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1. Introduction

In astrophysics and space science, a hierarchy of models is used to simulate plasma motions. At the base of hierarchy
there is fluid dynamics (or hydrodynamics, cf., [26]), which treats the moving media as fluids. Being applicable to a wide
range of physical and technical problems, Computational Fluid Dynamics (CFD) has been developed to be a powerful applied
science employing a variety of numerical methods (see the review by Hirsch [16]). Among them, the finite volume approach
is widely used. This framework treats the governing equations of CFD as a system of conservation laws, which are actually
Partial Differential Equations (PDEs) of a special kind, mathematically expressing the conservation of physical quantities
such as mass, momentum and energy. Specifically, for each of these conserved variables the conservation law reads:

U +V-F=0 (1)
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where U is the density of conserved quantity, ;U is its partial time derivative and the vector F is the flux function, V being
the differential operator with regard to spatial coordinates. Once Eq. (1) is integrated over a control volume, the integral
of the term, V - F, reduces to a surface integral of the flux function over the boundary of the control volume. Therefore, if
the computational domain is decomposed into a set of control volumes (cells), the time derivative of the conserved variable
within each control volume reduces to the exchange by the numerical fluxes between each pair of neighboring cells, these
numerical fluxes being essentially the integral of the flux function, F, over the interface (the shared boundary) of the two
cells. Gauss’ theorem is formulated via the scalar product of the flux function and the external area vector of the boundary
for ith cell, which is at the same time the negative of the external area vector to the same interface for jth neighboring
cell, so that the numerical flux from ith cell to jth cell is always equal to the negative of the flux from jth cell to ith
cell. Therefore, the time derivative of the total integral of the conserved quantity over the computational domain reduces to
mutually canceling contributions from each numerical flux to the neighboring cells, resulting in the automatically conserved
total quantities, unless there is a non-vanishing flux of these quantities through the external boundary of the computational
domain.

In the solar-terrestrial environment, the plasma motion may be affected by the solar, interplanetary or planetary mag-
netic field. To account for both the magnetic field contribution to the force acting on a plasma and evolution of the magnetic
field frozen into the moving plasma, the magnetohydrodynamic (MHD) approximation is used (see [40]). The finite volume
scheme for MHD treats eight scalar conservation laws in the three-dimensional (3-D) case, which further increases the
complexity compared to the case of five conservation laws in CFD. To solve a 3-D system of conservation laws using high-
resolution schemes developed for a linear 1-D advection equation,

9:U + co,U =0, ¢ = const, (2)

one can employ the concept of characteristics associated with different types of eigen waves, e.g.,, MHD waves (see [16]).
Usually the characteristics are the lines in time-space along which the Riemann invariants are conserved, which are some
functions of the conserved variables. Powell et al. [36] demonstrated how to use characteristics to construct high resolution
numerical flux for computational MHD, including a magic “8th” wave, which flushes away non-zero V - B, if any.

The top level in the model hierarchy is represented by two main families of numerical models providing a kinetic
description (see [28]) for plasmas in the presence of electromagnetic fields. Both categories of numerical methods in fact
solve the same mathematical PDE, describing the evolution of the velocity distribution function (VDF). An approach currently
becoming popular is to solve VDF numerically from the kinetic PDE by applying directly the finite difference scheme to
discretize the derivatives over coordinates and momenta, in the equation. A rather advanced numerical framework based
on this approach is the hybrid-Vlasov simulator, the “Vlasiator” described by Hoilijoki et al. [17]. An alternative approach is
to integrate the same set of PDEs along Hamiltonian trajectories of the charged particles in the phase space of coordinates,
q;, and momenta, p;. The actual computational algorithm for the latter approach, for example, within the framework of
particle-in-cell (PIC) scheme is to compute a huge ensemble of particles, jointly moving in the electromagnetic fields, as
described by Birdsall and Langdon [7]. Examples of application of the particle approach to solve the Boltzmann equation
for neutral species and dust particles with a variable electric charge in planetary and space environments are discussed by,
e.g., Tenishev et al. [47]. From the mathematical standpoint, however, such schemes do not solve the motion of individual
plasma particles, but they just sample the averaged value of the VDF function about some point of the phase space and then
transport this value along the particle Hamiltonian trajectory. Note, that the VDF advection along the Hamiltonian trajectory
is similar to the Riemann invariant transport along the characteristics in CFD/MHD.

In the present paper, we propose a new finite volume scheme to solve the kinetic equation. We employ a finite volume
scheme, thus avoiding a potential drawback of the finite difference approach, which might fail to maintain the important
particle number conservation (this drawback is seldom discussed, although it may be pertinent, particularly, to the popular
semi-Lagrangian schemes including the original algorithm by Cheng and Knorr [11]). In this way we can benefit from a
variety of useful tools and methods developed for CFD/MHD, e.g., the Total-Variation-Diminishing (TVD) principle. At the
same time we benefit from the characteristics property of the Hamiltonian trajectory, onto which we project the VDF
gradient.

At the heart of our new approach is the concept of Poisson bracket, enabling the use of the finite volume approach. While
in a canonical Liouville equation the Poisson bracket follows from the Hamiltonian theory, for more practical application to
the focused-transport equation describing the acceleration and transport of Solar Energetic Particles (SEP) in the heliosphere,
the possibility to re-write the equation via the Poisson brackets is non-evident. However, once introduced, Poisson brackets
greatly facilitate the numerical model, allowing us to efficiently produce high-quality simulation results. Note, that both the
close connection between the Poisson bracket and conservation laws (see, e.g., [25], Ch.17) and successful application of the
Poisson bracket to construct energy-conserving schemes for the shallow water equations by Salmon [37] are well-known, so
the idea to use Poisson brackets for computations is not quite new and was directly exploited before (see, e.g., [14,30]).

2. The Liouville equation and Poisson brackets

The general equation describing evolution of a velocity distribution function, f(t,q;, p;), for a dynamical system with
a Hamiltonian function, H(q;, p;), with q;, p;, [ =1, 2,3, being the generalized coordinates and momenta for Ith degree of
freedom, has a form as follows:
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of 9H af 9H\ _
aff+z<a—q,a—p,‘a—ma—m>—°' 3

In application to the classical particle methods q1, g2, q3 may be three Cartesian coordinates of a particle location, X, while
D1, D2, p3 being three components of its momentum, p, so that Eq. (3) claims that the value of f is constant along the
particle Hamiltonian trajectory:

df (¢, x,p) _
|: dt ]g 9H dp__oH =0 4)

dt p’ dt — 09X
Eq. (4) justifies the particle methods to solve Eq. (3): if at the initial time instant the distribution function is sampled
with macroparticles, Ny, Xp, pp, wWhich are the number of real particles, average coordinates and average momentum per
macroparticle enumerated with a subscript index, p, then on solving the Hamiltonian trajectory equation for each macropar-
ticle we sample the evolving distribution function. Even though in the present paper we do not employ particle methods
at all, we benefit from the observation that Eq. (3) in effect reduces to a linear advection equation (4) transporting the VDF
value along the Hamiltonian trajectory.

2.1. Poisson brackets and conservation of particles

In terms of the Poisson brackets, which we define as:

af 9H of oH
{fiHlgp=s 57 (5)
aq; dp;  9p; Aq

the Liouville equation (3) can be re-written as:

3
dcf + ) {f: Hlgp =0. (6)

=1

Note, that we define the Poisson bracket as each term in Eq. (3), rather than the sum of the terms as defined by Landau
and Lifshitz [25]. In the more general case, Eq. (6) determines the time evolution of VDF via a total of L Poisson brackets,
for each of them q;, p;, [=1,2,...,L being an arbitrary pair of independent phase variables. With no loss in generality of
the methods discussed below, the Hamiltonian function may be different in different Poisson brackets and they may or may
not have a meaning of energy expressed in terms of coordinates and momenta.

A major advantage of the Poisson brackets is that they explicitly conserve the total number of particles. The particle
number is defined as an integral of the distribution function over the entire phase space: [dI f (the phase-space volume
element is dI' =[], (dq;dp;)). The particle number is conserved, % Jdr f==3%, [dT{f; H}g,.p =0, since

i of 0H of oH i a oH
0q0p;  9p; 9q 3QI 3131 api \" aqi
—00 —00 —00 —00

2.2. Phase-space control volume formulation: second order flux

Egs. (5)-(7) can be combined to find the rate of change of particle number in a control volume. For simplicity we consider
a rectangular one: V = IT;(AqApy), centered at the point, (q5,...,qf, p§,..., p}):

. oH\ 8 (. 0H
/dra[f_ Z/n(dqmdpm) / da / [Bcn( 8pz>_8_m<f8_m)} ®)

m#l C Aql

In terms of a two-component differential operator, V, = <£ ai) the integrand in Eq. (8) reads:

a oH a oH
—(f—)——(f—>=V1X(fV1H)~ 9)
aq \" 9pi apr \" 9qi

Now, using Stokes’ theorem and the chain rule, we arrive at the finite volume formulation of Eq. (6):

fars=- > | T andpu) gt 5. (10)

m#l
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Fig. 1. Illustration of the control volume method for a rectangular cell. The integration of each Poisson bracket over the control volume reduces to the
integral ffdf{, on the q;, p; plane over the closed contour embracing the volume. To obtain the numerical scheme, the contour integral is evaluated in
terms of differences of the effective Hamiltonian function at the vertices as well as the face-centered values of the distribution function, interpolated from
the neighboring cells as shown by the dashed arrows. For the second order scheme, the arithmetic average of two VDF values is used, while for the first
order monotone flux, the upwinded value is chosen as described in Section 2.3.

The integration contour on the (q;, p;) plane consists of four segments (see Fig. 1), sequentially connecting points
(af — Aqi/2, pf — Api/2), (af + Aqi/2, pf — Api/2), (af + Aqi/2, pf + Ap/2) and (qf — Aqy/2, p§ + Ap;/2). Herewith, we
do not list those coordinates, which are equal to their cell-centered values. Thus, similar to a conservative scheme for
Eq. (3), the time derivative of the particle number in the control volume may be expressed in terms of numerical fluxes
through its faces:

d
drf =— F —F F —F . 11
e ) ! ;( e T T T g p%#) ()

The integrals of the distribution function are expressed in terms of the face-centered values:

c, App
pt—> ™ Aq
F _f ciAql / d 8Hl(qlC:tTl’pl)_
g = \TE b api -
pi-
a\ | Aq Api Aq Api
f(q,j:7>[Hl(lj: 5 ,f+7> H’(’CiT’ ,C—T)], (12)
c Ag
g+t
c i ((pe s AP e aH’(q”pfi%>_
PliAp’ B 1= 2 a aq; -
q1_¥
pi Aqy Api ~ Aq Ap
=—f<101C 2)[ <q +—Pci 2)—H1<Qf—7,l91€i7>]» (13)
where the effective Hamiltonian functions are introduced, each depending only on two variables:
Hir, pz)—/]_[(dqmdpm)H(qu...,qL P1..... D0 (14)
m#l

On a simple grid consisting of identical rectangular boxes, the effective Hamiltonian is approximately equal to the full
Hamiltonian function in which all arguments except for q;, p; are set to cell-centered values: qm = qy,, p; = pj, and multiply
this by ]_[m# (AqmApm) =V /(AqAp;). However, on more complicated grids, the integral formulation in Eq. (14) may be
needed.

The numerical flux of particles along the coordinate ¢; is proportional to the corresponding component of the 3-D particle

velocity vector i.’—;" while along the momentum axis p;, the flux is proportional to the —% component of the 3-D force

vector. The 3-D vectors of velocity and force may be combined into a 6-D phase space velocity vector ug = (ﬁ, ——) the
product ug f being the particle flux density in the phase space. The conservation of particle number can be written as

d
0 f+ Ve (fug)=0f + (ug-Vg) f = (d{) =0 (15)
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which is the same as (4) with a different notation, (d/dt)y = 9 + ug - Vg is the time derivative along the Hamiltonian
trajectory. Here we used the divergence free property of the 6-D phase space velocity

3 3

Ve -ug = . (16)
Z 3‘]13191 121: 31713611

Such “incompreSSIblllty" of the 6-D velocity field in the phase space results in the Liouville theorem: the “water bag”, which
is the phase space element dI' occupied at some time instant by a chosen group of particles, moves with the particles and
changes its form, but not its volume. The water bag numerical methods (see, e.g., [2]) employ this property.

