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Abstract

We provide exact analytical solutions for the magnetic field produced by prescribed current distributions located
inside a toroidal filament of finite thickness. The solutions are expressed in terms of toroidal functions, which are
modifications of the Legendre functions. In application to the MHD equilibrium of a twisted toroidal current loop
in the solar corona, the Grad–Shafranov equation is decomposed into an analytic solution describing an
equilibrium configuration against the pinch-effect from its own current and an approximate solution for an external
strapping field to balance the hoop force. Our solutions can be employed in numerical simulations of coronal mass
ejections (CMEs). When superimposed on the background solar coronal magnetic field, the excess magnetic
energy of the twisted current loop configuration can be made unstable by applying flux cancellation to reduce the
strapping field. Such loss of stability accompanied by the formation of an expanding flux rope is typical for the
Titov & Démoulin eruptive event generator. The main new features of the proposed model are as follows: the
filament is filled with finite β plasma with finite mass and energy, the model describes an equilibrium solution that
will spontaneously erupt due to magnetic reconnection of the strapping magnetic field arcade, and there are analytic
expressions connecting the model parameters to the asymptotic velocity and total mass of the resulting CME,
providing a way to connect the simulated CME properties to multipoint coronograph observations.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar coronal mass ejections (310); Solar
active region magnetic fields (1975)

Supporting material: animation

1. Introduction

Solar eruptions, including coronal mass ejections (CMEs),
are associated with a major restructuring of the coronal
magnetic field and the ejection of solar material (∼1012–1013

kg) and magnetic flux (∼1013–1015 Wb) into interplanetary
space (e.g., Roussev & Sokolov 2006). Among many aspects
of CMEs that justify the heliophysics community’s interest in
numerical simulations of CMEs is their contribution to the
acceleration of solar energetic particles (SEPs). To explain the
observed signatures of CME-SEP events, global models of
solar eruptions need to incorporate the realistic background
solution for the solar corona (SC) and magnetic field driven by
observed magnetograms (see Roussev et al. 2004).

The fundamental process producing a CME is the conversion
of magnetic free energy to the kinetic energy of the ejecta; that
is why magnetically driven CME models are the most
promising. A simple, but well working, way to drive a CME
in a global simulation is to superimpose a Gibson & Low
(1998; GL) or Titov & Démoulin (1999; TD) magnetic flux-
tube configuration onto the background state of SC. These
magnetic configurations describe an erupting magnetic fila-
ment. That filament becomes an expanding flux rope (magnetic
cloud) in the ambient solar wind while evolving and
propagating outward from the Sun, thus allowing the simula-
tion of the propagation of a magnetically driven CME.

Our recent work on the GL model allowed us to significantly
simplify the process of triggering CMEs. The product of the
effort is the Eruptive Event Generator based on Gibson-Low

magnetic configuration (Jin et al. 2017), which is described in
more details in Borovikov et al. (2017) in terms of an analytical
solution of the Grad–Shafranov (GS; Grad & Rubin 1958;
Shafranov 1966) equation. While the GL model represents
significant progress in physics-based CME initiation modeling,
it also has important limitations. When superimposed on the
external field of the active region, the GL flux rope is already
out of equilibrium, and it is expanding in a self-similar manner;
therefore, it sidesteps the CME initiation problem. More
importantly, the analysis based on the GS equation in
Borovikov et al. (2017) demonstrated that the GL flux rope
has regions of negative plasma β (the ratio of thermal to
magnetic pressures), a clearly unphysical regime. The TD
model inserts a toroidal loop (filament) carrying an electric
current, Itot, on top of the active region in a way that only part
of the current loop is above the photosphere. The superposed
magnetic configuration is stabilized by the effect of a strapping
magnetic field, B(s) in the active region, such that the action of
this field on the loop current, ∝ItotB(s), balances the hoop force,

µ I tot 2( ) (see Titov et al. 2014), which allows for derivation of
the current, Itot, in terms of the observed magnetic field in the
active region. If the equilibrium breaks, the filament immedi-
ately starts to expand, initiating an eruption. Recently, the
model was generalized for inserting nontoroidal current loops
by Titov et al. (2021), as well as for producing near-critical
current loops using a helicity pumping method by Titov et al.
(2022). The force-free TD model also has its own important
limitation: the assumption of no mass (pressure) inside the
filament is part of the equilibrium analysis (β= 0).
In spite of its limitations, the original TD flux rope model has

been used in a number of studies (e.g., Roussev et al. 2003;
Manchester et al. 2008, 2012; Jin et al. 2013). Starting with the
work of Linker et al. 2016 and Török et al. 2018, numerous
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impressive results were obtained with the modified TD
configuration (Titov et al. 2014), simulating historic CME
events with unprecedented clarity and completeness.

In this paper we describe an alternative TD approach, which
addresses significant limitations of the Titov & Démoulin
(1999) and Titov et al. (2014) models: our equilibrium analysis
of the filament superposed with the potential field of the active
region allows for finite mass and pressure (β> 0) inside the
filament.

Similarly to the approach by Borovikov et al. (2017), this
work is based on an analytical solution of the scalar GS
equation. With the GS equation, one can describe a toroidal
filament of twisted magnetic field lines filled with finite density
plasma (ejecta). The solutions are expressed in terms of toroidal
functions (see Appendix), which are straightforward modifica-
tions of Legendre functions.

We will apply this method to describe a twisted toroidal
current loop in the SC that is in MHD equilibrium. In order to
combine this filament with the active region magnetic field, an
external strapping field must be accounted for in the force
balance that balances the hoop force and thus assures
equilibrium. We provide an approximate analytic solution to
describe this combined configuration.

Note about notations.—This paper is highly mathematical,
and some of the notations are easy to confuse. Here we briefly
summarize our guiding philosophy concerning notations.

In general (dimensional), physical quantities described by
functions of cylindrical coordinates z, r will be denoted by
upper case letters:

1. J(z, r)—current density,
2. Ψ(z, r)—flux function,
3. P(z, r)—gas-kinetic pressure.

Quantities denoted by lower-case letters are reduced functions
(or representative functions) of toroidal coordinates, u, v:

1. m yY = ¥z r R r u v, .0( ) ( ),

2. =j ¥J z r R r j u v, ,5( ) ( ),

3. = ¥P z r R r p u v, ,3( ) ( ) ( ),

4. =j ¥B z r R r b u v, ,
3
2( ) ( ) ( ).

