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Abstract

We provide exact analytical solutions for the magnetic field produced by prescribed current distributions located
inside a toroidal filament of finite thickness. The solutions are expressed in terms of toroidal functions, which are
modifications of the Legendre functions. In application to the MHD equilibrium of a twisted toroidal current loop
in the solar corona, the Grad-Shafranov equation is decomposed into an analytic solution describing an
equilibrium configuration against the pinch-effect from its own current and an approximate solution for an external
strapping field to balance the hoop force. Our solutions can be employed in numerical simulations of coronal mass
ejections (CMEs). When superimposed on the background solar coronal magnetic field, the excess magnetic
energy of the twisted current loop configuration can be made unstable by applying flux cancellation to reduce the
strapping field. Such loss of stability accompanied by the formation of an expanding flux rope is typical for the
Titov & Démoulin eruptive event generator. The main new features of the proposed model are as follows: the
filament is filled with finite 3 plasma with finite mass and energy, the model describes an equilibrium solution that
will spontaneously erupt due to magnetic reconnection of the strapping magnetic field arcade, and there are analytic
expressions connecting the model parameters to the asymptotic velocity and total mass of the resulting CME,
providing a way to connect the simulated CME properties to multipoint coronograph observations.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar coronal mass ejections (310); Solar
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1. Introduction

Solar eruptions, including coronal mass ejections (CMEs),
are associated with a major restructuring of the coronal
magnetic field and the ejection of solar material (~10'2-10"
kg) and magnetic flux (~10'°-10'> Wb) into interplanetary
space (e.g., Roussev & Sokolov 2006). Among many aspects
of CMEs that justify the heliophysics community’s interest in
numerical simulations of CMEs is their contribution to the
acceleration of solar energetic particles (SEPs). To explain the
observed signatures of CME-SEP events, global models of
solar eruptions need to incorporate the realistic background
solution for the solar corona (SC) and magnetic field driven by
observed magnetograms (see Roussev et al. 2004).

The fundamental process producing a CME is the conversion
of magnetic free energy to the kinetic energy of the ejecta; that
is why magnetically driven CME models are the most
promising. A simple, but well working, way to drive a CME
in a global simulation is to superimpose a Gibson & Low
(1998; GL) or Titov & Démoulin (1999; TD) magnetic flux-
tube configuration onto the background state of SC. These
magnetic configurations describe an erupting magnetic fila-
ment. That filament becomes an expanding flux rope (magnetic
cloud) in the ambient solar wind while evolving and
propagating outward from the Sun, thus allowing the simula-
tion of the propagation of a magnetically driven CME.

Our recent work on the GL model allowed us to significantly
simplify the process of triggering CMEs. The product of the
effort is the Eruptive Event Generator based on Gibson-Low
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magnetic configuration (Jin et al. 2017), which is described in
more details in Borovikov et al. (2017) in terms of an analytical
solution of the Grad-Shafranov (GS; Grad & Rubin 1958;
Shafranov 1966) equation. While the GL model represents
significant progress in physics-based CME initiation modeling,
it also has important limitations. When superimposed on the
external field of the active region, the GL flux rope is already
out of equilibrium, and it is expanding in a self-similar manner;
therefore, it sidesteps the CME initiation problem. More
importantly, the analysis based on the GS equation in
Borovikov et al. (2017) demonstrated that the GL flux rope
has regions of negative plasma ([ (the ratio of thermal to
magnetic pressures), a clearly unphysical regime. The TD
model inserts a toroidal loop (filament) carrying an electric
current, I'”", on top of the active region in a way that only part
of the current loop is above the photosphere. The superposed
magnetic configuration is stabilized by the effect of a strapping
magnetic field, B® in the active region, such that the action of
this field on the loop current, I®'B® balances the hoop force,
ox(I°)? (see Titov et al. 2014), which allows for derivation of
the current, I'™", in terms of the observed magnetic field in the
active region. If the equilibrium breaks, the filament immedi-
ately starts to expand, initiating an eruption. Recently, the
model was generalized for inserting nontoroidal current loops
by Titov et al. (2021), as well as for producing near-critical
current loops using a helicity pumping method by Titov et al.
(2022). The force-free TD model also has its own important
limitation: the assumption of no mass (pressure) inside the
filament is part of the equilibrium analysis (G = 0).

In spite of its limitations, the original TD flux rope model has
been used in a number of studies (e.g., Roussev et al. 2003;
Manchester et al. 2008, 2012; Jin et al. 2013). Starting with the
work of Linker et al. 2016 and Torok et al. 2018, numerous
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impressive results were obtained with the modified TD
configuration (Titov et al. 2014), simulating historic CME
events with unprecedented clarity and completeness.

In this paper we describe an alternative TD approach, which
addresses significant limitations of the Titov & Démoulin
(1999) and Titov et al. (2014) models: our equilibrium analysis
of the filament superposed with the potential field of the active
region allows for finite mass and pressure (0> 0) inside the
filament.

Similarly to the approach by Borovikov et al. (2017), this
work is based on an analytical solution of the scalar GS
equation. With the GS equation, one can describe a toroidal
filament of twisted magnetic field lines filled with finite density
plasma (ejecta). The solutions are expressed in terms of toroidal
functions (see Appendix), which are straightforward modifica-
tions of Legendre functions.

We will apply this method to describe a twisted toroidal
current loop in the SC that is in MHD equilibrium. In order to
combine this filament with the active region magnetic field, an
external strapping field must be accounted for in the force
balance that balances the hoop force and thus assures
equilibrium. We provide an approximate analytic solution to
describe this combined configuration.

Note about notations.—This paper is highly mathematical,
and some of the notations are easy to confuse. Here we briefly
summarize our guiding philosophy concerning notations.

In general (dimensional), physical quantities described by
functions of cylindrical coordinates z, r will be denoted by
upper case letters:

1. J(z, r)—current density,
2. U(z, r—flux function,
3. P(z, r)—gas-kinetic pressure.

Quantities denoted by lower-case letters are reduced functions
(or representative functions) of toroidal coordinates, u, v:

L UGz, 1) = pgyReor (),
2. Jy(z, r) = R/ j(u, v),
3. P(z, 1) = (Rso/7) p(u, v),
4. B,(z, 1) = (Roo/1)2 b(u, v).

Finally, quantities denoted with a “~” symbol represent
normalized (dimensionless) quantities:

1. i’é(u) = In(u)/lno’
2. Zy :jn/lng
3. r[,[/n - wn/lno-

2. Magnetostatics in Toroidal Coordinates

Equilibrium confinement of a toroidal plasma filament with a
finite gas-kinetic pressure is controlled by a steady-state
toroidal electric current, which produces an axially symmetric
magnetic field that is independent of the toroidal angle, . The
magnetostatics of such fields can be formulated in arbitrary
orthogonal coordinates, (u(r, z), v(r, z), ©). The meridional
plane coordinates, (u, v), may or may not differ from
cylindrical ones, (r, z), r being the distance from the axis of
symmetry.

In the 3D vector of magnetic field, B =B, + B e, the
poloidal components in the (z, r) plane, B,, can be expressed
via the toroidal component of a vector potential, A, using the
Lamé coefficients, h,, h, (which describe the length element in
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Figure 1. Toroidal coordinate surfaces for R,, = 1: sinhu = 5 (v' =~ 0.1)—
orange torus; v = 0—gray part of plane z=0; v = m/2—blue hemisphere;
v = m—invisible part of plane z = 0; v = 37w/2—red hemisphere. Coordinate u
decreases outward from the torus and increases inward, turning to infinity at the
(invisible) circumference, 2+ y2 =1,z=0.

terms of infinitesimal coordinate increments:
ds* = h2du® + hldv? + r’de?):
R
B, = vy e, 1)
r
where the 2D differential operator,
w10, 107 @)
h, Ou h, Ov

is applied to the flux function, ¥ = rA,. Instead of the full flux
function, we will use (everywhere except Section 5.1) the
“reduced” flux function, %(u, v), that is defined in u, v
coordinates:

\I’(Z9 r) = :U’O \/ROOr w("h V)? (3)

where R is a characteristic scale to be specified later. Using
Ampere’s law, V, x B, = upJe,, in u, v coordinates, the
expression for the toroidal current density, J,,, can be simplified
with the reduced flux function:

Iz r) = R j(”_;"),
r r
D3 2 (o (hov) . 0 (hov
= - — ] — —— ) —— R 4
1= huhv[au(hu 8u)+8v(hv av)] ©

where we introduced a representative function for the toroidal
current density, j(u, v), that only depends on the generalized
coordinates.

Next, we define the toroidal coordinates in the meridional
plane (u, v) in the following way (see Morse & Feshbach 1953,
and Figure 1):

R sinhu R, sinvy
r=——m————, 71=—
coshu — cosv coshu — cosv
R r
hu = hv = — = (5)

coshu — cosv sinh u
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From these definitions, we get the following relation for the
normalized radius vector to the (7, z) point:

Y .\
- + _ —
() (&)

=1+ ﬁcotv =-—1+ zcothu. (6)

[e¢} o0

coshu + cosv
coshu — cosv

This means that surfaces of constant v =v, are spheres with
centers at r=0, z = Ry cotvy, and radii of R../|sinvy|.
Surfaces of constant u=u, are tori with major radii
Ry cothug and minor radii R,,/sinhug. Specifically, when
u— oo, the major and minor radii become R, and O,
respectively. This is a degenerated toroidal surface of zero
minor radius (toroidal magnetic axis).

The inverse transformations determine the toroidal coordi-
nates, u, v, and the Lamé coefficients in terms of r, z:

2R 2 - R}
sinv:ﬂ, cosv = M,
R.R_ R.R_
. 2R R.R_
sinhu==""00 o, = (7
R.R_ 2Ro
where R = Rz, R =re, + ze, is the radius vector pointing

from the center, and z =0, r =0 to a given point,

Ri=(r £ Rx)* + 2%, (®)

are the maximum (+) and minimum (—) distances from the
given point to the toroidal magnetic axis.

The magnetic field can be expressed in terms of foroidal
special functions of the toroidal coordinate, u. Note, that the
presence of u, uq in the equations is quite formal, and they are
not actually calculated, since in effect the special functions can
be expressed and efficiently calculated as hypergeometric
power series of either s(u) or x'(u), which can in turn be
expressed in terms of R.:

Ky =1— e 2 = 4R020r’
R
Kw)=+1 — K2 :e*“:%. 9)
+

Using these notations, the toroidal coordinate surface,
2

. . / .
u = const, has minor radius, a = ZH/ROO/(I — K ), and major
radius, Ry = \/Rfc + a?, determined by the constant value of

k', at the surface. Any such surface can be taken as the
boundary of a toroidal current filament. Conversely, the field of
a toroidal current filament with known minor and major radii of

a, Ry, can be described using toroidal coordinates with a

characteristic length scale of R, = «/ROZ — a2, so that the
filament boundary is a u = uy = const surface at which
/1(/) = k' (up) = a/ (Ro + R). This surface separates the fila-
ment interior (4o <u <oo) from its exterior (0 <u < ug).
Note, that for u — 0 lim,_,ox = 0, while for u — oo (at the
toroidal magnetic axis) lim, . k' = 0.
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The coordinate unit vectors are as follows:
(R* —R})e: —2RR - ¢.)