If the formulation (11) is applied to a control volume in the phase space (cell) the conservative numerical scheme may
be derived from the flux given by Eqgs. (12)-(13): the distribution function value needed to calculate numerical flux at each
face is an arithmetic average of its values in cells neighboring across this face, the integrals of the Hamiltonian function just
reducing to edge value differences of the Hamiltonian function. Within this framework, a semi-discrete (i.e., combining an
infinitesimal time interval with finite control volume) second order numerical scheme, [3;f]®, for solving the distribution
function reads as follows:

[atn@———z{[ (+ﬂ +ﬂ)_g, <+ﬂ,_ﬂ>]w+

2 2 2 2

where arguments for the distribution function value f related to a considered control volume are not listed, while for other
functions only differences in arguments with respect to the center of the considered cell are listed. Fig. 1 illustrates with
dashed arrows which cell-centered values of the distribution function are employed in the numerical fluxes.
EX[ -
In Eq. (17), for each Poisson bracket there is a sum of four terms, Z](SH, j J] f, where §H, j is a properly signed
difference of the reduced Hamiltonian functions H; at the two ends of the cell face j, whlle ff"t is the distribution function

value in the neighboring cell on the external side of cell face j=1,...,4. It is important that for each Poisson bracket (i.e.
for each [) the total of four Hamiltonian-dependent multipliers in this sum vanishes: Zj 8H, j =0, since they constitute the

vanishing integral de =0 over the closed contour. For this reason, the discretization in Eq. (17) keeps a uniform solution
f = const to be a steady-state: 9; f = —% > ZJ-SI:IU =0.

To simplify Eq. (17), we drop the straightforward summation over the Poisson Brackets (over [), and write the 4 terms as
a summation over the four faces indexed by j:

ext
[0 f1?® = — ZSHJ i f (18)

where fjeXt is the cell-centered value of distribution function in the cell across the jth face and §H j is the difference of the

effective Hamiltonians along the jth face. For a canonical distribution function, per each face of the control volume there
is one and only one §H,. Therefore, in this case Egs. (18) and (17) differ only by order of summation. However, in more
complicated cases (see Section 3), more than one §H; may contribute to SI:Ij for a given face.

As mentioned above, the sum of 61:11 over all faces equals zero: ZjSI:Ij =0, which is an integral analog of Eq. (16).

Therefore, we can introduce two groups, (SI:Ij+ and 81:11.’, of positive and negative 61:11- and partial sums, Zj’+ and Zj,_,

over faces with positive and negative §H, respectively, so that the sum of positive contributions balance the sum of negative
contributions:

Zaﬁj:-ZaH;. (19)
it i

It is also convenient to introduce downwind and upwind estimates for the distribution function gradient along the trajectory
of the Hamiltonian system (see Fig. 2):

St t ~_ t ext
D T L D Y L _ X5 %Hy (=17
~+ bl - ~ — *
2 )+ 0H; 2 j—8H; 3. 0H;

5

§tf= (20)
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Fig. 2. This figure illustrates the definitions of §* f and 8~ f. The green and red colors of the faces of the central cell indicate positive and negative signs

of 8H j» respectively. The endpoint of arrow 8% f and the start point of arrow 6~ f lay on the straight lines connecting the neighboring cell centers, since
the distribution function at these points equals the weighted averages of fi’“ and f, respectively. The 6% f and 8~ f denote the downwind and upwind
estimates for the distribution function gradient along the Hamiltonian trajectory. The figure shows a typical case with 2 adjacent inflow (1:11_2 <0)and 2

adjacent outflow fluxes (f{fz > 0), but in general there are many other possibilities.

The second order scheme Eq. (18) with the use of Eqs. (19) and (20) may be formulated as follows:

(S5 8H) 5= 4a%5

@ _ _
(1% = —2= -,

(21)
which is similar to the numerical flux [3; f]® = —ALXM of the 1-D advection equation (2). Here, we employ high-
resolution methods developed for the latter equation, thus benefiting from the characteristics property of the Hamiltonian
trajectory.

2.3. Phase-space control volume formulation: upwind monotone flux

To convert a second order scheme shown by Eq. (21) to a monotone first order flux, one needs to add to the right hand
side (RHS) a minimal numerical diffusion, D, expressed as follows:

ext _ . 0+ _
oy ppi) Tyt - Eileses

The resulting first order numerical scheme, [ f;]V =[f:]® + D, becomes:

YL 8HT 1 ) )
[atf](l):_wéf:_v Zsij f+26Hj—f]¢xt ) (23)
Ji+ Ji=

For faces with positive §H j» the distribution function value, f, from the given control volume is used, otherwise the distri-
bution function value, f]‘?’“, from the neighboring cell is involved. This choice provides the upwinded flux (see Hirsch, [16]),
since the sign of 81:11- determines the local direction of velocity or force, i.e. the direction of particle motion in the phase
space (“wind”).

The first order explicit numerical flux, which advances the numerical solution for the distribution function from the time
level t through the time step, At, to the time level, t + At, is:

A - A N
f(+At)=f—c3*f=(1—C)f—thSH;fth, C:VtZ(SH;F. (24)
j= i+

Herewith, we denote the quantities related to the time level t + At by a presence of +At in the argument list. The flux
in Equation (24) is monotone, since all coefficients of the distribution function values are non-negative (—H]T > 0 and
1—C > 0) as long as the CFL condition is satisfied:

Cc<1. (25)
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2.4. Phase-space control volume formulation: total variation and TVD property

We want to extend the first order monotone flux to second order of accuracy and at the same time avoid spurious
oscillations in the numerical solution. In particular, we are concerned with the monotonicity of the distribution function
along the Hamiltonian trajectory.

For the 1-D advection equation (2), which coincides with the 1-D form of (15), the total variation (TV) can be defined as

T4 :/dx|8XU|. (26)

On splitting 1-D (computational) domain into monotonicity regions, in which sign (8xU) = £1, and integrate =+ [ dxa,U over
each region, one can express T as twice the total of U values at local maximums minus twice the total of U values at local
minimums, with the contributions from the values of U at the endpoints of the domain included with positive or negative
sign depending on the sign of d,U near the endpoint. The contributions to the TV from the local extrema do not vary in
time, since at these points 9;U = —cdyU = 0, thus ensuring TV conservation. If the numerical scheme also conserves the TV
or if it has the TV diminishing (TVD) property, it does not allow breaking monotonicity by generating new local extrema
and/or increasing or decreasing the existing extrema thus ensuring that the numerical solution will not generate spurious
oscillations or overshoots.

The generalization to the multi-dimensional case is not unique. Our equation (15) is a conservation law, but it does not
satisfy the TVD condition for the classical total variation defined as

Ty= [ dU|Vf] (27)
/

in multiple dimensions (cf. [13]), because it has coordinate dependent fluxes (ug is a function of the 6 coordinates in
general), as opposed to purely f dependent fluxes. It is easy to define flux functions for which the analytic solution increases
T, in time, and in fact many of the examples in this paper do that. Therefore the classical TV is not usable to ensure stability,
as it is inconsistent with our equation. We choose instead a TV measure that is consistent with the equation. The TV that
will be defined in this paper is the integral of variation along the Hamiltonian trajectories. A non-trivial challenge is to find
a discrete form of the analytic TV that can be enforced by limiters without losing the second order of accuracy. In fact, the
classical TV defined as T, is incompatible with second order accuracy in more than 1-D [13,22]. We will show that our
proposed method achieves second order accuracy while being fully TVD for the TV defined along Hamiltonian trajectories.
Based on the above considerations, we define TV as

T:/dl‘ ZI:{f3 Hlg,p,

1%
Now, we can split the computational domain V into two regions of monotonicity V™ and V~, in which the distribution
function increases, ug - Vg f > 0, or decreases, ug - Vg f < 0, along the Hamiltonian trajectories, respectively. We can evaluate
the integration separately in V* and V~

T=Tt+T", T* /erqu,p,_i/druG-vﬁf. (29)

vE v+

:/dr|u6-v6f|. (28)

14

Using the Gauss theorem reduces (29) to an integral over the boundary dV* of the monotonicity region:
JoH
Z dSql —dSp— | f=+ [ dSs-usf, (30)
aop aq;
v+

where dSg, and dSpI are the individual components of the 6-D outward oriented face area vector dSg of the boundary of
the monotonicity region. At the boundary, the gradient of the distribution function along the Hamiltonian trajectory ug - Vg f
vanishes, because it changes sign (and so does d; f = —ug - Vg f). Therefore, similarly to the TV defined by (26), only the
local extrema of the distribution function along the Hamiltonian trajectories contribute to the TV defined by (28).

The surface integrals in (30) can be evaluated using flux tubes. Any Hamiltonian trajectory may be embraced with an
infinitesimally small contour. A multitude of Hamiltonian trajectories passing through each point of the contour shapes the
surface enclosing the flux tube. The integration of Eq. (16) over the part of such tube bounded by two small cross-sections,
dsgl) and dSéZ) gives: (dSg cug)V = (dSe - ug) @, ie. the scalar product, (dSg - ug), is a flux tube invariant:

(us - Ve) (dSe - ug) = 0. (31)

Using this flux tube invariance, the surface integral in Eq. (30) may be expressed as an integral over the outflow subsurface
dVZE, through which the Hamiltonian trajectories leave the monotonicity region, i.e. dSe - us > 0. At the subsurfaces dV3,,

7
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the distribution function fou reaches a local minimum (for aV,,) or local maximum (for aV4,) along the Hamiltonian

trajectory. Through each subsurface area element (dSg),,s one can find the other end of the corresponding flux tube segment
where it enters the monotonicity region across the inflow subsurface BVfg at which (dSg - ug);, < 0. For the area vector of
the flux tube cross-section by the subsurface aviﬁ Eq. (31) gives (dSe - ug)jy, = — (dSe - Ug) oy, While the distribution function
fin reaches a local minimum (throughout av;) or local maximum (throughout av;) along the considered flux tube. With
these considerations,

TH—x f (dS6 - U )out (fout — fin) = [ (dSs - Us)out | fout — fin. (32)
IVE Vi

We see that T¥ is, indeed, the total variation, since it integrates the difference between the maximal and minimal values of
the distribution function along monotonous parts of Hamiltonian trajectories.

We now prove that the TV does not increase in time. Using the Reynolds transport theorem as well as Eqs. (15), (16) and
the fact that ug does not explicitly depend on time we can write the time derivative of T* defined in (29) as:

dr+ d
T=i5 drve'(uef)=ﬂ:/drve'(“63tf)i/dSG~UBV6~(l16f)=
vE vE avE
==+ / dSe - (ugd f —updy f) (33)
avE

The first term in parentheses, ugd; f, results from Gauss’ theorem applied to the volume integral, while the second —ugd; f
is the boundary 6-velocity up times the integrated quantity Vg - (ugf) = —; f. At the interfaces separating V* regions,
which are advected with the velocity ug = ug along the Hamiltonian trajectories together with the local extrema of the
distribution function, both terms are zero too, because & f is zero at such interfaces. At the parts of V¥ constituting the
external boundary, dV, that do not move, one has ug =0, so that:

dT

dr = / d56 'ussign (u5 . st) 3tf. (34)

v

The contribution from the external boundary to the TV as well as its role in the TVD property are usually not discussed.
However, the generalization of the TV for 6-D phase space results in a variety of different kinds of the external boundary
which deserve attention. Particularly, at the outflow part of the external boundary, 3V, at which dSg - ug > 0 the Hamil-
tonian trajectories leave the domain, bringing the values of distribution function from inside the domain to the boundary,
so that (0 f)out = —Us - Vs f. However, at the inflow part of external boundary, dVj,, at which dSg - ug < 0, the Hamiltonian
trajectories enter the domain bringing the values of distribution function controlled by the boundary condition. Particularly,
the fixed (time-independent) boundary condition requires that (9; f)i, =0, hence:

dT
= —— | dSe-ugldf] <O.
Q@ / 6-Ug |0 f| <

Vout

With this, we have proved that dT/dt <0 and T can be indeed regarded as a Total Variation that does not increase in time.
The property of TV not to increase with time prevents breaking monotonicity. Indeed, the formation of a small domain
8V with the opposite sign of ug - Vg f than the surrounding monotonicity region would increase T by a positive increment
3T =2 fav dI'|ug - Vg f|. The factor of 2 accounts for the contribution from the newly formed boundary of the outside
monotonicity region.
The generalization of Eq. (28) to a discrete set of cells is given by the following sum:

T=)" Zaﬁj 87 f1=)_ Z(SFI} f+Z(SFI]Tfje’“ sign (8~ f), (35)

cells \ j,+ cells j+ j—

where we used (19) and (20) to obtain the second equality. Inside a region of monotonicity, the sign of §~ f in a given cell
is the same as that of (8‘ f )exr in its plus-neighbors. Under these assumptions, the value of distribution function f in the
given cell does not contribute to T. Indeed, each cell interface with positive (SI:I].+ provides a contribution, (SI:I].+ fsign(6~ f)
to T due to the first term on the RHS of (35). However, the same cell is, at the same time, a minus-neighbor of its
plus-neighbor, hence, the distribution function value f should be also accounted for as f®' in the plus-neighbor cell,
providing a contribution 61:1; fsign (8‘ f )ext coming from the second term on the RHS. However, 51:1; in the neighboring

cell is the negative of 81:1;“, resulting in cancellation of these contributions. Hence, T+ over the cluster of cells in which

8
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sign (8~ f) = +1 (herewith, cells™), and analogously, T~ over the cluster of cells with sign (6~ f) = —1 (cells~), reduce to
the sum over the boundary cells:

ISEFSY Zw* s f=t Y S UsEE| £ shT £ (36)
it -

cells™ boundary cells®

In the last expression, the outer sum is taken over the boundary cells, which belong to the cluster, but at least one of their
neighbors does not, and the inner sums Z/j’ 4 and Z;ﬁ count only the boundary faces of the cluster and the external
neighbors outside of it. We can notice the similarity between the definition of §~ f for a single control volume in Eq. (20)
and the TV over the whole monotonicity region.

