and returns a string pad(`) such that `+ |pad(`)| is
a positive multiple of b. The canonical method is pad(`) = 10∗〈`〉 where 〈`〉 is the encoding of
integer ` in le bits and 0∗ denotes the minimum number i of zeros to ensure that `+ 1 + i+ le
is a multiple of b, where the length encoding le is another parameter. Thus |pad(`)| is always
in the range {1 + le, . . . , b+ le}. For X ∈ {0, 1}∗ we denote by X = X‖pad(|X|) ∈ {0, 1}b∗.

12

h∗(L, S) � Cascade of compression function h

. h∗ : {0, 1}c × {0, 1}b∗ → {0, 1}c

S
b←− S ; n← |S|

C0 ← L ; For i = 1 to n do: Ci ← h(Ci−1,S[i])
Return Cn

H(M) � Hash function H = MD[h] [44, 25]

. H : {0, 1}∗ → {0, 1}c

Return h∗(IV,M ‖ pad(|M |))

NMAC(Ki‖Ko,M) � NMAC [8]

. NMAC : {0, 1}2c × {0, 1}∗ → {0, 1}c

X ← h∗(Ki,M‖pad(b+ |M |)) ; Return h(Ko, X ‖ pad(b+ c))

HSKDb(Kb) � Subkey derivation function of HMACb

. HSKDb : {0, 1}b → {0, 1}2c

Ki ← h(IV,Kb ⊕ ipad) ; Ko ← h(IV,Kb ⊕ opad) ; Return Ki‖Ko

HMACb(Kb,M) � HMAC with b-bit keys [8]

. HMACb : {0, 1}b × {0, 1}∗ → {0, 1}c

Ki‖Ko ← HSKDb(Kb) ; Return NMAC(Ki‖Ko,M)

PoHb(K) � Derive a b-bit key for HSKDb from an HMAC key K ∈ {0, 1}∗

. PoHb : {0, 1}∗ → {0, 1}b

If |K | ≤ b then Kb ← K ‖ 0b−|K| else Kb ← H(K) ‖ 0b−c

Return Kb

HSKD(K) � Subkey derivation function of HMAC

. HSKD : {0, 1}∗ → {0, 1}2c

Kb ← PoHb(K) ; Ki‖Ko ← HSKDb(Kb) ; Return Ki‖Ko

HMAC(K ,M) � “Full” HMAC [39, 46]

. HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}c

Ki‖Ko ← HSKD(K) ; Return NMAC(Ki‖Ko,M)

Figure 3: HMAC and friends built from compression function h : {0, 1}c × {0, 1}b → {0, 1}c.

Concretely, for SHA-256, the parameters are (c, b, le) = (256, 512, 64) and for SHA-384 and
SHA-512 they are (c, b, le) = (512, 1024, 128). We assume b − c > le, as is true for SHA-256,
SHA-384, and SHA-512, so that if |M | mod b ≤ c then for any ` its padded version M‖pad(`)
is d|M |/be blocks long, meaning no extra block of padding is created. In particular, if |M | ≤ c
then M‖pad(`) is just one block, which is relevant in ensuring that the modular form of HMAC
written below matches with the original.

Message and key lengths. The upper limit of le on the binary length of an input ` to pad
means that the maximum length of an input to the hash function H is Le = 2le . This translates
into restrictions on the maximum length of both keys and messages for HMAC. However in
practice Le is very large (at least 264 in the above examples), making this a theoretical limitation.
Thus, in the remainder of this paper we write {0, 1}∗ for domains of functions that are actually
limited to inputs of lengths Le. It is understood that in any theorems about these functions,
there is an implicit assumption that adversary queries do not exceed the maximum allowed
lengths.

13

HSKD

HSKD

NMAC / NMAC�
h∗

hIV

⊕ipad

X

h
X1

h
Y1

h

Y

h ZhIV
X2

⊕opad

X

Figure 4: Illustration of how we modularize HMAC(X,Y) and its swap HMAC�(Y,X) as the
composition of subkey derivation function HSKD (highlighted in orange) and NMAC(X1 ‖X2, Y)
resp. NMAC�(Y,X1 ‖X2) (in blue). In turn, NMAC and NMAC� are modularized as the
composition of h (in green) and h∗ (in yellow). The dashed h invocations may be omitted
depending on the length of Y .

Modularization of HMAC functions. The starting point is a compression function h :
{0, 1}c × {0, 1}b → {0, 1}c taking a c-bit chaining variable and b-bit block to return a c-bit
result. Figure 3 now specifies various functions that we will consider; for an illustration of how
we modularize HMAC, see also Figure 4.

The cascade h∗ : {0, 1}c × {0, 1}b∗ → {0, 1}c [9] takes a c-bit key L and an input S whose
length is assumed a multiple of b, and returns a c-bit output as shown. Note that S = ε could
be the empty string, in which case n = 0 in the code and thus what is returned is C0, meaning
h∗(L, ε) = L.

Fixing an initial vector IV ∈ {0, 1}c, one can then define the hash function H : {0, 1}∗ →
{0, 1}c as per the Merkle–Damg̊ard transform [44, 25], H(M) = h∗(IV,M ‖ pad(|M |)).

Next is NMAC : {0, 1}2c×{0, 1}b∗ → {0, 1}c [8], an abstraction useful in the study of HMAC.
Its 2c-bit key is viewed as split into an “inner” key Ki and “outer” key Ko. Here M ∈ {0, 1}∗
needs to be padded to length a multiple of b to run h∗. The obvious padding M would append
pad(|M |). Instead, we define NMAC to pad M with pad(b + |M |) and similarly pad X with
pad(b + c) rather than pad(c). As explained below, this is to accurately capture HMACb and
HMAC, where the b-bit keys are prepended to the message resp. X , adding to the overall hash
function input length. We note that traditionally NMAC has been defined and analyzed as
taking unpadded messages in {0, 1}b∗ [8, 5, 6, 30], which is sufficient when considering PRF
security, but for swap-PRF security the padding will matter.

The first, basic version of HMAC is HMACb : {0, 1}b × {0, 1}∗ → {0, 1}c which takes a b-bit
key Kb. It is defined as HMACb(Kb,M) = H((Kb ⊕ opad)‖H((Kb ⊕ ipad)‖M)), where ipad,
opad ∈ {0, 1}b are distinct constants defined in [8, 39, 46]. The modular rendition first applies
the shown subkey derivation function HSKDb : {0, 1}b → {0, 1}2c to the key and then calls NMAC
on the derived keys and the message, again as shown. It is in order for the main and modular
forms here to indeed be the same function that NMAC is carefully defined to pad in a way that
accommodates an extra first block.

Finally, to obtain “full” HMAC, consider the subkey derivation function HSKD : {0, 1}∗ →
{0, 1}2c. It first maps an arbitrary-length key K down to a b-bit key Kb via PoHb and then maps
Kb to an NMAC key Ki‖Ko via HSKDb. The definition of HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}c

14

from [8, 39, 46] is HMAC(K ,M) = HMACb(PoHb(K),M) = H((PoHb(K)⊕opad)‖H((PoHb(K)⊕
ipad)‖M)). Figure 3 shows the modular form. Again, the choice of padding in the definition
of NMAC is important to ensure that the modular and standard forms of HMAC are indeed the
same function.

Lemmas on cascade and 2-tier cascade. Our proofs will use the 2-tier cascade, a general-
ization of the cascade from [7]. In addition to the function family h : {0, 1}c × {0, 1}b → {0, 1}c
underlying h∗, we have another function family f : K×X → {0, 1}c. The 2-tier cascade associated
to f, h is the function family 2CSC[f, h] : K × (X × {0, 1}b∗)→ {0, 1}c defined as follows:

2CSC[f, h](J, (A,S)) � J ∈ K and (A,S) ∈ X × {0, 1}b∗

L← f(J,A) ; X ← h∗(L, S) ; Return X

Let A be a PRF adversary attacking 2CSC[f, h]. We say that it is prefix-free if for all i there
do not exist distinct (A,S) and (A′, S′) among the Fn(i, ·) queries such that A = A′ and S is
a prefix of S′. (Note that there are no restrictions on queries across different users i.) This
is a necessary condition for PRF security. The following says that it is also sufficient, and
furthermore the result is in the multi-user setting with good bounds, meaning security does not
degrade linearly with the number of users. The proof is a simple extension of a proof in [7] and
is given in Appendix B.

Lemma 1 (PRF security of 2CSC). Let f : K×X → {0, 1}c and h : {0, 1}c×{0, 1}b → {0, 1}c be
function families. Let 2CSC : K× (X × {0, 1}b∗)→ {0, 1}c be the 2-tier cascade function family
associated to f, h as above. Let A2CSC be a prefix-free adversary against the PRF security of
2CSC. Assume the second components of each pair in the second argument of its queries to Fn
have at most n blocks. Then we can construct adversaries Af ,Ah such that

AdvPRF
2CSC(A2CSC) ≤ AdvPRF

f (Af) + n ·AdvPRF
h (Ah). (1)

Adversary Af makes QNew(A2CSC) queries to New and QFn(A2CSC) to Fn. Adversary Ah

makes at most QFn(A2CSC) queries to New and QFn(A2CSC) to Fn. The running times of the
constructed adversaries are about the same as that of A2CSC.

The cascade h∗ itself is known to be a PRF under prefix-free queries assuming h is a PRF [9].
(And attacks show prefix-freeness is necessary.) This is in the single-user setting, which implies
multi-user security with a loss in advantage that is a factor of the number of users. The
following lemma gives instead a good bound, not degrading with the number of users. Here a
PRF adversary A against h∗ is said to be prefix-free if for all i there do not exist distinct X
and X ′ among the Fn(i, ·) queries such that X is a prefix of X ′. This is obtained as a simply
corollary of Lemma 1 using the technique of [7] of setting the first tier of the 2-tier cascade to
a random function. For completeness details are in Appendix B, where we also discuss related
work and techniques.

Lemma 2 (Multi-user PRF security of h∗). Let h : {0, 1}c × {0, 1}b → {0, 1}b be a function
family. Let h∗ : {0, 1}c × {0, 1}b∗ → {0, 1}c be the cascade function family associated to h as
per Figure 3. Let Ah∗ be a prefix-free adversary against the PRF security of h∗. Assume that
the second arguments of its queries to Fn have at most n blocks. Then we can construct an
adversary Ah such that

AdvPRF
h∗ (Ah∗) ≤ n ·AdvPRF

h (Ah) . (2)

Adversary Ah makes QFn(Ah∗) queries to New and QFn(Ah∗) to Fn. The running time of Ah

is about the same as that of Ah∗.

Adversary merging lemma. Sometimes we want to merge two PRF adversaries into a single
PRF adversary whose advantage is a desired weighted sum of the advantages of the given
adversaries. The following shows how this works.

15

Lemma 3 (Merging Lemma). Let F : X × Y → Z be a function family. Let w1, w2 ≥ 1 be
integers. Let A1,A2 be PRF adversaries. Then we can build a PRF adversary A such that

w1 ·AdvPRF
F (A1) + w2 ·AdvPRF

F (A2) = (w1 + w2) ·AdvPRF
F (A) . (3)

Resources translate as QFn(A) = max(QFn(A1),QFn(A2)) and QNew(A) = max(QNew(A1),
QNew(A2)), and the running time of A is the maximum of the running times of A1,A2 plus
overhead linear in the lengths of w1, w2.

Proof of Lemma 3. Adversary A picks v←$ {1, . . . , w1 + w2}. If v ≤ w1 then it lets i← 1 and
otherwise lets i← 2. It now runs Ai, responding to its oracle queries with its own oracles, and
returns whatever Ai returns. Then for both d = 0 and d = 1 we have

Pr[GPRF-d
F (A)] =

w1

w1 + w2
· Pr[GPRF-d

F (A1)] +
w2

w1 + w2
· Pr[GPRF-d

F (A2)] .

Subtracting case d = 0 from d = 1, we get

AdvPRF
F (A) =

w1

w1 + w2
·AdvPRF

F (A1) +
w2

w1 + w2
·AdvPRF

F (A2) .

Re-arranging terms yields Equation (3).

While the running time of A is, as stated, about the max of the individual running times of
A1 and A2, a blackbox use of the lemma will result in its code (description) size being the sum
of the individual ones. Put another way, if we use circuit size rather than running time as the
metric, then the circuit size of A is the sum of those of A1 and A2, plus some overhead. This
means that it isn’t meaningful to apply Lemma 3 more than a constant number of times. In
our usages, we will apply it at most twice. But also, in our usages, the doubling in code size is
avoided because A1,A2 are both built from some underlying adversary B that is the same in
both cases, and each adds little overhead to B, so the code (or circuit) for the merged A can
include just one copy of B and have size about the max of the sizes of A1,A2.

5 Dual-PRF Security of NMAC

We now have all the definitions and modularizations in place to turn to our main results,
on NMAC (in this section) and, based on these, HMAC (in the next). To understand the PRF
security of HMAC� and HMAC, it is instructive to start with their (swapped) core, i.e., NMAC�

and NMAC. Recall from Figure 3 that NMAC takes two keys Ki ‖Ko of length c bits each and a
message M ∈ {0, 1}∗ as input. It first processes the padded message using the cascade h∗ keyed
with Ki, then applies h keyed with Ko to the cascade’s padded output.

5.1 vkl-PRF Security of NMAC�

Swapping key and message input means that NMAC� takes as input a single arbitrary-length
key K and two (concatenated) messages M1 ‖M2 of length c bits each. The latter “key” the
upper and the lower cascade, the former is padded to K‖pad(b + |K |) and enters the upper
cascade through the block inputs.

It is conducive to single out the first and last invocation of h: the first takes the leading (up
to b) bits of the key K (possibly padded), the last the (padded) output of the cascade, through
the block input. In our security analysis, we will treat both as invocations of h� and rely on
rka-PRF security to capture the padding. Figure 5 shows NMAC� modularized in this way.

Security of NMAC�. We show that NMAC� is a vkl-PRF if h� is rka-PRF secure and h is a
PRF. The RKD functions of interest for h� are those which allow the adversary to overwrite a

16

h�

Kh∗ ← h�(K[1..k]︸ ︷︷ ︸
L1

‖P,M1)

h�

Z ← h�(L2‖pad(b + c),M2)

h∗

?

L2 ← h∗(Kh∗ , S)

hM1

| b

K [1..k] ‖P ?

h
Kh∗

| b

S[1]

h

| b

S[n]

K = K‖pad(b + |K|) = K[1..k] ‖P ‖S[1] ‖ . . . ‖S[n]

hM2

| b

L2 ‖ pad(b+ c)

| c

|
c

Z

NMAC�(K ,M1‖M2) � K ∈ {0, 1}∗ and M1,M2 ∈ {0, 1}c

1 k ← min(|K |, b) ; K ← K‖pad(b+ |K |)
2 L1 ← K [1..k] ; P ← K [k + 1..b] ; S ← K [b+ 1..|K |]
3 Kh∗ ← h� (L1‖P,M1)

4 L2 ← h∗ (Kh∗ , S)

5 Z ← h� (L2‖pad(b+ c),M2)

6 Return Z

Figure 5: Illustration of and code for NMAC�, viewed as the composition of h� (highlighted in
green) and h∗ (in yellow). The purple asterisks ? indicate that the P part of the key padding
may be empty (namely, if k = b) or that the cascade G may be omitted (if |K | = b).

suffix of the full, block-length key with padding. In the reduction, we will use this to simulate
the padding in lines 3 and 5 of Figure 5.