R R,
_ (coshucosv — 1)e, — sinhusinv e,

e, —

, (10)
coshu — cosv

e, =[e, X e,]
—sinhusinv e, — (coshucosv — 1)e,

(11)

coshu — cosv

With the help of the Lamé coefficients (Equation (5)), one can
express the (poloidal) magnetic field (Equation (1)),

1R UL
B, = T[ﬂ’ez + ?(a_ve” — 6_uev)]’ (12)

and the toroidal current density (Equation (4)):

9y O L] (13)

..o

J = sinh u[ o> * 4sinh?u

Any solution of scalar Equation (13) that relates the form factor
of the toroidal current to the reduced flux function, allows for
expressing the vector poloidal magnetic field via Equation (12).
In particular, we will present manufactured solutions, which,
for some special choices of the current form factor, lead to

analytic expressions for the magnetic field.

3. Deriving the Reduced Flux Function with the Fourier
Method

Equation (13) can be solved because the Laplacian in
toroidal coordinates allows for the separation of variables
within the framework of the Fourier method. Both currents and
fields are expressed in terms of products of eigenfunctions of a
single variable depending either on u or on v. This way, a
variety of solutions can be derived expressing the field
analytically in terms of special toroidal functions. Indeed, the
scalar function appearing in the poloidal magnetic field (see
Equation (12)) can be expressed as a complex series:

w - Z einvwn(u), wn = wfnv (14’)
where i*=—1, and the superscript asterisk means complex

conjugation.
To find the magnetic field harmonics, the current, j(u, v), in
Equation (4) is also expanded into a Fourier series:

vy =3 emviw, j,=j". (15)

n=—oo

Equations relating the magnetic field and current harmonics can
be derived from Equations (13), (14), and (15) as follows:

_ & +(n2+ 3 )mz AC) (16)

du? 4 sinh? u sinh? u

The substitution, 9, = +/2sinhu F,(u), reduces this equation
with zero on the right-hand side (RHS) to the equation for
Legendre functions of semi-integer index, Pn*_ll(cosh u) and
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Qn*_l, (coshu). The eigenfunctions of Equation (16) are
2

P-1, (u) = J2sinhu P*_ll(cosh u),
0, (u) = 2sinhu Q" (coshu), (17)

(see Equations (A2) and (A7)), which are referred to as foroidal
functions. Since the toroidal current is assumed to vanish
outside the torus, i.e., J,=0 for 0 <u <uy, the field in this
region can be expressed as a series of toroidal functions of the
first kind: 1, o< Pn ! (u), because the Legendre functions of the

second kind, Qn,i(u) are singular at u — 0.
The current, I(u), through a contour of constant u, can be
expressed as a series of harmonics:
oo
Z I (),

00 2T
Iwzj'f Johuh, dvduy, =

o ACORS
() = (f R )m (18)

where the inner integral over v can be evaluated using
Equation (A14), yielding:

h = [ 07 2, (19

u simh” uy

The nth harmonics of the total current through the current loop,
I,(up), will be denoted as I,

00 00
I°t = Z Ino: Z In(u())~ (20)

n=—0o0 n=—0o0

Similarly, with the help of Equation (A15), the harmonics of
magnetic moment defined as the volume integral,
M = % f rJ,dV, can be obtained in terms of quantities
introduced above:

M= ﬂ'f;oc J;h Jor?hyh, dvdu,

_ i | 1 J (1)
=R f (f R2 dv] sinh? i i

=mR2 Z (A — 4nd)1,,. 1)

n=-—0oo

The quantities, I,(u), j,(u), as well as ,(u) all have
dimensions of current; therefore, it is convenient to characterize
the distributions of current and reduced flux function with the
dimensionless quantities normalized by the appropriate harmo-
nics of total current:

Lw=29 " f g =1,

ke 7],1—(’4) o0 -7]] ]Nn(ul) _

it =2, Logﬁm%mhfme
@w=ﬁ§2 (22)

One can express the magnetic field harmonics in terms of the
current harmonics using a convolution integral (see
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Equation (A12)):

f G, (u, u (1) duy (23)

SlIl

where we introduced the Green function,

Gy (u, wy) = (% - %z)p;ll(min(u, u))
x 0, (max(u, w)). 24)

Following general rules, the Green function is constructed
from the eigenfunctions of Equation (16) satisfying the proper
boundary conditions. While it is continuous, its derivative,
0G,/0u =1, has a discontinuity at u=u; in a way that the
second derivative equals the negative of the Dirac é-function.
This is why Equation (23) provides a solution to Equation (16)
for a given current on the RHS.

Inside the current filament, (# > ug), the integration of the
Green function (Equation (24)) gives:

VU > ug) = Lo [P (), (u)
" 8§ 2 ) a7
« PV (), (uy) duy
5. e T 25
+Q,l_§(u)j;0 sinh? i, 25)

Outside the current loop where u < uy <
(24) give:

uy, Equations (23) and

"Ln(“ < Up) = l - 71_2 Pill(”)- (26)
s 2)

Even though the reduced flux functions in Equations (25) and
(26) are continuous at the filament surface (u=ug), the
derivatives might be discontinuous when the finite surface
current is concentrated at the filament boundary.

To conclude this Section, we provide an equation for the
total reduced flux function for the case when the current
distribution is symmetric with respect to the z = 0 plane, so that
the flux is an even function of v, the current amplitudes are real
functions, and one can use e = cos(nv). With these
simplifications, the reduced flux function becomes (see
Equations (14) and (26)):

00 2
Y <u)= ), (l—n)

n=-—00 8 2
Ly =L, 27)

P j (u)cos (nv),

1
2

We can also provide the Fourier series for the external field
of the same symmetry. The currents producing this field are all
located outside the filament, and there is no singularity at the
toroidal magnetic axis; hence, inside the filament, the
expansion for this field is as follows:

V(U > ug) = i 1p5fX[)Q_;J%(u)COS (nv),

n—=—0o0

(CXt) /ll) (CXK) (2 8)

Note that the sum of the self-generated and external
magnetic fields vanishes at the filament boundary,
W(u = ) + P = up) = 0, for the following specific choice
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of the external field harmonic amplitudes:

P = — L9 (ug) I, (29)
o 2\ Pt (o) »
w0=(5-%)5ra >

Hereafter, Z,ES)(MO) are the dimensionless induction coefficients
(proportional to the flux-to-current ratios), which are—as
demonstrated below (see Section 5.5)—closely related to the
energy of the external poloidal magnetic field produced by the
current filament. The capability of the external field given by
Equations (28) and (29) to turn the plasma boundary to a
magnetic surface (at which ¥ = const) is discussed in
Section 5.1 below.

4. Constructing Magnetic Field Configurations for the
Zeroth Harmonic

Our objective is to construct simple, analytic expressions for
a twisted toroidal magnetic flux rope that can be superimposed
on observed solar active region magnetic fields. Such a
configuration can be obtained using the lowest-order harmonics
of the Fourier series solution discussed in Section 3.

Let us assume that there is only the n = 0 Fourier harmonic
in the current distribution, j (1) = fo(u), which only depends
on u. The subscript “0” that denotes quantities related to the
n =0 harmonic is omitted herewith. The only contribution to
the total current comes from this harmonic, I'* = Iy, = Iy(uo).
Now, we consider the n =0 harnlonic ~of the magnetic field, in
which the reduced flux function, ) = 1)y(u), also only depends
on u, so that Equation (12) becomes:

3
By = BC(R—OO)Z[B@(M)Q — B®(ue,], (31
r
where
Itot
B, = ,uo_’ (32)
2R,

is the magnetic field at the origin, R =0. The dimensionless
amplitudes,

BOWw) =1, BPu) = “—2@, (33)
k' du

describe the axial and poloidal fields, respectively. It is

convenient to eliminate the false singularity in e,, by

transforming the denominator in Equation (10) using the

definitions of R and ' (Equations (8) and (9)): R_.R, = Iﬁ:'R_E,

so that Equation (31) can be written as:

3
B, = (R_OO)2
r

where the singularity is eliminated:

BL-[B<Z>(u>eZ _ B (“)( ' )] (34)

(R — R2)e, — 2R(R - ¢,)

35
R (35)

(H/ev) =

In order to eliminate another false singularity in
Equation (34) outside the torus (u < ug), we use the definition
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of k given by Equation (9):

3

> 3
(R—m) = 8R°°. (36)

r /{3R_i
Substituting this expression into Equation (34) yields
8RS . [ BPu) B(P (u) ,
*B.| T 52, (w'e,) |-
R} K

For n =0 the field amplitude and its derivative appearing in
Equation (33) can be obtained outside the filament from the
reduced flux function, Equation (26):

B, = (37

~ 1 -
Y(u < ug) = gP:%‘(u),
R <u) 35,
S = 2P W), (38)
so that Equation (37) reads:
3
Bo(u < ) = 22,
R+
Pl (u) P (u)
X 23 e, — 3 % (k'ey) ¢. (39)
K K K

The ratio, P! (u) / [k3(x")"], that appears twice in
Equation (39) canzbe expressed in terms of a hypergeometric
series of powers of K% (see Equation (A2)). For k — 0 it
approaches 1/4. Specifically, at the center where, according to
Equations (8), (9), and (10), k=0, R=0, R, =R, and
(x'e,) — —e,, this approximation of the toroidal functions in
Equation (39) gives limg_.gBy = B.e,, as required.