Another important property of T is that it is equal to zero for a uniform solution, f = fo = const. If there is an isolated
cell with a local maximum or minimum surrounded by a uniform state ( f # fp), then T increases and becomes positive:
T = 2(21-‘ 4 8+H) |f — fol. Therefore, to avoid generation of spurious oscillations in the numerical solution with local

extrema, the numerical scheme should possess the TVD property.
To derive a criterion for a numerical scheme to have the TVD property, in the time derivative,

dT . _ - L
E:Zslgﬂ(& YV DC8HT Jocf + > 8HT @) |, (37)
cells J+ Ji=
we change the order of summation to group all multipliers of f; in the given volume:
dT _ 3 (SI:I+ . 5~ . 5 ext 38
E—; ef Y8R} [sign (57 f) —sign (57 1)]"] 1. (38)
cells I+

Only those control volumes contribute to the time derivative of the TV, in which ((S f )eXt in any “plus-neighbor” has the

sign opposite to that of 6~ f in the control volume. The numerical scheme possesses the TVD property, if in such control
volumes the sign of d; f is opposite to that of 5~ f:

sign (3; f) = —sign (8~ f). (39)

Eq. (39) also requires that d; f =0 at §~ f = 0. Particularly, the first order numerical flux given by Eq. (23), possesses the
TVD property, since

sign ([atf]“)) =sign |:— (ZJ+5H> 5~ f:| = —sign (6~ f). (40)

The properties of T are similar to those of the total variation for the 1-D advection equation (see [16]). This similarity
allows us to apply TVD schemes to the Liouville equation.

2.5. Phase-space control volume formulation: second order TVD scheme
To construct the second order TVD numerical flux, one needs to modify the first order monotone flux (23) by: (1)
adding the difference between the second order and first order numerical fluxes (i.e., anti-diffusion, which is the negative of

Eq. (22)), to achieve the high accuracy; and (2) limiting the added anti-diffusion by applying proper limiter function ¥;, to
maintain the TVD property:

[3e f1TVP = [0 1O — Z(SHW(f] >+23H \1/<f fj) _

ZaHﬂp(f’ >+Z§H [f—fj—wext(%ﬂ . (41)

The RHS of Eq. (41) may be thought of as the divergence of fluxes, 61:1}* f ]@, where the distribution function at the plus-face,
f j(ﬂ =f+v (ffz;f) is the sum of the cell-centered value f (which contributes to the first-order monotone flux) and the

limited difference, f® — f. In smooth regions the limiting function is close to the argument value:

9
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W(-nrl .

(42)
(fi—1f)/2
In this case we can evaluate:
I+ fj_f ~ ~+8+f ~ o cext f_fj ~ ~_8_f
ZaHjxu(T)NZaHjT, Zsij — NZ(SHJ.T, (43)
i+ i+ j—= J=

so that Eq. (41) tends to the second order flux as in Eq. (21), ensuring high-quality numerical results. However, near extrema
the distribution function gradients in the neighboring cells may differ either in magnitude or in sign. In these cells the
limiters reduce the anti-diffusion or even set it to zero, so that Eq. (41) approaches the monotone numerical flux (Eq. (23)).

The TVD criterion given by Eq. (39) is satisfied, thus avoiding spurious oscillations in numerical solutions of Eq. (41) if the
f

limiting functions \l/<f jz_ ) satisfy the following two conditions. First, we require, that:

. “ fi—f
(8% fHlim B Zj’Jr(SH;r\IJ( 5 )
2 X 0H]

Otherwise the first term in Eq. (41) has the same sign as §~ f, potentially breaking the TVD property). Then, under the
requirement that inequality,

o< YU = 13) /2]
(1)

holds in any control volume, the second term in Eq. (41)

§”f(THIm™>0, where (44)

=Bj=2, (45)

1 ext <f;fj)

[atf](TVD)z...+_Z(_5ﬁj—> (+fi-f)|1-——2 |1, (46)
Vi f=Tj

within infinitesimal time interval, At — 0, replaces in the minor fraction of the control volume,
At (—81?7) \IJeXt(f_zfj)
J
Ci= 1-— , (47)
! 4 f=Fi

the initial distribution function (— f) with its value in the upwind neighbor cell (4 f;). In the first order scheme (all ¥; = 0),
the leftover fraction of the control volume, still occupied with the initial state is ¢ =1 — Zj,—gj =1—C > 0 which is
positive at C < 1, while for infinitesimal time step C — 0 and ¢ =1 — O[C] > 0. The state in the control volume resulting
from this term is thus a positively weighted average of the states in the given cell and its upwind neighbors, which property,
as far as it concerns maintaining distribution function positiveness and avoiding spurious oscillations is fully analogous to
Eq. (24) and not any worse than monotonicity.

The requirements Eqs. (44), (45) are similar to those derived for the TVD scheme for 1-D advection equation (see [16]).
The distinction of the multi-dimensional case is that the contributions to sums in Eqs. (41), (44) may have different signs
because of gradients in the directions transverse to that of the Hamiltonian trajectory and ruling the contributions of “im-
proper” sign out of numerical scheme would reduce the order of approximation and result in excessive numerical particle
diffusion in these directions.

The choice, 8j =2 leaves the maximal wide range for W(r)/r ratio around the second order approximation point given
by Eq. (42). A limiter satisfying Eq. (45) may be chosen to add an extra anti-dissipation wherever possible to mitigate the
effect of numerical dissipation inherently present in a TVD scheme, for example, by using a g-limiter (see, e.g. [16]) in the
following way:

L S;
o [ 2] =L fmae 11 15 (1= )] 5115~ 1.

Bi=2, (48)

where s; = sign (fj - f). For Cartesian (or, at least, for logically Cartesian) grid the difference, f — f]?pp across the opposite

face of the control volume is used to evaluate anti-diffusion. In the region of smoothness and for (fj — f) ~ (f — ffpp) the
limiter Eq. (48) tends to the second order accurate solution according to Eq. (42). Another good limiter follows the idea by
Koren [18]:

5j

Wy [M] ) max{min [? [Z(fj -H+{ - f;)pp)]’ﬂj [fi—f

2 2 ]’0}’ (49)

10
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which ensures the approximation of the face flux in 1D advection equation with the third order of accuracy for monotonic
and sufficiently smooth regions.
lim

With chosen B-limiter, the preliminary estimate for the downwind gradient in the distribution function (6+ f ) as
present in Eq. (44) reads:

. ~ fi—f
(5+f)llm,1 ij_i_SH;'_\I/ﬂ (JT)
- +
At smooth solutions, (8T f)i™1 ~ §+f ~ §~ f, so that the LHS in Eq. (50) has the same sign as 8§~ f (and smaller in

magnitude by a factor of 2), thus satisfying the TVD criterion Eq. (44). However, near extpemal points even the esti-
mates of forward and backward derivatives, (T f)™1 and §~ f, may differ in sign. If (81 f)I™1 goes beyond the range

lim,1 .. e . .
0< (8+f)_7f/2 <1, we apply extra limiting factors 0 < y; <1 to the limiting functions to keep TVD property. The ultimate

(50)

limiters have the form y;Wg (f i ) where y; factors are solved from the following equations:

Zj,+8H;—Vj\Il/3 (#) (5+f)lim N (8+f)lim ] q (8+f)lim,1 3

5 e = 7 where T:mmmo fﬁ fl. (51)
J+5

The first equation in Egs. (51) is used to derive the reduction coefficients, y;, while the second one defines the desired result

of such reduction. If the sum in numerator in Eq. (50) includes multiple contributions with different signs, upon evaluating

a partial sum of dominant contributions, having the same sign as the total sum:

o —

- ~ . lim, 1 fi—f
5+ F)lim.1 > SHJFmax{mgn [((S*f) ]lll,g L ,0}
( fz) — =sign [(5+f)llm,1] L+ ST ( 2 ) ’ (52)
2
the y;-factors all equal to,
s+ F)Im (54 pylim1
=1+( ) /Lf) <1 (53)

(6+f)lim,'l
may be applied only to dominant terms contributing to Eq. (52), keeping unchanged the terms of opposite sign. In this
case yj # 0 and even in the control volume with vanishing §~ f the limited second order flux corrections do not vanish,
only their total over all §H™ faces does. Otherwise, if all terms in the sum in to Eq. (52) have the same sign, more evident
expression for y-factor reads:

lim
5+
= L?lm =1
6+
The presented limiters seem to be the least restrictive semi-discrete scheme. Now, we discuss the TVD property for a second

order in time explicit scheme, which may be achieved if Eqs. (23) and (24) are applied to approximately update the solution
to the intermediate time level t + At/2:

s+ lim
fHAL2)~ f — C—f~f c%.

(54)

(55)

)t

By using Eq. (55) and changing in Eq. (41) the face-plus value of the distribution function from f;D =f+yj¥Yg (sz—
f}@ = f(+At/2) + y; Vg (fj;f) we obtain:

ext
_ — ex ex f- ff (5+f)hm
[C+AD = f=—C8” f——ZaH txpﬂt< . )-[c SRR

+ 11m

3 yext\pext M 8+f lim = €xt §+f lim
ij(—SHj_) (fi—-f)|1- o (sz ) —[C( 2) } —(1—C)%
s J

A
v( ) ———

11
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Fig. 3. Particle gyration in the magnetic field aligned with z-axis (out of plane). Left panel: Initial distribution in the phase space, (x, px), with x— coordinate
is equal to —py. Middle panel: Distribution at time instant, t = 27. Particles of lower energy, p,z( + pﬁ « 1, completed a full clockwise rotation, while the

higher energy particles, p,z( + pf, > 1, passed through only a small fraction of rotation. A uniform 300 x 360 grid in logp and polar angle is used; Right
panel: Same problem simulated on a uniform rectangular 300 x 300 grid.