Finally, quantities denoted with a “∼” symbol represent
normalized (dimensionless) quantities:

1. =I u I u In n n0
˜ ( ) ( ) ,

2. =j j In n n0
˜

3. y y= In n n0
˜ .

2. Magnetostatics in Toroidal Coordinates

Equilibrium confinement of a toroidal plasma filament with a
finite gas-kinetic pressure is controlled by a steady-state
toroidal electric current, which produces an axially symmetric
magnetic field that is independent of the toroidal angle, j. The
magnetostatics of such fields can be formulated in arbitrary
orthogonal coordinates, ju r z v r z, , , ,( ( ) ( ) ). The meridional
plane coordinates, u v,( ), may or may not differ from
cylindrical ones, r z,( ), r being the distance from the axis of
symmetry.

In the 3D vector of magnetic field, B=B2+ Bjej, the
poloidal components in the (z, r) plane, B2, can be expressed
via the toroidal component of a vector potential, Aj, using the
Lamé coefficients, hu, hv (which describe the length element in

terms of infinitesimal coordinate increments:
j= + +ds h du h dv r du v

2 2 2 2 2 2 2):

=
 Y

´ jB e
r

, 12
2

( )

where the 2D differential operator,

Y =
¶Y
¶

+
¶Y
¶

e e
h u h v

1 1
, 2

u
u

v
v2 ( )

is applied to the flux function, Ψ= rAj. Instead of the full flux

function, we will use (everywhere except Section 5.1) the

“reduced” flux function, y u v,( ), that is defined in u, v

coordinates:

m yY = ¥z r R r u v, , , 30( ) ( ) ( )

where R∞ is a characteristic scale to be specified later. Using

Ampère’s law, ∇2×B2= μ0Jjej, in u, v coordinates, the

expression for the toroidal current density, Jj, can be simplified

with the reduced flux function:

y y y

=

= -
¶
¶

¶
¶

+
¶
¶

¶
¶

j
¥

⎜ ⎟ ⎜ ⎟⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥

J z r
R

r

j u v

r

j
r

h h u

h

h u v

h

h v

,
,

,

3

4
, 4

u v

v

u

u

v

2

2

( )
( )

( )

where we introduced a representative function for the toroidal

current density, j(u, v), that only depends on the generalized

coordinates.
Next, we define the toroidal coordinates in the meridional

plane u v,( ) in the following way (see Morse & Feshbach 1953,
and Figure 1):

=
-

=
-

= =
-

=

¥ ¥

¥

r
R u

u v
z

R v

u v

h h
R

u v

r

u

sinh

cosh cos
,

sin

cosh cos
,

cosh cos sinh
. 5u v ( )

Figure 1. Toroidal coordinate surfaces for R∞ = 1: =usinh 5 (k¢ » 0.1)—
orange torus; v = 0—gray part of plane z = 0; v = π/2—blue hemisphere;
v = π–invisible part of plane z = 0; v = 3π/2—red hemisphere. Coordinate u

decreases outward from the torus and increases inward, turning to infinity at the
(invisible) circumference, x2 + y2 = 1, z = 0.
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From these definitions, we get the following relation for the

normalized radius vector to the (r, z) point:

+ =
+
-

= + = - +

¥ ¥

¥ ¥

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

r

R

z

R

u v

u v

z

R
v

r

R
u

cosh cos

cosh cos

1
2

cot 1
2

coth . 6

2 2

( )

This means that surfaces of constant v= v0 are spheres with

centers at r= 0, = ¥z R vcot 0, and radii of ¥R vsin 0∣ ∣.

Surfaces of constant u= u0 are tori with major radii

¥R ucoth 0 and minor radii ¥R usinh 0. Specifically, when

u→∞ , the major and minor radii become R∞ and 0,

respectively. This is a degenerated toroidal surface of zero

minor radius (toroidal magnetic axis).
The inverse transformations determine the toroidal coordi-

nates, u, v, and the Lamé coefficients in terms of r, z:

= =
-

= =

¥

+ -

¥

+ -

¥

+ -

+ -

¥

v
R z

R R
v

R R

R R

u
R r

R R
h

R R

R

sin
2

, cos ,

sinh
2

,
2

, 7u v

2 2

, ( )

where = RR
2
, R= rer+ zez is the radius vector pointing

from the center, and z= 0, r= 0 to a given point,

=  + ¥R r R z , 82 2( ) ( )

are the maximum (+) and minimum (−) distances from the

given point to the toroidal magnetic axis.
The magnetic field can be expressed in terms of toroidal

special functions of the toroidal coordinate, u. Note, that the

presence of u, u0 in the equations is quite formal, and they are

not actually calculated, since in effect the special functions can

be expressed and efficiently calculated as hypergeometric

power series of either κ(u) or k¢ u( ), which can in turn be

expressed in terms of R±:

k

k k

= - =

¢ = - = =

- ¥

+

- -

+

u e
R r

R

u e
R

R

1
4

,

1 . 9

u

u

2 2
2

2

( )

( ) ( )

Using these notations, the toroidal coordinate surface,

=u const, has minor radius, k k= ¢ - ¢
¥a R2 1

2

( ), and major

radius, = +¥R R a0
2 2 , determined by the constant value of

k¢, at the surface. Any such surface can be taken as the

boundary of a toroidal current filament. Conversely, the field of

a toroidal current filament with known minor and major radii of

a, R0, can be described using toroidal coordinates with a

characteristic length scale of = -¥R R a0
2 2 , so that the

filament boundary is a = =u u const0 surface at which

k k¢ = ¢ = + ¥u a R R0 0 0( ) ( ). This surface separates the fila-

ment interior (u0� u<∞ ) from its exterior (0< u< u0).

Note, that for u→ 0 k =lim 0u 0 , while for u→∞ (at the

toroidal magnetic axis) k¢ =¥lim 0u .

The coordinate unit vectors are as follows:

=
- -

º
- -

-

¥

- +
e

e R R e

e e

R R

R R

u v u v

u v

2

cosh cos 1 sinh sin

cosh cos
, 10

v
z z

z r

2 2( ) ( · )

( )
( )

= ´

=
- - -

-

je e e

e eu v u v

u v

sinh sin cosh cos 1

cosh cos
. 11

u v

z r

[ ]

( )
( )

With the help of the Lamé coefficients (Equation (5)), one can

express the (poloidal) magnetic field (Equation (1)),

m
y

k
k

y y
= +

¢
¶
¶

-
¶
¶

¥ ⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥B e e e

R

r v u2
, 12z u v2

0
2

1
2

3
2

( )

and the toroidal current density (Equation (4)):

y y y
= -

¶
¶

-
¶
¶

+⎡
⎣⎢

⎤
⎦⎥j u

u v u
sinh

3

4 sinh
. 132

2

2

2

2 2
( )

Any solution of scalar Equation (13) that relates the form factor

of the toroidal current to the reduced flux function, allows for

expressing the vector poloidal magnetic field via Equation (12).