At large distances from the filament, R > R, Equation (39)
approaches the magnetic field of a dipole with the magnetic
moment of the n =0 harmonic given by Equation (21):

M = 7RI, (40)
Close to the current loop, where x ~ 1 and Equations (10)
and (11) at u — oo can be approximated as follows:
e,~ cosve, —sinve,,
e, ~ —sinve, — cosv e, 41)
one can approximate functions P ll(u) using Equations (A6)
and demonstrate that the external p0101da1 field dominates:

B MOItOT . 42

0~ R (e, sinv — e, cosv). 42)

In effect, Equation (39), describes the magnetic field of an

infinitely thin ring current with major radius of R., even

though it is derived as the magnetic field of an arbitrary u-

dependent current distribution. Furthermore, it is not required

that the ratio, a/R,, be small. In addition, the major radius of

the current filament differs from that of the infinitely thin ring,

RO = Roc

A simple example for the field inside the filament can be

found if the current is concentrated at the filament surface:

D > ug) = €9 (o) 071 (w),
zL( < up)
du

35(”(Ho)Q1 (u), (43)

3



THE ASTROPHYSICAL JOURNAL, 955:126 (22pp), 2023 October 1

Sokolov & Gombosi

Uniform Axial field, uniform current
Axial field, surface current Parabolic Poloidal field, uniform current
Poloidal field, surface current e N T Pamble ] e Axial field, linear surface decrease
7| O S | - Smeared out 15 fo-m------ Poloidal field, linear surfce decrease
[\ 12k

[

Q z- g})

k<] %10 | o

5 2 3

= 1 @ Z

[=3 o [

£ £ 5 s

© S \ ©

o £ N\ o

] S 6 \ ]

© 3 \ °©

Los| \ Y

+F
\
\
‘\
2 \
o N\
1 1 1 i ! 0 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12
R_-/R_+ R_-/R_+ R_-/R_+

Figure 2. Left panel: amplitudes of poloidal (blue line) and axial (black line) magnetic field components for the current concentrated at the filament boundary. Middle
panel: normalized current distributions for uniform (black solid line), parabolic (blue line), and linear surface decrease current (black dashed line) for € = 0.1. Right
panel: amplitudes of poloidal (blue line) and axial magnetic field (black line) components for uniform current (solid lines) and for linear surface decrease current
(dashed lines). For x¢ = 0.1 (a/Ry = 0.2) the argument, v’ = R_/R,, ranges from ' = 0 (at the toroidal magnetic axis) to £’ = 0.1 at the filament boundary; while

k' > 0.1 values correspond to the loop exterior.

where
P- %' (uo)

O () = 1
8Q_1(uo)

(44)

Here [® = I{¥ is a dimensionless induction coefficient for
n =0 (see general definition in Equation (29)) proportional to
the flux-to-current ratio for the surface current. Equations (38)
and (43) can be combined and written in terms of the Green
function, Equation (24):

Go(u, up)

P=— ) (45)
0 1 (uo)

Below we consider several specific situations and express v
in terms of the Green function(s), while the field amplitudes,
BYP) are expressed in terms of the normalized reduced flux
function, ¥. The amplitudes of poloidal (blue line) and axial
(black line) magnetic fields are shown in the left panel of
Figure 2.

A variety of more realistic solutions for the magnetic field
inside a plasma can be constructed by approximating the
current profile as a linear combination of specially chosen
current profiles (“form-factors”), j( ™ with constant coefficients,

Crms

J) =" cnj™ (). (46)
The specially chosen form-factors satisfy the equation:
2
—sinh? ud_ + E jon) = Eomjom
dv> 4

JOw =1,

EO — i’
4

jV (u) = cothu,...

ED = f% (47)

With this choice, the integral in Equation (19) can be evaluated
analytically:

51
w0l
160 =0~ J P — =,
i(m)
=3 S0 (48)

(see Appendix A.4 for more details). Equation (48) provides a
simple normalization recipe: (1) for a current profile given by
Equation (46), the modified current distribution, jz(u), should
be constructed according to Equation (48); (2) using jgz(u) the
normalization integral,

B di dQ 1 (u)
) LMD (g =

N=Q
Q % du() duo

(49)
should be calculated; and (3) the normalized current distribu-
tions are calculated then as j(u) =j(u)/N and
fE () = jg (u) /N . The normalized current satisfies the identity:

- =—1
inwﬂ%?z—&mwﬂéiﬁzzL (50)
Specifically, for “uniform” current when j = const:
= 1 - 1
= N () Je = EONI (1)
) 1)
EO®  du,
For a “parabolic” current profile, we get:
i coth(ug) — cothu
NP (ug, ug)
r coth(ug) cothu
= EON®P (ug, ug) ~ EONP (ug)’
07\ (u)
NI o, 1) = o
_(coth(uo) 3 coth(u))dQ_;(M) 52)
EO® ED du

Even though a uniform current results in an even simpler
solution, the discontinuous current profile near the filament
boundary results in large numerical errors in various physical
quantities. In order to eliminate this discontinuity, one can
consider the current distribution given by Equation (46) with
piecewise constant coefficients, c,,, combining the features of
Equations (51) and (52) to “linearly” decrease the current
density over a narrow interval of uyg —e <u<ug+e¢, e 1.
Specifically, we define the boundaries, (1, , ug") of this interval

with the equation, x/(ugy) = /1 & 2 k(). This leads to the
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following expressions:

cothuy — cothu
[coth(ug) — coth(ug )] N’
1
ﬁv

if M(; <u< udk

~a
I

ifu>u0+,

1 - 1
FOl cothuy — EO) cothu

[coth(ug) — coth(ug )] XN’
1
EO¥N’

ifuy, <u<uy
JE =
if u > u0+,
NP (uy ', ug)
coth(uy) — coth(uy)’
NP (ui, ugh)

~ coth(ug) — coth(ug)

YXN=N + N, N~ =

Nt =

+ N (). (53)

In the case of a thin filament, these expressions give
j ~ 1/md? if 0<R_<(—¢a, and
J~04+¢ea—-R/Qred®) if (1—ea<R_<(+¢.
The normalized current density distributions given by
Equations (51)—(53) are shown in Figure 2 (middle panel).
With the help of Equation (A12), one can evaluate the
integral in Equation (25) for n = 0 (similarly to Equation (48)),
to find the reduced flux function and then the field amplitudes:

{b _ G_()Elf, up)
0wy
07 lfu < Uugp
- Jp (o)0 1 () ) 54
MR AT P TS (54)
0wy

This result is easy to verify and interpret: (1) by applying the
differential operator on the left-hand side (LHS) of
Equation (16) to Equation (54) and taking into account
Equation (47), one can see that Equation (16) is satisfied in
smooth regions; (2) the reduced flux function Equation (54) is
continuous; and (3) the jump in the derivative of the second
term at u=u, is canceled by the controlled jump in the
derivative of the Green function (see the discussion above), as
it follows from Equations (50) and (A12). In the special case of
constant form factor given by Equation (51), we get:

W0 w)Y ' g
Jew) = — 7Q o) , CAC) =

0. 55
duo du ( )

The amplitudes, B® (x/ (1)) and B® (x/ (1)), of the poloidal
(solid curve) and axial (dashed curve) fields are shown in
Figure 2 with black color. Outside the filament at
K'(u) > K'(ug), the field does not depend on the current
distribution; therefore, the black and blue curves overlap in this
region. For the form-factor Equation (53), the integration span
in Equations (19) and (25) splits for domains separated by u;",
resulting in different expressions for the fields in these
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domains:
N~ Go(u, uy)
EN 07 (ug)
, ifu <uy

Je )07

N* Go(u, ug)

- SN 0 (ug)

=}

+ A 7( ) fus <
u) — , ifu u,
JE 0l 0

0, ifu <uy
+{ o lw , 56
A[jE(u(f)]— ifuy” < u, (56)

_1
2
1 s
Q,%(Mn*)

where A[J (ug)] = jz (ug” — 0) — jp (u +o + 0) is the differ-
ence between the left and right limits of discontinuous function,
fE at u — ugy" (in contrast with the continuous current density
function, J).

Note that once Equations (34) and (39) are applied in the
CME generator, their vector form allows us to calculate the
field in any coordinate system without rotating the vector
quantities to the system used in derivations presented in this
paper. Indeed, these equations, together with Equation (35),
express the magnetic field vector as a linear combination of
vectors e, and R; therefore, the expression is valid in any
coordinate system as long as the vectors e, and R are given in
the same coordinate system.

Specifically, in an arbitrary Cartesian coordinate system it is
convenient to characterize the position of the current filament
by the coordinates of its center, R., and the unit vector, n.,
directed along its axis of symmetry. Then, the field vector at a
point, R’, is given by Equations (34), (35), and (39) with the
following substitution:

R =R — R, e, =n.. 67

To calculate scalar functions, we also need to express:

zZ= (R/ — RC) R, R2 = (R/ - RC)Z’
r=vR2 =22, R.=.(r+ R} + 2. (58)

To calculate the toroidal special function in Equations (39)
and (54) for field amplitudes, one can calculate their arguments
x and ', using Equations (9) and (58). While the formulae for
the magnetic field are repeatedly applied at each point where
the magnetic field is needed, the filament parameters,
Ry = R} — a2, k= a/(Rs + Ro), k=1 — (x})% and
the coefficients f'E (1), q,(up) (Equation (55)) determining the
field amplitudes are calculated only once in terms of the major
and minor radii, Ry, a.

5. Equilibrium Conditions for the Zeroth Harmonic
5.1. Full Grad-Shafranov Equation in Cylindrical Coordinates

The MHD equilibrium theory of toroidal plasma configura-
tions introduces the key concept of magnetic surfaces, where
the flux function, W, is constant. To apply this concept, let us
start by expressing Equations (1) and (4) in cylindrical
coordinates (u=z,v=r, H,=H,=1):

W ov ov

B, =— xe,, WV = —e, + —e,, 59
2 , © 2 8Zz 8}" ( )



THE ASTROPHYSICAL JOURNAL, 955:126 (22pp), 2023 October 1
1 0% o (10V
pgdy = ———— — —| ——1. (60)
r

Since the V,V vector is orthogonal to the surface of constant U,
the poloidal magnetic field, o<V,¥ X e, is parallel to the
magnetic surface everywhere, while “j-toroidal-cross-B-poloi-
dal” force,

I
Le, x B, = £W0, 1)
r

is perpendicular to the magnetic surface (i.e., aligned with
V,W). This force tends to contract the current filament over the
minor radius (i.e., pinch-effect). This contraction may be
prevented by the excessive plasma gas-kinetic pressure, P,
which tends to expand the filament. To balance the force,
described by Equation (61) that is aligned with V,U, the
plasma pressure gradient needs to be aligned with V,¥ too.
The alignment condition, V,¥ x V,P =0 can be identically

rewritten in terms of the Jacobian,
_ 9UoP 0T OP . . .
DY, P)/D(z, r =505 o o This Jacobian vanishes

identically if, and only if, P is only a function of U, i.e., it is
constant at each magnetic surface, so that:

dP (D)

—~WBP = — VA2 (62)
In a low-(3 plasma, the pinch-effect is mainly prevented by the
counteraction of the toroidal magnetic field, B, for which the
poloidal current density, J,, can be expressed in terms of a
current function, rB:

LoJo = M X e,. (63)
r

Again, the current function is required to be constant on
magnetic surfaces, and therefore it can be expressed as a
function of W only. In this case, the poloidal electric current,

b= %d;rz’) WU X e, is everywhere parallel to the magnetic
l,Ur
surface, while the “j-poloidal-cross-B-toroidal” force,
B, d(rB
J» x Bye, = ——= (—“’)VQ\IJ, (64)
wor AV

is perpendicular to the magnetic surface (i.e., aligned with
V,¥). Summing up, Equations (61), (62), and (64) reduce the
LHS of the vector equilibrium condition,
Joe B, +J,xBoe,—VP=0, to a linear combination of
aligned vectors:

J, (rB,) d(rB,) dpP

i ZA A ) 65
r per? dv dv |’ 6>

For Equation (65) to hold everywhere, the expression in the
square bracket must vanish. This condition yields the scalar GS
equation:

Jgo B (er) d(rBL,Q) dpP

ro oper?r dv av’

(66)

The LHS of this equation is often expressed using the RHS of
Equation (60), but in the present derivation, this step is not
needed.