As long as the CFL condition given by Eq. (25) is satisfied in all control volumes and the limiters are correctly applied,
the factor, < (1 — C) (8+f)hm, in the third term in braces in the RHS, has the same sign as §~ f, thanks to the use of

y-limiter in Eq. (51). The first term in braces as discussed above (see Eqgs. (46), (47)) produces a state which is a positively
B ext
weighted average of the states in the given cell and its upwind neighbors. Finally the second term in braces, [(6+ f )hm]

has the same sign as ((S*f)j,xt in the neighboring cell. If this sign is opposite to that of §~ f in the given cell, i.e. the
local extremum (=sign change in the gradient) of the distribution function is close to the face, this case needs a special

4 pylim ext
treatment. Indeed, the term — [C (5+)] [ —Cje-Xt (6= f );Xt includes the TVD-breaking contribution, —Cj.’“ fj. To balance
J

this contribution, the g-limiter Eq. (48)) with more restrictive choice of 8j =2 — 2C?Xt < 2 should be applied, instead of
Bj =2 allowed in the semi-discrete scheme (see Eq. (48)). In this way, the disturbing term is balanced with the first term in

braces, (fj — f) <] — V’Tﬂ’) which includes f; term of a favorable sign and sufficient magnitude. The distribution function

in the given cell is partially replaced with the states from upwind neighbors of jth cell, also contributing to —C?"t (8* f )
with all positive coefficients, instead of f; state, and Eq. (47) together with the restriction on g; ensures that the volume
fraction, £j, is sufficient for this replacement. At the faces which separate cells with the same sign of §~ f, i.e. within a
monotonicity region, the sign of a second term in braces meets the TVD criterion, and the restriction on g; is only needed
to get a gradual transition between the restricted and unrestricted 8;, which is achieved with the following equation,

ext
i

csf
~ext (s g)ext’

chosen in such way that the weight of the initial state contribution to the final state is positive at C < 1, C®** < 1. The need
to use more restrictive limiter Eq. (57) comparing with ; — 2 at C — 0 is due to the use of a single stage scheme up to
c<1.

The scheme (56) may be implemented as follows. With calculated §H for each face, V for each control volume and
the known time step, At, the local values of C may be calculated as well as 8~ f for each cell, in terms of the val ues of
distribution function in the given cell and in its “minus” neighbors. This is sufficient to calculate the first order contribution
to expression (56) (the first term in the RHS). Then, employing the values of §~ f in “plus” neighboring cells, the g-limited
anti-diffusion flux through the “plus” faces are calculated using (48), (57). Where needed, y -limiters are calculated. The
anti-diffusion from the neighboring cell to the given one are calculated in the “minus” neighbors and do not need to be
recalculated for the given cell.

1-— C?Xt 1 — minmod

Bi _

2.6. Numerical test

To illustrate the advantages of our TVD scheme, we perform a test with the Hamiltonian function

H= c\/mzc2 + (Py — qA)? + (Py - qu)z 58)

for 2-D motion (gyration) of particles of mass m and electric charge q in a uniform magnetic field, B, directed along the
z-axis of the Cartesian coordinate system. Here, Py y = pxy + qAxy are the components of the generalized momentum
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Initial Final Error
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Fig. 4. Convergence test with the smooth initial distribution. Left panel: Initial distribution. For the time instant, t = 27, the initial distribution is analytically
rotated clockwise by the angle, t/,/1+ p2 + pf,: Middle panel: Simulation result at this time on a uniform rectangular 300 x 300 grid; Right panel: Error
- the difference between numerical and analytical solutions.

(see Ch.16 in Landau and Lifshitz [24]). Assuming the Landau gauge, Ay =0, Ay, = Bx, for the components of the vector
potential, Ay y, we can express px = Px, while conservation of P, for the Hamiltonian function independent on y allows us

to consider a group of particles with Py =0, so that x = —g—g,. Their motion is described by the 1-D Hamiltonian function
H(x, px) = c\/mzc2 + P2 + (qBx)? (59)
with the distribution function depending on x = —g—g and py. The initial beam distribution function (see the left panel in

Fig. 3) equals one in a narrow cone in momentum directions about the y-axis, the momentum range beings 0.01mc < p <
10mc and vanishes otherwise.

The simulation results obtained with the scheme given by Eq. (56) for C = 0.99 with the limiter in Egs. (48), (57) on two
different kinds of grid are presented in Fig. 3 (middle and right panels). The tests are performed with g=m=B=c=1.
The simulation time, t = 27T, is chosen, at which particles of lower energy, pf + pf, <« 1, complete a full Larmor rotation. Due
to the relativistic dependence of the gyration frequency on the particle energy, particles with higher energy rotate slower,
which results in de-phasing of initially beamed VDF. This effect is important in a gyrotron [9], where it is combined with
the effect from rotating electric field and results in the electron synchronous gyration and coherent emission. The profile
of the distribution function is sharply outlined thanks to the use of suberbee limiter. Thus, the proposed scheme has high
accuracy and low diffusion, which makes it suitable for practical use.

We also studied grid convergence in the test with smooth analytical initial distribution:

fr—o=cos* (7w (py — 6)/6) cos* (T px/6), at|py —6| <3, |pxl <3, (60)

and equals 0 otherwise (see Fig. 4, left panel). This initial distribution can be analytically rotated by angle t/,/1+ p2 + pf,
to provide an exact solution, fexact at the simulation time, t = 2w, to compare with the numerical solution, f (mid-
dle panel). The error was calculated and normalized per the size of area, occupied by the initial distribution: L; =
> celts | fexace = f1Vcenn/(6 x 6). The errors for grids of 150 x 150, 300 x 300 and 600 x 600 cells equal 5.500 x 1073,
1.284 x 1073, and 2.967 x 104, respectively. The consequent error ratios, characterizing the convergence rate, are equal to
4.28 ~ 2210 and 4.32 ~ 2211 thus demonstrating close to the second order of accuracy. All convergence tests were done at
Cmax = 0.5 with Koren's limiter given by Egs. (49), (57). The total energy [dI'fH is conserved to less than 0.01% relative
error even on the coarsest 150 x 150 grid.

2.7. Energy non-conservation

In addition to the particle number conservation, the kinetic equation Eq. (6) also conserves multiple Casimir invariants,
e.g., the total energy, & = [ HfdI. The pseudo-distribution-function, H (¢, X, p) f (t, X, p), describes the energy density in
phase space. If the Hamiltonian function does not directly depend on time, d;H = 0, one can multiply Eq. (6) by H and
account for an evident identity, {H, H} = 0, following from Eq. (5), which reduces Eq. (6) to the Liouville equation,

3
3 (Hf) + ) _{(Hf): H}g , =0. (61)

I=1

The reason for such reduction is that the value of the Hamiltonian function along the Hamiltonian trajectory is constant and
the original Liouville equation advects the unchanged profile of the distribution function along the Hamiltonian trajectory.
Therefore, the energy density profile along the Hamiltonian trajectory differs only by a constant factor from the canonical
distribution function, so that it is also advected unchanged along the Hamiltonian trajectory. Among consequences from such
energy density behavior is the total energy conservation can be proven analogously to the particle number conservation.

13
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As long as a numerical method is specifically designed to conserve energy, such as those by Ortleb [33], Hakim et al. [14],
Mandell et al. [30], one can apply scheme Eq. (17) to Eq. (61) to produce an energy conserving scheme:

L

VHatfz—Z{[ﬁz(+Aql +ﬁ>—ﬁ,<+ﬂ _Ap:)] feHa + fHEA +H

£ 2 2 2 2 2 2
~ Aq  Ap - Aq  Ap\| f(+Ap)+ f H+Ap)+H
A L Y Y (et
+[1(2,+2) ,(+2,+2)] ’ PR
~ Aq  Ap - Aq Ap\] f(=Aq)+ fH(=Aq)+H
(== 28 g —A
+[ ’( 2 2 ) ’( 2 T )] 2 2 +
([ Aq A _/ Aq A —Ap) + f H(=Ap) +H
Gla (220 AP g (_Aa Ap f(=Ap) + f H(=Ap) ' (62)
2 2 2 2 2 2

Here the energy conservation follows from the fact that the rate of energy change in each control volume is expressed in
terms of the energy fluxes quantifying the energy exchange with the neighboring cells. However, the particle total number
with this choice of scheme is not necessarily conserved.

Specifically, the particle number conserving approach adopted here may potentially result in essential energy non-
conservation, so that even the applicability of the term “conservative” might be debatable. Particularly, for the general
second order scheme in Eq. (17) the energy source in each control volume is given by the RHS of Eq. (17) multiplied by
V H, while the energy defect per cell may be then evaluated by subtracting the energy-conserving flux divergence in the
RHS of Eq. (62).

(£)"-ry

cells I=1 QIAP[
Aq | Ap Aq Apr\] f(+Aq) + f H(+Aq) — H
x {[” (*7 +T>‘”<*T‘T)] 2 2
Aq  Ap Aqp pi\| f+Ap)+ f H+Ap) —H
+[” <_T’+T> _H<+T’+T>] 2 2
+[H<—ﬂ,—ﬂ>—H(—ﬂ, ﬂ)]f( Aq)+ f H(=Aq) —H
2 2 2 2 2 2
N [H <+ﬂ7_@> _H(_ﬂ’_@ﬂ f(=Ap)+f H(—Apz)—H} _
2 2 2 2 2 2

2 Z Z AQIAPI

cells

A A Aq A
qz AprY (A0 A
2 2 2

ACII API Aq | Ap
( 5 ) H(+7,+7>][H(+Apz)—H]+
“[1(-5 )i

}[H(JrACIz)—HH

2 27 2
Aq  Ap Aq  Ap
( 2 _T) H(‘7’—7>][H( Am)—H]}
3\ (0H 9H
Y . o7 (__) 63
cezus fZ( Uagg A 3P,2> 9q1 8py (63)

The energy defect vanishes if the Hamiltonian function is the total of kinetic energy and potential energy, which are
functions of generalized momenta and coordinates, respectively and both are quadratic polynomials, so that aq” =0 and

83H
ap}
numerical flux as in Eq. (23) the energy defect can be as high as:

(@)
(3-‘?) =S 1> s} (H?‘t—H). (64)

cells j,+

= 0. Otherwise, the non-vanishing energy defect is at least of second order in Aq, , A pl . However, with the first order
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Fig. 5. Numerical results on a grid of 360 x 360 cells for distribution function of harmonic oscillators, (Top left and Bottom right panels), or for its difference
from the exact solution (all other panels). Top left and middle panel show the result with Koren’s limiter Eq. (49). All other simulations were done with
superbee limiter Eq. (48), (57), which better maintains sharp boundaries. In the high-CFL result in Bottom left panel the larger error is noticeable near
points x==+1,y =0 and x =0, y = 10, where the sign of §~ f changes and the limiter Eq. (57) adds an extra dissipation. However, if the less restrictive
limiter Eq. (48) is improperly used instead, an error reduces as shown in Bottom middle panel, but the TVD property breaks and undershoots occur in the
distribution function to negative values ~ —10~3. Bottom right panel: Same problem solved on a grid 300 x 360 in “action-angle” coordinates.

Assuming again a rectangular grid and the decomposition of the Hamiltonian function into the sum of potential and
kinetic energy Eq. (64) can be approximated as follows:

dé‘)“) 1 3 9%H | 9H 3%H |0H

(— AN VY A | [+ A | (65)

dt 2 , aq; |9pi ap; | 9q

If both the kinetic and potential energies are convex functions, 32—’;’ >0, 32—’2’ > 0, the energy defect is of first order in grid
ap; aq;

size and it is positive definite, thus resulting in numerical heating.
To test the energy non-conservation and compare it to the overall numerical scheme error for the second order accurate
TVD scheme presented in Eq. (56) we apply it to the kinetic equation of harmonic oscillators with the Hamiltonian H(q, p) =

g + "2—2, for which the energy defect Eq. (63) for the second order non-TVD scheme would vanish, while the defect of
monotonous flux Eq. (65) is positive. We integrate the kinetic equation over the time interval, 0 <t < 2w, i.e. through a
single period of oscillators, so that the analytically exact distribution function at the time instant, t = 27, would repeat
the initial distribution, f(q,p,t =0)=1 at —10 < p <10, —1 < q < 1. Therefore, the difference between the numerical
solution and thus the defined analytical solution, ). |f(q, p,t =27) — f(q, p,t =0)| AQAD/ > cenis (@, P, t =0)AqAp
characterizes L1 norm of deviation of the numerical solution from the analytical one, i.e., the numerical error. On the other
hand, the defect £(t = 27) —£(t = 0) characterizes the non-conservation of energy, £(t) =Y .;s f(@, P, )H(q, p)AqAp. The
discontinuous initial distribution and comparison of the test numerical solution with the discontinuous analytical solution
are designed to artificially increase the error and energy defect to make them noticeable in a comparatively short test
simulation.