In particular, we will present manufactured solutions, which,

for some special choices of the current form factor, lead to

analytic expressions for the magnetic field.

3. Deriving the Reduced Flux Function with the Fourier
Method

Equation (13) can be solved because the Laplacian in
toroidal coordinates allows for the separation of variables
within the framework of the Fourier method. Both currents and
fields are expressed in terms of products of eigenfunctions of a
single variable depending either on u or on v. This way, a
variety of solutions can be derived expressing the field
analytically in terms of special toroidal functions. Indeed, the
scalar function appearing in the poloidal magnetic field (see
Equation (12)) can be expressed as a complex series:

åy y y y= =
=-¥

¥

-e u , , 14
n

nv
n n n

i ( ) ( )*

where i2=−1, and the superscript asterisk means complex

conjugation.
To find the magnetic field harmonics, the current, j(u, v), in

Equation (4) is also expanded into a Fourier series:

å= =
=-¥

¥

-j u v e j u j j, , . 15
n

nv
n n n

i( ) ( ) ( )*

Equations relating the magnetic field and current harmonics can

be derived from Equations (13), (14), and (15) as follows:

y
y- + + =⎛⎝ ⎞⎠

d

du
n

u

j u

u

3

4 sinh sinh
. 16

n
n

n
2

2
2

2 2

( )
( )

The substitution, y = u u2 sinhn n( ), reduces this equation

with zero on the right-hand side (RHS) to the equation for

Legendre functions of semi-integer index, -
-P ucosh
n
1
1
2

( ) and

3
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-
-Q ucosh
n
1
1
2

( ). The eigenfunctions of Equation (16) are

=

=

-
-

-
-

-
-

-
-

P u uP u

Q u uQ u

2 sinh cosh ,

2 sinh cosh , 17

n n

n n

1 1

1 1

1
2

1
2

1
2

1
2

¯ ( ) ( )

¯ ( ) ( ) ( )

(see Equations (A2) and (A7)), which are referred to as toroidal

functions. Since the toroidal current is assumed to vanish

outside the torus, i.e., Jj= 0 for 0< u< u0, the field in this

region can be expressed as a series of toroidal functions of the

first kind: y µ -
-P un n
1
1
2

¯ ( ), because the Legendre functions of the

second kind, -
-

Q un
1
1
2

¯ ( ), are singular at u→ 0.

The current, I(u), through a contour of constant u, can be
expressed as a series of harmonics:

ò ò

ò ò

å= =

=

p
j

p

¥

=-¥

¥

¥
¥

⎜ ⎟⎛
⎝

⎞
⎠

I u J h h dvdu I u

I u e
R

r
dv

j u

u
du

,

sinh
18

u
u v

n

n

n
u

nv n

0

2

1

0

2
i 1

2
1

1

( ) ( )

( )
( )

( )

where the inner integral over v can be evaluated using

Equation (A14), yielding:

ò=
¥

-
-

I u Q u
j u

u
du

sinh
. 19n

u
n

n1
1

1

2
1

11
2

( ) ¯ ( )
( )

( )

The nth harmonics of the total current through the current loop,

In(u0), will be denoted as In0:

å å= =
=-¥

¥

=-¥

¥

I I I u . 20
n

n

n

n
tot

00
( ) ( )

Similarly, with the help of Equation (A15), the harmonics of
magnetic moment defined as the volume integral,

ò= j rJ dV
1

2
, can be obtained in terms of quantities

introduced above:

ò ò

ò ò

å

p

p

p

=

=

= -

p
j

p

¥

¥

¥

¥

¥
=-¥

¥

⎛
⎝⎜

⎞
⎠⎟

 J r h h dvdu

R e
r

R
dv

j u

u
du

R n I

sinh

1 4 . 21

u
u v

u

nv n

n

n

0

2
2

1

2

0

2
i

3

3

1

2
1

1

2 2

0

0

( )

( ) ( )

The quantities, In(u), jn(u), as well as ψn(u) all have
dimensions of current; therefore, it is convenient to characterize
the distributions of current and reduced flux function with the
dimensionless quantities normalized by the appropriate harmo-
nics of total current:

ò
y

y

= =

= =

=

¥

-
-

I u
I u

I
I u

j u
j u

I
Q u

j u

u
du

u
u

I

, 1,

,
sinh

1,

. 22

n
n

n
n

n
n

n u
n

n

n
n

n

0

1
1

1

2
1

1

0

0 0

1
2

0

˜ ( )
( ) ˜ ( )

˜ ( )
( )

¯ ( )
˜ ( )

˜ ( )
( )

( )

One can express the magnetic field harmonics in terms of the
current harmonics using a convolution integral (see

Equation (A12)):

òy =
¥
G u u

j u

u
du,

sinh
23n

u
n

n
1

1

2
1

1
0

˜ ( )
˜ ( )

( )

where we introduced the Green function,

= -

´

-
-

-
-

⎜ ⎟⎛
⎝

⎞
⎠G u u

n
P u u

Q u u

,
1

8 2
min ,

max , . 24

n n

n

1

2
1

1

1
1

1
2

1
2

( ) ¯ ( ( ))

¯ ( ( )) ( )

Following general rules, the Green function is constructed
from the eigenfunctions of Equation (16) satisfying the proper
boundary conditions. While it is continuous, its derivative,
∂Gn/∂u= 1, has a discontinuity at u= u1 in a way that the
second derivative equals the negative of the Dirac δ-function.
This is why Equation (23) provides a solution to Equation (16)
for a given current on the RHS.
Inside the current filament, (u> u0), the integration of the

Green function (Equation (24)) gives:

ò

y > = -

+

-
-

-
- -

-

⎜ ⎟⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

u u
n

P u I u

Q u
P u j u du

u

1

8 2

sinh
. 25

n n n

n
u

u n n

0

2
1

1

1
1 1 1

2
1

1
2

1
2

0

1
2

˜ ( ) [ ¯ ( ) ˜ ( )

¯ ( )

¯ ( ) ˜ ( )
( )