Sokolov & Gombosi

In equilibrium, the toroidal plasma filament boundary must
coincide with a magnetic surface; hence, the total flux function,
W, should reach a constant value, W(u), at the boundary. Since
an arbitrary constant may be added to the total flux function
(not to the reduced one!), by not changing the poloidal
magnetic field as given by Equation (59), one can claim with
no loss in generality that the total flux function must vanish at
the filament boundary to satisfy the equilibrium condition and
so does the reduced flux function. The latter can only be
achieved if the external magnetic field as in Equations (28) and
(29) is applied with Fourier harmonics exactly prescribed by
the current amplitudes. We arrive at two important points: (1)
the filament cannot be in equilibrium by itself; therefore, there
must be an external field (this is also a consequence from strict
Shafranov’s theorem described in Section 5.2); and (2) the
exact Grad-Shafranov equilibrium requires a nontrivial
distribution of the external field to be exactly prescribed,
which for our applications is unrealistic and impractical.

5.2. Shafranov’s Virial Theorem and Its Consequences for a
Uniform Strapping Field

In Sections 3 and 4 we considered only the magnetic field,
B,, induced by the current flowing inside the filament.
However, when discussing the MHD equilibrium of a circular
current filament, one must also consider the Shafranov (1966)
virial theorem (see also Faddeev et al. 2002) that states that the
magnetic field of the current and the internal plasma pressure of
the filament are not sufficient to maintain MHD equilibrium.
As pointed out by Landau & Lifshitz (1984), the equilibrium
condition, J x B — VP =0, can be reformulated in terms of the
Maxwell stress tensor, II, with the help of Ampere’s law,
V x B = ppl:

2
B )I_ BoB o

-V 11 =0, H:(P+—
2y Ho

7 being the unit tensor. By taking the scalar product of
Equation (67) with R and integrating over the entire volume
(the pressure and current density are zero outside the filament,
but the magnetic field is not) by parts using the identity,
—R-(V-ID' =TrI) — V - (II - R), we obtain that the
integral of the LHS of Equation (67) is positive definite:

—fR~(V~H)TdV:E>O,

BZ
E:f Tr(H)dV:f(3P+ 2—%)dv. (68)

Since the RHS of Equation (67) is zero, it thus cannot be equal
to the LHS, proving that any closed loop configuration is out of
equilibrium in the absence of an external magnetic field.
Shafranov’s theorem (Equation (68)) in effect states that the
hoop force results from the interaction between the loop current
and its self-generated magnetic field. Even though the integral
of this force density (f"°°P’= —V - II) vanishes over the entire
volume ( ff(hOOP)dV = — [V IIdV=0), it has a positive average
projection to the radial direction ( JR- fhoPgy =E>0). It is
known from experiments (see Yee & Bellan 2000) that the
hoop force tends to expand the current loop outward, and in the
absence of external fields, this expansion is approximately self-
similar. By approximating the velocity of this self-similar

expansion as v = R—%, we see that Equation (68) confirms



THE ASTROPHYSICAL JOURNAL, 955:126 (22pp), 2023 October 1

the development of an expanding flow, since the growth rate of
the kinetic energy, dE™ /dt is positive:

k
dE( ) f  floon) gy —

E dR» > 0. (69)

R, dt

A more traditional derivation of the hoop force can be
carried out using the energy principle, assuming that the
pressure adiabatically scales with volume as Poc V™7, and
considering a particular choice of the polytropic index, y=4/
3. Consider a conformal expansion where each point, R, maps
to (0R./Rs + 1)R. In this case, the infinitesimal virtual
displacement is equal to R = (6R../R..) R. For a frozen-in
magnetic field, the local magnetic field scales as
(6Rs, + R.)"2, while the pressure adiabatically scales as
X[(6Rs + Rs)’T*/? o (6R + Roo)~*, similarly to the magn-
etic pressure that scales as B? oc (R, + Ry)™* (this is why
~v=4/3 was chosen). According to general principles, the work
done by local forces during the virtual dlsplacement
S0P “sRAV, equals the negatlve of the variation in the
energy integral, —0E = —0R

OOdR
— f R - fhoop) gy — dE
dR
B2
E= f —+—dV f3P+—dv, (70)
Ko 24
where ;TE = —Ri, because the total energy scales as

(6R+ + R~)"!. Even though the energy principle approach
does not go beyond the already-derived Equation (68), it allows
us to evaluate the energy of the motion driven by the hoop
force. Combining Equations (69) and (70), we find that:

dE® dRy, dE _ dE

= — = (71)
dt dt dROc dl

hence, d(E® + E)/dt = 0 and E®¥(— 00)=E(=0).

For a thin circular current filament, one can approximate
|IR| =~ R, in the integrand in Equation (70), providing an
estimate for the hoop force per unit toroidal angle:

dFtoor 1 E
dp T 2r Ry

(72)

Equation (72) follows from Equation (68) and is always valid;
however, for y=4/3, E on the RHS is not the energy. This
approximation connects our approach to the formalism used to
describe the hoop force in the literature, (see Equation (5) in
Titov & Démoulin (1999) and Equation (2) in Kliem &
Torok 2006). The main distinction between earlier work and
our approach is that our model allows for finite 5 values (see
details in Section 5.5 below).

In application to a CME generator, a current filament can be
superposed on top of the model of an active region, so that a
“strapping magnetic field” of the active region maintains the
equilibrium if it matches the filament geometry and parameters.
In the case when the strapping field at the loop location, B's), is
uniform, a slight reformulation of the Shafranov theorem
provides an estimate for the strapping field in terms of the
filament parameters (or vice versa). Indeed, the integration of
the modified equilibrium equation,

Sokolov & Gombosi
[~V -II +J x B®]-R =0, gives:
E+2BY - M=0. (73)

where
|
MfngdeV (74)

is the magnetic moment that has already been introduced earlier
(see Equation (40)). Equation (73) unambiguously determines
the intensity of the uniform strapping field in terms of two
integral parameters of the configuration. The direction of the
strapping field must be aligned with the magnetic moment;
otherwise, a torque, M X BZ(S) = 0 would act on the loop (see
Jackson 1999) breaking the equilibrium. For axisymmetric
current configurations, the magnetic moment is parallel to the
axis of symmetry,

M= Me. M= frJ av. (75)
It follows that the strapping field, B¥e., must also be parallel to
the axis of symmetry. For an axisymmetric configuration, the
square of the magnetic field can be decomposed to contribu-
tions from poloidal and toroidal fields,
B? = Bj + [V x (Aye )%, and thus reduce Equation (73) to
the following form:

f JoA, B’é

2 2419
where the integrand is nonzero only inside the filament,
simplifying the integration.

Identifying a circular arc inside an active region at which the
magnetic field is uniform and orthogonal to the plane of the arc,
choosing the loop parameters depending on thus determined
strapping field and inserting this current loop along this arc is at
the heart of the Titov et al. (2014) CME generator. Our
approach allows us to generalize the Titov et al. (2014) model
and to extend it to finite 3 current loops. This will be achieved
by considering a detailed derivation of Equation (73) from the
local equilibrium condition specified for a particular class of

n =0 harmonic field as discussed below in Sections 5.3
and 5.4.

)dV + 2BOM =0, (76)

5.3. Reduced Grad—Shafranov Equation in Toroidal
Coordinates

In general, to find the conditions under which a plasma in the
magnetic field of the n =0 harmonic is in force equilibrium,
one needs to solve the Grad—Sharfranov equation in toroidal
coordinates. Some of these solutions are known (see, e.g.,
Zakharov & Shafranov 1986); however, they include infinite
series of harmonics and require highly complicated strapping
fields. While in application to laboratory plasmas, such
specially designed confining magnetic fields are not unusual,
nature does not implement such special analytic solutions.

Here, we use a simpler approach and reduce the GS equation
in toroidal coordinates by assuming that, rather than finding
magnetic surfaces where the true flux function, ¥, is constant,
their role in the formalism can be partly substituted by
considering “constant -surfaces,” where the reduced flux
function, ¥ (u, v), is constant. In the particular case of the n =0
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harmonic field, 1(u, v) is a function of u only; hence, these
surfaces are toroidal coordinate surfaces of constant u.

Note that constant t-surfaces are not magnetic surfaces,
since the true flux function, ¥ = p,/Rs7 1, (see Equation (3))
is not constant at constant 1, and V,V is not orthogonal to
constant i-surfaces, because of the explicit dependence of ¥ on
r. In addition to the magnetic field generated by the filament
current and characterized by ¢ function, the effect of the
strapping field, B = B®e., should be explicitly added to the
net force balance, J, x (B, + B(S)ez) — VP =0. Now, we can
use Equation (12) for the magnetic field and Equation (4) for
the toroidal current density to describe the pinch-effect force in
Equation (61):

Ju, V)R

r4

3
Morvzrl/] + [M —+ r_le(S)]er]
2 RZ

The dominant contribution to the force in Equation (77) is
directed along V,, hence, orthogonal to the constant -
surface. Following the basic idea of the GS equation, we
parameterize the toroidal field, B, and gas-kinetic pressure, P,
in terms of the representative functions of ),
B2 = b2())(Rx/r)* and P = p(1))(Rw/r)’. The total force
produced by B, and P is given by the sum of Equations (62)
and (64):

[Va(rB,) x e,] x B,e, WP —
— WP =

Kol r

X [rdf;; VY + (p (W) + 2p(¢))er]-

Joe, x (B + BYe,) =

X (77)

RY

4

(78)

We note that the gradient of the total pressure,
P =p+b*/(2up) is orthogonal to constant t)-surfaces in
Equation (78). Similarly to Equation (65), the total force, given
by the sum of Equations (77) and (78) vanishes in equilibrium

if the following equation holds:

Roo . ) dplot
— — R rV.
p (,uo] m X0
JA, B2
222 4 22 4 3p B9 S = 0 (79)
2 21 r

In Equation (79) the dominant force comes from the pinch-
effect and its opposing pressure gradient. This term is
proportional to V, (i.e., it is normal to ¢ = const surfaces).
This dominant force vanishes identically if the reduced version
of the GS equation (Equation (66)) holds:

R2 dptot
| — X
po dv

The reduced GS equation ensures equilibrium against the
pinch-effect, similarly to the full equation (see Equation (66)).
However, because of the combined effect of the strapping field
and of the r-dependent factors in the definitions of the -
function and the representative functions, p(z), b(1), there is
also a force directed along e, in Equation (79). The whole point
of the proposed approach is that while balancing the pinch-

(80)

10
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effect from the analytically known current and magnetic field
can be exactly solved with the help of the reduced GS equation
as demonstrated in the present subsection, the condition for the
radially directed force in Equation (79) to vanish,

J,A, B?
20 4 2 43P+ BY |Z =0, (81)
2 210 r

cannot be satisfied locally with any physically admissible
(divergence-free and curl-free) strapping field, including the
uniform strapping field considered here. In CME generation,
the situation is even more complicated, because the local
values of realistic strapping fields are not known. However, a
global balance for an integral radial force (which is in effect the
integrand of Equation (76)) can be achieved if the strapping
field satisfies Equation (76), as we will discuss in Section 5.4
below.