The numerical simulation result on a grid of 360 x 360 cells in the computational domain, —12 <qg <12, —12<p <12is
shown in Fig. 5. The top left panel presents the distribution function at the final time instant, t =27t and top middle panel
shows its difference from the exact solution, for a test simulation with Koren’s limiter Eq. (49), (57). All other simulations
were done with superbee limiter Eq. (48), (57), which better maintains sharp boundaries. In the top row all results are
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for CFL number, Cpax = 0.5. For CFL number Cpax = 0.99 (bottom left panel) a larger error is noticeable near points x =
41,y =0 and x =0, y = £10, where the sign of §~ f changes and the limiter Eq. (57) adds an extra dissipation. It is easy
to outperform the TVD scheme, if the less restrictive limiter Eq. (48) is improperly used instead, as shown in bottom middle
panel. However, the TVD property no longer holds in this case, so that undershoots occur in the distribution function to
negative values ~ —1073. By the end of the simulation the relative error of energy [£(27) — £(0)] /£(0) =8 x 10~4, which
is rather small, compared to the 7.3% relative error of the solution f in the L1 norm.

To mitigate the energy-non-conservation and to greatly reduce the numerical error, one can choose the generalized
coordinate/momentum in such way that the conserved quantity becomes one of the generalized coordinates, for example,
using the “action-angle” coordinates, J, 6, described by Landau and Lifshitz [25], which for our test problem can be chosen
as follows:

1
qg=+/2]Jcosd, p=./2]sing, H=]= E(q2 +p%),

which also corresponds to the choice of polar coordinates on the phase plane. The equations for Hamiltonian trajectory in
these coordinates becoming: ‘é—{ (=8)=0 % (= —%
energy vanishes identically and so does the energy defect.

The test simulation on a somewhat coarser grid of 300 logarithmic-uniform meshes over | ranging from 0.5- 10~ to
72 and 360 meshes over the 27 range of angle, which corresponds to the same size of computational domain as in the
test on rectangular grid. With the same initial condition and simulation time the result is presented in the right panel in
Fig. 5 remapped to q, p phase plane. Despite lower resolution, the error in norm L; noticeably reduces to 5.4% and the
energy defect vanishes (within roundoff error). That is why in the applications to the particle acceleration in the space
environment, described below, we always use the distribution function with respect to energy and pitch-angle, rather than

the mathematically equivalent formulation with parallel and perpendicular momentum.

) = —1, so that numerical flux along the coordinate axis of total

2.8. Simulating chaos

The presented method may be also applied to systems known to demonstrate a chaotic behavior, e.g., the Hamiltonian in
action-angle coordinates (see [49,31], for detailed analysis of this well-known dynamical system just briefly outlined here):
J? -
4 2 _
H(®, J,t) = - +gT cos6 > s —nT). (66)

n=—oo

The system is 2m-periodic over the 6 coordinate and it is perturbed by a time-periodic impulse, dJ/dt = —dH /36 «
8 (t —nT), at t =nT, with time period T. The impulse has a sinusoidal dependence on 6, so that a particle with the
first resonant velocity | =2 /T passes through the entire span of the 6 coordinate within a time period T.

In the phase plane at velocity J =0, there are three stationary points. The ones at # =0 and 6 = 27 are unstable, while
the one at & = 7t is stable. For these angles the impact A J o< sinf vanishes, so it does not modify the velocity | =0 and the
particle stays at rest. More detailed pattern of the Hamiltonian trajectories at the phase plane is governed by the parameter

K =dT?. (67)
For K <« 1, we may average the Hamiltonian in time:
T
1 72,
(H)(@,]):? H(G,],t)dt=7~l—a)0c059, (68)

0

which coincides with the Hamiltonian for oscillations. Time-averaging is justified by the observation that the period of
oscillations 27 /wy = 2w T/+/K is much longer than the time interval T between the impacts for K < 1. The separatrices
J = +2wpsin(#/2) connect two unstable stationary points at 6 = 0 and 27 and bound the region of finite motions, i.e.
oscillations about the stable stationary point at & = 7 from the region of unbounded motion of particles with energies
J?/2 + w} cos® = const > w7 exceeding the peaks of the potential w7 cos6.

For K ~ 1 the stronger impacts are essentially discrete, resulting in a qualitative change in the system properties. Partic-
ularly, at the first resonant velocities ] = +2m /T, the 6 = 7 point is also stationary, since the impact amplitude is zero and
the particle with such velocity passes the entire coordinate span and arrives back at & = r (due to the periodicity in 6) by
the time of the next impact at ¢t + T. The new domains of finite motion around these stationary points are bounded by new
separatrices, so that a particle close to one of the stationary points would not be able to approach another one, as long as
the system is a regular (not stochastic) dynamical system. However, the system with K ~ 1 acquires a property of stochastic
diffusion across the separatrix. Fig. 6 illustrates the behavior of the system. For moderate K = 0.6 (top row), the distribution
function in the middle panel at t = 60T fills in the region of zero resonance at the point (J =0,6 = ), then the solution
becomes steady state (see the right panel for t = 160T ). The bottom line illustrates the case of K = 1.2 when the Chirikov
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Fig. 6. Evolution of the distribution function, log;q f, of system Eq. (66), is simulated on 180 x 720 grid points, with the approximated §-function, §(t —nT) =
1/(0.1T) at nT <t <nT + 0.1T. Horizontal axis: 0 <6 < 27, in radians, vertical axis: normalized velocity, —2 < JT/(2m) < 2. Top row: well below
stochasticity threshold, K = 0.6 < 1: Left panel: ¢t = 0, initial distribution with small velocity; Middle panel: t = 60T, domain of finite motion is filled in;
Right panel: t = 160T, steady state is reached. Bottom row: global stochasticity, K = 1.2 > 1: Left panel: t = 60T, stochastic diffusion across the separatrix
fills in the separatrices of semi-resonances, | = +7 /T, 6 =0, , 27r; Middle panel: t = 212T precursors of separatrices of the first resonance regions start
to form; Right panel: t = 550T, the separatrices of the first resonances are filled in and separatrices of new semi-resonances, | = +37 /T, 6 =0, 7,27
start to form.

criterion K > 1 for global chaos is satisfied. In the left panel (t = 60T ) because of the stochastic diffusion the separatrices of
semi-resonant stationary points | =4m /T, 6 =0, r, 27, are shaped. At the semi-resonant velocity the particle passes from
the point & =0 to § = during the time period T and then passes from 6§ = to & =27 during the next time interval T.
It passes the entire span within the time 2T (rather than T as in the first resonances). The further evolution demonstrates
the resonance overlapping, resulting in appearance of precursors of first resonances in the middle panel at t =212T. In the
right panel (t =550T) in addition to mature separatrices of the first resonances, the new semi resonances start to form at
J==437/T, 6 =0, 7,2m. We limited the simulation time in these preliminary tests to about 1000T) (~ 5 - 10° iterations)
to mitigate effect of numerical heating (see section 2.7). However, the main idea of stochastic acceleration in the course of
which some minor fraction of particles with initially low energy may eventually gain unbounded energy, is demonstrated
by these tests.

3. Non-canonical kinetic equations

The current research is mostly motivated by a need to have an efficient method for modeling the energetic particle ac-
celeration and transport in the solar-terrestrial environment. In the related computational problems the canonical Liouville
equation is not often used and the Poisson brackets, on the first glance, may look inapplicable. The main distinction of
the kinetic equations, as applied to space science, is the use of different phase variables q1,q3, ..., qu for the distribution
function, such as the energy or the momentum magnitude, pitch-angle, flux coordinates and so on, which may be not pos-
sible to separate into generalized coordinates and canonically conjugated momenta. Therefore, not only might the kinetic
equation look quite different from Eq. (3), but even the integral of the particle number N may be different from the expres-
sion N = [dI'f, where dI" =[], dg,dp; is assumed above. If such non-canonical kinetic equation still can be formulated via
Poisson brackets, the pseudo-Hamiltonian functions H; in different Poisson brackets may be different and they may or may
not have a meaning of the canonical Hamiltonian function. The simplest example of such equation with the unmodified
integral for particle number is as follows:

L M
e+ U ik, =0 N= [dTuf. dly =[] aw) (69)
I=1 m=1

in which L Poisson brackets are present with respect to a pair of phase variables, ¢, qm,,. In this case the expression in
Eq. (14) for the reduced Hamiltonian function is generalized as follows:

Hi(Gmy » Gmpy) = / [T @am) Hi@r,....qm). (70)

vy m#Emp,mp
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Another distinction is that, as noticed in section 2.1, if a phase variable g, appears in more than one Poisson bracket, i.e.
m =my; or m=my, for more than one I, then more than one difference in the reduced Hamiltonian functions §H; in Eq. (17)
contributes to the numerical flux 6Hj in Eq. (18). All other formulae in section 2 are applicable to solve Eq. (69) as well.

In a more general case, the Jacobian | of the transformation from canonical coordinates, q; and momenta p; to non-
canonical phase coordinates g, depends on the coordinates, so that:

M
=/H(dqmmq],...,qM)f(r,q1,...,qM>. (71)

m=1

The kinetic equation conserves this integral of particle number if it has the following form:

of + Z{f H1Y g, g, = O- (72)

l 1

Similarly to Eq. (10), to derive the finite volume formulation for Eq. (72) it should be multiplied by the Jacobian J, and
integrated over the control phase volume, which is the rectangular box [],,, Aqm:

a dfmJ @1, ---5qm) f (6, q1, - qm) = — Zdez (Gmyy - Gmp) £ (73)

with the above expression, Eq. (70), for effective pseudo-Hamiltonian, H; (qm“,qmu). This equation, again, may be solved
using formulae in section 2 if, in addition to the use of modified Eq. (70), one also modifies the expression for the size of
the control volume:

V= / dTm J @1, ..., qm). (74)
[1(Aqm)

3.1. Transport in an incompressible fluid

As an example of a physical system with multiple pseudo-Hamiltonians, we discuss the transport of some scalar quantity
in an incompressible flow described by the following equation:

op+V-(pu)=0. (75)
Since the velocity u is divergence-free for an incompressible flow, V-u =0, Eq. (75) can be written in a form similar to the
Liouville equation (cf. with Eq. (15)):

op+@-V)p=0. (76)

The divergence-free velocity vector can be written as the curl of a stream function vector w in 3D (analogous to the scalar
stream function in 2D):

u=V x w. (77)
Expanding Eqs. (76) and (77) in Cartesian x, y, z components, one can write Eq. (75) as a non-canonical Liouville equation
with Poisson brackets:

¥*p +{0, Weley + {0, Wiy, +{p. wy}, =0, (78)

and solve it with the schemes presented here. For a uniformly spaced grid in Cartesian coordinates and for a control volume,
Ax x Ay x Az the expression, Eq. (70), for effective pseudo-Hamiltonian reads:

zf+%
AX A AX A
Hy(x*+ ==, y°+ =2 Y :/wzxj:—yj:—yz dz,
2 2 2
xc+%
A
iy +2 2 Cj:—:/ xy £ 204 20 ax,
2 2
 Ax
2
Yoy
<z + — Cj:—) / (x j:—,yzj:—)dy, (79)
Ty
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Fig. 7. Panel a: Streamlines of the spherical Hill vortex of unit radius centered at the origin of the spherical coordinates. Panels b through f: Transport of
inked slab at times t =2,5,6,7 and 9 is shown in a spherical domain of radius R =5 on a uniform grid with 250 points along radius and 360 points in
the poloidal angle. The vortex itself inside R =1 is impenetrable and stays dark.

so that the formulae from section 2 in this particular example reproduce the main idea of the so-called staggered grid by Yee
[48]: the flux of divergence-free velocity vector through the face of the control volume is expressed in terms of the contour
integral of the stream function w over the edges bounding this face, via Stokes’ theorem: [u-dS= §w-dx.