Outside the current loop where u� u0� u1, Equations (23) and

(24) give:

y = - -
-⎜ ⎟⎛

⎝
⎞
⎠u u

n
P u

1

8 2
. 26n n0

2
1
1
2

˜ ( ) ¯ ( ) ( )

Even though the reduced flux functions in Equations (25) and

(26) are continuous at the filament surface (u= u0), the

derivatives might be discontinuous when the finite surface

current is concentrated at the filament boundary.
To conclude this Section, we provide an equation for the

total reduced flux function for the case when the current
distribution is symmetric with respect to the z= 0 plane, so that
the flux is an even function of v, the current amplitudes are real
functions, and one can use ºe nvcosnvi ( ). With these
simplifications, the reduced flux function becomes (see
Equations (14) and (26)):

 åy = -

=
=-¥

¥

-
-

-

⎜ ⎟⎛
⎝

⎞
⎠u u

n
I P u nv

I I

1

8 2
cos ,

. 27
n

n n

n n

0

2
1

0 1
2

0 0

( ) ¯ ( ) ( )

( )

We can also provide the Fourier series for the external field
of the same symmetry. The currents producing this field are all
located outside the filament, and there is no singularity at the
toroidal magnetic axis; hence, inside the filament, the
expansion for this field is as follows:

 åy y

y y

=

=
=-¥

¥

-
-

-

u u Q u nvcos ,

. 28

n

n n

n n

ext
0

ext 1

ext ext

1
2

( ) ¯ ( ) ( )

( )

( ) ( )

( ) ( )

Note that the sum of the self-generated and external
magnetic fields vanishes at the filament boundary,
ψ(u= u0)+ ψ(ext)

(u= u0)≡ 0, for the following specific choice
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of the external field harmonic amplitudes:

y = -ℓ u I , 29n n n
ext s

0 0
( ) ( )( ) ( )

= -
-
-

-
-

⎜ ⎟⎛
⎝

⎞
⎠ℓ u

n P u

Q u

1

8 2
. 30n

n

n

s
0

2
1

0

1
0

1
2

1
2

( )

¯ ( )

¯ ( )
( )( )

Hereafter, ℓ un
s

0( )( ) are the dimensionless induction coefficients

(proportional to the flux-to-current ratios), which are—as

demonstrated below (see Section 5.5)—closely related to the

energy of the external poloidal magnetic field produced by the

current filament. The capability of the external field given by

Equations (28) and (29) to turn the plasma boundary to a

magnetic surface (at which Y = const) is discussed in

Section 5.1 below.

4. Constructing Magnetic Field Configurations for the
Zeroth Harmonic

Our objective is to construct simple, analytic expressions for
a twisted toroidal magnetic flux rope that can be superimposed
on observed solar active region magnetic fields. Such a
configuration can be obtained using the lowest-order harmonics
of the Fourier series solution discussed in Section 3.

Let us assume that there is only the n= 0 Fourier harmonic
in the current distribution, ºj u j u0

˜ ( ) ˜ ( ), which only depends
on u. The subscript “0” that denotes quantities related to the
n= 0 harmonic is omitted herewith. The only contribution to
the total current comes from this harmonic, = =I I I utot

0 0 00
( ).

Now, we consider the n= 0 harmonic of the magnetic field, in
which the reduced flux function, y yº u0

˜ ˜ ( ), also only depends
on u, so that Equation (12) becomes:

= -¥⎛⎝ ⎞⎠B e eB
R

r
B u B u , 31c

z
z v0

p

3
2

[ ( ) ( ) ] ( )( ) ( )

where

m
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¥
B

I

R2
, 32c

0
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( )

is the magnetic field at the origin, R= 0. The dimensionless

amplitudes,

y
k
k
y

º º
¢

B u B u
d

du
, , 33z p

2

( ) ˜ ( )
˜

( )( ) ( )

describe the axial and poloidal fields, respectively. It is

convenient to eliminate the false singularity in ev, by

transforming the denominator in Equation (10) using the

definitions of R± and k¢ (Equations (8) and (9)): k= ¢- + +R R R 2,

so that Equation (31) can be written as:

k
k= -

¢
¢¥⎛⎝ ⎞⎠

⎡
⎣⎢

⎤
⎦⎥B e e

R

r
B B u

B u
, 34c

z
z v0

p3
2

( )
( )

( ) ( )( )
( )

where the singularity is eliminated:

k¢ =
- -¥

+

e
e R R eR R

R

2
. 35v

z z
2 2

2
( )

( ) ( · )
( )

In order to eliminate another false singularity in
Equation (34) outside the torus (u< u0), we use the definition

of κ given by Equation (9):

k
=¥ ¥

+

⎛⎝ ⎞⎠
R

r

R

R

8
. 36

3

3 3

3
2

( )

Substituting this expression into Equation (34) yields

k k k
k= -

¢
¢¥

+

⎡
⎣⎢

⎤
⎦⎥B e e

R

R
B

B u B u8
. 37c

z

z v0

3

3 3

p

3

( ) ( )
( ) ( )

( ) ( )

For n= 0 the field amplitude and its derivative appearing in
Equation (33) can be obtained outside the filament from the
reduced flux function, Equation (26):





y

k
k
y

=

¢
=

-
-

-

u u P u

u u

du
P u

1

8
,

3

8
, 38

0
1

2
0 1

1
2

1
2

˜ ( ) ¯ ( )

˜ ( ) ¯ ( ) ( )

so that Equation (37) reads:



k k k
k

=

´ -
¢

¢

¥

+

-
- -⎧

⎨⎩
⎡
⎣
⎢ ⎤

⎦
⎥ ⎡

⎣
⎢ ⎤

⎦
⎥ ⎫

⎬⎭

B

e e

u u
R

R
B

P u P u
3 . 39

c

z v

0 0

3

3

1

3

1

3

1
2

1
2

( )

¯ ( ) ¯ ( )
( ) ( )

The ratio, k k¢-
-P u
n

n1 3
1
2

¯ ( ) [ ( ) ], that appears twice in

Equation (39) can be expressed in terms of a hypergeometric

series of powers of κ2 (see Equation (A2)). For κ→ 0 it

approaches 1/4. Specifically, at the center where, according to

Equations (8), (9), and (10), κ= 0, R= 0, R+= R∞, and

k¢  -e ev z( ) , this approximation of the toroidal functions in

Equation (39) gives = B eBlimR c z0 0 , as required.
At large distances from the filament, R? R∞, Equation (39)

approaches the magnetic field of a dipole with the magnetic
moment of the n= 0 harmonic given by Equation (21):

p= ¥ eR I . 40z
2 tot ( )