Next, we consider the solution of the reduced GS equation
for the current distribution described in Section 4 that depends
only on u, j(u, v) = jo(u). Equation (80) can be expressed in
terms of the normalized quantities, (), j(u), and the
characteristic field, B, (see Equations (22) and (32)) and then
integrated over u:

Bz
P () = 8
24

[ 7 %, 32)

dul

Here, we note that in the absence of an external toroidal field
and pressure, the quantity, p*(up), vanishes. An important
feature of our approach is that the plasma parameter [,

pu)
b* (u)/(2410)
is assumed to be constant, but finite, so that the toroidal field

and gas-kinetic pressure can be expressed in terms of the total
pressure:

0= = const, (83)

L0

_ _ B
2uy 148

1+5°

p(u) (84)

Using Equation (82), this can be expressed in terms of the
dimensionless toroidal field amplitude, B“":

oy = 1B WBE
24

BOD(u) = \/ 8 [ %dul.
uo 1

For the current and reduced flux functions given by
Equations (46) and (54), the integral in Equation (85) can be
carried out by parts using Equation (A18):

(85)

B = & (w)[d@m) — jg )y,

i dﬁ)(u) i 7, 7 u

EO dcothu du () = Jp @]l

47 (w)

gD (86)
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Figure 3. Amplitudes of the toroidal field component for uniform current (solid
line) and for linear surface decrease current (dashed line), for the same filament
and in the same coordinate as used in Figure 2.

For a uniform current form factor, as in Equation (51), using
Equations (44) and (54), one obtains the following:

B > ) = £ o) [0—L (o) — 0w,

Je (10)
0 1 (uo)

200 () = 8 — 9 (ug) | (o), 87

where £%°” is another induction coefficient, which is discussed
below (see Section 5.5) to characterize the energy of toroidal
magnetic field, expressed in terms of the current density
7 () = %]; (uo) and J;(up) given by Equation (55). The
toroidal field amplitude for the uniform current form factor
given by Equation (87) is shown in Figure 3 with the solid line.
For the current form factor with linear surface decrease given
by Equation (53), the toroidal field near the filament boundary
can be calculated by applying the general formula in
Equation (86) to the reduced flux function given by
Equation (56). Thus, calculated toroidal field amplitude is
shown in Figure 3 with the dashed line. A comparison of the
curves in Figure 3 shows how the singularity in the toroidal
field near the boundary (infinite spatial derivative of the solid
line as k' — k() is eliminated by using a linearly decreasing
current near the surface (dashed line).

Equation (85) allows us to express the total magnetic field
(including the toroidal component) that satisfies the reduced GS
equation:

By = —2B,
r2
B(tor)(u) B(p)(u)
B® + e, — ‘e,) |, 88
X (M)ez m ¥ [ HZ/ ] (H (2 )l ( )

where e,=e, x R/r. Since the toroidal field amplitude,
B“(y), is positive as is the toroidal current density, jo(x),
the choice of plus or minus sign in Equation (88) corresponds
to the positive or negative helicity, sign(B,/J ). The magnetic
field calculated using Equation (39) for k< ko and with
Equation (88) for x > ko and with field amplitudes obtained
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assuming uniform current form factor is shown in Figure 4
for R, =1, nf) =0.1.

This magnetic field produced by an azimuthal current (white
magnetic field lines) and magnetic field inside the toroidal
filament (red and blue color) satisfies the reduced GS equation.
However, the right (zoomed) panel demonstrates that the
equilibrium is not yet complete. As emphasized in Section 5.1,
under equilibrium conditions, the (yellow) boundary of the
filament, where the total pressure turns to zero (hence it is
constant), must coincide with a magnetic surface. Inspection of
Figure 4 shows that magnetic surfaces defined by closed
(poloidal) magnetic field lines (white lines) intersect the plasma
boundary (yellow circle) at multiple locations, indicating the
absence of true equilibrium.

For constant (3, one can find the corresponding gas-kinetic
pressure inside the filament using Equation (85):

3 (tor) 2
P> g — B RLIBWEE
1+ 3 r 241

Assuming constant electron and ion temperatures inside the
filament, 7, and T;, one can also derive the distribution of
plasma density that will form the ejecta:

R3 [B(to) P
p(u > ug) = g _;o[B () B m;
L+ G ' 2ppksaszr

(89)

) (90)

where m; and Z; are the average mass and charge state of ions,
and kg is the Boltzmann constant. An equation for the Alfvén-
wave speed in the ¢-direction,
2
v =B _ Zkeaiz
Ap — - >
Hop pm;
directly follows from Equation (90). This useful parameter is
constant as long as (3, T;, and T, are assumed to be constant.

The total ejected mass can be expressed in terms of the total
pressure integral over the filament volume:

2](P+ij)dv
1+ AVi,

which is calculated and discussed in Section 5.5.

€2y

M= f pdV = : (92)

5.4. Balancing the Hoop Force by a Strapping Field

We demonstrated that the reduced GS equation
(Equation (80)) ensures the cancellation of the dominant
pinching force at each point inside the filament. However, in
the full force balance, there is an unbalanced radial force
described by Equation (81) that does not vanish locally. The
first three terms in Equation (81) describe the density of the
hoop force directed radially outward (compare them with the
integrand in Equation (76)). This force is fully determined by
the parameters of the plasma configuration. The last term in
Equation (81) describes the effect of the strapping field on the
toroidal current, which may oppose the hoop force if the
strapping field is negative (i.e., antiparallel to the magnetic
moment).

Since the hoop force density and the current density are
different functions of the coordinates, the local forces cannot be
balanced by a uniform strapping field. Alternatively, if we
express the strapping magnetic field from Equation (81), both
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negative. The figure corresponds to positive helicity; otherwise, the blue and red circles would swap. Right panel: close-up image of the cross section of the plasma

filament.

the divergence and the curl of this field would not vanish. This
situation can be rectified by ensuring that global equilibrium,
holds, i.e., requiring that the integrated radial force (given by
Equation (81)) vanishes over the plasma volume. This means
that the integrated hoop force is balanced by the overall effect
of the adjusted strapping field. This can be achieved by taking
the scalar product of Equation (81) and R and integrating the
resulting scalar equation over the entire plasma volume. This
way, we obtain Equation (76) as an integral radial force balance
equation, unambiguously determining the strapping field:

LA 2
f ZP 4 2 4 3P|dV 4 2aR2IVBO =0,  (93)
2 219

where in Equation (76) we substituted Equation (40) for the
magnetic moment, M. As we discussed in Section 5.2, in the
absence of a strapping field, B® = 0, the radial hoop force
(parameterized by the volume integral of a function that is
positive definite everywhere) would disrupt the current filament
over the major radius. However, the Ampere force from the
strapping field, (J,e,) x (B®e;) = J,B®e,, tends to contract
the filament in case B® < 0, and it may balance the hoop force.
The condition for the force balance can be parameterized in
terms of the inductance, L, since the volume integral
evaluating the hoop force in Equation (93) is very close to
the magnetic free energy (exactly coincides with that for y=4/
3—see Section 5.2 for more details):

47R2 27 R ¢
toty2 JA, 2
L (1 ) _Ey= Eo= [ ( )d (94)
Ho

The strapping field is antiparallel to the B, field, and its
magnitude can be derived from the inductance. Equation (94)
shows that in order to derive the strapping field that is needed

12

for obtaining full equilibrium solutions, one has calculate the
inductance for the given current density profile. This derivation
is discussed in Section 5.5.

In Figure 5 we consider the same configuration as in Figure 4
(R = 1, k¢, = 0.1), but with a superposed uniform strapping
field given by Equation (94) (the inductance for n=20 is
determined by Equation (108), discussed below). The left panel
shows a drastically changed topology compared to the no-
strapping-field configuration in Figure 4. The separator surface
separates the external region of the strapping field from the
region of the field generated by the filament current. In the right
panel, the coincidence of the filament boundary (yellow color)
with a magnetic surface (white line) demonstrates that in the
presence of a strapping field, this equilibrium condition is
satisfied, while in the configuration with no-strapping field (see
Figure 4), this condition is not met.

Alternatively, the equilibrium condition can be verified if the
near-equilibrium magnetic field (given by Equation (88)), gas-
kinetic pressure (Equation (89)), and density (Equation (90))
distributions are used as the initial condition for the Relaxation
MagnetoHydroDynamics (R-MHD) model. In this model, an
artificial friction force density, —pU/7, is added to the
momentum equation, which is oppositely directed than the
plasma velocity vector, U. The friction force relaxes the
residual plasma motions with a characteristic time of
T = const, thus damping the possible oscillations around the
equilibrium state.

The result of such a simulation is presented in Figure 6. The
initial condition corresponds to a current filament with major
and minor radii of Ryp=0.202/0.99R., a =0.04/0.99R., so
that R, =0.1R and n(, = 0.1. The horizontal (z) and vertical
(r) coordinates are also measured in units of solar radii, R,
The uniform strapping field is chosen to be B = 2.7 G, while
the current is I''~ 1.5 x 10'" A, expressed in terms of the
strapping field using the equilibrium condition, Equation (94).
The other parameters are 7,=T; =5 X 10° K and 3=0.1. As
we recommend for any application, the uniform current form
factor is used with linear surface decrease in a narrow region
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Figure 5. Left panel: same as in Figure 4, with superposed uniform strapping field, B®= —LoB./(2muoR ), where the inductance for n = 0 harmonics is given by

Equation (108) below. White lines: field lines of the poloidal field (B, B,). Color: toroidal magnetic field, B,,, perpendicular to the image plane, the outgoing field
being positive, and the incoming one being negative. The figure corresponds to positive helicity; otherwise, the blue and red circles would swap. Right panel: close-up
image of the cross section of the plasma filament. Coincidence of the filament boundary (yellow color) with the magnetic surface (white line) demonstrates that the

equilibrium condition is satisfied.

(e =0.1); however, the inductance characterizing equilibrium
strapping field is calculated for purely uniform current (¢ = 0).

The meridional cross section of the initial field distribution is
shown in the left panel of Figure 6. The white circles show the
closed magnetic field lines of the poloidal field (=the
meridional cross sections of the magnetic surfaces), with the
color scale showing the levels of 7B, [G - R ] (=constant levels
of the poloidal current function). While the exact Grad-
Shafranov equation requires the poloidal current function to be
constant at magnetic surfaces (see Section 5.1 for more detail),
in the initial plasma configuration there is a slightly visible
misalignment between the level contours of the current
function and the magnetic surfaces.

Using this initial condition, we integrate the axisymmetric
R-MHD equations with a relaxation time of 7=1 X 10%s, 0n a
grid of 1000 x 500 cells covering the coordinate range of
—0.5R., <z<0.5R,, 0<r<0.5R., to evolve the initial
distribution for r=6x 10°s. A background plasma of
negligible pressure but finite density is added outside the
filament to limit the characteristic speeds of the MHD
perturbations and avoid too small time steps. The result of
the numerical simulation is presented in the right panel of
Figure 6. Perfect alignment of the current function levels with
the magnetic surfaces demonstrates that the plasma filament
reached equilibrium. The video file shows that the relaxation to
equilibrium proceeds via damping of small-amplitude internal
oscillations, with no collapse by the pinch-effect (prevented by
the counter-pressure of the toroidal field) and no disruption by
the hoop force (prevented by the strapping field).