We define Φpad,a : {0, . . . , b} × {ε} × {0, 1}b → {0, 1}b ∪ {⊥}, on input `, ε,K , to return ⊥ if
` < a and K [1..`] ‖ pad(b+ `)[1..b− `] otherwise. In more detail:

Φpad,a(`, ε,K)

If ` < a then return ⊥
P ← pad(b+ `)[1..b− `] ; L← K [1..`] ‖P
Return L

That is, Φpad,a(`, ε,K) overwrites the suffix of K with the first b− ` bits of padding specified by
pad(b + `), where pad is defined as per Section 4. The function requires that ` ≥ a, otherwise
the output is ⊥. That is, at least a bits of key prefix are left intact in the transformation. Note
that the second input to Φpad,a is empty, meaning that for each user, there is only a single RKD
function; namely, the one applying the appropriate-length padding.

We justify the assumption that h� is a PRF under related-key attacks when restricted to
Φpad,a in Section 7.

Theorem 4 (vkl-PRF security of NMAC�). Let c, b, and pad be as in Section 4, let h, h∗ be
defined as in Figure 3. Let A be an adversary against the vkl-PRF security of NMAC� whose
New queries have minimal and maximal key length `min(A) resp. `max(A). Let n = d`max(A)/be
be the block length of the maximum-length key used by A and let a = min(c, `min(A)). Then we
can construct adversaries Ah� ,Ah such that

Advvkl-PRF
NMAC�(A) ≤ 2 ·Advrka-PRF

Φpad,a,h�
(Ah�) + n ·AdvPRF

h (Ah) . (4)

Adversary Ah� makes at most max(QNew(A),QFn(A)) to oracle New and at most QFn(A) to
oracle Fn. Ah makes QFn(A) queries to each of oracle New and Fn. The running times of
both adversaries are approximately that of A.

17

Games G0–G5:

New(`) � Game G0

1 n← n+ 1

� Pre-computation of NMAC� key values; cf. Figure 5, lines 1–2

2 Kn←$ {0, 1}` ; k ← min(`, b) ; Kn ← Kn ‖ pad(b+ `)

3 Ln,1 ← Kn[1..k] ; Pn ← Kn[k + 1..b] ; Sn ← Kn[b+ 1..|Kn|]

New(`) � Games G1,G2,G3

4 n← n+ 1 ; k ← min(`, b)

5 Kn←$ {0, 1}` ; Kn ← Kn ‖ pad(b+ `) ; Sn ← Kn[b+ 1..|Kn|]

New(`) � Games G4,G5

6 n← n+ 1

Figure 6: The New oracles for games in the proof of Theorem 4.

Proof of Theorem 4. We use a sequence of games G0–G5. All are executed with A, and hence
provide the oracles named in game Gvkl-PRF-d

NMAC� . The New oracles of the games are shown in
Figure 6. This allows further descriptions to focus on the Fn oracle.

. Replacing the first invocation of h� with a random function. We begin with game G0 being
Gvkl-PRF-1

NMAC� (A). That is, G0 is the “real” vkl-PRF game.

The first game hop, to game G1, replaces the first evaluation of h� in NMAC� (on line 3
of Figure 5) by consistent random sampling. Consequently, Ln,1 is not used anymore and the
corresponding first k bits of Kn become superfluous in the New oracle (Figure 6). The Fn
oracles of games G0,G1 reflecting this change are in Figure 7. They differ only in that line 4 is
only in G0 and line 5 is only in G1. By standard equation rewriting

Pr[Gvkl-PRF-1
NMAC� (A)] = Pr[G0(A)] = Pr[G1(A)] + (Pr[G0(A)]− Pr[G1(A)]). (5)

We build an adversary Ah�,1 such that

Pr[G0(A)]− Pr[G1(A)] ≤ Advrka-PRF
Φpad,a,h�

(Ah�,1). (6)

Adversary Ah�,1 simulates G0 for A, with two changes: First, it does not sample Kn itself

in the New oracle of G0, but instead issues a New(k) query to its Grka-PRF
Φpad,a,h�

game, where

k = min(`, b). This initializes a b-bit key for h� and fixes the RKD parameter for user n to
αn = k. If ` > b, adversary Ah�,1 then samples the remaining ` − b bits of Kn uniformly at
random. It then applies the (remaining) padding to compute Sn. Second, instead of computing
h� in line 4 of G0 (Figure 7) in response to a query Fn(i,M1‖M2) from A, adversary Ah�,1

queries its Fn oracle on (i, ε,M1) and uses the result for Th�,1[i,M1]. Note that for each user
index i, the same RKD function Φpad,a(αi, ε, ·) is always applied. Hence it is sufficient to index
the table by (i,Mi), as these uniquely determine the output from oracle Fn in the rka-PRF
game. Furthermore, since h�(Li,1‖Pi,M1) on line 4 of Figure 7 is computed only once per pair
(i,M1), Ah�,1 makes at most one Fn query for each of the QFn(A) Fn queries made by A.
Its New queries are all with an input k ≥ a, since the minimal k on which New is called
is k = min(`min(A), b) ≥ min(`min(A), c) = a. This is by virtue of `min(A) being the smallest
key length ` queried by A, and the assumption that b > c (see Section 4). Adversary Ah�,1

soundly simulates G(1−d) when playing game Grka-PRF-d
Φpad,a,h�

, for d ∈ {0, 1}, which yields the bound

in Equation (6).

18

Fn(i,M) � Games G0, G1

1 If T[i,M] 6= ⊥ then return T[i,M]

2 M1‖M2 ← M � |M1| = |M2| = c

3 If Th�,1[i,M1] = ⊥ then

4 Th�,1[i,M1]← h�(Li,1‖Pi,M1) � G0

5 Th�,1[i,M1]←$ {0, 1}c � G1

6 Li,2 ← h∗(Th�,1[i,M1], Si)

7 T[i,M]← h�(Li,2‖pad(b+ c),M2) ; Return T[i,M]

Fn(i,M) � Games G2, G3

1 If T[i,M] 6= ⊥ then return T[i,M]

2 M1‖M2 ← M � |M1| = |M2| = c

3 If Th�,1[i,M1] = ⊥ then Th�,1[i,M1]←$ {0, 1}c

4 If Th∗ [i,M1] = ⊥ then

5 Th∗ [i,M1]← h∗(Th�,1[i,M1], Si) � G2

6 Th∗ [i,M1]←$ {0, 1}c � G3

7 T[i,M]← h�(Th∗ [i,M1]‖pad(b+ c),M2) ; Return T[i,M]

Fn(i,M) � Games G4, G5

1 If T[i,M] 6= ⊥ then return T[i,M]

2 M1‖M2 ← M � |M1| = |M2| = c

3 If Th∗ [i,M1] = ⊥ then Th∗ [i,M1]←$ {0, 1}c

4 If Th�,2[i,M1,M2] = ⊥ then

5 Th�,2[i,M1,M2]← h�(Th∗ [i,M1]‖pad(b+ c),M2) � G4

6 Th�,2[i,M1,M2]←$ {0, 1}c � G5

7 T[i,M]← Th�,2[i,M1,M2] ; Return T[i,M]

Figure 7: The Fn oracles for games G0–G5 in the proof of Theorem 4.

. Replacing h∗ with a random function. We simplify the Fn oracle from G1 to G2. Note that
storing the values Li,2 in Th∗ [i,M1] and computing them only once (lines 4 and 5 of G2) is
sound since Si is fixed per key i, so for each Th�,1[i,M1], the inputs to h∗ are fixed.

In G3 (Figure 7), we replace the computation of h∗(Th�,1[i,M1], Si), originally in line 4 of
Figure 5, by (consistent) random sampling. By rewriting,

Pr[G1(A)] = Pr[G2(A)] = Pr[G3(A)] + (Pr[G2(A)]− Pr[G3(A)]). (7)

We construct an adversary Ah∗ such that

Pr[G2(A)]− Pr[G3(A)] ≤ AdvPRF
h∗ (Ah∗). (8)

Observe that in game G2, values Th�,1[i,M1] in the Fn oracle are random c-bit strings. Adver-
sary Ah∗ simulates G2, except for two differences: Instead of sampling Th�,1[i,M1]←$ {0, 1}c in

line 3 of G2 (Figure 7), Ah∗ issues a New query to set up a new key with index j in its GPRF-d
h∗

game and stores Th�,1[i,M1] ← j. Further, instead of computing h∗(Th�,1[i,M1], Si) itself in
line 5 of G2, it queries (Th�,1[i,M1], Si) to its Fn oracle, using the result as Th∗ [i,M1]. It thus

makes at most QFn(A) queries to its New oracle, and one Fn query under each key (since each
Th∗ [i,M1] is only computed once), each of whose second component is at most n = d`max(A)/be
blocks long. (Note that n+ 1 is an upper bound on the number of blocks of the padded key K

19

of NMAC�. The input S to the cascade in any Fn query is hence at most n blocks.) Depending
on the challenge bit d in GPRF-d

h∗ , Ah∗ soundly simulates either G2 or G3, yielding Equation (8).

. Replacing the second h� with a random function. We again first simplify the Fn oracle
from G3 to G4 (cf. Figure 7), sampling Th∗ [i,M1] directly and omitting the no longer needed
table Th�,1. Next, in G5 (also Figure 7), we sample the output of the second call to h�

(Figure 5, line 5), stored in Th�,2[i,M1,M2], (consistently) at random instead of computing it
as h�(Th∗ [i,M1]‖pad(b+ c),M2).

Rewriting equations, we get

Pr[G3(A)] = Pr[G4(A)] = Pr[G5(A)] + (Pr[G4(A)]− Pr[G5(A)]). (9)

We bound the introduced probability difference via an adversary Ah�,2 as

Pr[G4(A)]− Pr[G5(A)] ≤ Advrka-PRF
Φpad,a,h�

(Ah�,2). (10)

Adversary Ah�,2 acts as the challenger in G4 with the following two modifications: First, for any
Th∗ [i,M1] value sampled in line 3 of Figure 7, Ah�,2 queries New(c) and stores the key index in
a table Th∗ [i,M1]. Second, instead of computing h�(Th∗ [i,M1]‖pad(b+ c),M2) in line 5, Ah�,2

queries its Fn oracle on (Th∗ [i,M1], ε,M2). Note that Φpad,a will never return ⊥ here since by
definition a = min(`min(A), c), so c ≥ a. This results in at most QFn(A) queries to each of
Ah�,2’s oracles New and Fn. Depending on bit d in Grka-PRF-d

Φpad,a,h�
, Ah�,2 soundly simulates either

G4 (d = 1) or G5 (d = 0), yielding Equation 10.
Finally we claim that

Pr[G5(A)] = Pr[Gvkl-PRF-0
NMAC� (A)], (11)

which results from observing that Th∗ [i,M1] is not used anymore in G5, and the Fn oracle in
G5 responds with (consistently-sampled) random strings. Hence G5 equals Gvkl-PRF-0

NMAC� .
Combining Equations (5)-(11) gives

Advvkl-PRF
NMAC�(A) ≤ 2 ·Advrka-PRF

Φpad,a,h�
(Ah�) + AdvPRF

h∗ (Ah∗) , (12)

where Ah� is formed by picking γ←$ {1, 2} and running Ah�,γ . Adversary Ah� makes at most

max(QNew(A),QFn(A)) to oracle New and at most QFn(A) to oracle Fn.

. Applying Lemma 2. Lastly, we invoke Lemma 2 on the multi-user PRF security of the cascade.
This gives us an adversary Ah such that

AdvPRF
h∗ (Ah∗) ≤ n ·AdvPRF

h (Ah) , (13)

where Ah makes QFn(Ah∗) = QFn(A) queries to each of oracle New and Fn.

5.2 Strong Multi-user PRF Security of NMAC

PRF security for NMAC was already established in [8, 5, 6, 30] for the single user setting. By the
usual hybrid argument [9] one can conclude multi-user PRF security with advantage degraded
by the number of New queries. We are interested in strong multi-user PRF security, meaning
bounds that do not suffer such degradation and instead are as good as in the single-user setting.

Let us first review the proof of single-user PRF security of GPR [30]. Here the starting
point is the proof of BCK [8] which first exploits PRF security of the outer application of h
to reduce to the hidden-key collision-resistance of h∗. Now, if h∗ was a general PRF, it would
imply it is also hidden-key collision resistant. But it is only a prefix-free PRF. The technique
of GPR [30] is to exploit a random systems lemma by Maurer [42] that allows us to first reduce
to a non-adaptive setting. Then, one can use a trick of appending a new block to colliding
messages. This preserves collisions but breaks prefix-ness.

20

Games G0, G1:

New

1 n← n+ 1 ; Kn,1←$ {0, 1}c

2 Kn,2←$ {0, 1}c � G0

Fn(i,M)

3 X ← h∗(Ki,1,M‖pad(b+ |M |))
4 If T[i,X] = ⊥ then

5 T[i,X]← h(Ki,2, X‖pad(b+ c)) � G0

6 T[i,X]←$ {0, 1}c � G1

7 Return T[i,X]

Games G2 , G3:

New

1 n← n+ 1 ; Kn,1←$ {0, 1}c

Fn(i,M)

2 X ← h∗(Ki,1,M‖pad(b+ |M |))
3 Y ←$ {0, 1}c

4 If T[i,X] 6= ⊥ then

5 bad← 1 ; Y ← T[i,X]

6 T[i,X]← Y ; Return T[i,X]

Game G4:

New

1 n← n+ 1

Fn(i,M)

2 mi ← mi + 1 ; Mi,mi
← M‖pad(b+ |M |)

3 Y ←$ {0, 1}c ; Return Y

Finalize(d∗)

4 For i = 1, . . . , n do

5 Ki,1←$ {0, 1}c

6 For j = 1, . . . ,mi do

7 Ci,j ← h∗(Ki,1,Mi,j)

8 If (∃ α 6= β : Ci,α = Ci,β) then bad← 1

9 Return bad

Figure 8: Games for the proof of Theorem 5. The boxed code in line 5 is only in G2 and not
in G3.

We give a simple, direct proof that establishes strong multi-user security with good bounds:
The bound in Equation (14) below shows no degradation with the number of New queries. We
do not use the random systems lemma. Instead we directly use game playing to move to a
non-adaptive game. Finally we exploit our Lemma 2 showing strong multi-user PRF security
of the cascade. The proof is quite simple and it is surprising this was not noted before.

Theorem 5. Let h : {0, 1}c × {0, 1}b → {0, 1}c and let NMAC be as defined in Figure 3. Let A
be an adversary against the PRF security of NMAC. Assume each of its Fn queries has length
at most L, and let m = 1 + dL/be. Let qf = QFn(A) and assume m · qf < 2b. Then we can
construct an adversary Ah such that

AdvPRF
NMAC(A) ≤ (m+ 2) ·AdvPRF

h (Ah) +
qf (qf − 1)

2c+1
. (14)

Adversary Ah makes QFn(A) queries to Fn and max(QNew(A),QFn(A)) to New, and its run-
ning time is about the same as that of A.