In the case of axisymmetric flow the stream function has only one non-zero component wy, where ¢ is the polar angle
in cylindrical coordinates or the longitude in spherical coordinates. By choosing the control volumes in a form of closed
circular rings with rectangular (for cylindrical coordinates) or trapezoid (for spherical coordinates) meridional cross-section,
the effective pseudo-Hamiltonian function is obtained by integrating w,, over a circular contour, thus giving the following
expressions for the pseudo-Hamiltonian, the Jacobian, and the transport equation, respectively:

z,r

~ 1 ~
H(z,r)=2mrwy(z,1), J=27r, 8t,0~|—j {,0; H} =0, (80)
in cylindrical coordinates, or

=0, (81)

~ 1 ~
H(R,0) =27 Rsinf wy(R,0), ] =27 R? sinf, 9o+ 7 {,0; H]R =

in spherical coordinates. The contours of constant H(z,r) in the meridional plane present the streamlines, which for a
particular case of steady-state flow coincide with the Hamiltonian trajectories for Eq. (76). For example, in the top left
panel of the Fig. 7 the streamlines are shown for a spherical vortex by Hill [15], in which a free-stream flows around a
closed circulating vortex bounded by a spherical surface of a unit radius. For a unit velocity of free-stream, the effective
Hamiltonian function of the Hill’s vortex is as follows:

3 2 ]
2(R*—1), ifR<1 3(24r2—
g 22 7 ( . o2 (22 +r* -1
H=2mR?sin®6 x %<1_R13>’ fRo 1 =277 x{‘%‘(l_(zz+r2)_3/z)_ (82)

As a numerical test problem we solve Eq. (81) for the transport of an “inked” slab of unit thickness about the Hill vortex. A
uniform spherical grid of 250 cells over radius, R, ranging from 0 to 5, by 360 cells over colatitude, 6, ranging from 0 to
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is used (the longitude direction is handled by the axisymmetry). When the number of cells over radius (250) is a multiple
of 5, the vortex boundary, R = 1, coincides with the interfaces between cells with the radial index 50 (inside the vortex)
and 51 (outside the vortex). The numerical flux vanishes at these interfaces, so that the vortex and surrounding flow are
disconnected. The ink density evolution in the meridional plane is shown at different time instants in Fig. 7. Near the two
stagnation points (z = £1,r = 0), the flow velocity tends to zero, so the parts of the inked slab that contact the vortex
region lag behind. Since the inner region of the vortex is impenetrable for the ink, it stays as a dark circle of unit radius in
all snapshots. Despite significant gradients both in the direction of the slab propagation and in the transverse direction the
TVD scheme provides a solution free of spurious oscillations or excessive diffusion.
The velocity components can be obtained from:

1. -~ 1. -
U, = jarH, Ur = —YBZH. (83)

Using a smooth initial condition:

cos*(r (z+3)/3) cost(nr/4), ifjz+3|<1.5and|r| <2,
Pr=0 = (84)

0, ifz<—-450rz>—15o0r|r| > 2,

provides a convenient framework to test semi-discrete scheme Eq. (76) in the way which is insensitive to the choice of
time-integration scheme, in comparing the numerical flux by itself, rather than the result of its time integration. Indeed,
from Eq. (76) the time derivative at the initial time instant, (3;0);—g = — (u- V) p¢=0, may be calculated analytically. This
can be compared with the numerical flux, [3; f1TVP, of the semi-discrete scheme, calculated according to Eq. (41). To make
comparison more representative, the test combines the easy to treat analytical formulae in cylindrical coordinates with the
numerical flux for the flow Eq. (82) calculated in spherical coordinates, so that the features in the initial distribution are not

aligned with the coordinate axes. We evaluate the error in the L1 norm defined as Ly = Y ; ‘atpt=0 — 8 f1TVD v 3 v

The results are the following. On the same grid as described above the second order flux approximation, [d; f ](2) (see
Eq. (18)), in which all face values are arithmetic averages of the neighboring cell values, results in the error L1 = 6.0 x 1076,
The combination of the third-order (at smooth monotone solutions) Koren’s g-limiter Eq. (49) with g =2, (see Eq. (48) for
semi-discrete scheme), with y-limiter provides a better accuracy, L1 = 4.065 x 10~°. At twice higher resolution, the error
reduces to L; = 9.831 x 10~7. The ratio of the errors at the two grid resolutions characterizing the convergence rate is
4.135, corresponding to the convergence rate log, 4.135 = 2.05. Therefore, the accuracy of the TVD semi-discrete scheme
with Koren’s limiter is not worse than that of the second order flux approximation.

3.2. Time-dependent Jacobian and Poisson bracket

In a more general and challenging case the Jacobian of transformation to the non-canonical phase coordinate may ex-
plicitly depend on time, | = J (t,qq,...,qum), SO that

NZ/dFMJ(f,qL~~~,QM)f(f,Q1,m,QM)~ (85)

For simplicity, we consider a particular case, when the Jacobian is independent of one of the generalized coordinate g, and
the kinetic equation conserving the integral (85) is as follows:

L

1

7 <{f7 HO}t,qm/ + Z {f; Hl}qml1 ,qm12> =0, Ho=Jqm. (86)
=1

To obtain the finite volume scheme for Eq. (86), we multiply it by J, integrate over the control phase volume [, Agm

and over time from t to t + At, and then divide it by At. Similarly to Eqs. (70), (17) and (18), on introducing the effective

Hamiltonian,

~ V /
flo= —m'_ (87)
AtAQy
and by reducing the two-dimensional integration over dtdg,  to the contour integral, we find:
V(+ADf(+AY) VS S
VaR0JA0 W s s
At At 2
~ ~ + f(+Aqmw
+ [Ho (+Aqm /2) — Ho (+AL, +Adny /2)] M +
- - f+ F(=Agqw)
+ | Ho (+At. = Aqu /2) = Fio (= Agu /)| =52 = 0. (88)
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The differences §Hg of the Hamiltonian function values in Eq. (88) may be expressed as follows,
AV Gy + AQpy /2

SHoq1=H Aqn/2) — H At, +AQ /2) = ——— ———, 89
0.1 0 (+Aquy /2) — Ho (+At, +Agm /2) AL Ay (89)
~ ~ ~ AV qm — Aqpy /2
8Ho = Ho (+At, —=Aqm /2) — Ho (—Aqm /2) = — Im — Adm/2 (90)
At AQny

AV V(+AH -V
At At
and used to calculate the contribution to the numerical flux through the faces along the direction of g, coordinate, in the

same way we did before. Now, we assume that in the finite volume formulation the quantities §H j already include these
contributions:

V(+AD f(+AL) Vf f+ fext
— ZSH]

with (91)

=0. (92)

However, the sum of the two §Hy terms defined above is non-zero:
AV
ZaHo,_——. (93)

This results in non-zero total of §H; because of the contributions from §Ho:

2
Z(sﬁjzz;afqo,j:—%, ZSH++—= ZSH’ (94)
J J=

Thus, the presence of the Poisson bracket with respect to time not only contributes to the numerical flux, which is easy to
account for, but also breaks Egs. (18)-(19). However, all the consequences from these equations derived in section 2 hold
valid for Eq. (86) as well, although the appearance of the formulas may be different. Particularly, we can rewrite Eq. (92)
via 8% f as defined in Eq. (20):

fHan—f _ (Zj,—mf) (Z, + )8+f

, (95)
At 2V (+AL)
which is a straightforward generalization of Eq. (21). By adding the numerical diffusion
X [ofs| (£ = 1) _ (5 87) 07 F + (X5 877) 671 o5
N 2V (+AD) - 2V (+AD) (96)
that is similar to (22), we obtain the first order monotone numerical flux
=\ s— r— [7— rext
foran—\O _(E5-807)871 (55 87) £ sy £ (97)
At - V (+At) N V (+At)
that is a generalization of (23). The flux in Eq. (97) is monotonous if
At (Z . sfr) Ar i
C=— A S sHT| <1 (98)
V (+AD) V(+AD) (4= J
The relationship between C’ and C defined in (24) (using Eq. (94)) is
Cc-1
-1)=—-—-. (99)
1+ AV/V

Hence, if the requirement, C’ <1 is satisfied, the criterion C <1 for equation with time-dependent Jacobian is satisfied too.
Therefore, the maximum time step (At)max. Still satisfying the stability criterion C’ < 1, may be solved for explicitly:

Vv
At =min ———, 100
(Amax el S 5+l (100)
i+
rather than from an implicit equation, max (C') = 1.
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3.3. TVD scheme for kinetic equation with time-dependent Jacobian

Now, we define TV for Eq. (86), which can be also written in a quasi-linear form as follows:

1 L
of+ 5 ( (atf)qm Z Hilgp, q> =0. (101)

To use the results presented above, we extend the set of M phase coordinates by another fictive coordinate, 0 <& < 1. At
the initial time instant d¢ f = 0, we also assume floating boundary condition, ds f =0 at £ = 1. Now, Eq. (101) may be
written in the form similar to Eq. (72):

df+— <{f O )Eqm e q, ,+Z{f Hilgp,. qmlz) =0, (102)
=1

which can be also rewritten as Jo; f +up+1 - Vm+1f =0 or Jorf + Vum41 - (fuy41) =0. The TV function given by Eq. (28)
can be generalized for Eq. (102) as follows:

T =/ds/drm ups1 - Vare £, (103)

Similarly to Eq. (29) one can express TV in Eq. (103) in terms of integrals, T = Tt + T~, over monotonicity regions, V*
depending on the sign of gradient of distribution function uy; - Vj;:

Tt /derM-<qu>+fdrM(atJ)f . (104)
VE vE

Here, the first term results from integrating over 0 < & <1 the M terms in divergence that are independent of &. The second
term results from integrating the & partial derivative with respect to &, which results in the difference of the primitive
function at the external boundary surfaces at £ =1 and & = 0. At the & = 0 boundary (0 J)é vanishes so only the & =1
boundary contributes to the second term. Note, that we assume the floating boundary condition at £ =1, (85 f ) fo1 = 0. We
can no longer prove TVD property as we did in Section 2.4 for the fixed boundary condition, since an extra integral over
& =1 boundary contributes to the time derivative of TV, according to Eq. (34):

dr
s /dSM uysign (uy - Vi f) 3tf+/drM ¢ J)sign(upy - Vm f) o f
oV "4
< / dTy (3 J) sign (- Vit ) o f (105)
\%4

The sign of the RHS in Eq. (105) is not definite, thus making TV defined by Eq. (103) is inapplicable to formulate the TVD
principle. Therefore, we re-define the TV in the following way:

T=T —/drM @ J)sign(uy -V f) f=TT+T7,
\4

7+ / Ay [Juy - Ve f1 F 0 )) f1 =+ f ATy Vi - (un f). (106)
VE v*

However, this modification does not fully cancel out the time derivative of TV in Eq. (105):

dT dT d
T a dt/dFM (3¢ J) sign (uy - VMf)f</drM (0 J)sign(uy - Vm f) o f —
\%
——/drmamslgn(um whHf=) F / dSu - uy (3 )) f- (107)
RV

The re-defined TV does not increase with time only if in the time derivative of the integral in (107) one neglects the motion
of the interface separating 9V* regions, with the velocity u, =uy/J, or, equivalently, if in calculating this time derivative
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only the distribution function in the integrand is differentiated over time, but the sign function is not. Otherwise, the RHS
in (107) calculated similarly to Eq. (33) does not vanish, since the finite magnitude integrand, £ (d;J) f, in the definition
of modified TV in Eq. (106), changes its sign in a discontinuously when the interface passes. By neglecting the interface
variation, the TVD property preserves monotonicity by prohibiting the appearance of opposite monotonicity region, sV =,
inside the existing monotonicity region, since this would require the positive increase in TV,

ST =2 / dly lup - Vi f| > 0. (108)
sVE

Although the assumption of a non-moving interface between V* regions is a severe limitation of the proved TVD principle
for kinetic equation with time-dependent Jacobian, we still can apply it to the semi-discrete finite volume numerical scheme.
Indeed, the assumption that the interface between cells with opposite sign of the distribution function gradient is not
displaced by a finite cell size within an infinitesimal time interval, is legitimate. Therefore, for the set of control volumes
we introduce T* by combining Eqs. (36) and (104). For the regions of monotonicity, cells, in which sign (B*f) =41, we
define T* for ¥ 0 as follows:

TH=-3%" ZSH‘ 15~ f|:FZ f + Y || DosHT | F+ Y SH | =
J+ j-

cells* cells™ cells™

-+ Y SUsEE | £ ehT £ (109)
it -

boundary cells*

After this derivation, it appears that Egs. (35) and (36) hold for the TV defined in Eq. (109) and all statements made in
section 2.4 are also valid for this re-defined TV. Particularly, the TV reduces to the sum over boundaries of the monotonic-
ity regions. Its time derivative is non-positive as long as the numerical scheme satisfies Eq. (39), thus ensuring the TVD
property. The first order scheme (97) with monotone numerical flux is TVD.