5.5. Magnetic Energy and Inductance

A contribution to the integral in Equation (94) determining
the strapping field from the free energy of the poloidal
magnetic field, E® = % f J,A,2mr)H,H, dv du, can be
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derived from Equations (5), (14), and (15):

E® = 7R 1t f w dudy
sinh? u
= ZWZRDOMOHiOC f;:o % du
S LY WO+ LI P, (95)
where the external field inductance,
L™ _ 4muo) _ 4W2(§ 5P »«1'%(“0), 96)

poRx 0, 1(uo) Q_n_J%(MO)

(see Equation (26)) quantifies the energy of the magnetic field
produced by surface currents concentrated on the filament
boundary. In the particular case of n = 0 harmonic, the external
inductance,

Léext)
HoRoo

= 47HO (ug) = o7

(see Equations (44) and (96)) is shown in Figure 7 (solid black
curve). For a thin filament (nf) — 0), the toroidal functions in

Equation (97) can be approximated with the help of
Equations (A6) and (A7):

HoRo Ko
L (ext) 2

2oy 2 (98)
HoRx  (Kp)

(see the dashed black curve in Figure 7). Comparison of the
green and magenta curves in Figure 7 shows that the accuracy
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Figure 6. Close-up image of the meridional cross section of the plasma filament. The z, r coordinates are measured in units of R.,.. White curves: closed field lines of
the poloidal field (B., B,) (=meridional cross sections of the magnetic surfaces). Color: level contours of the poloidal current function, rB,, in G x R, Left panel:
initial, close to equilibrium field distribution given by Equation (88). Slight misalignment between the levels of the current function and magnetic surfaces demonstrate
imperfection of estimated equilibrium. Right panel: same quantities are visualized after relaxation to “true” equilibrium after 6000 s simulation with the R-MHD
equations. Perfect alignment of the constant current surfaces with magnetic surfaces demonstrate that the configuration reached the equilibrium state, which is
reasonably close to the estimated one. An animation of this figure is available. The animation starts at 0 s and end 6000 s later. The real-time duration of the animation

is 6s.
(An animation of this figure is available.)
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6 External field inductance (exact)
—————— External field inductance (approximate)
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Figure 7. External field inductance, Lée’“) (Equation (97), black line), self-
inductance, L(gi"‘) (Equation (101), blue line), and toroidal field inductance,
Lé“’” (Equation (106), brown line), for the n = 0 harmonic. The normalized
inductance coefficients are related to 1R, and are presented as functions of

the a/Ry = 2ky/(1 + Hg) ratio. The functions and their arguments are all
calculated in terms of the value of 116 at the toroidal surface. For comparison,
approximate solutions given by Equations (98), (102), and (107) are shown by
the dashed lines.

of this approximation for a thin filaments is good enough to
make it attractive for CME modeling.

Another contribution to the poloidal field energy is
characterized by the positive definite self-induction coefficient,
which we calculate only for the n = 0 harmonic:

Ly 4 [ jwiw o L&
HoRoo w  sinh’u HoRso

For the manufactured current profile given by Equation (46)
and the reduced flux function from Equation (54), the

99)

integration in Equation (99) can be done using
Equation (A18):
L(im) 0o 7 ¥ d ~
Lo | [T ) (100)
NORoc uo sinh” u Qfé(uo)

In the case of a uniform form factor (see Equation (55)), the
limiting value of the self-inductance coefficient for thin
filaments (i.e., uy — oo and K36 — 0) can be obtained if we
de-normalize the currents the following way:

Léinl) B 4772

HoRoe 071 (uo)

y 7 (o) (uo) Q_:%l (ug)(cothug — 1) — ji (uo)1 (o)
1% (uo)

, (101)

and then apply L’Hopital’s rule to the second fraction. By
differentiating both numerator and denominator over du, at
constant j and j, and by using Equation (19) to derive

dI(up)/dug and Equation “7 to express
dQ_:%l(uo)/duo = —I(uo)/jE (up), one finds:
(int) . 472
o oo = o Moo 5T
0 R 1O O 1 (uo)
x ! Ly (102)

2(cothug + l)Q_:%l(uo) 4

since according to Equation (A7) Q_:%l (ug — o0) = 2m.
The rest of the integral, E, determining the strapping field in
Equation (94) for constant plasma (3, can be expressed in terms

14
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of the integral of total pressure:
i 1433
E, = 1 L(€Xl)+L(lnt)+ L(tor) Jtot 2,
0 2( 0 0 {5 g ™)
2

B
[ |52+ |av=trgenao,
21

(103)

The integrand in Equation (103), describing the magnetic free
energy density due to the toroidal field, can be calculated by
multiplying the representative function, p"(u) for the total
pressure (see Equation (85)) by (R../r)’ while the volume
element equals dV=H,H2nrdudv. Integrating over dudv
using Equations (32) and (85) results in the following:

L (gtor)
PoRoo

In the special case of a uniform current form factor, this
expression can be rewritten using Equation (87):

0”1 (o) — O~ (w)

sinh? u

o0 (tor) 2
= 7T2f [Bt—(”)]du (104)

0 sinh? u

(tor)
Loor

du,
HoRoo

720000 (340) f . (105)

or, by simplifying Equation (87) using Equations (44), (55),
and (A12):

L (tor) d]s:ll (u())
0 _ 71'2 2
UOROC dug
J (o) () = (o) (cothug — 1) = fi: (o) I (uo)
X . (106)
12 (uo)
In the approximation of thin filament, we have
dP —}(uo) 1, (ton)
lim —— =2 im0 =L oy
uo = 00 gy, T U0 0 Ry 2

according to Equations (A5) and (A6) and analogous
derivations for Equation (101) above. Comparison of the exact
(solid lines) and approximate (dashed lines) expressions for the
self-inductance and toroidal field inductance in Figure 7 shows
that the differences between the exact solutions and the
approximate ones are hardly visible; therefore, it is fully
adequate to use the approximate solutions. With these
simplifications, the inductance of the n =0 harmonic field,
determining the magnitude of hoop force, strapping field, and,
for a specific adiabatic index, also a magnetic free energy can
be obtained with the help of Equations (97) (102), (103), and
(107):

1
Ey= ELO(IM)z,
Lo= L™ + €3 fioR oo, (108)

where

= z + L, (109)
4 140
is a frequently used constant, turning to 3/4 as §— 0. The
expression for the hoop force, Equation (72) with the energy
integral given by Equation (108) can be compared with that
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found in literature (see Equation (5) in Titov & Démoulin
(1999) and Equation (2) in Kliem & Torok 2006). The
(inessential) difference of our approach is in the use of the
exact Equation (44) for the external field inductance instead of
the approximate Equation (98) and in the term allowing for, if
desired, the contribution from the gas-kinetic pressure.
However, the difference is small, which justifies our model.

5.6. Improved Equilibrium Theory for a Thin Filament

For a thin filament, the equilibrium condition can be
simplified, allowing us to improve the accuracy of the solution
and get it much closer to a real equilibrium. To achieve this, we
reevaluate the condition under which the sum of Equations (77)
and (78) vanishes,

du Ou dv
JO—p rjBY 35 7
- +— =+ = le. =0,
2 R 2B. 4 2

(110)

where: (1) similar to the dimensionless representative functions
for current and flux, j, ¢, we introduced analogous functions
for the pressures and magnetic field:

R3p
Lo (]tol)Z i

Rub
‘LL()ItOl ’

S

Pt =—+p. P= = (111)

N | S

(2) we divided the sum of Equations ((77) and (78)) by a
common factor, p,(I'**)?R./r*; (3) we used Equations (2) and
(5) to express the V, operator; and (4) we used Equation (32)
to relate the total current to B, ol = 2B.R... However, we
do not use the assumption of p'* = p'*(z)) any longer. To the
contrary, while v is a function of u, p“’t is now assumed to be a
function of both u and v.

For a thin current filament, i.e., for sinh # > 1, the term that
is proportional to sinh # is dominant in Equation (110) and the
following simplifications are possible. First, by keeping only
the n =0 term in the expansion given by Equation (A15), the
geometric factor multiplying the strapping field becomes
(r/Roo)g A Q:; (u)/27r & Q_:%l (uo)/27r. Second, the strapping
field itself is approximated using Equations (94), (44), and (97):

B(s) LO L(gext)
2B, B 4R 4R
p—1 .
n P10 agug)

S e S Oy (112)
80|y O (o)

since for a thin filament the inductance of the external field
dominates (see Figure 7). Third, we use Equation (41) to
approximate the radial unit vector, e, ~ —sinv e, — cosv e,.
With these approximations, one can rewrite Equation (110)
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keeping only the leading terms in the factors multiplying e,, e,:

=tot ~tot
dw o), (819 N
du Ou ov sinh u

0 2
{J[w Vgl = p 367 +7_P})evzo, (113)

sinv

2 4 2

In the zeroth-order approximation for small %, one gets

0p*/0v = 0 and the condition for the coefficient of e, to
vanish results in the reduced GS equation (Equation (80)),

giving:
P O
2 1 + /3 ugy

(0)— e
1+ﬂf J(Ml) dul,

where the superscript “(0)” denotes the zeroth-order approx-
imation. To get the first-order approximation, Equations (114)
are used to evaluate the expression in braces in Equation (113).
Particularly, for uniform current form,
PN = j b — P(up)], so that the first term inside the
braces vanishes. In the first-order approximation, corrections

cosv

that are X should be added to the magnetic and gas-kinetic
pressures, to get the factor multiplying e, vanish:

(114)

52 (1) 3 cosv
2 sinhu
— = u du ,
( . ) e [ S
ﬁ 1+ Zeosv . -
= ) [T X, 15
1+ ﬂ ug duy
where, according to Equations (5) and (7),
2 _ p2
eosv :R ROO' (116)
sinh u 2rR

The corrections given by Equations (115) and (116) have two
remarkable properties. First, the corrections do not modify the
integral E, in Equation (94), hence, the estimate for the
strapping field. Indeed, E, reduces to integrals of b*(u, v) and p
(u, v) over dudv; therefore, the contributions to the integrand,
which are proportional to cos v, vanish once integrated over dv.

Now, we use Equations (115) and (116) as well as
Equations (85), (88), and (89) to derive the first-order
approximation for the dimensional quantities:

3R?—R2

3 3

1+4 r
5(1 -+ Zeri_) 3 (tor) 2
P — 2 2R (R_OO) [BB™ W] (117)

1+ r 2

We note that

- 1
B o [ f J (m)%dul]" oc [9() — Puo)l2

ug 1
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for a uniform current form factor. Within the adopted accuracy,

we can approximate (R> — Rozo)/ 2rRy, =~ (r — Ry)/Rs, SO
1

that [1 + 2R~ R2) /er]z ~ (r/R.): and

1+ 2(R? = R2) /Ry ~ (r/R):. Finally, we arrive at the

following scaling for the current function (see Section 5.1 for
more detail): rB{" ~ const x rilg — Pug)]> as well as for

pressure: P = const X r2[1) — ¥(uo)]. The second remark-
able property of the first-order approximation is that these
quantities only depend on the function, r2[¢ — ¥(ug)], which
can be expressed in terms of the total flux function,
U =¥ + BY?/2, including the contribution from the uni-
form strapping field, as we demonstrate next.