Proof of Theorem 5. Consider the games in Figure 8. Then

Pr[GPRF-1
NMAC (A)] = Pr[G0(A)]

= Pr[G1(A)] + (Pr[G0(A)]− Pr[G1(A)]) .

21

It is easy to build an adversary Ah,1 such that

Pr[G0(A)]− Pr[G1(A)] ≤ AdvPRF
h (Ah,1) . (15)

Namely, Ah,1 initializes n← 0 and runs A. When A makes a New query, Ah,1 lets n← n+ 1,
lets Kn,1←$ {0, 1}c and queries its own New oracle. When A makes a Fn(i,M) query, Ah,1

lets X ← h∗(Ki,1,M‖pad(b+ |M |)), queries its own Fn oracle with i,X‖pad(b+ c) and returns
the response to A. Eventually A halts with some output, and Ah,1 returns the same as its own
output. When Ah,1 is playing game GPRF-1

h , the key chosen for user i plays the role of Ki,2

in game G0, hence Pr[GPRF-1
h (Ah,1)] = Pr[G0(A)]. Also Pr[GPRF-0

h (Ah,1)] = Pr[G1(A)]. This
justifies Eq. (15). Next

Pr[G1(A)] = Pr[G2(A)] = Pr[G3(A)] + (Pr[G2(A)]− Pr[G3(A)]) .

Now we have
Pr[G3(A)] = Pr[GPRF-0

NMAC (A)] .

Also games G2 and G3 are identical-until-bad, so by the fundamental lemma of game playing [13]

Pr[G2(A)]− Pr[G3(A)] ≤ Pr[G3(A) sets bad] .

We construct game G4 such that

Pr[G4(A)] = Pr[G3(A) sets bad] ,

where, thanks to the hop to G3, the responses to Fn queries from adversary A are now all
independent random strings, assuming (without loss of generality) that the queries A makes
to its Fn oracle are all distinct. That is, we assume that no pair i,M is repeated. Then, the
responses from oracle Fn are non-adaptive, meaning they do not depend on the inputs from A.
This allows us to apply the trick of adding a block to messages which cause collisions for the
cascade, to circumvent prefix queries. Then, we can build an adversary Ah∗ such that

Pr[G4(A)] ≤ AdvPRF
h∗ (Ah∗) +

qf (qf − 1)

2c+1
. (16)

The important thing is to ensure that Ah∗ is prefix free, meaning, for any user, no query is a
prefix of another. This needs to be true even though such a condition may not be true of the Fn
queries A makes. We will then conclude by applying Lemma 2 (on the multi-user PRF security
of h∗).

Adversary Ah∗ can be seen as having two phases. In its first phase, it runs A, replying
to New,Fn queries as per game G4, meaning at random, to obtain the messages Mi,j that A
queries. In this phase, it makes no queries to its own New or Fn oracles. In more detail, Ah∗

initializes n← 0. When A queries New, adversary Ah∗ lets n← n+ 1 and initializes mn ← 0.
When A queries Fn(i,M), adversary Ah∗ lets mi ← mi + 1 and records the queried message
as Mi,mi ← M . Then it picks Y ←$ {0, 1}c and returns Y to A as the response to its query.
Note that the Mi,j messages are distributed exactly as in game G4, regardless of whether Ah∗

is playing in its own real or random game.
Once A has halted, Ah∗ enters its second phase. It starts by making n queries to its own

New oracle. It is now useful, for a string X ∈ {0, 1}b∗, to let Bl(X) be the set of all b-bit

blocks in X; formally Bl(X) = {X[1], . . . , X[m]} where X[1] . . . X[m]
b←− X. Then Ah∗ does the

following:

22

Adversary Ah∗ , second phase

d← 0
For i = 1, . . . , n do
Mi ← Bl(Mi,1) ∪ · · · ∪ Bl(Mi,mi)
� Mi is the set of all b-bit blocks in messages Mi,1, . . . ,Mi,mi

Pick Xi ∈ {0, 1}b \Mi

� The assumption m · qf < 2b means {0, 1}b \Mi 6= ∅
For j = 1, . . . ,mi do

Pi,j ← Mi,j‖Xi

C∗i,j ← Fn(i,Pi,j) � Here Ah∗ queries its own Fn oracle

If (∃ α 6= β : C∗i,α = C∗i,β) then d← 1

Return d

Due to the choice of Xi, the queries i,Pi,j that adversary Ah∗ makes to its Fn oracle are prefix
free. Suppose Ah∗ is playing in its “real” PRF game, namely GPRF-1

h∗ . If h∗(Ki,1,Mi,α) =
h∗(Ki,1,Mi,β), then also h∗(Ki,1,Pi,α) = h∗(Ki,1,Pi,β), where Ki,1 represents the key chosen for
user i in game GPRF-1

h∗ . Thus Pr[GPRF-1
h∗ (A)] ≥ Pr[G4(A)]. On the other hand, because A’s

queries to its Fn oracle were assumed distinct, we have Pr[GPRF-0
h∗ (A)] ≤ qf (qf − 1) · 2−c−1 by

the birthday bound. The bound applies since the C∗i,j values are uniformly random strings of
length c in this case. This gives Eq. (16). Now, the number of blocks in Pi,j is at most m+ 1.
(It is one more than the number in Mi,j , and the latter is at most m.) So any Fn query of Ah∗

is at most m+ 1 blocks long. Now Lemma 2 gives us an adversary Ah,2 such that

AdvPRF
h∗ (Ah∗) ≤ (m+ 1) ·AdvPRF

h (Ah,2) . (17)

Finally we merge adversaries Ah,1,Ah,2 using Lemma 3 with weights w1 = 1 and w2 = m + 1
to get an adversary Ah such that

AdvPRF
h (Ah,1) + (m+ 1) ·AdvPRF

h (Ah,2) ≤ (m+ 2) ·AdvPRF
h (Ah) .

Putting together all the above concludes the proof.

6 Dual-PRF Security of HMAC

Here we obtain what we consider our main result, namely to settle the dual-PRF security of the
full HMAC via two, complementary results. (1) In the swap-PRF case, we give necessary and
sufficient conditions on the set S of keys (messages for HMAC�) for which HMAC� is vkl-PRF
secure. (2) For the PRF case, we prove vkl-PRF security of HMAC for all (long enough) key
lengths.

As illustrated in Figure 4, we can see HMAC (resp. HMAC�) as the composition of a subkey
derivation function HSKD deriving the keys for NMAC (resp. NMAC�). We leverage this to
reduce the security of HMAC to that of NMAC and HSKD. The first step below is a general
composition theorem. The second step below is to analyze HSKD to show the attributes asked
for by the composition theorem. Then we can conclude by applying our results for NMAC from
Section 5.

For the PRF security of HMAC, this approach is not new; it is the same taken in [8, 5, 6].
But we will see that it is also handy for analyzing HMAC�. See Table 2 for an overview and
Figure 9 for an illustration of the details for HMAC�.

6.1 Composition Theorem

Let MAC : {0, 1}2c × {0, 1}∗ → {0, 1}c be a given function family. (In our application it will be
NMAC.) Let F be a length closed-set and let SKD : F → {0, 1}2c be a function that we call the

23

Function Goal Assumption Comments

Comp[MAC, SKD]
(HMACb = Comp[NMAC,HSKDb])

PRF MAC is PRF,
SKD is PRG

[6]

Comp[MAC, SKD]
(HMAC = Comp[NMAC,HSKD])

vkl-PRF MAC is vkl-PRF,
SKD is vsl-PRG

Theorem 6.1

Comp[MAC, SKD]
(HMAC� = Comp[NMAC�,HSKD])

vkl-PRF MAC� is vkl-PRF,
SKD is CR

Theorem 6.2

HSKD vsl-PRG h is PRF, h� is PRF,
h� is Φzio,a-rka-PRF

Proposition 7

HSKD CR h is CR Proposition 8

Table 2: Overview of the composition results for HMACb, HMAC, and HMAC�, modularly
obtained by viewing them as composition of a function family MAC and a subkey derivation
function SKD.

subkey derivation function. We define their composition F = Comp[MAC,SKD] : F ×{0, 1}∗ →
{0, 1}c by

F(K ,M) � K ∈ F and M ∈ {0, 1}∗

Ki‖Ko ← SKD(K) � Derive a 2c-bit subkey
Return MAC(Ki‖Ko,M)

The following allows us to deduce both normal and swap-PRF security of F from the cor-
responding security of MAC. What differs is the assumption on the subkey derivation function
SKD: (1) If SKD is a vsl-PRG then the transform preserves PRF security and (2) if SKD is
CR then the transform preserves swap-PRF security. Notably, we can show both results for
variable-key length (swap-)PRF security. This is made precise in Theorem 6. Through (1), our
result fills a gap left in prior work, namely HMAC’s security for keys of non–full block length.

We first state the composition result and then study the assumptions on SKD in Section 6.2.

Theorem 6 (Composition theorem). Let MAC : {0, 1}2c×{0, 1}∗ → {0, 1}c be a function family
and SKD : F → {0, 1}2c a function. Let F = Comp[MAC, SKD] : F × {0, 1}∗ → {0, 1}c be their
composition as above.

1. [Composition transfers vkl-PRF security if SKD is a vsl-PRG] Let AF be an ad-
versary against the vkl-PRF security of F. Then we can construct adversaries AMAC,ASKD

such that
Advvkl-PRF

F (AF) ≤ AdvPRF
MAC(AMAC) + Advvsl-PRG

SKD (ASKD) . (18)

Also QFn(ASKD) = QNew(AF) and ASKD has minimal (resp. maximal) seed length `min(AF)
(resp. `max(AF)).

2. [Composition transfers swap-vkl-PRF security if SKD is CR] Let AF be an adver-
sary against the vkl-PRF security of F�. Then we can construct adversaries AMAC,ASKD

such that
Advvkl-PRF

F� (AF) ≤ Advvkl-PRF
MAC� (AMAC) + AdvCR

SKD(ASKD) . (19)

In both cases, adversary AMAC has the same query counts and in 2. the same minimal/maximal
key lengths as AF. The constructed adversaries have about the same running time as AF.

We prove each sub-theorem separately.

24

HSKD
(M1,)← HSKD(M)

HSKD
(,M2)← HSKD(M)

NMAC�

hIV

| b

PoHb(M)⊕ ipad

h
M1

h
KG

h

K‖pad(b+ |K |)
| b | b | b

PoHb(M)

If |M| ≤ b then:

Return M ‖ 0b−|M|
Else:

Return H(M) ‖ 0b−c
h

| b

X ‖ pad(b+ c)

| c

|
c

YhIV
M2

| b

PoHb(M)⊕ opad

Figure 9: Illustration of how HMAC�(K ,M) can be seen as the composition of HSKD (high-
lighted in orange) and NMAC� (in blue).

Games G0, G1, G2:

New(`)

1 Assert: ` ∈ F.KL

2 n← n+ 1 ; `n ← `

3 s←$ {0, 1}`

4 Kn ← SKD(s) � G0

5 Kn←$ {0, 1}2c � G1,G2

Fn(i,M)

6 If T[i,M] 6= ⊥ then:

7 Return T[i,M]

8 T[i,M]← MAC(Ki,M) � G0,G1

9 T[i,M]←$ {0, 1}c � G2

10 Return T[i,M]

Adversary ASKD:

New∗(`)

1 Assert: ` ∈ F.KL

2 n← n+ 1 ; `n ← `

3 Kn ← Fn(`)

Fn∗(i,M)

4 If T[i,M] 6= ⊥ then:

5 Return T[i,M]

6 T[i,M]← MAC(Ki,M)

7 Return T[i,M]

Adversary AMAC:

New∗(`)

1 Assert: ` ∈ F.KL

2 New()

Fn∗(i,M)

3 Return Fn(i,M)

Figure 10: Games and adversaries for the proof of Theorem 6.1.

Proof of Theorem 6.1. The proof proceeds by a sequence of games G0–G2, shown in Figure 10.
We begin with G0, which runs adversary AF, providing oracles New and Fn of the vkl-PRF
game. Upon the nth query New(`) from adversary AF, the game samples a random seed s
of length ` from F and then applies SKD(s) on line 4 to compute a key Kn for MAC. Oracle
Fn(i,M) computes MAC(Ki,M). Since SKD is a deterministic function, the fact that it is
computed once per seed in New instead of for each Fn query makes no difference. This means
that G0 is equivalent to Gvkl-PRF-1

F (AF).
Game G1 only differs from G0 in oracle New, where line 4 is only in G0 and line 5, which

instead samples a new 2c-bit key uniformly at random, is only in game G1. We construct an
adversary ASKD such that

Pr[G0(AF)]− Pr[G1(AF)] ≤ Advvsl-PRG
SKD (ASKD). (20)

Adversary ASKD, shown in the middle of Figure 10, acts as the challenger in game G0, except
that instead of computing Kn ← SKD in response to the nth New(`) query, adversary ASKD

forwards the query to the its vsl-PRG game (see Figure 1) to obtain Kn ← Fn(`). This ensures

25

that ASKD soundly simulates G1−d for AF when playing game Gvsl-PRG-d
SKD , where d ∈ {0, 1},

establishing the bound in Equation (20).
Next, game G2 is identical to game G1, except that in oracle Fn, the response to each query

is a consistent, randomly sampled string in {0, 1}c instead of the output of MAC. We construct
an adversary AMAC such that

Pr[G1(AF)]− Pr[G2(AF)] ≤ AdvPRF
MAC(AMAC). (21)

Adversary AMAC, shown on the right in Figure 10, simulates game G1 for AF, acting as the
challenger, except in two ways. First, instead of sampling a key itself in oracle New, adversary
AMAC issues a query to oracle New() in its PRF game. Second, instead of computing MAC in
response to a Fn query, adversary AMAC forwards the query to its own Fn oracle. This way,
AMAC simulates G1 for AF when playing game GPRF-1

MAC and G2 when playing game GPRF-0
MAC .

This yields Equation (21).
We note that game G2 is equivalent to Gvkl-PRF-0

F (AF), and hence by definition of the
advantage and the established equations we reached the claim

Advvkl-PRF
F (AF) = Pr[G0(AF)]− Pr[G2(AF)]

= Pr[G0(AF)]− Pr[G1(AF)] + Pr[G1(AF)]− Pr[G2(AF)]

≤ Advvsl-PRG
SKD (ASKD) + AdvPRF

MAC(AMAC).

Proof of Theorem 6.2. The proof proceeds by a sequence of games G0–G3, shown in Figure 11.
We begin with game G0 being Gvkl-PRF-1

F� (AF). That is, G0 is the “real” vkl-PRF game, with

the functionality of F� = Comp[MAC�, SKD] made explicit. The game keeps a table T for the
Fn oracle query results, indexed by M1‖M2 = SKD(M) (Figure 11, line 3).