The TVD property eliminates monotonicity breaking. To create an isolated cell inside the monotonicity region with the
sign of 8~ f being opposite to that in the monotonicity region, the TV defined in Eq. (109) would have to gain a positive

increment, —2 (Zl 81:17) |6~ f], i.e. should increase, thus contradicting the TVD property. Note, that the choice of F

sign of the term ; f in the definition is governed by the sign of §~ f in the monotonicity region, rather than that in the
presumably appearlng isolated cell with broken monotonicity. The second order TVD scheme applicable to the non-canonical
kinetic equations with the time-dependent Jacobian may be chosen in the following way:

A s+ hm
f(+At)_f=_C/8_f_WtAt)((1_ ( f Z‘SH+

lim -7 €xt
_ At rr— extgext (£ = fi _ rext (5+f)
VGAD ]Z;(SHJ. Y (—2 ) Cf [72 N (110)

It satisfies the TVD criterion (39) once the CFL number does not exceed one. The scheme in (110) is analogous to that in
Eq. (56), however, the CFL number C’ should be defined according to Eq. (98) and the time-dependent volume should be
calculated at the end of the time step.

4. Non-canonical Kkinetic equation for SEPs with Poisson bracket

Here, we show how the Poisson bracket based scheme may be used for modeling the Solar Energetic Particle (SEP)
acceleration by the interplanetary shock waves as well as their transport toward the Earth orbit (see, [10], and papers cited
therein). To simulate the fluxes of shock-accelerated SEPs, the two competing approaches are employed, which differently
treat the shock region. Particularly, the shock wave may be thought of as a prescribed source of accelerated particles,
derived from semi-analytical or semi-empirical models. In this case the kinetic model is designed to just solve an upstream
transport of already accelerated particles thorough the heliosphere. An alternative approach is to solve the kinetic equation
throughout the whole computational domain including the shock wave region too, so that the diffusive shock acceleration
mechanism by Axford et al. [4], Krymskii [23], Bell [5,6], Blandford and Ostriker [8], Axford [3] is the part of the SEPs model.
For the latter application, it is important to use a particle conserving scheme, otherwise the prediction for the SEP flux may
be compromised by the fake particle production due to approximation errors at high spatial gradients at the shock.

Usually, in application to the SEPs modeling, one introduces their gyrotropic distribution function, f (t, X, p3/3, M), in
a magnetized moving turbulent plasma, which is defined in a frame of reference, co-moving with the local velocity of
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interplanetary plasma, u(x, t), at the given point, x. On introducing spherical coordinates, (p = |p|, # =b-p/p, ¢), in the
momentum space, such that the polar axis is aligned with the direction, b = B/B, of the Interplanetary Magnetic Field (IMF),
B(x, t), the gyrotropic distribution function is averaged over ¢, i.e. over the phase of particle Larmor gyration:

2 00 1
F(x Pt /d Fix £) dN—27rd3x/dp3/d F(x P (111)
) 37I’La _27T (/) ap7l’La§07 £ - 3 I’L ) 35/1/1 )
0 0 -1

where dN is the particle number in the phase volume element. In section 5 we provide the governing equation and nu-
merical results for the SEP model, which keeps dependence on the cosine of pitch-angle, u within the framework of the
so-called focused transport equation. However, here we make a further simplification and deal with the isotropic (omnidirec-
tional) distribution function, fy (x, p3/3, t), which is averaged over the whole solid angle:

3 F 3 T 3
p 1 (. P 3 p
fo X, gt)=5 du f X, 3o t), dN =4 d’Xx d?fo(x,p,t)). (112)
-1 0
The kinetic equation for the isotropic distribution function was introduced by Parker [35]:
3

p> dfo

dcfo+ V) fo— (Vo) - ——= ==V (x-Vfo), (113)
3 9(p3/3)

where x = Dy,bb is the tensor of parallel spatial diffusion along the IMF, Dy being the parallel diffusion coefficient. In this
approximation, the cross-field diffusion of particles is neglected. The Parker equation (113) accounts for effects from the IMF
and other background parameters of the solar wind on the SEP acceleration and transport in the solar atmosphere. The term
proportional to the divergence of u describes the adiabatic cooling, for (V -u) > 0, or (the first order Fermi) acceleration in
shock compression waves, for (V- u) <0.

4.1. Flux/Lagrangian coordinates

Sokolov et al. [42] and Kéta et al. [21] showed how the Lagrangian coordinates may be applied to the kinetic equation
for SEP acceleration and transport along the IMF. This approach is based on the assumption that particles don’t decouple
from their field lines. The particle motion consists of: (a) displacement of particle’s guiding center along some IMF line; and
(b) joint advection of both the guiding center and the IMF line together with plasma into which the field is frozen.

Mathematically, the method employs Lagrangian coordinates (see, e.g., [26]), X, which stay with advecting fluid elements
rather than with fixed positions in space. As each fluid element moves, its Lagrangian coordinates, X;, remain unchanged,
while its spatial location, X (X, t), changes in time in accordance with the local velocity of plasma, u(x, t):

Dx(xr,t) _
Dt =u(x,t) (114)

The coefficients in equation (113) can be expressed in term of the Lagrangian derivatives and spatial derivative along the
IMF line (9/0s =b - V). Herewith, we denote the full time derivative operator and the derivative along the magnetic field
line as:

D a a 1 0 as

—=—+4u-V, b -V=—=—— §5=—,

Dt ot ds  8sdst s
where s; is any Lagrangian coordinate marking the fluid particles along the given IMF line. The partial time derivative at
constant x; is denoted as % or d¢, while the notation % or d; are used to denote the partial time derivative at constant
Eulerian coordinates x.

A way to discretize this kinetic equation on the grid of multiple moving IMF lines (herewith enumerated with two
indexes, j,k) had been described by Borovikov et al. [10]. With this approach, we arrive at a multitude of independent
equations describing a time evolution of the isotropic distribution function, fj(sr, p3/3, ), for a particle group assigned
to a given moving magnetic field line. Using the plasma MHD equations, particularly, the continuity equation,

(115)

30+ p(V-w) =0, (116)
for the plasma density, p(X,t), and the scalar product of the induction equation,

B+B(V-u)=B-V)u, (117)
by the direction vector, b, we obtain:
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(I —bb): Vu=—(InB),, (118)

where I is the identity matrix. The equation for time-dependent distance, &s, between two neighboring Lagrangian meshes
on the moving IMF line may be found in Landau and Lifshitz [27]:

3z (In8s) =bb: Vu (119)

Using Eqgs. (116) (118), (119), one can express 3-D flow divergence term, (V - u), present in Eq. (113):

ot |:ln (%)] =—-0;(Inp)=(V-u). (120)

On the other hand, using the solenoidal constraint, V - B =0, one can reduce the RHS of Eq. (113) to 1-D diffusion along
the IMF line. Finally, in terms of the Poisson bracket, Eq. (113) reads:

B ss p3 B 3 Dy dfjk
s—ifj.,ld——} =——<—*" =) (121)
s B 3 ;33 dsdsp \Bds dsp

To confirm that the LHS of Eq. (121) belongs to the class of non-canonical equations (86), with time-dependent Jacobian,
J o« 8s/B, and may be solved with the scheme described in Section 3, we need to analyze, how the integration over physical
volume (i.e. over d3x) is transformed in the Lagrangian coordinates. In application to SEPs one can introduce the heliocentric
spherical source surface at the heliocentric distance of Rss = 2.5 — 3.5 R beyond which we assume that all IMF lines are
open. The grid points, X; ; on the spherical surface, or on some part of it, may be introduced, enumerated with two indexes,
Jj.k. The IMF at each grid point, Bjy, at the initial time instant together with the surface area element, dS;, associated
with each grid point, may be used to introduce the unsigned flux, v, = |Bj x - dS; k|, through each grid element.

At the initial time instant, the IMF line can be traced through each grid point at the source surface, by solving the ODE,
dx/ds = £b(x). With both choices of sign we obtain both the outward directed part of the IMF line and that connected to
the Sun. In the course of line tracing, the sequence of points belonging to the IMF line is obtained, which may be sequen-
tially enumerated with index, i, for each line, enumerated with the indexes, j, k. A set of three integers s; =1, j, k is the
most convenient vector of Lagrangian mark for the Lagrangian grid point. The time evolution of thus initially constructed
grid points is governed by equations (114), to be solved for realistic 3-D solar wind motion. The easy-to-find distance be-
tween neighboring Lagrangian grid points, s; 1 —s; = [|X;+1 — X;|| is nothing but an approximation for 8sj; 1/, = % = (5,’1‘];5’1
In this way all Hamiltonian functions and control volumes in equations similar to (121) can be efficiently computed with
an account of instantaneous values of the IMF intensity and plasma density in the grid point locations or their Lagrangian
time derivatives. Note a useful consequence from Eq. (120):

8 8 8
0, (22 ) =0, BE_(P3) (122)
B B B )ik

that is the combination of quantities in Eq. (122) is a Lagrangian invariant, which can be once calculated for any Lagrangian
grid point and then reused, if desired. On multiplying by v xds; this combination becomes equal to the conserved element
of mass, p:TSLdsLS, enclosed between two close cross-sections of the flux tube, located at the Lagrangian coordinates, s;
and s; 4+ ds;, and moving with the plasma.

To derive the Jacobian, the IMF line may be thought of as the central line of some flux tube of small cross section, dS.
Since the magnetic flux, v, = BdS, is constant along the flux tube, the phase volume element, dI'; \, for a given IMF line
may be expressed as follows:

3 s 3
drj,k=4nd5dsd% = (47 ¥k) EstL d%, (123)

the factor, (4 ; ), being constant along the flux tube. The particle number integral becomes:

p3 8s p3
Nj,k=/drj,l<fj,k=(47T1//j,k)/dSLd? Efj,k t,st, et (124)

where the integration over ds; in effect reduces to summation over i =s;. For a grid with multiple magnetic field lines
(tubes) the particle number should be summed over all tubes. It is easy to see that Eq. (121) conserves the particle number
integral, given by Eq. (124) and that the expression for Jacobian, | = 4711//1-,;(%5 (04 %, justifies that Eq. (121) with zero RHS
is a particular case of Eq. (86).
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Fig. 8. Left panel: Coordinates, s;, (horizontal axis) and the inverse of distance, 1/8s; =2/(si+1 — Si—1), (vertical axis) of the Lagrangian grid points near the
model shock front. Right panel: Comparison between a numerical result for the particle distribution function behind the shock wave front (symbols) with
the theoretical prediction (line).

4.2. Numerical result
Eq. (121) combining Poisson bracket and 1-D diffusion operator can be solved using the Strang splitting method. This

means that to advance the numerical solution of Eq. (121) through the time step, from t to t 4+ At, we alternate the stage
at which we solve equation,

=0, (125)

with the Poisson bracket and no diffusion, using the scheme in (110) as discussed above, followed by the stage at which we
solve the spatial diffusion equation:

8s 0 Dxx 0 fjk
0 (Fin)e = 2 2x ik 126
g Sive =5 (Bas dst (126)

using a fully implicit scheme. In the latter scheme the diffusion operator in the RHS is discretized via cell-centered values
of the distribution functions at the upper time level, t + At. As long as the CFL condition for solving Eq. (125) is satisfied,
the overall numerical scheme for Eq. (121) appears to be stable, since the implicit scheme for Eq. (126) is unconditionally
stable, no matter how high the diffusion coefficient could be. On the other hand, the implicit scheme for 1-D diffusion
operator in the RHS of Eq. (126) reduces to the system of linear equations with a tri-diagonal matrix, because the numerical
solution in a given cell depends only on the solution in two neighboring cells. Such system can be explicitly solved with a
single iteration of the Gauss-Seidel method.

As a numerical test we consider the particle acceleration in 1-D shock wave, propagating with the unit speed along a
uniform magnetic field (see Fig. 8). The Lagrangian points at the initial time instant, t = 0, when the shock wave front is at
s =0, form equidistant grid, the initial grid point coordinates being s; =i — 0.5. The ith grid point is at rest till the shock
wave reaches it at the time instant, t =t; =i — 0.5. Then, during the unit time, the grid point accelerates to the speed,
0.75, so that s; =i — 0.5 + 0.375(t — t;)2, for 0 <t — t; < 1. After this, the point keeps moving with the constant speed, so
that s; =i —0.540.375+ 0.75(t —t; — 1), for t — t; > 1. In Fig. 8, left panel presents coordinates, s;, (horizontal axis) and
the inverse of distance, 1/V; = 2/(si+1 — Si—1), (vertical axis) for the time instant, t = 60000. The particles starting from the
index, i = 6001, are not yet reached by the shock wave and are still equidistant with the unit mesh, (65)i11/2 =Siy1—si=1.
The particle with the index i = 6000 and the coordinate, Sgoop = 5999%, still close to its initial value, Sé%)oo =5999.5, has
been just passed by the shock wave and starts to accelerate. All particles with the lower value if index are behind the
shock wave front and move at the speed equal to 0.75, the distance between the neighboring particles being §s = 0.25.
Accordingly, the inverse distance proportional to the bulk plasma density increases by a factor of 4 behind the shock,
corresponding to the compression ratio 4 = (y + 1)/(y — 1), across the strong shock in plasma with the adiabatic index,
y =5/3.