To express the function, r%[ﬂJ(u) — {b(uo)], that vanishes as
u— ugy, we redeﬁne the total flux function by adding a
constant, equal to 3BOR2 2, so that as u — u, the total flux
function vanishes, ¥'** — 0. Using Equations (32), (112), and
(A16), the redefined flux function can be transformed as
follows:

\Ijlot_\Ij+B(9)( + iR ):,uow/rRool“’t

Joe ) -3 )

) W
zﬂomlmt QZ) - J—
Q t(ug) T

~pgRET) 2 [Pu) — Plup)]. (118)

Thus, the pressure and current functions both depend on the
function, r2[¢(u) — ¥(up)], which differs only by a constant
factor from the flux function, ¥'. In order to eliminate the
extra contributions to the force in Equation (110), which are
aligned with e, and are proportional to cosv, one needs to
replace the j o — Jo(u) ~ const approximation of the current

density with:
O = oy (u)(l + 26 cosv )
* sinh u

)

This modification satisfies the exact Grad—Shafranov equation
(Equation (66)), requiring that

B®

(119)

-B 2
,=1d UB) ,  aP (120)
rdU 210 d¥v
hence,
fo(w) : :
RIE (Rl R ] i | 121
B+ 1[(Roc & (420

This becomes Equation (119) for |r — R,| < R.,. The extra

Gl J(toy 0222 jf’(u) -cosv, in

current ~ harmonics,  j,,cosv =
Equation (119) result in: (1) the generatlon of the first
harmonics of the reduced flux function, ¥y (u)cosv Cz,

(2) the modification of the external field given by
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Equation (27); and (3) an extra requirement on the magnitude
of the strapping field, which, in addition to the zeroth-order
approximation of ocL®*z, given by Equation (112), also gives
a contribution of xCs, in accordance with Equations (94) and
(108). However, to satisfy the exact equilibrium condition, the
strapping field must satisfy a more restrictive condition for not
only its “average” magnitude, but also for the particular
distribution over the current filament cross section (see details
in Zakharov & Shafranov 1986, including the shapes of
strapping field for different filament parameters), to separately
balance the force on three current harmonics (for n =0, +1).

Based on these considerations, we arrive at an important
conclusion. Although solving the reduced GS equation is
sufficient to finding a configuration sufficiently close to
equilibrium, this approach may look misaligned within the
general framework of the full GS, since the current function
and pressure are not directly expressed via the flux function.
However, this contradiction is resolved with the improved
approximation described here, since within the accuracy of the
approximation, the functional dependencies become
rBS) ~ const x W and P ~ const x W' in compliance
with the full GS equation. Despite formally being more
accurate and consistent, the improved equilibrium solution is
more laborious and difficult to compute, and, which is even
more problematic, poses more severe restriction on the shape of
the strapping field. Specifically, three harmonic amplitudes,
P, and Y for the external field in Equations (28)
and (29) should be prescribed. In a realistic magnetic field,
which hardly satisfies these requirements, the “improved”
solution can be even farther from equilibrium than the simple
and easy-to-compute single-harmonic solution for n=0.
Solving the R-MHD equations with the simple » = 0 harmonic
solution as the initial condition seems to be a more practical,
and therefore preferred approach. This way, both the magnetic
configuration and its external field automatically adjust to the
realistic strapping field.

5.7. CME Generator Based on Finite 3 Zeroth Harmonic
Solution

In actual numerical simulations of CMEs, an important
distinction from idealized configurations is that only a part of
the toroidal filament rises above the solar surface, with the
center of configuration located at a depth, d, below the surface.
From simple geometric considerations, one can determine the
angular size of this circular arc above the solar surface:

(122)

2R.d — d* — R?
Aa =2 arccos( = Oo),

2Ry — d)Rs

where R. is the solar radius. For small values of d, the
configuration gets close to an idealized situation when the
highly conducting solar surface cuts the circular ring of the
filament to two half circles. In this case, the “hidden” part of the
filament (that is under the solar surface) can be considered as an
“image” current below the surface. For such idealized
situations, one gets A« ~ 7. As long as in such a model the
CME is driven by the hoop force, the work done by this force
in the course of expansion (according to Equation (71)) can be
expressed via the change in the total magnetic free energy,
which, for the described circular arc, can be obtained from
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Equation (108) as follows:

Ecwe = ﬁ—:(LgeX” + 1 gRu) (T (123)

The mass of the ejecta is obtained from Equations (92),
(103), and (107):

A«

Itot 2
Mcme = Euo oc( )

—, (124)
Vi
where we assumed a low ( plasma, so that 1 4+ 3~ 1, and the
Alfvén speed inside the filament, Vj ., has been defined in
Equation (91). Assuming that in the CME the available free
energy is fully converted to the kinetic energy of ejecta,
Ecve = %MCME Viues i.€., by neglecting the interaction of the
strapping field with the starting to expand flux rope, we can
estimate the asymptotic CME speed, which is independent of
the current, I'*", and the angular extent of the erupting arc, Aa«:

(ext)

Veme = 2(—0

(125)
HoRoo

+ Ci) VA,(,O ~ 2VA’99.

It can be seen that the normalized external inductance,
Lée’“)/ (1toR), controls the physically important speed ratio,
Vemg/Va,. According to Equation (95), this inductance is a

function of u, but it also can be parameterized with x(, or with
the a/Ry ratio (see Figure 7). For a thin filament, this
coefficient is about 1.2-2.5, indicating that the CME speed
can exceed the Alfvén speed in the initial filament configura-
tion by a factor of 2 (see Equation (125)). Another potentially
important contribution to the energy budget is due to gravity.
With an account of negative potential energy, the energy
conservation law, Ecyg — %MCME = %MCME chME, gives:

(ext)
2 0
Veme = 1R
IR

+ c;)v,i,,,g - Vi, (126)

where G is a gravitation constant, M., is a solar mass, and

12GMo . 615 [km /s
R

is an escape velocity.

The fact that our model can produce super-Alfvénic CMEs
raises several interrelated questions, such as what is the
mechanism of energy conversion from magnetic free energy to
kinetic energy of the ejecta? How fast is the energy conversion?

Under these circumstances, an essential element of the CME
initiation scenario is magnetic reconnection. In addition to fast
removal of the field tying the current filament to the active
region and subsequent acceleration of the CME to super-
Alfvénic speeds, the reconnection can also explain the X-ray
flare accompanying the CME (see, e.g., Forbes 2000), as well
as the accelerated particle release (Masson et al. 2013).

This new scenario is demonstrated in Figure 8. Previously
(see Section 5.3), we considered a uniform horizontal strapping
field, which at the center of the current loop was oppositely
oriented to the magnetic field of the current filament, B.n..
However, the magnitude of this strapping field was smaller
than B,, and therefore, the superposed field, (B. + B®)n,, did
not change direction (see Figure 5 and compare it to the case of
the no-strapping field, depicted in Figure 4). In contrast with
the uniform field, the new scenario involves an altitude-

Vg = (127)
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Figure 8. Magnetic field lines from the current filament characterized by R, = 0.2R., k(, = 0.1, B, = 1, strapped by the field from a pair of positive and negative
magnetic charges. The configuration center is at a depth of d = 0.025R, below the solar surface; the distance, 2D, between the charges is D = R, for panel (a) and
D = 0.7R, for panels (b) and (c). Null points can be seen in panels (a) and (b), which show meridional cross sections of the configuration, similarly to Figures 4 and 5.
In the 3D topology, shown in panel (c), the null line is marked with a thick blue line.

dependent overarching strapping field. This strapping field
originates from the active region, and it is anchored to the solar
surface. The strapping field balances the hoop force at the apex,
and it can be sufficiently strong near the solar surface to flip the
direction of the superposed field. This flip results in the
formation of null points that are the seeds of future
reconnection.

A still idealized, but more realistic, case of a strapping field
created by a pair of positive and negative magnetic charges at
the axis of symmetry of the configuration, which mimic
positive and negative magnetic spots of a bipolar active region
(see Titov & Démoulin 1999) is illustrated in Figure 8. On the
left (panels (a) and (b)), we demonstrate how the field topology
depends on the distance, 2D, between the charges. Here we
used current filament parameters, R, =0.2R., ng = 0.1, B,
= 1, while the depth of the configuration center was
d =0.025R,. The magnitude of the charges was chosen in a
way that the field at the current filament location is sufficient
for strapping. For D > R, (not shown) the strapping field is
almost uniform, the only distinction from Figure 5 is that at
large distances the field lines connect to the solar surface. In the
intermediate case when D = R, (see Figure 8(a)), the field of
the current filament near the solar surface is balanced by the
strapping field; therefore, the null point forms near the origin.
When the strapping field is even more nonuniform, D = 0.7R,
(see Figure 8(b)) the null point raises and gets closer to the
filament.

Figure 8(c) shows the 3D topology of the field for the
D =0.7R,, case. There are five families of topologically
different magnetic field lines:

1. Twisted magnetic field lines inside the filament (green
lines),
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2. Circular field lines looping around the filament generated
by its current (white circles),

3. Arcade-type strapping magnetic field lines originating
from the magnetic charges (brown lines). Their tension
balances the hoop force and maintains the equilibrium,

4. Below the null line (marked by blue) there are black lines
connecting the positive and negative magnetic charges.
These field lines are completely disconnected from the
filament and its own field,

5. Stretched magnetic field lines with null points (yellow
lines). These are separators: the upper loop separates the
brown strapping field lines from the field lines looping
around the filament. The bottom loop separates the
strapping (brown) field lines from the black field lines
closed below the null line.

Using numerical simulations for a nearly identical config-
uration, Roussev et al. (2003) demonstrated that reconnection
at the null line naturally results in loss of equilibrium (note the
similarity between our Figure 8(c) and Figure 1 in Roussev
et al. 2003). This loss of equilibrium is due to the fact that the
strapping field (brown lines) partially reconnects and its
strapping effect decreases. Note that the strapping field is
introduced to ensure equilibrium, while the height dependence
of the realistic strapping field in the active region naturally
results in the appearance of null points and null lines, which
make the configuration prone to magnetic reconnection, thus
potentially breaking the equilibrium.

It is important that when applying this methodology to
realistic CME simulations, it is not enough to choose a location
and appropriate model parameters to obtain an equilibrium
configuration of the underlying active region together with the
superposed filament model (as described by Titov et al. 2014).
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Figure 9. Top left: GONG magnetogram as of 2013 April 11 with intensified weak field. Bottom left: zoomed in AR field with the chosen locations for the current
filament footpoints (red and blue asterisks) and the center of configuration (green asterisk). Right panel: the magnetic configuration superposed with realistic magnetic

field of the active region adjusted to simulate the CME event of 2013 April 11.