The first game hop, to game G1, replaces the evaluation of MAC� in line 4 of Figure 11 by
consistent random sampling. Games G0,G1 in Figure 11 only differ in that line 4 is only in G0

and line 5 is only in G1. We build an adversary AMAC such that

Pr[G0(AF)]− Pr[G1(AF)] ≤ Advvkl-PRF
MAC� (AMAC). (22)

Adversary AMAC simulates G0 for AF by forwarding the queries from adversary AF to the
corresponding oracles in its Gvkl-PRF

MAC� game, replacing M in Fn queries by M1‖M2 obtained by

evaluating SKD(M). Adversary AMAC soundly simulates G(1−d) when playing game Gvkl-PRF-d
MAC� ,

for d ∈ {0, 1}, which yields the bound in Equation (22).
We now rewrite G1 as G2. In G2, the table T is indexed by the input messages M (Figure 11

line 2). An additional table TSKD, indexed by M1‖M2, keeps track of collisions in the output
of SKD. For already seen values of M , the game returns early, while for new values of M the
game ensures consistent random sampling by only sampling a new value in TSKD if one was not
set before (line 5). Additionally, game G2 sets a bad flag whenever a collision in the output of
SKD occurs (line 5).

Since G1 and G2 are semantically equivalent, we have

Pr[G1(AF)] = Pr[G2(AF)]. (23)

In the final game hop to G3, we always sample new values in TSKD, whether a collision in
the output of SKD occurred or not. Games G2,G3 in Figure 11 only differ when the bad flag is
set (line 5). By the fundamental lemma of game playing [13], we have

Pr[G2(AF)] = Pr[G3(AF)] + (Pr[G2(AF)]− Pr[G3(AF)]) (24)

≤ Pr[G3(AF)] + Pr[G2(AF) sets bad]. (25)

26

Fn(i,M) � Games G0, G1

1 Assert: M ∈ F
2 M1‖M2 ← SKD(M) � |M1| = |M2| = c

3 If T[i,M1‖M2] 6= ⊥ then return T[i,M1‖M2]

4 T[i,M1‖M2]← MAC�(Ki,M1‖M2) � G0

5 T[i,M1‖M2]←$ {0, 1}c � G1

6 Return T[i,M1‖M2]

Fn(i,M) � Games G2, G3

1 Assert: M ∈ F
2 If T[i,M] 6= ⊥ then return T[i,M]

3 M1‖M2 ← SKD(M)

4 If TSKD[i,M1‖M2] 6= ⊥ then:

� T[i,M] = ⊥, but TSKD[i,M1‖M2] 6= ⊥: collision for SKD

5 bad← 1; TSKD[i,M1‖M2]←$ {0, 1}c

6 Else: TSKD[i,M1‖M2]←$ {0, 1}c

7 T[i,M]← TSKD[i,M1‖M2]

8 Return T[i,M]

New(`)

1 Assert: ` ∈ MAC�.KL

2 n← n+ 1 ; `n ← ` ; Kn←$ {0, 1}`

Figure 11: The Fn and New oracles for games G0–G3 in the proof of Theorem 6.2. The boxed
code is only in game G3.

We can now build an adversary ASKD such that:

Pr[G2(AF) sets bad] ≤ AdvCR
SKD(ASKD), (26)

based on the following observation: bad is only set to true in line 5 if in an Fn query, (i,M) is
new, but (i,M1,M2) is not. (Otherwise the oracle returns already in line 2).) Hence, the only
way to set bad is via two queries (i,M) and (i,M ′) such that M 6= M ′, yet SKD(M) = M1‖M2 =
SKD(M ′). In other words, setting bad amounts to a collision for function SKD. Adversary ASKD

acts as the challenger in G3. Additionally, ASKD keeps track of queried messages in a table by
setting TColl[i,M1,M2]← M at the end of each query Fn(i,M) from AF. If adversary AF makes
a query Fn(i,M∗) which sets bad, ASKD computes M∗1 ‖M∗2 ← SKD(M∗) and outputs M∗ and
TColl[i,M

∗
1 ,M

∗
2] as the collision for SKD, establishing Equation (26).

We observe that G3 is the “random” vkl-PRF game Gvkl-PRF-0
F� (AF). Combining the equa-

tions, we obtain the bound in the theorem statement.

6.2 Analysis of HSKD

In order to deduce security for HMAC and HMAC� via the composition result from Theo-
rem 6, we need to analyze the properties of HMAC’s subkey derivation function HSKD shown
in Figure 3. We rewrite it, unfolding PoHb and HSKDb:

HSKD(K) . HSKD : {0, 1}∗ → {0, 1}2c

If |K | ≤ b then Kb ← K ‖ 0b−|K| else Kb ← H(K) ‖ 0b−c � PoHb
Ki ← h(IV,Kb ⊕ ipad) ; Ko ← h(IV,Kb ⊕ opad) � HSKDb
Return Ki‖Ko

27

We will next justify HSKD both as a variable seed-length PRG (for HMAC) and as a collision-
resistant function under restricted inputs (for HMAC�).

HSKD is a vsl-PRG. To prove that HSKD is a variable-seed-length PRG, we rely on properties
of its two building blocks, H and h. First, H is the MD hash function defined as H(K) =
h∗(IV,K ‖ pad(|K |)), which, given that it is only applied in the case that |K | > b, can be viewed
as an instantiation of the 2-tier cascade 2CSC, where the first tier is h�. Viewed this way, we
have

H(K) . H : {0, 1}∗ → {0, 1}c

K ← K ‖ pad(|K |); S ← K [b+ 1..|K |]
Return 2CSC[h�, h](K [1..b], (IV, S))

We will use the result from Lemma 1 to bound the probability of distinguishing the replacement
of the output of H(K) by a random c-bit string by the advantage of an adversary against the
PRF security of h� and h, respectively.

Next, we study the remaining invocations of h in Ki ← h(IV,Kb⊕ipad) = h�(Kb⊕ipad, IV)
and Ko ← h(IV,Kb⊕opad) = h�(Kb⊕opad, IV). Here, we reduce the distinguishing probability
of replacing Ki and Ko by uniformly sampled random strings in {0, 1}c to the advantage of an
adversary against the PRF security of h� under related-key attacks.

The RKD function of interest is Φzio,a : {0, . . . , b} × {ipad, opad} × {0, 1}b → {0, 1}b ∪ {⊥}
defined as follows: on inputs `, io,K , it returns ⊥ if ` < a and (K [1..`] ‖ 0b−`)⊕ io otherwise. In
more detail:

Φzio,a(`, io,K)

If ` < a then return ⊥
K ′ ← K [1..`] ‖ 0b−`

L← K ′ ⊕ io ; Return L

That is, Φzio,a is the related-key-deriving function that overwrites a b− `-bit long suffix of the
key with zeros, and then XORs the result with ipad or opad. The parameter a specifies the
length of the shortest prefix of the key which must be left unchanged before the XOR, otherwise
the function returns ⊥.

PRF security of h� under related-key attacks, together with regular PRF security of h�

and h then yield the following result.

Proposition 7 (vsl-PRG security of HSKD). Let HSKD : {0, 1}∗ → {0, 1}2c be as defined in
Figure 3. Let A be an adversary against the vsl-PRG security of HSKD. Let n = d`max(A)/be
be the block length of the maximal-length seed queried by A and let a = min(c, `min(A)). Then
we can construct adversaries Af , Ah and Ah� such that

Advvsl-PRG
HSKD (A) ≤ AdvPRF

h� (Af) + n ·AdvPRF
h (Ah) + Advrka-PRF

Φzio,a,h�
(Ah�) . (27)

Adversaries Af and Ah each make at most QFn(A) queries to New and at most QFn(A) queries
to Fn. Adversary Ah� makes QFn(A) queries to oracle New and 2 ·QFn(A) queries to oracle
Fn.

Proof of Proposition 7. The proof uses a sequence of games, G0-G3, all shown in Figure 12.

. Replacing 2CSC with a random function. The first game G0, is equivalent to the real vsl-PRG
game Gvsl-PRG-1

HSKD . Game G1 only differs from G0 in that the invocation of 2CSC[h�, h] on line 5
in Figure 12 is replaced by random sampling from {0, 1}c on line 6.

We construct an adversary A2CSC such that

Pr[G0(A)]− Pr[G1(A)] ≤ AdvPRF
2CSC(A2CSC) . (28)

28

Adversary A2CSC, shown in Figure 12, simulates game G0 for A, acting as the challenger, except
in two ways. First, if A issues a Fn(`) query with ` > b, then instead of sampling the whole
`-bit key itself, adversary A2CSC calls oracle New in the GPRF-d

2CSC game to initialize a new b-bit
key for 2CSC. It then samples the remaining `− b bits of the key for HSKD, applies the padding
function and sets S to be the padded suffix of the key. Next, instead of computing 2CSC itself,
adversary A2CSC queries its own Fn oracle under the newly created key on input IV and S.

This way, adversary A2CSC simulates game G(d−1) (d ∈ {0, 1}) for A when playing game

GPRF-d
2CSC itself. This gives the bound in Equation (28). A2CSC makes at most QFn(A) New

queries and at most one Fn query under each key (hence they are all trivially prefix free). The
second component S in each Fn query is at most n = d`max(A)/be blocks, since S consists of
all but the first block of the padded key K and |K |/b ≤ d`max(A)/be + 1, since |K | ≤ `max(A)
and the padding adds at most one extra block.

Hence, by definition of G0 and applying Equation (28), we have

Pr[Gvsl-PRG-1
HSKD (A)] = Pr[G0(A)]

= (Pr[G0(A)]− Pr[G1(A)]) + Pr[G1(A)]

≤ AdvPRF
2CSC(A2CSC) + Pr[G1(A)] . (29)

. Replacing h� with a random function. Next, we simplify G1 to the semantically equivalent
G2, shown in Figure 12. Game G3, also in Figure 12, is identical to G2, except that lines 3
and 4 are replaced by line 5. We construct an adversary Ah� such that

Pr[G2(A)]− Pr[G3(A)] ≤ Advrka-PRF
Φzio,a,h�

(Ah�) . (30)

Adversary Ah� , shown in Figure 12, runs adversary A, acting as the challenger in G2, except
in two ways. First, instead of sampling X on its own as on lines 1 and 2, adversary Ah� calls
oracle New in game Grka-PRF

Φzio,a,h�
(Ah�) on input ` if ` ≤ b and else on c. Then, instead of invoking

h� to create Ki and Ko as on lines 3 and 4 in Figure 12, Ah� calls its Fn oracle under the new
key and second RKD parameter ipad and opad, respectively.

When adversary A halts and returns, adversary Ah� also halts and returns the same output.
This way, adversary Ah� soundly simulates G2 and G2 when playing game Grka-PRF-d

Φzio,a,h�
, with

d = 1 and d = 0, respectively. Here, a = min(c, `min(A)) is the smallest value on which Ah� calls
oracle New while simulating the game for A. This justifies the claimed bound in Equation (30).

Furthermore, game G3 is equivalent to the “random” vsl-PRG game Gvsl-PRG-0
HSKD (A). Hence,

putting the above together, we have

Advvsl-PRG
HSKD (A) ≤ AdvPRF

2CSC(A2CSC) + Advrka-PRF
Φzio,a,h�

(Ah�) . (31)

. Applying Lemma 1. We now apply Lemma 1 to bound AdvPRF
2CSC(A2CSC) in Equation (31) by

the advantages of two adversaries Af and Ah, both constructed as in the proof of Lemma 1.
This gives

AdvPRF
2CSC(A2CSC) ≤ AdvPRF

h� (Af) + n ·AdvPRF
h (Ah). (32)

Adversary Af makes QNew(A2CSC) ≤ QFn(A) queries to New and QFn(A2CSC) ≤ QFn(A)
to Fn. Adversary Ah makes at most QFn(A2CSC) ≤ QFn(A) queries to New and QFn(A2CSC) ≤
QFn(A) to Fn.

Combining Equation (31) and Equation (32) gives the claimed bound in Equation (27) of
the Theorem statement.

HSKD is collision resistant for feasible input spaces. As already pointed out in the
introduction, it is easy to find colliding messages for HMAC�, due to how short key inputs (now

29

Fn(`) � Games G0, G1

1 K ←$ {0, 1}`

2 If ` ≤ b then Kb ← K ‖ 0b−`

3 Else:

4 K ← K‖pad(`); S ← K [b+ 1..|K |]
5 X ← 2CSC[h�, h](K [1..b], (IV, S)) � G0

6 X ←$ {0, 1}c � G1

7 Kb ← X ‖ 0b−c

8 Ki ← h(IV,Kb ⊕ ipad) ; Ko ← h(IV,Kb ⊕ opad)

9 Return Ki‖Ko

Fn(`) � Games G2, G3

1 If ` ≤ b then X ←$ {0, 1}`

2 Else X ←$ {0, 1}c

3 Ki ← h�(X ‖ 0b−|X| ⊕ ipad, IV) � G2

4 Ko ← h�(X ‖ 0b−|X| ⊕ opad, IV) � G2

5 Ki‖Ko←$ {0, 1}2c � G3

6 Return Ki‖Ko

Adversary A2CSC():

Fn∗(`)

1 n← n+ 1; K ←$ {0, 1}`

2 If ` ≤ b then Kb ← K ‖ 0b−`

3 Else:

4 New() � Initialize b-bit key for 2CSC

5 K ← K‖pad(`); S ← K [b+ 1..|K |]
6 X ← Fn(n, (IV, S))

7 Kb ← X ‖ 0b−c

8 Ki ← h(IV,Kb ⊕ ipad)

9 Ko ← h(IV,Kb ⊕ opad)

10 Return Ki‖Ko

Adversary Ah�():

Fn∗(`)

1 n← n+ 1

2 If ` ≤ b then New(`)

3 Else New(c)

4 Ki ← Fn(n, ipad, IV)

5 Ko ← Fn(n, opad, IV)

6 Return Ki‖Ko

Figure 12: Games and adversaries for the proof of Proposition 7. Both adversary A2CSC (left)
and Ah� (right) run adversary A, simulating access to oracle Fn through subroutines Fn∗ and
returning with the output of A. Functions h� and h∗ are the swapped function and cascade
construction, respectively, associated to the compression function h : {0, 1}c×{0, 1}b → {0, 1}c,
as defined in Figure 3. IV, ipad and opad are public constants.

messages, under adversarial control) are padded with zeros and long key inputs are hashed
down (then padded). Indeed, these trivial collisions are instances of bigger classes of collisions
that exist for HSKD, which for HMAC� is applied to the message input. Since such collisions
in HSKD immediately yield PRF attacks on HMAC�, the natural question thus is: for which
input spaces is HSKD collision resistant?

Let HSKD[S] : S → {0, 1}2c be the restriction of HSKD to the input space S, corresponding
to HMAC[S], i.e., restricting the key space of HMAC to S. Focusing on length-closed sets,
we now give a complete characterization of the class of feasible sets for which we will show
HSKD[S] to be collision resistant (enabling swap-PRF security of HMAC[S]). For all other sets,
we will give attacks against swap-PRF security of HMAC[S]. Together with our attack results
on HMAC� below, this will establish that HMAC[S]� is vkl-PRF secure if and only if S is
feasible.

We can write any finite length-closed set as S = {0, 1}`1 ∪ · · · ∪ {0, 1}`n , `1 < · · · < `n, for
n, `1, . . . , `n ∈ N. Then S belongs to (exactly) one of the following classes:

1. S ⊆ {0, 1}>b: The class of feasible sets of only “long” keys (of lengths > b), denoted SL.

2. S ⊆ {0, 1}≤b: We distinguish between

30

(2a) n = 1: The class of feasible sets of the form {0, 1}` (for some ` ≤ b) of “short”,
fixed-length keys, denoted SS .

(2b) n > 1: We give 0-padding attacks for these sets.