The numerical result for the particle distribution function behind the shock wave front (at i=5000) is shown (with
symbols) in the right panel of Fig. 8. 10000 Lagrangian points are used with log-uniform grid with 40 intervals for the
momentum ranging by two orders of magnitude: pp < p < 100po. The diffusion coefficient is Dy, = 100. We assume zero
diffusion flux through the spatial boundaries at the first and last Lagrangian points as well as zero distribution function
at the momentum below pg, therefore, in neglecting minor particle flow across the maximum momentum boundary, the
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Fig. 9. For the test presented in Fig. 8: a fraction of particles, fo(p)V, falling into a given control volume, as a function of cell-centered value of momentum,
p. Only about 103 of particles reach the maximal energy.

boundaries of the computational phase space do not disturb the total particle number conservation. The seed particles
were initially put into the first momentum bin, their number per the Lagrangian point being normalized per one. Under
these assumptions the theoretical prediction for the distribution function behind the front of the 1-D shock wave with the
compression ratio of 4 is (see [4,23,5,6,8,3]):

4
fo="22. (127)
p
This theoretically predicted spectrum is shown with the line in the right panel in Fig. 8. A perfect agreement with the
numerical result is achieved thanks to the use of numerical scheme based on exact integral relations. That is why the
method works even in the case when the shock wave profile is in fact discontinuous and no differential relation can be
properly approximated.

The test results provide some opportunity to demonstrate the advantage of the proposed method versus particle sim-
ulations. Using data shown in the right panel of Fig. 8 one can calculate the values of the product, f(p)V, for a chosen
set of control volumes. Since the initial distribution function is normalized per one particle per cell of the lowest energy,
these values characterize the fraction of particles accelerated to the energy range represented by the given control volume.
From Fig. 9 one can see that the fraction of particles reaching the maximal energy is as low as 10~3. To reproduce this
result within the usual framework of particle methods more than a thousand of macroparticles per cell should be initially
distributed to get at least one particle at maximum energy, which is still insufficient for statistical reliability of the result.
Alternatively, in Monte Carlo particle methods the problem of low statistical weight can be overcome by assigning individual
statistical weights to each model particle (see, e.g. [46], who applied Monte-Carlo method to the shock wave acceleration
problem similar to what is discussed here). Specifically, the individual weights of high-energy macro-particles are artificially
reduced in increasing accordingly their number, thus achieving statistical representation. At the same time the number of
the low-energy particles is artificially reduced in increasing their individual weights. This approach allows a construction
of numerical algorithm in which the entire particle spectrum is statistically well represented with no significant increase
in the particle number to be used in simulation. Particle splitting and merging techniques are dynamically used to ensure
a good statistical quality of the simulation results of the stochastic acceleration process over the entire energy range of
interest. The individual particle weights are accounted for while calculating moments of the distribution functions, which
are the measurable quantities. These techniques, however, are both laborious and computationally expensive

The scheme under consideration is free of these complications and better suited to simulate particle acceleration to high
energy in space environment. It allows simulating small fluxes of hazardous high-energy particles with no need to care
about their small statistical weight.

5. More particle transport equations with Poisson brackets

Here, we provide more examples of physically relevant transport equations, which can be formulated via the Poisson
brackets and solved with the proposed method.

5.1. Focused transport equation

Beyond the framework of Parker equation the SEPs are described by the pitch-angle dependent gyrotropic distribution
function. A focused transport equation describing an evolution of such VDF in a turbulent interplanetary magnetic field had
been published by Skilling [41]. A detailed view on different aspects of particle propagation along magnetic-field lines,
cooling/heating, and focusing can be found in Kéta and Jokipii [19,20]. A novelty of our current approach to this equation is
that we formulate it in terms of the Poisson brackets:
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[ (3(bb: Vu) — (V - u)) + p°m; (b- %)]} =19, (128)
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The scattering integral, I® in the RHS describes the particle interaction with the MHD turbulence. Similarly to the transition
from Eq. (113) to Eq. (121) in Section 4, one can proceed to Lagrangian coordinates in equation (128). In this way we arrive
at the equation describing a time evolution of the gyrotropic distribution function, f;k(t, st, p3/3, ), for a particle group
relating to a given moving magnetic field line, which, again, can be formulated in terms of the Poisson brackets:

p38s B (n?>=1)p
{f; k»—} + =1 i ——%— + (129)
3B ‘E,p3/3 §s ZmIB S
B (1—pu?) p? 2 8s 1 m;8s
— ik —t— o (= ) =650, | = 3 (b- =10,
+5$ [f],k'7 D) up 3% 3 Sd¢ B + B r(b-u)
p3/3.u
The particle number integral can be formulated similarly to that in Eq. (124):
3 3 3
p p ds p
Njr= [ dljfjk (t, SL g M) =2 yjy) | dst d? du [Efj,k <t, S5 M)] (130)

Eq. (129) conserves the particle number integral, given by Eq. (130).
5.2. Particle transport in steady-state stream-aligned interplanetary magnetic field

The models discussed so far are based on numerical solutions of the transport equation using moving Lagrangian grids.
They are well suited to solve the SEP acceleration in non-steady-state plasmas, such as coronal mass ejections, which might
result in SEP acceleration at interplanetary shock waves. However, for many space science applications, particle transport
through a “quiet” heliosphere, or even through a steady-state heliosphere might be of interest. Indeed, the quiet solar
wind is close to steady-state in the coordinate frame co-rotating with the Sun. In this frame solar wind sources that rotate
with the Sun (i.e. active regions and coronal holes), do not move and evolve slowly, thus resulting in a steady-state solar
atmosphere. The transport of Galactic Cosmic Rays (GCRs) through such steady-state background can be described to relate
the evolution from their interstellar distribution to the observed flux deep inside the heliosphere.

Recent Fermi-LAT gamma-ray observations of the solar disk [32,29,45] have shown some unexplained features, such
as temporal and spacial variability on the solar disk over the solar cycle, the high energy (> 200 GeV) spectrum, and a
gamma-ray flux higher than expected (e.g., [39]). These solar gamma-ray photons are likely the result of the interactions of
hadronic GCRs with the solar atmosphere. Additionally, the inverse-Compton halo about the Sun is induced by interactions
between GCR electrons and solar photons, tracing the distribution of GCR electrons in the inner heliosphere [1]. Studying
these processes require describing the propagation of GCRs through the heliosphere to the photosphere. Steady-state solar
wind solutions can be applied to these problems, as these observations occur on time-scales of months or even years.

Another possible field of application is the particle acceleration in Corotating Interaction Regions (CIRs, see, e.g., [38]),
which result in the time variation of the energetic particles observed in-situ, even though they are steady-state in the
co-rotating frame. Finally, the seed population of energetic particles, that can be further accelerated by some dynamical
processes, are generated and transported in the quiet (steady-state) solar wind. This variety of steady-state particle transport
problems are challenging to simulate on moving Lagrangian grids.

In the Parker [34] model, the steady-state magnetized solar wind is thought of as plasma motion along the magnetic
field, or, alternatively, as tstream-aligned MHD motion, where the magnetic field is always parallel or anti-parallel to the
velocity:

B=ou, Bxu=0. (131)

Sokolov et al. [44] demonstrated how a realistic 3-D steady-state solar atmosphere can be numerically solved, constrained
with observed photospheric magnetograms. Here, we show how the focused transport equation can be formulated in terms
of Poisson brackets for such background.

As described in sections 4.1 and 5.1, we introduce a grid of IMF lines enumerated with two indexes, j,k as well as
the distribution functions, f; for the groups of particles within the corresponding flux tube. In this case the coordinate
along the line is just s, not sy, so that in Eq. (129) the no longer used derivative over s; should be expressed as follows:
ds, = 8s0;. The time derivative at constant x; for the distribution function should be expressed as D¢ f = f; + ufs, while for
the background time-independent quantities this expression simplifies: D¢(...) = uds(...). In the particle number integral
(130) the differential, ds;, needs to be eliminated:
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Fig. 10. Left panel: Face coordinates, (s; + si4+1) /2, (horizontal axis) and the density at faces, pjy1/2 = 1/ (si+1 — si), (vertical axis) near the steady state
shock front. Right panel: Comparison between a numerical result for the particle distribution function behind the shock wave front (green symbols and red
symbols for lower and higher resolution respectively) with the theoretical prediction (line).

Njx= (27 ¥jk) dsdp—3d lf~ t,s p—3 (132)
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One can use Eq. (122) to eliminate £, and (%), in Eq. (129):
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Herewith, the combination of quantities, (%)j i is constant throughout the steady-state IMF line, therefore, it is denoted
with indices, j, k. This parameter represents a constant value of the mass flux per unit magnetic flux tube area, since both
the mass flux, puS, and the magnetic flux, ¥, = BS, are constant along the IMF line with their ratio being independent of

S (see [44], for more detail). The version of the Parker equation (113) for stream-aligned MHD background is:

3
pu D 0 ( Dxx 8fjk
ofik+Bfiw|—) == =B - ) e
e fik+ {f},k (B )].’k 3p}s,p3/3 85( B ds Y

5.3. Numerical result

To test particle transport in a steady-state stream-aligned MHD flow we performed a two-stage simulation run. For the
first stage we repeated the numerical solution of Eq. (121) describing particle acceleration by a traveling shock wave (see
section 4.2) for t = 6000. The only difference from the earlier solution was the increase of the diffusion coefficient (from
Dyx =100 to Dy, = 200), reducing the acceleration rate D);<1 by a factor of 0.5. Starting with the distribution function
calculated at the end of first stage we simulated the evolution of distribution function described by Eq. (134) for another
t = 6000. The particle acceleration was due to a steady-state shock wave in the boosted frame of reference, co-moving with
the shock wave, i.e. moving to the right with unit speed. In this frame of reference the uniform stream in front of the shock
wave has the transformed velocity, u = —1, so that (%) = —1. According to Eq. (122), the values of inverse density on
spatial faces of control volumes in this test can be calculated as /Oi::l/z =si+1 — Si. The dependence of face density on the
face coordinate, si1/2 = (si + Sit+1) /2 shown in the left panel of Fig. 10 is sufficient to compute the Hamiltonian values.

The simulation results obtained using the same grid as in section 4.2 are shown in the right panel in Fig. 10 with
green squares. At high energies the simulated spectrum is harder than the theoretical one shown with a black curve, thus
overestimating the acceleration efficiency due to finite mesh effects. However, with twice higher resolution (80 meshes over
the momentum range) the simulated spectrum shown with red circles perfectly agrees with theoretical predictions.
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6. Conclusions and discussion
6.1. Summary

We have shown that several systems of equations of practical importance can be cast in a form using Poisson brackets.
These equations can be discretized in a manner that satisfies conservation of phase space density to round-off errors. Second
or higher order accurate schemes with ad-hoc (including direction-by-direction TVD) limiters can be easily employed to
solve these equations.

As an alternative, we have introduced a total variation (TV) functional appropriate for the multi-dimensional Liouville
equation. We proved that the TV does not increase in time and eliminates the possibility of spurious numerical oscillations.
Based on this concept, we have constructed a new high resolution finite volume scheme that satisfies the Total Variation
Diminishing (TVD) property.

Among the practical applications is the kinetic transport equation, which is directly applicable to solar energetic particle
(SEP) simulations even in the simplest version of the Parker [35] equation. A more refined SEP model based on the focused
transport equation with multiple Poisson brackets for the gyrotropic distribution function is briefly discussed here with
more detailed explanation and test results being delegated to a fuller version of the paper [43]

6.2. Prospective for future work

We plan to employ the proposed scheme for simulating SEP acceleration, propagation, and transport within the SWMF
framework designed for modeling space weather (see [12]). Apart from solving the SEP transport using Eqs. (129) and (133)
on separate magnetic field lines, we are going to solve the Poisson bracket version of Parker’s equation Eq. (113):

3
de fo + {fo; ”3—“} =V (x-Vfo). (135)
x,p3/3

on top of realistic 3-D model for solar wind velocity, u, and the magnetic field, B.
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