Close to the current loop, where κ≈ 1 and Equations (10)
and (11) at u→∞ can be approximated as follows:

» -
»- -

e e e

e e e

v v

v v

cos sin ,

sin cos , 41

v z r

u z r ( )

one can approximate functions 
-P u1

1
2

¯ ( ) using Equations (A6)

and demonstrate that the external poloidal field dominates:

m
p

» -
-

B e e
I

R
v v

2
sin cos . 42r z0

0
tot

( ) ( )

In effect, Equation (39), describes the magnetic field of an
infinitely thin ring current with major radius of R∞, even
though it is derived as the magnetic field of an arbitrary u-
dependent current distribution. Furthermore, it is not required
that the ratio, a/R0, be small. In addition, the major radius of
the current filament differs from that of the infinitely thin ring,
R0≠ R∞.
A simple example for the field inside the filament can be

found if the current is concentrated at the filament surface:




y

k
k
y

=

¢
=

-
-

-

u u ℓ u Q u

u u

du
ℓ u Q u

,

3 , 43

0
s

0
1

2
0 s

0
1

1
2

1
2

˜ ( ) ( ) ¯ ( )

˜ ( )
( ) ¯ ( ) ( )

( )

( )
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where

=
-
-

-
-ℓ u

P u

Q u8
. 44s

0

1
0

1
0

1
2

1
2

( )

¯ ( )

¯ ( )
( )( )

Here =l ls
0
s( ) ( ) is a dimensionless induction coefficient for

n= 0 (see general definition in Equation (29)) proportional to

the flux-to-current ratio for the surface current. Equations (38)

and (43) can be combined and written in terms of the Green

function, Equation (24):

y =
-
-

G u u

Q u

,
. 45

0 0

1
01

2

˜ ( )

¯ ( )
( )

Below we consider several specific situations and express ỹ
in terms of the Green function(s), while the field amplitudes,
B( z,p), are expressed in terms of the normalized reduced flux
function, ỹ. The amplitudes of poloidal (blue line) and axial
(black line) magnetic fields are shown in the left panel of
Figure 2.

A variety of more realistic solutions for the magnetic field
inside a plasma can be constructed by approximating the
current profile as a linear combination of specially chosen
current profiles (“form-factors”), j(m) with constant coefficients,
cm,

å=j u c j u . 46
m

m
m( ) ( ) ( )( )

The specially chosen form-factors satisfy the equation:

- + =

= =

= = -

⎜ ⎟⎛
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⎞
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d
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j E j

j u j u u

E E
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3

4
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4
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5

4
,... 47
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0 1
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( ) ( ) ( )

( ) ( )

( ) ( )

With this choice, the integral in Equation (19) can be evaluated

analytically:

å

= -

=

-
- -

-

I u Q u
dj u

du
j u

dQ u

du

j u
c j u

E

,

, 48

E
E

E
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m
m

m

1

1

0

1
2

1
2( ) ¯ ( )

( )
( )

¯ ( )

( )
( )

( )

( )

( )

(see Appendix A.4 for more details). Equation (48) provides a

simple normalization recipe: (1) for a current profile given by

Equation (46), the modified current distribution, jE(u), should

be constructed according to Equation (48); (2) using jE(u) the

normalization integral,

= --
- -

-

N Q u
dj u

du
j u

dQ u

du
49E

E
1

0
0

0
0

1
0

0

1
2

1
2¯ ( )

( )
( )

¯ ( )
( )

should be calculated; and (3) the normalized current distribu-

tions are calculated then as =j u j u N˜ ( ) ( ) and

=j u j u NE E
˜ ( ) ( ) . The normalized current satisfies the identity:

- =-
- -

-

Q u
dj u

du
j u

dQ u

du
1. 50E

E
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0
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0
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1
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¯ ( )
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Specifically, for “uniform” current when =j const:

= =

= -
-
-

j
N u

j
E N u

N u
E

dQ u
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1
,

1
. 51
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For a “parabolic” current profile, we get:

=
-

= -

=

- -

-
-

-
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u u

N u u
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( )
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Even though a uniform current results in an even simpler
solution, the discontinuous current profile near the filament
boundary results in large numerical errors in various physical
quantities. In order to eliminate this discontinuity, one can
consider the current distribution given by Equation (46) with
piecewise constant coefficients, cm, combining the features of
Equations (51) and (52) to “linearly” decrease the current
density over a narrow interval of u0− ε< u< u0+ ε, ε= 1.
Specifically, we define the boundaries, - +u u,0 0( ) of this interval

with the equation, k ek¢ =  ¢u 1 20 0( ) ). This leads to the

Figure 2. Left panel: amplitudes of poloidal (blue line) and axial (black line) magnetic field components for the current concentrated at the filament boundary. Middle
panel: normalized current distributions for uniform (black solid line), parabolic (blue line), and linear surface decrease current (black dashed line) for ε = 0.1. Right
panel: amplitudes of poloidal (blue line) and axial magnetic field (black line) components for uniform current (solid lines) and for linear surface decrease current

(dashed lines). For k¢ = 0.10 (a/R0 ≈ 0.2) the argument, k¢ = - +R R , ranges from k¢ = 0 (at the toroidal magnetic axis) to k¢ = 0.1 at the filament boundary; while
k¢ > 0.1 values correspond to the loop exterior.
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following expressions:
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In the case of a thin filament, these expressions give

p»j a1 2˜ if 0� R−� (1− ε)a, and

e pe» + - -j a R a1 2 3˜ ( ) ( ) if (1− ε)a� R−� (1+ ε)a.