3. ∃i, j ∈ [1, n] : `i ≤ b ∧ `j > b: We distinguish between

(3a) c ≤ `i ≤ b: We give hash-confusion attacks for these sets.

(3b) `i < c: We give hash-suffix attacks for these sets. (Note that a key length smaller
than the c-bit output length of the compression function is an unnatural choice of
keys. We nevertheless discuss attacks.)

We now first establish that HSKD[S] is collision resistant for the classes of feasible sets of
“short”, fixed-length keys SS = {0, 1}` (for some ` ≤ b) and only “long” keys SL ⊆ {0, 1}>b,
assuming collision resistance of the compression function h. Essentially, keys from feasible
sets colliding under HSKD requires a collision under one of the internal h calls. Notably, our
results for feasible sets mean that HSKD is collision-resistant whenever fixed-length keys are used
(no matter the length). This in particular covers the dual-PRF usage of HMAC in practice,
since protocols like TLS 1.3 [49], KEMTLS [52] and MLS [23] use fixed-length key inputs; see
Appendix A for a detailed discussion.

In Proposition 9, we then complete this characterization by giving attacks on the PRF
security of HMAC� for all other (infeasible) input sets, which generically emerge through finding
collisions in HSKD.

Proposition 8 (CR security of HSKD[S]). Let h and HSKD be defined as in Figure 3. Let
HSKD[S] : S → {0, 1}2c be the restriction of HSKD to a feasible set S of type SS or SL defined
above. Let A be a CR adversary for HSKD[S]. Then we can construct an adversary Ah such
that

AdvCR
HSKD[S](A) = AdvCR

h (Ah) . (33)

The running time of the constructed adversary is about the same as that of A.

Proof of Proposition 8. Recall the definition of HSKD in Figure 3, unfolding PoHb and HSKDb.
For inputs K from SS , we are in the case |K | ≤ b, for inputs from SL, we are in the case |K | > b,
so:

HSKD[S](K)

If S = SS then Kb ← K ‖ 0b−|K| � PoHb
If S = SL then Kb ← H(K) ‖ 0b−c � PoHb
Ki ← h(IV,Kb ⊕ ipad) ; Ko ← h(IV,Kb ⊕ opad) � HSKDb
Return Ki‖Ko

. Case SS . We construct Ah as follows: Ah simulates the CR game for A. When A outputs
(K ,K ′) such that HSKD[SS](K) = HSKD[SS](K ′), Ah computes Kb = (K‖0b−`) ⊕ ipad, K ′b =
(K ′‖0b−`)⊕ipad, and outputs ((IV,Kb), (IV,K

′
b)). Since K ,K ′ ∈ SS = {0, 1}` (for fixed ` ≤ b),

both keys get padded with the same number of zero bits. Hence, if K 6= K ′, then Kb 6= K ′b, and
AdvCR

HSKD[S](A) = AdvCR
h (Ah).

. Case SL. If A outputs a collision (K ,K ′) such that HSKD[SL](K) = HSKD[SL](K ′), it follows
that h(IV,Kb ⊕ ipad) = h(IV,K ′b ⊕ ipad), and likewise for opad. Since K ,K ′ ∈ SL ⊆ {0, 1}>b,
both keys get hashed and then padded to obtain Kb ← H(K) ‖ 0b−c resp. K ′b ← H(K ′) ‖ 0b−c.
This means that either Kb 6= K ′b, and there was a collision in the outputs of h, or that Kb = K ′b,
and there was a collision in the outputs of H.

We construct Ah as follows: Run A to obtain an HSKD collision (K ,K ′), and compute
Kb ← PoHb(K) and K ′b ← PoHb(K

′). If Kb 6= K ′b, output ((IV,Kb), (IV,K
′
b)) as a collision

31

for h. Otherwise, following the proof of CR for H as the Merkle–Damg̊ard [45, 25] iteration of h,
trace backwards through the computation of H(K) = H(K ′) to find the compression function
calls that collide on the output for distinct input values in H(K) = H(K ′) and output those
colliding values. (Such collision must exist since K 6= K ′.) Hence, Ah outputs a collision for h
when A outputs one for HSKD, justifying Equation (33).

Proposition 9 (PRF-insecurity of HMAC[S]� for infeasible S). Consider HMAC�[Si] : {0, 1}∗×
Si → {0, 1}c for the following infeasible Si from the characterization above:

1. S1 (case 2b), with {0, 1}`i ∪ {0, 1}`j ⊆ S1 for `i 6= `j and `i < `j ≤ b,

2. S2 (case 3a), with {0, 1}`i ∪ {0, 1}`j ⊆ S2 for c ≤ `i ≤ b and `j > b, and

3. S3 (case 3b), with {0, 1}`i ∪ {0, 1}`j ⊆ S3 for `i < c and `j > b.

Then HMAC�[Si] is not PRF secure. Concretely, we construct adversaries Ai such that

AdvPRF
HMAC�[S1]

(A1) = AdvPRF
HMAC�[S2]

(A2) = 1− 2−c , and (34)

AdvPRF
HMAC�[S3]

(A3) = 2`i−c − 2−c , (35)

which make one New and two Fn queries and run in small, constant time. The bound for A3

conservatively assumes H behaves like a random oracle.

Note that for the rather unnatural set S3 (case 3b), the adversary A3 we construct has
advantage proportional to 2`i−c. If |`i − c| is small, then the adversary has high probability of
winning the PRF game. If |`i − c| is large, this means `i is much smaller than the compression
function output length, in which case a better strategy for attacking the PRF security via
exhaustive key search (taking about 2`i time for keys of length `i) might come in reach.

Proof of Proposition 9. Recall that HMAC[S]� = Comp[NMAC�,HSKD[S]].
We start by observing that an adversaryASKD against the collision resistance of HSKD[S] can

directly be used to build an adversary A against the PRF security of HMAC[S]�. Adversary A
runs ASKD to obtain a collision (M ,M ′)—that is, M 6= M ′ with HSKD[S](M) = HSKD[S](M ′).
It then issues a New() query and two Fn queries, Y ← Fn(1,M) and Y ′ ← Fn(1,M ′),
to its PRF game, and outputs 1 if Y = Y ′. In the real world (b = 1), we always have
Y = HMAC�(K ,M) = HMAC�(K ,M ′) = Y ′; in the random world (b = 0), Y ,Y ′ are drawn
at random from {0, 1}c, colliding with probability 2−c. Hence,

AdvPRF
HMAC[S]�(A) = AdvCR

HSKD[S](ASKD)− 2−c. (36)

Let us now examine the three choices of Si separately, and describe the collision-finding
strategy for HSKD[Si] in each case.

. 0-padding attacks in S1. Define ASKD to pick any M ∈ {0, 1}`i , set M ′ = M ‖ 0`j−`i , and
output (M ,M ′). Due to PoHb zero-padding both messages to b bits, (M ,M ′) is a collision for
HSKD with probability 1. Via Eq. (36), this yields the claim for S1.

. Hash-confusion attacks in S2. Define ASKD to pick any M ∈ {0, 1}`j , set M ′ = H(M) ‖ 0b−c,
and output (M ,M ′). Due to PoHb hashing down and then zero-padding keys longer than b bits,
(M ,M ′) is a collision for HSKD with probability 1. Via Eq. (36), this yields the claim for S2.

. Hash-suffix attacks in S3. As for S2, let ASKD pick any M ∈ {0, 1}`j , set M ′ = H(M) ‖ 0b−c,
and output (M ,M ′). Due to PoHb hashing down and then zero-padding keys longer than b bits,
(M ,M ′) is a collision for HSKD if the last c−`i bits of H(M) are zeros. Conservatively assuming
H behaves like a random oracle, the probability for this is 2c−`i . Via Eq. (36), this yields the
claim for S3.

32

6.3 vkl-PRF Security of HMAC

Existing proofs of PRF security of HMAC assume a b-bit key [8, 5, 6], i.e., they actually only
hold for HMACb. As standardized [39, 46], HMAC however allows keys of varying length. Com-
bining Theorem 6.1 with our results on multi-user PRF security of NMAC (Theorem 5) and
vsl-PRG security of HSKD (Proposition 7), we establish vkl-PRF security for HMAC through
the composition HMAC = Comp[NMAC,HSKD], assuming dual-PRF security of h and rka-PRF
security of h�.

Theorem 10 (vkl-PRF security of HMAC). Let c, b, and pad be as in Section 4, and functions
h, HMAC be as defined in Figure 3. Let A be an adversary against the vkl-PRF security of
HMAC. Assume each of its Fn queries has length at most L, and let m = 1 + dL/be. Let
qf = QFn(A) and assume m · qf < 2b. Assume A’s queries to New have minimal and maximal
key length `min(A) resp. `max(A). Let n = d`max(A)/be, a = min(c, `min(A)), and Φzio,a be the
“zero-pad-then-xor” RKD function defined in Section 6.2. Then we can construct adversaries
Ah, Af and Ah� such that

Advvkl-PRF
HMAC (A) ≤ (m+ 2 + n) ·AdvPRF

h (Ah) +
qf (qf − 1)

2c+1

+ AdvPRF
h� (Af) + Advrka-PRF

Φzio,a,h�
(Ah�) . (37)

Adversary Ah makes max(QNew(A),QFn(A)) queries to each of New and Fn. Adversaries Af ,
Ah� make QNew(A) queries to New, Af makes at most QNew(A) queries to Fn, and Ah�

makes 2 · QNew(A) to Fn. The running times of adversaries Ah,Af and Ah� are about the
same as that of A.

Proof of Theorem 10. Applying Theorem 6.1 to HMAC = Comp[NMAC,HSKD] gives us adver-
saries AMAC and ASKD such that

Advvkl-PRF
HMAC (A) ≤ AdvPRF

NMAC(AMAC) + Advvsl-PRG
HSKD (ASKD) .

In terms of oracle queries, we have QNew(AMAC) = QNew(A) and QFn(AMAC) = QFn(A), while
ASKD makes one Fn query for each of the QNew(A) users and has minimal and maximal seed
length `min(A) resp. `max(A).

We next apply Theorem 5 to obtain

AdvPRF
NMAC(AMAC) ≤ (m+ 2) ·AdvPRF

h (Ah,1) +
qf (qf − 1)

2c+1

for qf = QFn(AMAC) = QFn(A) and an adversary Ah,1 with QNew(Ah,1) = QFn(Ah,1) =
QFn(AMAC) = QFn(A).

We then apply Proposition 7, yielding

Advvsl-PRG
HSKD (ASKD) ≤ AdvPRF

h� (Af) + n ·AdvPRF
h (Ah,2) + Advrka-PRF

Φzio,a,h�
(Ah�)

for adversaries Af , Ah,2, Ah� and terms n = d`max(A)/be (the block length of the maximal-
length key) and a = min(c, `min(ASKD)) = min(c, `min(A)) (the shortest RKA key-prefix).

In terms of oracle queries, we have

QNew(Af) = QNew(Ah,2) = QNew(Ah�) = QFn(ASKD) = QNew(A) ,

QFn(Af),Q
Fn(Ah,2) ≤ QFn(ASKD) = QNew(A), and

QFn(Ah�) = 2 ·QFn(ASKD) = 2 ·QNew(A) .

Finally we merge adversaries Ah,1,Ah,2 using Lemma 3 with weights w1 = m+2 and w2 = n
to get an adversary Ah such that

(m+ 2) ·AdvPRF
h (Ah,1) + n ·AdvPRF

h (Ah,2) ≤ (m+ 2 + n) ·AdvPRF
h (Ah) .

with oracle query counts QFn(Ah) = QNew(Ah) = max(QFn(A),QNew(A)).
Summing the terms and collecting the adversary resources yields the claim.

33

6.4 vkl-PRF Security of HMAC�

We finally turn to the swap-PRF security of HMAC. Letting HMAC[S]� : {0, 1}∗ ×S → {0, 1}c
denote the restriction of HMAC� to keys from a set S, we establish vkl-PRF security of
HMAC[S]� for the feasible key input spaces of the forms SS = {0, 1}` (for some ` ≤ b)
and SL ⊆ {0, 1}>b.

Again, we obtain this result via Theorem 6.2 for the composition HMAC[S]� = Comp[NMAC�,
HSKD[S]]. Leveraging our vkl-PRF security result of NMAC� (Theorem 4) and collision re-
sistance of HSKD for feasible S (Proposition 8), we establish vkl-PRF security for HMAC[S]�

assuming PRF security of h, rka-PRF security of h�, and collision resistance of h.
One might note that CR of h is not assumed in the proofs of PRF security for HMACb [5, 30].

So why extra assumptions for HMAC�? The answer is that collisions in the hash function H lead
to attacks violating PRF security of HMAC�, as mentioned before and detailed in Section 6.2.
Collision resistance of h rules this out.

Theorem 11 (vkl-PRF security of HMAC[S]�). Let c, b, and pad be as in Section 4, and
functions h, HMAC� be as defined in Figure 3. Let S be a feasible key input space as de-
fined in Section 6.2 and HMAC[S]� : {0, 1}∗ × S → {0, 1}c be the swap of HMAC restricted to
keys from S. Let A be an adversary against the vkl-PRF security of HMAC[S]� whose New
queries have minimal and maximal key length `min(A) resp. `max(A). Let n = d`max(A)/be,
a = min(c, `min(A)), and Φpad,a be the “padding” RKD function defined in Section 5.1. Then
we can construct adversaries Ah�, Ah,1, Ah,2 such that

Advvkl-PRF
HMAC[S]�(A) ≤ 2 ·Advrka-PRF

Φpad,a,h�
(Ah�) + n ·AdvPRF

h (Ah,1) + AdvCR
h (Ah,2) . (38)

Adversary Ah� makes at most max(QNew(A),QFn(A)) queries to New and at most QFn(A)
to Fn. Ah,1 makes QFn(A) queries to each of New and Fn. The running times of the con-
structed adversaries are about the same as that of A.

Proof of Theorem 11. We apply Theorem 6.2 to HMAC[S]� = Comp[NMAC�,HSKD[S]] which
yields adversaries AMAC and ASKD such that

Advvkl-PRF
HMAC[S]�(A) ≤ Advvkl-PRF

NMAC�(AMAC) + AdvCR
HSKD[S](ASKD) . (39)

In terms of oracle queries, we have QNew(AMAC) = QNew(A) and QFn(AMAC) = QFn(A).
We next apply Theorem 4 to obtain

Advvkl-PRF
NMAC�(AMAC) ≤ 2 ·Advrka-PRF

Φpad,a,h�
(Ah�) + n ·AdvPRF

h (Ah,1) . (40)

for adversaries Ah� and Ah,1 with

QNew(Ah�) = max(QNew(AMAC),QFn(AMAC)) = max(QNew(A),QFn(A))

and QFn(Ah�) ≤ QFn(A), and adversary Ah,1 with

QNew(Ah,1) = QFn(Ah,1) = QFn(AMAC) = QFn(A).

We then apply Proposition 8 to obtain, for any feasible key input space S,

AdvCR
HSKD[S](ASKD) ≤ AdvCR

h (Ah,2) . (41)

Summing the terms and collecting the adversary resources yields the claim.