In addition, one must find a configuration that is ripe for
spontaneous eruption due to magnetic reconnection. Note that
reconnection by itself does not have to be spontaneous
(although it can be—see Roussev et al. 2003). Another
possible mechanism to enforce reconnection is horizontal
motion of photospheric plasma together with the frozen-in
footpoints of strapping field lines converging toward the
polarity inversion line, flux cancellation (see, e.g., Linker et al.
2003). Such motion builds up the current along the null loci
below the flux rope ending up with reconnection and further
eruption.

In Figure 9 we present such a configuration created to
simulate the CME event of 2013 April 11. The GONG
magnetogram as of 2013 April 11 is shown in the top-left
panel. Because of the limitations of the observed geometry,
there is significant uncertainty of the radial magnetic field
measurements in the polar regions. In order to reduce this
uncertainty and achieve better agreement of global simulation
results with observations, it is customary to modify the
photospheric radial magnetic field in the polar regions.
Specifically, the observed radial field, B, used as the
boundary condition at R=R., is intensified in weak field
regions:

Brlr=r, = sign(BY™)

xmin (3.5|BY" || B | +5 Gs). (128)
To get a 3D distribution of the strapping field, the Potential
Field Source Surface Model (PFSSM) is applied by expressing
the intensified field as a series of spherical harmonics to the
order of 180.

Once the 3D PFSSM field of the active region and the
approximate location of the CME source are obtained, we
iterate the locations of the two filament footpoints near the
polarity inversion line and analyze the PFSSM field along the
filament passing through these footpoints and the topology of
the total (superposed) field. The iterated locations are shown
with red and blue asterisks in the bottom-left panel of Figure 9,
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displaying a zoomed fragment of the magnetogram. The best
choice for the center of configuration in heliographic
coordinates are (80°, 13°) as shown with the green asterisk in
the bottom-left panel of Figure 9) and the depth is d = 0.03R..
The major and minor radii of the current filament are 0.21R,
and 0.04R_, with the horizontal axis of symmetry rotated 290°
counterclockwise from the local direction of heliographic
parallel. The helicity sign is negative.

Under these conditions, the strapping field along the filament
is approximately uniform and perpendicular to the plane of
filament. The magnitude of the strapping field, B®~ —2.7
Gauss, determines the current according Equation (94), thus
balancing the hoop force in equilibrium. On the other hand, the
topology of superposed field of the current filament on top of
the active region (presented in the right panel of Figure 9)
shows null points below the filament, which make the
configuration prone to reconnection, and thus eruption. As
we described in this paper, one must chose the model
parameters in a way that the resulting CME matches the total
mass and kinetic energy of the observed eruption. With these
choices, our proposed eruption generator will automatically
match a significant number of observational constraints.

Note then when the described configuration is used as an
initial condition for subsequent full MHD runs (similarly to the
way as described by Torok et al. 2018), the solution with
0 = const > 0 breaks an equilibrium due to imbalanced

Sk (where
kp(T. + Tp)

g, = GM,/R?), with altitude, h, can be introduced, which
prevents the ejecta from falling down along the filament. The
full force balance should also account for the component of
gravity force directed toward the local curvature center of the
filament, which partially balances the hoop force and, in effect,
reduces the strapping field required for equilibrium. Here we
omit these technical details, which are easy to derive from
Equation (121) for the mass of the ejecta.

gravity. The variation of [ exp(—
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6. Discussion and Summary

In this paper we described the relations between the current,
the poloidal field it produces, and the toroidal field preventing
the pinch-effect by accurate analytical expressions that allow
for finite thermal pressure. However, we only provide an
integral approximation for the strapping field. This is still very
useful, because in CME simulations, the strapping field is quite
uncertain: it is nonuniform and even if we were able to describe
an exact equilibrium of ideally shaped ring with the prescribed
current would not describe a realistic scenario. On the other
hand, the accurately described filament in which the pinch-
effect is prevented is capable of self-adjusting its height and
curvature radius to create an equilibrium configuration.

It is important that the direction of the strapping field is
opposite to that of B,, and its magnitude for thin filament (of
large inductance and large stored magnetic free energy) can
exceed the field at the axis.

In summary, this paper presents a mathematically rigorous
extension of the Titov & Démoulin (1999) and Titov et al.
(2014) CME generator based on the Grad & Rubin (1958)—
Shafranov (1966) equation. The main new features of the
proposed model are as follows:

1. The filament is filled with plasma; thus, the model
describes a finite (§ initial configuration with finite mass
and energy,

2. The model describes an equilibrium solution that will
spontaneously erupt due to magnetic reconnection of the
strapping magnetic field arcade,

3. There are analytic expressions connecting the model
parameters to the asymptotic velocity and total mass of
the resulting CME, providing a way to connect the
simulated CME properties to multipoint
coronograph observations.
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Appendix
Toroidal Functions

A.1. Definition and Expressions via Hypergeometric Functions

The toroidal functions (see definition in Bateman & Erdé-
lyi 1953) used in the present paper are

0,1 (u) = 2sinhu Q™ (coshu),
2
V2sinhu P ™ (coshu),
2

P’:”l(u) = m=0,1. (Al)
They differ from the usually introduced associated Legendre
functions of semi-integer index, Q- ,(cosh u), P (cosh u),

by a factor of </2sinhu. The assomated Legendre functlon of
the first kind is expressed in terms of the hypergeometric series,
F(a, b;c;z) = oF(a, b;c;z) (see Equation (8).852(2) in
Gradshteyn & Ryzhik (2014) and also Equation (5) in Bateman
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& Erdélyi 1953):

Pl (u) = —( /)”F(% n —|— 3 ;35 H) (A2)

o=

According to Equation (8.752(3)) in Gradshteyn & Ryzhik
(2014), P, (coshu) = — f M p (2)dz, so that:

sinh u
d - K2
SR @] = Aoy — TSR (A3)
where
By = n(ff’)”F(— nt 1 lik ) (A4)

In the particular case of n=0, the difference of the two
functions in Equation (A3) can be expressed through a single
toroidal function (see Bateman & Erdélyi 1953, Equation (8)):
—[P 1( )= _Pl H(u). (A5)
For k&~ 1 the original hypergeometric series in Equation (A2)
converges slowly, and it is worthwhile to transform the series
to one based on the variable, 1 — x? (see Equations (15.1.2),
(15.8.10), and (15.8.12) in DLMF 2021). Specifically, at
k' — 0, one gets
P-lu) ~ i(logi — 2), Prli(u) ~ i (A6)
2 T K 2 3nk!
The toroidal function of the second kind is given by Equations
(8.736(4)) and (8.852(1)) in Gradshteyn & Ryzhik (2014):

T'(n — %)ﬁ
I'(n+ 1)

X (i, n+ z; n+1; (K’)z)
2 2

Q_,:;(u) =— K3(KY'F

(A7)

According to Equation (8).752(5) in Gradshteyn & Ryzhik
(2014), Q;‘(cosh 0 =——— [ zh 0, (z)dz, and

2
[Qn"(u)]—Qn_i(u) 22 )

an(u) (A8)
where (see Equation (8).852 in Gradshteyn & Ryzhik 2014):

D(n + )7
I'(n+1)
X F(% n+ %; n+1; (n’)z)

0 1) = RO

(A9)

In the particular case of n =0, Equation (A8) reduces to a
small difference of two separate hypergeometric functions, are
which both near unity. A more practical way to calculate this is
to express in Equation (AS8) via a single function using
Equation (8).734(2) in Gradshteyn & Ryzhik (2014):

d -1 _ 3K 51
E[Q,Iz(u)] =9 ()

5

3
=— NEN=, =; 2; (kD2 Al
3k (k") (2 2, ,(H)) (A10)
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For k’ — 0, one gets
0 lw~2m 00w~ —m, 10w
2 2 du 2
~—371(K')3?, i[Q_fl(u)] ~ K ~ =010 'w). (A1)
du 2 2

A.2. Wronskian of Toroidal Functions

The Wronskian of the Legendre functions may be found in
Bateman & Erdélyi (1953), Equation (13):

APl 0,1 (u) 2
0,y —"2— — P ) =
u u - —
(=)
(A12)
A.3. Series of Toroidal Functions
The Fourier series for semi-integer powers of

r/Rs = sinhu/(coshu — cosv) can be obtained from the
following equation (see Shushkevich 1997):

! 1 > Qu-1(coshu)e™. (Al3)
vJ2(coshu — cosv) T ?

Once Equation (A13) is multiplied by
(coshu — cosv)4/2/sinhu, its LHS equals \/Ry/r. On the
RHS, one can express cosv = l(ei”v + e~ and partial sum
of the multipliers by ¢ using Equations (8.734(3—4)) in
Gradshteyn & Ryzhik (2014) reduces to ;—Q_,:_l ! (u). Therefore:

s

Re = LS 5, e (A14)
r 2m = 2
Another series can be obtained by differentiating

Equation (A13) over u and using Equations (8.736(4) and
8.752(4)) in Gradshteyn & Ryzhik (2014), which show that

dQ,1(coshu)/du = (n2 - %)Qnﬂ%(cosh u):

L%_zm 1_2_71] inv
(Roo) B ™ z (4 n)ani(H)e .

n=-—00
A particular linear combination of Equations (A14) and
(A15) has the following remarkable property:

3
3 |R 1{r ) 1 &
= 4+ | — :_E: 1 —n?
2\ r Z(ROC) 7r ( )

__ . 1 - _ -
x 0, we™ = ~07 [ + Ol(:’),

(A15)

(A16)
since the terms for n = =1 vanish.

A.4. Some Integrals of the Modified Toroidal Functions

The current form factor functions, ;" (u), utilized in this
paper to approximate the profile of the toroidal current, are
eigenfunctions of the equation,

2
[Sinh2u(—d— + n2) + é]j(WL) _ E(’")j(m).
duz 4 n n

While O, _l; (cosh u) is the eigenfunction for E = 0, we note that

(A17)

1 . . . .
Q:iz (coshu) is the eigenfunction for the eigenvalue of
2
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EM =1 — (m + %)2 These eigenfunctions can be trans-
formed to Legendre polynomials of argument cothu using
Equation (8.739) in Gradshteyn & Ryzhik (2014). For the
particular case of n =0, we introduce the following definition
(the subscript “0” denoting the n=0 harmonic is omitted
herewith):

7 () = j B, (cothu),

where
o= im0
Specifically, JOwW =i, E© = %, and

JO ) = i§Dcothu, ED = =2,
For such current profiles, Equation (19) can be integrated
analytically. Upon integrating by parts and using the equation
2 - _
—% + ﬁ] Q,;(u) = 0, we get the following expression

for n=0:

s J () Q71 (ur)du o
1w = [ — = [" o)
J (u)
Em

sinh? i

d? 3
X|——=+

duf ~ 4sinh’u
dQ_711 u

1| di™w) - i ~1(u)
du

o -1
= | g0 (A18)
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