The normalized current density distributions given by

Equations (51)–(53) are shown in Figure 2 (middle panel).
With the help of Equation (A12), one can evaluate the

integral in Equation (25) for n= 0 (similarly to Equation (48)),

to find the reduced flux function and then the field amplitudes:

y =

+
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- >
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¯ ( )

This result is easy to verify and interpret: (1) by applying the

differential operator on the left-hand side (LHS) of

Equation (16) to Equation (54) and taking into account

Equation (47), one can see that Equation (16) is satisfied in

smooth regions; (2) the reduced flux function Equation (54) is

continuous; and (3) the jump in the derivative of the second

term at u= u0 is canceled by the controlled jump in the

derivative of the Green function (see the discussion above), as

it follows from Equations (50) and (A12). In the special case of

constant form factor given by Equation (51), we get:

º - º
-
- -⎛

⎝⎜
⎞
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j u
dQ u

du
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du
, 0. 55E
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2˜ ( )

¯ ( ) ˜ ( )
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The amplitudes, k¢B up ( ( ))( ) and k¢B uz ( ( ))( ) , of the poloidal

(solid curve) and axial (dashed curve) fields are shown in

Figure 2 with black color. Outside the filament at

k k¢ > ¢u u0( ) ( ), the field does not depend on the current

distribution; therefore, the black and blue curves overlap in this

region. For the form-factor Equation (53), the integration span

in Equations (19) and (25) splits for domains separated by +u0 ,

resulting in different expressions for the fields in these

domains:
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where D = - - + ++ +j u j u j u0 0E E E0 0 0[ ˜ ( )] ˜ ( ) ˜ ( ) is the differ-

ence between the left and right limits of discontinuous function,

jE
˜ at  +u u0 (in contrast with the continuous current density

function, j̃ ).
Note that once Equations (34) and (39) are applied in the

CME generator, their vector form allows us to calculate the
field in any coordinate system without rotating the vector
quantities to the system used in derivations presented in this
paper. Indeed, these equations, together with Equation (35),
express the magnetic field vector as a linear combination of
vectors ez and R; therefore, the expression is valid in any
coordinate system as long as the vectors ez and R are given in
the same coordinate system.
Specifically, in an arbitrary Cartesian coordinate system it is

convenient to characterize the position of the current filament
by the coordinates of its center, Rc, and the unit vector, nc,
directed along its axis of symmetry. Then, the field vector at a
point, ¢R , is given by Equations (34), (35), and (39) with the
following substitution:

= ¢ - =R R R e n, . 57c z c ( )

To calculate scalar functions, we also need to express:

= ¢ - = ¢ -

= - =  + ¥

R R n R Rz R

r R z R r R z

, ,

, . 58

c c c
2 2

2 2 2 2

( ) · ( )

( ) ( )

To calculate the toroidal special function in Equations (39)
and (54) for field amplitudes, one can calculate their arguments
κ and k¢, using Equations (9) and (58). While the formulae for
the magnetic field are repeatedly applied at each point where
the magnetic field is needed, the filament parameters,

= -¥R R a0
2 2 , k¢ = +¥a R R0 0( ), k k= - ¢10

2
0

2( ) , and

the coefficients j u q u,E 0 1 0
˜ ( ) ( ) (Equation (55)) determining the

field amplitudes are calculated only once in terms of the major
and minor radii, R0, a.

5. Equilibrium Conditions for the Zeroth Harmonic

5.1. Full Grad–Shafranov Equation in Cylindrical Coordinates

The MHD equilibrium theory of toroidal plasma configura-
tions introduces the key concept of magnetic surfaces, where
the flux function, Ψ, is constant. To apply this concept, let us
start by expressing Equations (1) and (4) in cylindrical
coordinates (u≡ z, v≡ r, Hz=Hr≡ 1):

=
 Y

´  Y =
¶Y
¶

+
¶Y
¶

jB e e e
r z r

, , 59z r2
2

2 ( )
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m = -
¶ Y
¶

-
¶
¶

¶Y
¶

j ⎛
⎝

⎞
⎠J

r z r r r

1 1
. 600

2

2
( )

Since the∇2Ψ vector is orthogonal to the surface of constant Ψ,

the poloidal magnetic field, ∝∇2Ψ× ej, is parallel to the

magnetic surface everywhere, while “j-toroidal-cross-B-poloi-

dal” force,

´ =  Yj j
j

e BJ
J

r
, 612 2 ( )

is perpendicular to the magnetic surface (i.e., aligned with

∇2Ψ). This force tends to contract the current filament over the

minor radius (i.e., pinch-effect). This contraction may be

prevented by the excessive plasma gas-kinetic pressure, P,

which tends to expand the filament. To balance the force,

described by Equation (61) that is aligned with ∇2Ψ, the

plasma pressure gradient needs to be aligned with ∇2Ψ too.

The alignment condition, ∇2Ψ×∇2P= 0 can be identically

rewritten in terms of the Jacobian,

Y º -¶Y
¶
¶
¶

¶Y
¶
¶
¶

D P D z r, ,
z

P

r r

P

z
( ) ( ) . This Jacobian vanishes

identically if, and only if, P is only a function of Ψ, i.e., it is

constant at each magnetic surface, so that:

- = -
Y
Y
 YP

dP

d
. 622 2

( )
( )

In a low-β plasma, the pinch-effect is mainly prevented by the

counteraction of the toroidal magnetic field, Bj, for which the

poloidal current density, J2, can be expressed in terms of a

current function, rBj:

m =


´j
jJ e

rB

r
. 630 2

2( )
( )

Again, the current function is required to be constant on

magnetic surfaces, and therefore it can be expressed as a

function of Ψ only. In this case, the poloidal electric current,

=  Y ´
m jY

j
J e

r

d rB

d2
1

2
0

( )
is everywhere parallel to the magnetic

surface, while the “j-poloidal-cross-B-toroidal” force,

m
´ = -

Y
 Yj j

j j
J eB

B

r

d rB

d
, 642

0

2

( )
( )

is perpendicular to the magnetic surface (i.e., aligned with

∇2Ψ). Summing up, Equations (61), (62), and (64) reduce the

LHS of the vector equilibrium condition,

JjejB2+ J2× Bjej−∇P= 0, to a linear combination of

aligned vectors:

m
-

Y
-

Y
 Y =j j j⎡

⎣⎢
⎤
⎦⎥

J

r

rB

r

d rB

d

dP

d
0. 65

0
2 2

( ) ( )
( )

For Equation (65) to hold everywhere, the expression in the

square bracket must vanish. This condition yields the scalar GS

equation:

m
=

Y
+

Y
j j jJ

r

rB

r

d rB

d

dP

d
. 66

0
2

( ) ( )
( )

The LHS of this equation is often expressed using the RHS of

Equation (60), but in the present derivation, this step is not

needed.