34

7 Proofs for the rka-PRF Security of h�

We study the assumption of rka-PRF security of h�, needed for the vkl-PRF security of NMAC�

(Theorem 4) and the vsl-PRG security of HSKD (Proposition 7) when h is the Davies-Meyer
hash function. That is, we let h(X , L) = E(L,X) ⊕ X , where E : {0, 1}b × {0, 1}c → {0, 1}c is
the underlying block cipher with b-bit key and c-bit input and output.

The assumption that h� is rka-PRF secure has already been made [5, 6] in the single-user
setting for what (in our notation) is the RKD function Φio : {ε}×{ipad, opad}×{0, 1}b → {0, 1}b
defined by Φio(ε, io, L) := L⊕ io for io ∈ {ipad, opad}. (Here we recast the single-user definition
of [11] in our multi-user notation and define the RKD function as a multi-variable function,
where the second variable defines the behavior of the function, rather than define a set of RKD
functions which each only take the key as input.)

As we noted in the introduction, Section 1.4, the PRF security of h� is arguably a milder
assumption than the PRF security of h itself. This is because in the Davies-Meyer construction,
the key X for h is the message for E. But if we consider h�(L,X) = E(L,X) ⊕ X as a PRF,
the key L is actually the block cipher key. Thus (rka-)PRF security follows from (rka-)PRP
security of E. This is not true for h.

In the following, we show that for any RKD function Φ, the Φ-rka-PRF security of h�

follows from the Φ-rka-PRP security of E. Then, in Section 7.2, we justify the assumption that
E is rka-PRP secure for the RKD functions Φpad,a and Φzio,a needed for our results.

7.1 Φ-rka-PRF Security of h�

Proposition 12 (rka-PRF security of h� under rka-PRP assumptions). Let E : {0, 1}b×{0, 1}c
→ {0, 1}c be a block cipher. Let the h� : {0, 1}b × {0, 1}c → {0, 1}c be defined by h�(L,X) =
E(L,X)⊕X . Let A be an adversary against the Φ-rka-PRF security of h�. Then

Advrka-PRF
Φ,h� (A) ≤ QFn(A)2

2c
+ Advrka-PRP

Φ,E (AE) (42)

for an adversary AE making QNew(A) queries to oracle New and QFn(A) queries to oracle
Fn.

The idea of the proof is to first replace the block cipher invocation in h� by random permu-
tations, a hop which is bounded by the advantage of adversary AE against the rka-PRP security
of E. Then, the permutations are replaced by random functions, incurring the additive term in
the bound (cf. the multi-user PRP/PRF switching lemma in [10]).

Proof of Proposition 12. The proof uses a sequence of games G0−G3, shown in Figure 13. The
games are all executed with adversary A.

. Replacing E with random permutations. We begin with game G0 being Grka-PRF-1
Φ,h�

(A). That
is, G0 is the “real” rka-PRF game. The first game hop, to game G1, replaces the evaluation of
the blockcipher E in oracle Fn by the evaluation of a random permutation. That is, G0 and
G1 differ only in oracle Fn, where line 6 is only in G0 and line 7 is only in G1. By standard
equation rewriting

Pr[Grka-PRF-1
Φ,h� (A)] = Pr[G0(A)]

= Pr[G1(A)] + (Pr[G0(A)]− Pr[G1(A)]).
(43)

We build an adversary AE such that

Pr[G0(A)]− Pr[G1(A)] ≤ Advrka-PRP
Φ,E (AE). (44)

35

Game G0, G1:

New(α)

1 n← n+ 1; Ln←$ {0, 1}b; αn ← α

2 For all L ∈ {0, 1}b do:

3 Πn,L←$ PERM[{0, 1}c]

Fn(i, β,X)

4 Assert: Φαi,β(Li) 6= ⊥
5 L′i ← Φαi,β(Li)

6 Z ← E(L′i,X) � G0

7 Z ← Πi,L′i
(X) � G1

8 Return Z ⊕X

Game G2, G3:

New(α)

1 n← n+ 1; Ln←$ {0, 1}b; αn ← α

Fn(i, β,X)

2 Assert: Φαi,β(Li) 6= ⊥
3 L′i ← Φαi,β(Li)

4 If T[i, L′i,X] 6= ⊥ then:

5 Return T[i, L′i,X]

6 Z ←$ {0, 1}c

7 If Z ∈ T[i, L′i, ·].R then:

8 bad← 1

9 Z ←$ {0, 1}c \ T[i, L′i, ·].R � G2

10 T[i, L′i,X]← Z

11 Return T[i, L′i,X]⊕X

Figure 13: Games G0-G3 for the proof of Proposition 12. T[i, L′i, ·].R is the set of all Z ∈ {0, 1}c
such that Z = T[i, L′i,X] for some X .

Adversary AE runs A, acting as the challenger in G0, except that it relays New and Fn
queries from A to its own corresponding oracles in the Grka-PRP

Φ,E game. Hence, adversary AE

makes one New query for each of the QNew(A) New queries made by A and one Fn query for
each of the QFn(A) Fn queries made by A. This way, adversary AE soundly simulates G(1−d)

when playing game Grka-PRP-d
Φ,E , for d ∈ {0, 1}. When adversary A halts, AE halts and returns

the same output. This yields the bound in Equation (44).

. Replacing the random permutations with random functions. We rewrite game G1 as G2

on the right in Figure 13, replacing the permutations sampled in oracle New by consistent
lazy sampling in the Fn oracle. For each new query Fn(i, β,X), the oracle initially samples
Z ←$ {0, 1}c. If the sampled value violates the permutation condition, meaning that Z was
already sampled in response to an earlier Fn query under the same derived key for some X ′ 6= X ,
then a flag bad is set to 1 and Z is sampled again from the set of unused strings in {0, 1}c. Since
G2 is syntactically different, but semantically equivalent to G1, we have Pr[G1(A)] = Pr[G2(A)],
giving

Pr[Grka-PRF-1
Φ,h� (A)] ≤ Pr[G2(A)] + Advrka-PRP

Φ,E (AE) (45)

= Pr[G3(A)] + (Pr[G2(A)]− Pr[G3(A)]) + Advrka-PRP
Φ,E (AE).

by combining Equation (43) and Equation (44) and rewriting.
Next, game G3 is identical to game G2, except that Z is not resampled after the bad flag is

set to 1. That is, we replace the lazily sampled random permutations in G2 by random functions
in G3. Because G2 and G3 are identical-until-bad, we have

Pr[G2(A)]− Pr[G3(A)] ≤ Pr[G3 sets bad] (46)

by the fundamental lemma of game playing [13]. Furthermore, G3 is equivalent to Grka-PRF-0
Φ,h�

(A),

since each Fn query with a new (i, L′i,X)-tuple is responded to by Z⊕X , where Z is a randomly
sampled string in {0, 1}c and XOR preserves the uniform probability distribution.

Therefore, by combining Equation (45) and Equation (46) we have

Advrka-PRF
Φ,h� (A) ≤ Pr[G3 sets bad] + Advrka-PRP

Φ,E (AE). (47)

36

We claim that Pr[G3 sets bad] ≤ (QFn(A))2/2c, where QFn(A) is the number of Fn queries
made by adversary A, yielding the bound in Proposition 12. Next we proceed to prove the
claim.

We are trying to bound the collision probability of randomly sampled c-bit strings within
each set T[i, L′i, ·].R for every (i, L′i) pair. Put differently, we want to apply a multi-user version
of the PRP/PRF switching lemma, where each user corresponds to a pair (i, L′i), with the
goal of bounding the probability that an adversary can distinguish the switch from random
permutations to random functions.

At any point in time, the maximum size of T[i, L′i, ·].R is at most QFn(A) for any (i, L′i),
since each table entry is the result of a query to oracle Fn. Hence, when sampling Z ←$ {0, 1}c,
the probability that Z ∈ T[i, L′i, ·].R is at most QFn(A)/2c, and this is also an upper bound on
the probability that this query sets bad to 1. Since there are at most QFn(A) queries to oracle
Fn which can set bad in total, this gives Pr[G3 sets bad] ≤ (QFn(A))2/2c, by the union bound.

Note that this bound is somewhat loose, but gets close to the actual probability in the case
when all Fn queries by adversary A are to the same (i, L′i) pair. The bound then would be the
usual (QFn(A))2/2c+1 from the PRP/PRF switching lemma.

7.2 Φ-rka-PRP Security of Block Ciphers in ICM

To validate the assumption on the block cipher E in Proposition 12, we prove the Φ-rka-PRP
security of E modeled as an ideal cipher for the RKD functions Φpad,a and Φzio,a.

Discussion. BK [11] give conditions on an RKD function which they show suffice for rka-PRP
security of an ideal cipher. (An extension of their result is given by AFPW [1].) So one approach
that may be suggested for our goal would be to show that Φpad,a and Φzio,a meet these conditions
and then invoke the BK result. However, the BK and AFPW results are in the single-user (su)
setting and our definitions are in our, new, multi-user (mu) setting. We could ask if a hybrid
argument would reduce mu security to su security, but it is not clear how to do this in an
effective way because we allow the RKD functions to be different across users. Instead, we give
direct proofs that give explicit bounds.

So far, the parameter a to the RKD functions has been carried around through the proofs,
seemingly without any effect. However, since a corresponds to the minimal key length of the
adversaries against our higher level primitives, e.g. in the proofs of vkl-PRF security of HMAC
(Thm. 10) and HMAC� (Thm. 11), it clearly cannot be arbitrarily small. Now, it finally shows
up in the following Proposition statements, as a factor in the rka-PRP advantage. Indeed, the
advantage bounds directly show that security relies on a being large enough.

Definitions. We first extend our multi-user definition of rka-PRP security of a block cipher
E : K×X → X to the ideal cipher model by adding oracles E and E-1 to the game in Figure 2,
giving the adversary access to the ideal cipher (and its inverse). Additionally, the game replaces
the use of E in oracle Fn by a call to oracle E. For each K ∈ K, a permutation Πk is drawn
at random from PERM[X]. Oracle E takes as input a pair (k, x) ∈ K × X and returns Πk(x),
while oracle E-1 takes as input a pair (k, y) ∈ K × X and returns Π−1

k (y). The resulting game
Grka-PRP
K,X , parameterized by K,X and d ∈ {0, 1} is shown in Figure 14. We define the advantage

of an adversary A by

Advrka-PRP
Φ,K,X (A) = Pr[Grka-PRP-1

Φ,K,X (A)]− Pr[Grka-PRP-0
Φ,K,X (A)].

Φpad,a-rka-PRP security of ideal ciphers. Recall from Section 5.1 that Φpad,a : {0, . . . , b}×
{ε}×{0, 1}b → {0, 1}b∪{⊥} takes input `, ε,K to return ⊥ if ` < a and K [1..`] ‖ pad(b+`)[1..b−`]
otherwise. Note that the bound in Eq. (48) in the following Proposition does not depend on
the number QFn(A) of Fn queries of the adversary A.

37

Game Grka-PRP-d
Φ,K,X :

Init()

1 For each k ∈ K do:

2 Πk←$ PERM[X]

E(k, x)

3 Return Πk(x)

E-1(k, y)

4 Return Π−1
k (y)

New(α)

5 n← n+ 1 ; Ln←$K; αn ← α

6 For all L ∈ K do:

7 Πn,L←$ PERM[X]

Fn(i, β,X)

8 Assert: Φαi,β(Li) 6= ⊥
9 L′ ← Φαi,β(Li) � Derived key

10 If d = 1 then return E(L′,X)

11 Else return Πi,L′(X)

Figure 14: Related-key attack PRP security games (d ∈ {0, 1}) in the ICM for block cipher
E : K ×X → X and RKD function Φ.

Proposition 13 (Φpad,a-rka-PRP security in the ideal cipher model). Let a, c < b be integers.
Let K = {0, 1}b and X = {0, 1}c. Let A be an ICM rka-PRP adversary. Let qic = QE(A) +
QE-1

(A) and let u = QNew(A). Then

Advrka-PRP
Φpad,a,K,X (A) ≤ u · qic

2a
+
u(u− 1)

2a+1
. (48)

Proof of Proposition 13. Let us call Π a family of permutations if Πk ∈ PERM[X] for each k ∈ K.
We visualize Π as a table with |K| rows and |X | columns, the row k column x entry in the table
being Πk(x). Our proof will consist entirely of manipulations of table rows. Manipulations
include rows being swapped across different tables, or resampled.

Proceeding, consider the games of Figure 15. It is assumed that a New(`) query satisfies
` ≥ a and that the second input to oracle Fn is always ε, allowing us to drop the “Assert”
conditions. Game G0 rewrites Grka-PRP-1

Φ,K,X , moving as many steps as possible from oracles into
Init(). We have

Pr[Grka-PRP-1
Φ,K,X (A)] = Pr[G0(A)] . (49)

The intent now is to move to game G3. Here, two families of permutations, ∆ and Γ, are
sampled. Queries to E and E-1 are answered via ∆, and queries to Fn via Γ, with the claim
that the adversary cannot distinguish the change, except with small probability. To formalize
and prove this claim we consider games G1,G2, where the former includes the boxed code and
the latter does not. The game starts out aiming to answer queries to E and E-1 via ∆, and
queries to Fn via Γ. The boxed code however, conflates rows where a difference would be visible
to the adversary. Thus in G1, for each key k, either ∆k or Γk answers all queries involving key
k. Even though the choice between the two is dynamically determined, it is static once made,
so that a single random permutation answers all queries for row k, just as in G0. So we have

Pr[G0(A)] = Pr[G1(A)]. (50)

Games G1,G2 are identical-until-bad so by the Fundamental Lemma of Game Playing [13] we
have

Pr[G1(A)] = Pr[G2(A)] + (Pr[G1(A)]− Pr[G2(A)]) (51)

≤ Pr[G2(A)] + Pr[G2(A) sets bad] . (52)

The probability that bad is set at lines 5 or 7 is at most uqic · 2−a, so

Pr[G2(A) sets bad] ≤ u · qic
2a

. (53)

38

Game G0:

Init()

1 For each k ∈ K do:

2 Πk←$ PERM[X]

3 For i = 1, . . . , u do:

4 Li←$K

E(k, x)

5 Return Πk(x)

E-1(k, x)

6 Return Π−1
k (x)

New(`)

7 n← n+ 1

8 L′n ← Ln[1..`]‖pad(b+ `)[1..b− `]

Fn(i, ε,X)

9 Return ΠL′i
(X)

Games G1 , G2:

Init()

1 For each k ∈ K do:

2 ∆k←$ PERM[X] ; Γk←$ PERM[X]

3 For i = 1, . . . , u do:

4 Li←$K ; Ji ← Li[1..a]

E(k, x)

5 If (∃ i : k[1..a] = Ji) then bad← 1 ; ∆k ← Γk

6 Return ∆k(x)

E-1(k, y)

7 If (∃ i : k[1..a] = Ji) then bad← 1 ; ∆k ← Γk

8 Return ∆−1
k (y)

New(`)

9 n← n+ 1 ; L′n ← Ln[1..`]‖pad(b+ `)[1..b− `]

Fn(i, ε,X)

10 Return ΓL′i(X)

Game G3:

Init()

1 For each k ∈ K do:

2 ∆k←$ PERM[X] ; Γk←$ PERM[X]

3 For i = 1, . . . , u do: Li←$K

E(k, x)

4 Return ∆k(x)

E-1(k, y)

5 Return ∆−1
k (y)

New(`)

6 n← n+ 1

7 L′n ← Ln[1..`]‖pad(b+ `)[1..b− `]

Fn(i, ε,X)

8 Return ΓL′i(X)

Games G4 , G5:

Init()

1 For each k ∈ K do:

2 ∆k←$ PERM[X]

3 For i = 1, . . . , u do: Li←$K

E(k, x)

4 Return ∆k(x)

E-1(k, y)

5 Return ∆−1
k (y)

New(`)

6 n← n+ 1; L′n ← Ln[1..`]‖pad(b+ `)[1..b− `]
7 γn ← PERM[X]

8 If (∃ j < n : L′j = L′n) then

9 bad← 1 ; γn ← γj

Fn(i, ε,X)

10 Return γi(X)

Figure 15: Games for proof of Proposition 13.

Game G3 is obtained by dropping unused code in G2, so

Pr[G2(A)] = Pr[G3(A)]. (54)

Now we want to move from G3 to game Grka-PRP-0
Φ,K,X . The difference is that the former uses

the same family of permutations Γ to answer Fn queries for all users, while the latter uses a
different family for each user. The difference is however only detectable if there is a key collision,

39

meaning L′i = L′j for some i 6= j. To formalize this and conclude we consider games G4,G5,
where the former includes the boxed code and the latter does not. Family Γ is no longer picked.
Instead, New picks a random permutation γn for the relevant row on line 7. In game G4, if
L′n = L′j , then the boxed code modifies the line 7 choice to ensure γn = γj . The result is that
γi plays the role of Γ′Li

in G3, so

Pr[G3(A)] = Pr[G4(A)] . (55)

In G5 however, the boxed code is absent, so γ1, . . . , γu are random, independent permutations.
This implies that

Pr[G5(A)] = Pr[Grka-PRP-0
Φ,K,X (A)] . (56)

Games G4,G5 are identical-until-bad so by the Fundamental Lemma of Game Playing [13] we
have

Pr[G4(A)] = Pr[G5(A)] + (Pr[G4(A)]− Pr[G5(A)]) (57)

≤ Pr[G5(A)] + Pr[G5(A) sets bad] . (58)

Finally

Pr[G5(A) sets bad] ≤ u(u− 1)

2a+1
, (59)

since each derived key L′j has a uniformly random prefix of at least a bits, and the probability
that G5 sets bad is bounded from above by the probability that any out of the at most u many
such prefixes collide. Putting the above together concludes the proof.

Φzio,a-rka-PRP security of ideal ciphers. Let ipad, opad ∈ {0, 1}b be distinct strings.
Recall from Section 6.2 that Φzio,a : {0, . . . , b} × {ipad, opad} × {0, 1}b → {0, 1}b ∪ {⊥} takes
input `, io,K to return ⊥ if ` < a and (K [1..`] ‖ 0b−`)⊕ io otherwise.

Proposition 14 (Φzio,a-rka-PRP security in the ideal cipher model). Let a, c < b be integers. Let

K = {0, 1}b and X = {0, 1}c. Let A be an ICM rka-PRP adversary. Let qic = QE(A)+QE-1
(A)

and let u = QNew(A). Then

Advrka-PRP
Φzio,a,K,X (A) ≤ 2u · qic

2a
+

4u(u− 1)

2a+1
. (60)

The proof is similar to that of Proposition 13 and is omitted. Briefly the idea is that for each
i there are now two related keys L′i and L′′i and the rest is the same. This leads to additional
factors of 2 in the bound.

References

[1] Martin R. Albrecht, Pooya Farshim, Kenneth G. Paterson, and Gaven J. Watson. On
cipher-dependent related-key attacks in the ideal-cipher model. In Antoine Joux, editor,
FSE 2011, volume 6733 of LNCS, pages 128–145. Springer, Heidelberg, February 2011.

[2] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber.
Post quantum noise. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 97–109. ACM Press, November 2022.

[3] Nimrod Aviram, Benjamin Dowling, Ilan Komargodski, Kenneth G. Paterson, Eyal Ronen,
and Eylon Yogev. Practical (post-quantum) key combiners from one-wayness and applica-
tions to TLS. Cryptology ePrint Archive, Report 2022/065, 2022. https://eprint.iacr.
org/2022/065.

40

https://eprint.iacr.org/2022/065
https://eprint.iacr.org/2022/065

[4] Manuel Barbosa and Pooya Farshim. The related-key analysis of Feistel constructions. In
Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of LNCS, pages
265–284. Springer, Heidelberg, March 2015.

[5] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 602–619. Springer,
Heidelberg, August 2006.

[6] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision resistance.
Journal of Cryptology, 28(4):844–878, October 2015.

[7] Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based PRFs: AMAC
and its multi-user security. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 566–595. Springer, Heidelberg, May
2016.

[8] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15.
Springer, Heidelberg, August 1996.

[9] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In 37th FOCS, pages 514–523. IEEE Com-
puter Society Press, October 1996.

[10] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authenticated encryp-
tion. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II,
volume 13276 of LNCS, pages 845–875. Springer, Heidelberg, May / June 2022.

[11] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 491–506. Springer, Heidelberg, May 2003.

[12] Mihir Bellare and Anna Lysyanskaya. Symmetric and dual PRFs from standard assump-
tions: A generic validation of an HMAC assumption. Cryptology ePrint Archive, Report
2015/1198, 2015. https://eprint.iacr.org/2015/1198.

[13] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[14] Eli Biham. New types of cryptanalytic attacks using related keys (extended abstract). In
Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 398–409. Springer,
Heidelberg, May 1994.

[15] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key impossible differential attacks
on 8-round AES-192. In David Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS,
pages 21–33. Springer, Heidelberg, February 2006.

[16] Eli Biham, Orr Dunkelman, and Nathan Keller. A simple related-key attack on the full
SHACAL-1. In Masayuki Abe, editor, CT-RSA 2007, volume 4377 of LNCS, pages 20–30.
Springer, Heidelberg, February 2007.

[17] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas Stebila.
Hybrid key encapsulation mechanisms and authenticated key exchange. In Jintai Ding and
Rainer Steinwandt, editors, Post-Quantum Cryptography - 10th International Conference,
PQCrypto 2019, pages 206–226. Springer, Heidelberg, 2019.

41

https://eprint.iacr.org/2015/1198

[18] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192
and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
1–18. Springer, Heidelberg, December 2009.

[19] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and related-key
attack on the full AES-256. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 231–249. Springer, Heidelberg, August 2009.

[20] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984.

[21] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-SIV: Multi-
user security, faster key derivation, and better bounds. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 468–499.
Springer, Heidelberg, April / May 2018.

[22] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH: Re-
lations, instantiations, and impossibility results. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 651–681. Springer, Hei-
delberg, August 2017.

[23] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis of the MLS key
derivation. In 2022 IEEE Symposium on Security and Privacy, pages 2535–2553. IEEE
Computer Society Press, May 2022.

[24] Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Fournet, Konrad Ko-
hbrok, and Markulf Kohlweiss. Key-schedule security for the TLS 1.3 standard. In Shweta
Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS,
pages 621–650. Springer, Heidelberg, December 2022.

[25] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer, Heidelberg, August 1990.

[26] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro. To hash
or not to hash again? (In)differentiability results for H2 and HMAC. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 348–366.
Springer, Heidelberg, August 2012.

[27] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, October 2021.

[28] Orr Dunkelman, Nathan Keller, and Jongsung Kim. Related-key rectangle attack on the
full SHACAL-1. In Eli Biham and Amr M. Youssef, editors, SAC 2006, volume 4356 of
LNCS, pages 28–44. Springer, Heidelberg, August 2007.

[29] Stephen Farrell. [Cfrg] erratum for hmac what do we think... IRTF Crypto Fo-
rum Research Group mailing list. https://mailarchive.ietf.org/arch/msg/cfrg/

hxj9UM2LdBy2eipAJX2idjQuxhk/, February 2017.

[30] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security of NMAC and
HMAC. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 113–130. Springer, Heidelberg, August 2014.

[31] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986.

42

https://mailarchive.ietf.org/arch/msg/cfrg/hxj9UM2LdBy2eipAJX2idjQuxhk/
https://mailarchive.ietf.org/arch/msg/cfrg/hxj9UM2LdBy2eipAJX2idjQuxhk/

[32] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[33] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The multi-user security
of GCM, revisited: Tight bounds for nonce randomization. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1429–1440.
ACM Press, October 2018.

[34] Seokhie Hong, Jongsung Kim, Sangjin Lee, and Bart Preneel. Related-key rectangle attacks
on reduced versions of SHACAL-1 and AES-192. In Henri Gilbert and Helena Handschuh,
editors, FSE 2005, volume 3557 of LNCS, pages 368–383. Springer, Heidelberg, February
2005.

[35] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zimmer-
mann. Post-quantum WireGuard. In 2021 IEEE Symposium on Security and Privacy,
pages 304–321. IEEE Computer Society Press, May 2021.

[36] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Yongfei Han, Tatsuaki Okamoto,
and Sihan Qing, editors, ICICS 97, volume 1334 of LNCS, pages 233–246. Springer, Hei-
delberg, November 1997.

[37] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks on reduced
AES-192 and AES-256. In Alex Biryukov, editor, FSE 2007, volume 4593 of LNCS, pages
225–241. Springer, Heidelberg, March 2007.

[38] Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang Zheng, editors,
AUSCRYPT’92, volume 718 of LNCS, pages 196–208. Springer, Heidelberg, December
1993.

[39] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authenti-
cation. RFC 2104 (Informational), February 1997. Updated by RFC 6151.

[40] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg,
August 2010.

[41] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key security degra-
dation. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 575–605. Springer, Heidelberg, December 2017.

[42] Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knudsen, editor, EU-
ROCRYPT 2002, volume 2332 of LNCS, pages 110–132. Springer, Heidelberg, April / May
2002.

[43] Erdem Memisyazici. RFC Erratum on RFC 2104, ”HMAC: Keyed-Hashing for Message
Authentication”. RFC Errata, Errata ID: 4809. https://www.rfc-editor.org/errata_
search.php?rfc=2104&eid=4809, September 2016.

[44] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 218–238. Springer, Heidelberg, August 1990.

[45] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 428–446. Springer, Heidelberg, August 1990.

43

https://www.rfc-editor.org/errata_search.php?rfc=2104&eid=4809
https://www.rfc-editor.org/errata_search.php?rfc=2104&eid=4809

[46] National Institute of Standards and Technology. The keyed-hash message authentication
code (HMAC). Technical Report Federal Information Processing Standards Publications
(FIPS PUBS) 198-1, U.S. Department of Commerce, Washington, D.C., 2008.

[47] National Institute of Standards and Technology. Secure hash standard (SHS). Technical
Report Federal Information Processing Standards Publications (FIPS PUBS) 180-4, U.S.
Department of Commerce, Washington, D.C., 2015.

[48] Raphael Chung-Wei Phan. Related-key attacks on triple-DES and DESX variants. In
Tatsuaki Okamoto, editor, CT-RSA 2004, volume 2964 of LNCS, pages 15–24. Springer,
Heidelberg, February 2004.

[49] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Pro-
posed Standard), August 2018.

[50] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, Progress in
Cryptology - VIETCRYPT 06, volume 4341 of LNCS, pages 211–228. Springer, Heidelberg,
September 2006.

[51] John M. Schanck and Douglas Stebila. A Transport Layer Security (TLS) Extension For Es-
tablishing An Additional Shared Secret – draft-schanck-tls-additional-keyshare-00. https:
//datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00,
April 2017.

[52] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without hand-
shake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1461–1480. ACM Press, November 2020.

[53] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hybrid key exchange in
TLS 1.3 – draft-ietf-tls-hybrid-design-05. https://datatracker.ietf.org/doc/html/

draft-ietf-tls-hybrid-design-05, August 2022.

[54] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

[55] Wentao Zhang, Wenling Wu, Lei Zhang, and Dengguo Feng. Improved related-key impos-
sible differential attacks on reduced-round AES-192. In Eli Biham and Amr M. Youssef,
editors, SAC 2006, volume 4356 of LNCS, pages 15–27. Springer, Heidelberg, August 2007.

A Dual-PRF Assumptions on HMAC in Prior Work

In many analyses of real-world protocols, HMAC is assumed to be a secure dual (or swap) PRF,
including works on TLS 1.3 [27, 24], KEMTLS [52], hybrid key-exchange designs [17, 53], post-
quantum versions of WireGuard [35] and Noise [2], and Message Layer Security (MLS) [23].
Here, we give an account of where the assumption shows up, and when it is supported by our
results.

Generally speaking, our results support the dual-PRF assumption on HMAC when used with
uniformly random keys in the aforementioned analyses (as keys in these real-world protocols
have fixed length and, hence, are feasible). Note, however, that since our results only cover
uniformly random PRF keys, they do not say anything about using HMAC to extract uniform
keys from non-uniform entropy inputs (following, for example, the HKDF paradigm [40]). In
this setting, dual-PRF(-like) assumptions have also been made in the cited, and other, works.

44

https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05

TLS 1.3 [27]. In the proofs of multi-stage key exchange security of TLS 1.3’s full handshake
(Theorem 6.2, Game 4), and pre-shared key handshake (Theorem 6.4, Games A.4 and
B.3) in [27], the handshake’s early secret ES← HKDF.Extract(0,PSK) is replaced with a
random value, given that PSK is uniformly random, assuming “the dual PRF security of
HKDF.Extract.” Since 0 here denotes a string of zero bytes of (fixed) length of the hash
function’s output, treating HKDF.Extract as HMAC� keyed with PSK, our result from
Theorem 11 applies.

The analysis in [27] also assumes a dual version of the PRF-ODH assumption [22] on
HKDF.Extract; our results do not cover this assumption.

TLS 1.3 [24]. The main theorem for the key schedule security of TLS 1.3 in [24] “assumes
[. . .] dual pseudorandomness Gprf-alg,b with f-alg = xtr†-alg” [24, Section 3.2], similarly to
[27] when arguing about the early secret in the TLS 1.3 handshake. Here, xtr†-alg denotes
HMAC� in the agile sense of alg determining the underlying hash function H.

KEMTLS [52]. In [52], the proof of Theorem 4.1 showing multi-stage key exchange security
of KEMTLS involves a “sequence of game hops which, one-by-one, replace derived secrets
and stage keys with random values, under the PRF-security or dual-PRF-security [5,
6] of HKDF (dual-PRF-security arises since the TLS 1.3 and KEMTLS key schedules
sometime use secrets in the “salt” argument of HKDF.Extract, rather than the “input
keying material argument”).” Each of the dual-PRF steps applies to an HKDF.Extract =
HMAC computation with two fixed-length keys as inputs (out of which the second is
leveraged as the random key input), our result from Theorem 11 applies.

Hybrid KEMs [17]. Studying hybrid key exchange, [17] introduces several KEM combiners,
including dualPRF which “relies on the existence of dual pseudorandom functions [8, 5, 12]
which provide security if either the key material or the label carries entropy”, and N, “a
nested variant of the dual-PRF combiner inspired by the key derivation procedure in
TLS 1.3 and the proposal how to augment it for hybrid schemes in [51]”, suggesting
“The HKDF key derivation function is, for example, based on this dual principle.” [17,
Section 3]. In their proof of security of the dualPRF and N combiners, dual-PRF security is
assumed for a generic function dPRF which takes two keys as input. Reasonably assuming
that KEM key outputs have fixed lengths, these keys qualify as feasible for our results on
HMAC and HMAC[S]� from Theorems 10 and 11; however [17] also consider (partially)
quantum adversaries.