In equilibrium, the toroidal plasma filament boundary must
coincide with a magnetic surface; hence, the total flux function,
Ψ, should reach a constant value, Ψ(u0), at the boundary. Since
an arbitrary constant may be added to the total flux function
(not to the reduced one!), by not changing the poloidal
magnetic field as given by Equation (59), one can claim with
no loss in generality that the total flux function must vanish at
the filament boundary to satisfy the equilibrium condition and
so does the reduced flux function. The latter can only be
achieved if the external magnetic field as in Equations (28) and
(29) is applied with Fourier harmonics exactly prescribed by
the current amplitudes. We arrive at two important points: (1)
the filament cannot be in equilibrium by itself; therefore, there
must be an external field (this is also a consequence from strict
Shafranov’s theorem described in Section 5.2); and (2) the
exact Grad–Shafranov equilibrium requires a nontrivial
distribution of the external field to be exactly prescribed,
which for our applications is unrealistic and impractical.

5.2. Shafranov’s Virial Theorem and Its Consequences for a
Uniform Strapping Field

In Sections 3 and 4 we considered only the magnetic field,
B2, induced by the current flowing inside the filament.
However, when discussing the MHD equilibrium of a circular
current filament, one must also consider the Shafranov (1966)
virial theorem (see also Faddeev et al. 2002) that states that the
magnetic field of the current and the internal plasma pressure of
the filament are not sufficient to maintain MHD equilibrium.
As pointed out by Landau & Lifshitz (1984), the equilibrium
condition, J× B−∇P= 0, can be reformulated in terms of the
Maxwell stress tensor, Π, with the help of Ampère’s law,
∇× B= μ0J:

m m
P P- = = + -

Ä
⎜ ⎟⎛
⎝

⎞
⎠


B B
P

B
0,

2
, 67

2

0 0

· ( )

 being the unit tensor. By taking the scalar product of

Equation (67) with R and integrating over the entire volume

(the pressure and current density are zero outside the filament,

but the magnetic field is not) by parts using the identity,

P P P-  = - R RTrT· ( · ) ( ) · ( · ), we obtain that the

integral of the LHS of Equation (67) is positive definite:

ò

ò ò m

P

P

-  = >

= = +⎜ ⎟⎛
⎝

⎞
⎠

R dV E

E Tr dV P
B

dV

0,

3
2

. 68

T

2

0

· ( · )

( ) ( )

Since the RHS of Equation (67) is zero, it thus cannot be equal

to the LHS, proving that any closed loop configuration is out of

equilibrium in the absence of an external magnetic field.
Shafranov’s theorem (Equation (68)) in effect states that the

hoop force results from the interaction between the loop current
and its self-generated magnetic field. Even though the integral
of this force density (f(hoop)=−∇ ·Π) vanishes over the entire
volume (∫f(hoop)dV=−∫∇ ·ΠdV= 0), it has a positive average
projection to the radial direction (∫R · f(hoop)dV= E> 0). It is
known from experiments (see Yee & Bellan 2000) that the
hoop force tends to expand the current loop outward, and in the
absence of external fields, this expansion is approximately self-
similar. By approximating the velocity of this self-similar

expansion as =
¥

¥v
R

R

dR

dt
, we see that Equation (68) confirms
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the development of an expanding flow, since the growth rate of
the kinetic energy, dE(k)/dt is positive:

ò= = >
¥

¥
v f

dE

dt
dV

E

R

dR

dt
0. 69

k
hoop· ( )

( )
( )

A more traditional derivation of the hoop force can be
carried out using the energy principle, assuming that the
pressure adiabatically scales with volume as P∝ V− γ, and
considering a particular choice of the polytropic index, γ= 4/
3. Consider a conformal expansion where each point, R, maps
to d +¥ ¥ RR R 1( ) . In this case, the infinitesimal virtual
displacement is equal to δR= (δR∞/R∞)R. For a frozen-in
magnetic field, the local magnetic field scales as
dµ +¥ ¥

-R R 2( ) , while the pressure adiabatically scales as

d dµ + µ +¥ ¥
-

¥ ¥
-R R R R3 4 3 4[( ) ] ( ) , similarly to the magn-

etic pressure that scales as dµ +¥ ¥
-B R R2 4( ) (this is why

γ= 4/3 was chosen). According to general principles, the work
done by local forces during the virtual displacement,
∫ f(hoop) · δRdV, equals the negative of the variation in the

energy integral, d d- = - ¥
¥

E R
dE

dR
:
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1
,

1 2
3

2
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hoop

2

0

2

0

·

( )

( )

where = -
¥ ¥

dE

dR

E

R
, because the total energy scales as

dµ +¥ ¥
-R R 1( ) . Even though the energy principle approach

does not go beyond the already-derived Equation (68), it allows

us to evaluate the energy of the motion driven by the hoop

force. Combining Equations (69) and (70), we find that:

= - = -¥

¥

dE

dt

dR

dt

dE

dR

dE

dt
; 71

k

( )
( )

hence, + =d E E dt 0k( )( ) and E(k)
(t→∞ )= E(t= 0).

For a thin circular current filament, one can approximate
|R|≈ R∞ in the integrand in Equation (70), providing an
estimate for the hoop force per unit toroidal angle:

j p
»

¥

dF

d

E

R

1

2
. 72

hoop

( )
( )

Equation (72) follows from Equation (68) and is always valid;

however, for γ≠ 4/3, E on the RHS is not the energy. This

approximation connects our approach to the formalism used to

describe the hoop force in the literature, (see Equation (5) in

Titov & Démoulin (1999) and Equation (2) in Kliem &

Török 2006). The main distinction between earlier work and

our approach is that our model allows for finite β values (see

details in Section 5.5 below).
In application to a CME generator, a current filament can be

superposed on top of the model of an active region, so that a
“strapping magnetic field” of the active region maintains the
equilibrium if it matches the filament geometry and parameters.
In the case when the strapping field at the loop location, B(s), is
uniform, a slight reformulation of the Shafranov theorem
provides an estimate for the strapping field in terms of the
filament parameters (or vice versa). Indeed, the integration of
the modified equilibrium equation,

P- + ´ =J B R 0s[ · ] ·( ) , gives:

+ =BE 2 0. 732
s · ( )( )

where

ò= ´ R JdV
1

2
74( )

is the magnetic moment that has already been introduced earlier

(see Equation (40)). Equation (73) unambiguously determines

the intensity of the uniform strapping field in terms of two

integral parameters of the configuration. The direction of the

strapping field must be aligned with the magnetic moment;

otherwise, a torque, ´ ¹ B 02
s( ) would act on the loop (see

Jackson 1999) breaking the equilibrium. For axisymmetric

current configurations, the magnetic moment is parallel to the

axis of symmetry,

ò= = j  e rJ dV,
1

2
. 75z ( )