Post-quantum WireGuard [35]. As component of a post-quantum proposal for the Wire-
Guard VPN protocol, a “dual-PRF appears in the form of a key-derivation function
KDF(X,Y) = Z.” [35, Section II.D] In the key exchange security proof, both PRF and
swap-PRF assumptions are made on KDF (which in WireGuard is based on HMAC) when
used with fixed-length inputs, so our results from Theorems 10 and 11 apply.

Post-quantum Noise [2]. In the analysis of a post-quantum version of the Noise protocol,
[2] introduces a “Noise Hash Object” as an abstraction, whose security relies on HMAC
being a dual-PRF in Theorem 1. In their instantiation, HMAC in the swapped case is
using an empty string or a prior output as “state” [2, Algorithm 2]; applying our results
from Theorem 11 would require encoding both in same-length bitstrings.

MLS [23]. Analyzing the key derivation in the Message Layer Security (MLS) protocol, [23]
assumes “that the Extract function in Krawczyk’s HKDF design [40] is a dual pseudo-
random function and thus, we assume that HKDF is a dual KDF.” HKDF is modeled as
taking two key inputs of fixed length [23, Section V], making it amenable to our results
from Theorems 10 and 11.

45

Games G0, G1, G2:

New()

1 n← n+ 1; Jn←$K

Fn(i, (A,S))

2 If T[i, (A,S)] = ⊥ then:

3 If Tf [i, A] = ⊥ then:

4 Tf [i, A]← f(Ji, A) � G0

5 Tf [i, A]←$ {0, 1}c � G1

6 T[i, (A,S)]← h∗(Tf [i, A], S) � G0,G1

7 T[i, (A,S)]←$ {0, 1}c � G2

8 Return T[i, (A,S)]

Adversary Af()

1 b←$ANew,Fn∗

2CSC

2 Return b

Fn∗(i, (A,S))

3 L← Fn(i, A)

4 Return h∗(L, S)

Figure 16: Games G0-G2 and adversary Af for the proof of Lemma 1.

B Proofs for the Strong PRF Security of the Cascade

B.1 Proof of Lemma 1

We use a sequence of games G0–G2 and a set of hybrid games H0–Hn, as shown in Figures 16
and 17. All are executed with A2CSC, and hence provide the oracles named in game GPRF-d

2CSC .

. Replacing f with a random function. We begin with game G0 being the “real” PRF game
GPRF-1

2CSC (A2CSC). The first game hop, to game G1, replaces the evaluation of f in line 4 of G0 by
(consistent) random sampling in line 5. By standard equation rewriting

Pr[GPRF-1
2CSC (A2CSC)] = Pr[G0(A2CSC)]

= Pr[G1(A2CSC)] + (Pr[G0(A2CSC)]− Pr[G1(A2CSC)]). (61)

We build an adversary Af , such that

Pr[G0(A2CSC)]− Pr[G1(A2CSC)] ≤ AdvPRF
f (Af). (62)

Adversary Af simulates G0 for A2CSC, with two changes: when adversary A2CSC makes its
calls to oracle New, adversary Af also calls its New oracle. Then, when adversary A2CSC makes
a query Fn(i, (A,S)), Af issues query L ← Fn(i, A) to its own oracle and returns h∗(L, S)
to A2CSC. That is, Af simulates the function oracle by getting the key L for the cascade
from the Fn oracle in game GPRF-d

f and then applies the cascade to the input S. Hence, Af

makes one New query and one Fn query respectively for each of the QNew(A2CSC) New and
QFn(A2CSC) Fn queries made by A2CSC.

When adversary A2CSC halts and returns, adversary Af also halts and returns the same
output. With this strategy, adversary Af soundly simulates G(1−d) when playing game GPRF-d

f ,
for d ∈ {0, 1}, yielding the bound in Equation (62).

. Replacing h∗ with a random function.
The second game hop, to game G2, replaces the invocation of the cascade on line 6 by

random sampling in line 7.
Again by standard equation rewriting

Pr[G1(A2CSC)] = Pr[G2(A2CSC)] + (Pr[G1(A2CSC)]− Pr[G2(A2CSC)]).

Using a hybrid argument, we build an adversary Ah against the PRF security of the compression
function h, such that

Pr[G1(A2CSC)]− Pr[G2(A2CSC)] ≤ n ·AdvPRF
h (Ah), (63)

46

Game Hs � 0 ≤ s ≤ n:

New()

1 ν ← ν + 1

Fn(i, (A,S))

2 If T[i, (A,S)] 6= ⊥ then:

3 Return T[i, (A,S)]

4 S
b←− S; N ← |S|

5 If N ≤ s then:

6 T[i, (A,S)]←$ {0, 1}c

7 Else:

8 If TL[i, (A,S[1..s])] = ⊥ then:

9 TL[i, (A,S[1..s])]←$ {0, 1}c

10 C [s]← TL[i, (A,S[1..s])

11 For j = s+ 1 to N do:

12 C [j]← h(C [j − 1],S[j])

13 T[i, (A,S)]← C [N]

14 Return T[i, (A,S)]

Adversary Ah()

1 ω←$ {1, . . . , n}

2 b←$ANew∗,Fn∗

2CSC ()

3 Return b

New∗()

4 ν ← ν + 1

Fn∗(i, (A,S))

5 If T[i, (A,S)] 6= ⊥ then:

6 Return T[i, (A,S)]

7 S
b←− S; N ← |S|

8 If N < ω then:

9 T[i, (A,S)]←$ {0, 1}c

10 Else: (if N ≥ ω)

� If i, (A,S[1..ω − 1]) is new, init new key:

11 If T∗L[i, (A,S[1..ω − 1])] = ⊥
12 ctr ← ctr + 1; New()

13 T∗L[i, (A,S[1..ω − 1])]← ctr

� Get key index:

14 u← T∗L[i, (A,S[1..ω − 1])]

15 C [ω]← Fn(u,S[ω])

16 For j = ω + 1 to N do:

17 C [j]← h(C [j − 1],S[j])

18 T[i, (A,S)]← C [N]

19 Return T[i, (A,S)]

Figure 17: Hybrid games H0-Hn and adversary Ah for the proof of Lemma 1.

where n is the maximum block length of the S component in any Fn(i, (A,S)) query by A2CSC.
To this end, we construct n + 1 hybrid games H0 − Hn as shown in Figure 17. In game Hs,
the first s invocations of h in the cascade are replaced by random sampling, the remainder are
computed as before. Hence, game H0 is equivalent to G1 and Hn to G2, giving

Pr[G1(A2CSC)]− Pr[G2(A2CSC)] = Pr[H0(A2CSC)]− Pr[Hn(A2CSC)]. (64)

AdversaryAh begins by sampling ω←$ {1, . . . , n} and then acts as the challenger in game Hω,
with the following differences. When adversary A2CSC makes a new query Fn(i, (A,S)), and
the number of blocks N of S is less than ω, then adversary Ah samples a (consistent) random
string in {0, 1}c, stores the result in a table T[i, (A,S)] for consistency and returns the result
to A2CSC.

If instead the number of blocks N is at least ω, then adversary Ah checks if the prefix
(A,S[1..ω − 1]) is per-user new. If so, it calls oracle New to initialize a new key, and stores
the index of the key in a table T∗L[i, (A,S[1..ω− 1])]. Otherwise it fetches the key index u from
the table. Adversary Ah then issues query C [ω] ← Fn(u,S[ω]). If N > ω, it then applies the
cascade to the remaining blocks of S. It stores h∗(C [ω],S[ω + 1..N]) in table T[i, (A,S)] and
returns the result to A2CSC. When adversary A2CSC halts and returns, adversary Ah also halts
and returns the same output.

This way, adversary Ah simulates Hω−d when playing game GPRF-d
h , for d ∈ {0, 1}, making

47

at most QFn(A2CSC) queries to oracle New and QFn(A2CSC) queries to Fn. Note that the
assumption that the Fn queries of A2CSC are prefix-free guarantees the soundness of the simula-
tion, as it will never be the case that A2CSC sees both the response to a query Fn(i, (A,S)) with
|S| = ω−1 (which will be a random string sampled by Ah) and the response to Fn(i, (A,S ‖S′))
for some non-empty S′ (which will be computed by Ah using its Fn oracle on a key index cor-
responding to (A,S[1..ω − 1])) for user i. That is, it will not be the case that Ah is forced to
both pick a random value at level ω − 1, and call oracle New to initialize a key which should
correspond to this value (something which Ah cannot guarantee).

By the law of total probability and a telescoping sum, we have

AdvPRF
h (Ah) = Pr

[
GPRF-1

h (Ah)
]
− Pr

[
GPRF-0

h (Ah)
]

=
1

n

n∑
i=1

(
Pr
[

Hi−1(A2CSC)
∣∣ω = i

]
− Pr

[
Hi(A2CSC)

∣∣ω = i
])

=
1

n
· (Pr[H0(A2CSC)]− Pr[Hn(A2CSC)]) .

Combined with Equation (64), this gives the bound in Equation (63).

B.2 Proof of Lemma 2

The proof uses the insight from BBT [7] that the multi-user security of the cascade corresponds
to the single-user prf-security of the 2-tier cascade when the first tier is a random function. To
explain: if we let the first tier of the 2-tier cascade be the family f of all functions with domain
X = {1, . . . , u} and range {0, 1}c, where u ≥ QNew(Ah∗) is an upper bound on the number of
users initialized by adversary Ah∗ , then choosing a key for f corresponds to choosing a random
function kf : X → {0, 1}c. That is, the key space K of f is the set of all functions from X to
{0, 1}c, and f(kf, i) = kf(i).

Sampling a new key L ∈ {0, 1}c for the cascade then corresponds to evaluating kf at a new
index. Hence we can instantiate the cascade as

h∗(kf(i), S) = 2CSC(kf, (i, S)), (65)

and view each new invocation of h∗ under a new key as an evaluation of 2CSC on the single-user
instance keyed by kf. This allows us to apply the result from lemma 1 to show the prf-security
of h∗.

To proceed, we construct an intermediate adversary A2CSC against the single-user prf-
security of 2CSC which works as follows.

Adversary ANew,Fn
2CSC ()

1 New()

2 b←$ANew∗,Fn∗

h∗ ()

3 Return b

New∗()

Fn∗(i, S)

4 X ← Fn(1, (i, S))

5 Return X

Adversary A2CSC begins by calling oracle New to initialize the (single) key for 2CSC. Since
2CSC is instantiated with f and h, as described above, this samples a random function kf :
{1, . . . , u} → {0, 1}c. Then, adversary A2CSC runs Ah∗ , simulating access to oracles New and
Fn via New∗ and Fn∗, respectively. When Ah∗ makes one of its QNew(Ah∗) many queries to
oracle New∗, adversary A2CSC does nothing. When Ah∗ queries Fn∗(i, S), adversary A2CSC

responds by issuing the query Fn(1, (i, S)) to its own oracle under the single key with index
1, and forwards the response to Ah∗ . When adversary Ah∗ halts and returns a guess for the
hidden bit, A2CSC does the same.

48

This way, adversary A2CSC perfectly simulates game GPRF-d
h∗ when playing game GPRF-d

2CSC

itself, and
AdvPRF

h∗ (Ah∗) ≤ AdvPRF
2CSC(A2CSC). (66)

Combining Equation (66) with Equation (1) from Lemma 1 now yields

AdvPRF
h∗ (Ah∗) ≤ AdvPRF

f (Af) + n ·AdvPRF
h (Ah), (67)

for adversaries Af and Ah as specified in the proof of Lemma 1. (Note that the assumption
that Fn oracle queries from Ah∗ are prefix-free guarantees that adversary A2CSC only makes
prefix-free queries, as needed for Lemma 1.) However, since f is the family of all functions
mapping {1, . . . , u} to keys for h in {0, 1}c, the advantage of any adversary against the prf-
security of f is 0. (Any instance of f is a truly random function, and hence indistinguishable
from the lazily sampled random function in GPRF-0

f in Figure 1.) Hence Equation (67) simplifies
to Equation (2).

Adversary Ah works just like in Lemma 1. That is, it makes at most QFn(Ah∗) queries to
New and QFn(Ah∗) queries to oracle Fn. Note that this means that the maximum number
of users u does not show up anywhere, neither in the advantage bound nor in the resources
used by adversary Ah. How can this be? The explanation is that QNew(Ah∗) is subsumed by
QFn(Ah∗). Indeed, in each layer of the cascade except for the first, the compression function
h is invoked with at most QFn(Ah∗) different keys, which is reflected in the proof by the (at
most) QFn(Ah∗) many queries to oracle New by Ah.

In the first layer, h is invoked with at most u ≥ QNew(Ah∗) distinct keys, but since each
invocation is prompted by one of the QFn(Ah∗) many queries to oracle Fn, the actual number
of keys used is at most QFn(Ah∗). That is, a query to oracle New to initialize a key index which
is subsequently never used can be safely ignored, and is in fact ignored in the reduction (since
adversary A2CSC does nothing in response to a New oracle query). Put differently: we could
write a reduction in which Ah makes at most max(QNew(Ah∗),Q

Fn(Ah∗)) queries to oracle
New, but w.l.o.g. we may also assume that adversary Ah∗ does not make any “unnecessary”
queries to oracle New, so that QNew(Ah∗) ≤ QFn(Ah∗).

This concludes the proof.

B.3 Related Work and Techniques

In their study of AMAC, BBT [7] introduce the 2-tier cascade and augmented 2-tier cascade.
They show single-user PRF security of the augmented 2-tier cascade and deduce strong multi-
user PRF security for the augmented cascade. The augmentation is the application of an
unkeyed output function. Setting the latter to the identity function results in the cascade, so
one might think that the results of BBT [7] imply ours as a special case. But this is not true.
In fact, the results of BBT [7] do not hold when the output function is the identity. Their
assumption on the compression function is PRF security under leakage of the output function,
which is not true when the latter is the identity. Indeed, in their result, there is no restriction
on queries, meaning no requirement on prefix-freeness, an indication that the result cannot hold
for the cascade itself, where we know that security will not hold without a restriction on the
queries: they must be prefix-free.

49

	Introduction
	Background
	Swap-PRF Security of HMAC
	PRF Security of HMAC
	Auxiliary Contributions and Technical Overview

	Related Work
	Notation and Definitions
	Notation and Conventions
	Standard Definitions
	New Definitions

	Background and Modularization of HMAC
	Dual-PRF Security of NMAC
	vkl-PRF Security of NMAC swapped
	Strong Multi-user PRF Security of NMAC

	Dual-PRF Security of HMAC
	Composition Theorem
	Analysis of HSKD
	vkl-PRF Security of HMAC
	vkl-PRF Security of HMAC swapped

	Proofs for the rka-PRF Security of h swapped
	rka-PRF Security of h swapped
	rka-PRP Security of Block Ciphers in ICM

	Dual-PRF Assumptions on HMAC in Prior Work
	Proofs for the Strong PRF Security of the Cascade
	Proof of Lemma 1
	Proof of Lemma 2
	Related Work and Techniques