It follows that the strapping field, B(s)ez, must also be parallel to

the axis of symmetry. For an axisymmetric configuration, the

square of the magnetic field can be decomposed to contribu-

tions from poloidal and toroidal fields,

= +  ´j j jeB B A2 2 2[ ( ] , and thus reduce Equation (73) to

the following form:

ò m
+ + + =j j j⎛

⎝⎜
⎞
⎠⎟


J A B

P dV B
2 2

3 2 0, 76

2

0

s ( )( )

where the integrand is nonzero only inside the filament,

simplifying the integration.
Identifying a circular arc inside an active region at which the

magnetic field is uniform and orthogonal to the plane of the arc,
choosing the loop parameters depending on thus determined
strapping field and inserting this current loop along this arc is at
the heart of the Titov et al. (2014) CME generator. Our
approach allows us to generalize the Titov et al. (2014) model
and to extend it to finite β current loops. This will be achieved
by considering a detailed derivation of Equation (73) from the
local equilibrium condition specified for a particular class of
n= 0 harmonic field as discussed below in Sections 5.3
and 5.4.

5.3. Reduced Grad–Shafranov Equation in Toroidal
Coordinates

In general, to find the conditions under which a plasma in the
magnetic field of the n= 0 harmonic is in force equilibrium,
one needs to solve the Grad–Sharfranov equation in toroidal
coordinates. Some of these solutions are known (see, e.g.,
Zakharov & Shafranov 1986); however, they include infinite
series of harmonics and require highly complicated strapping
fields. While in application to laboratory plasmas, such
specially designed confining magnetic fields are not unusual,
nature does not implement such special analytic solutions.
Here, we use a simpler approach and reduce the GS equation

in toroidal coordinates by assuming that, rather than finding
magnetic surfaces where the true flux function, Ψ, is constant,
their role in the formalism can be partly substituted by
considering “constant ψ-surfaces,” where the reduced flux
function, ψ(u, v), is constant. In the particular case of the n= 0
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harmonic field, ψ(u, v) is a function of u only; hence, these
surfaces are toroidal coordinate surfaces of constant u.

Note that constant ψ-surfaces are not magnetic surfaces,
since the true flux function, m yY = ¥R r0 , (see Equation (3))
is not constant at constant ψ, and ∇2Ψ is not orthogonal to
constant ψ-surfaces, because of the explicit dependence of Ψ on
r. In addition to the magnetic field generated by the filament
current and characterized by ψ function, the effect of the
strapping field, =B eB z2

s s( ) ( ) , should be explicitly added to the
net force balance, J2× (B2+ B(s)ez)−∇P= 0. Now, we can
use Equation (12) for the magnetic field and Equation (4) for
the toroidal current density to describe the pinch-effect force in
Equation (61):

m y
m y

´ + =

´  + +

j j
¥

¥
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⎛
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e B e

e

J B
j u v R

r

r
r

R
B

,

2
. 77

z

r

s
4

0 2
0 s

3
2

1
2

( )
( )

( )

( )

( )

The dominant contribution to the force in Equation (77) is

directed along ∇2ψ, hence, orthogonal to the constant ψ-

surface. Following the basic idea of the GS equation, we

parameterize the toroidal field, Bj, and gas-kinetic pressure, P,

in terms of the representative functions of ψ,

y=j ¥B b R r2 2 3( )( ) and y= ¥P p R r 3( )( ) . The total force

produced by Bj and P is given by the sum of Equations (62)

and (64):

m

y
y y y

 ´ ´
-  =

´ -  + +

j j j j ¥

⎡
⎣⎢

⎤
⎦⎥

e e

e

rB B

r
P

R

r

r
dp

d
p p2 . 78r

2

0

2

3

4

tot

2
tot

[ ( ) ]

( ( ) ( )) ( )

We note that the gradient of the total pressure,

p
tot
= p+ b

2/(2μ0) is orthogonal to constant ψ-surfaces in

Equation (78). Similarly to Equation (65), the total force, given

by the sum of Equations (77) and (78) vanishes in equilibrium

if the following equation holds:

m
y

y

m

- 

+ + + + =j j j
j

¥
¥⎜ ⎟⎛

⎝
⎞
⎠

⎡
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⎤
⎦⎥
e

R

r
j R

dp

d
r

J A B
P rJ B

r2 2
3 0. 79

r

4 0
2

tot

2

2

0

s ( )( )

In Equation (79) the dominant force comes from the pinch-

effect and its opposing pressure gradient. This term is

proportional to ∇2ψ (i.e., it is normal to y = const surfaces).

This dominant force vanishes identically if the reduced version

of the GS equation (Equation (66)) holds:

m y
= ¥j

R dp

d
. 80

2

0

tot

( )

The reduced GS equation ensures equilibrium against the
pinch-effect, similarly to the full equation (see Equation (66)).
However, because of the combined effect of the strapping field
and of the r-dependent factors in the definitions of the ψ-
function and the representative functions, p(ψ), b(ψ), there is
also a force directed along er in Equation (79). The whole point
of the proposed approach is that while balancing the pinch-

effect from the analytically known current and magnetic field
can be exactly solved with the help of the reduced GS equation
as demonstrated in the present subsection, the condition for the
radially directed force in Equation (79) to vanish,

m
+ + + =j j j

j
⎡
⎣⎢

⎤
⎦⎥
eJ A B

P rJ B
r2 2

3 0, 81
r

2

0

s ( )( )

cannot be satisfied locally with any physically admissible

(divergence-free and curl-free) strapping field, including the

uniform strapping field considered here. In CME generation,

the situation is even more complicated, because the local

values of realistic strapping fields are not known. However, a

global balance for an integral radial force (which is in effect the

integrand of Equation (76)) can be achieved if the strapping

field satisfies Equation (76), as we will discuss in Section 5.4

below.
Next, we consider the solution of the reduced GS equation

for the current distribution described in Section 4 that depends
only on u, j(u, v)= j0(u). Equation (80) can be expressed in
terms of the normalized quantities, y u˜ ( ), j u˜ ( ), and the
characteristic field, Bc, (see Equations (22) and (32)) and then
integrated over u:

òm
y

=p u
B

j u
d

du
du8

2
. 82c

u

u
tot

2

0

1
1

1
0

( ) ˜ ( )
˜

( )

Here, we note that in the absence of an external toroidal field
and pressure, the quantity, ptot(u0), vanishes. An important
feature of our approach is that the plasma parameter β,

b
m

= =
p u

b u 2
const, 83

2
0

( )

( ) ( )
( )

is assumed to be constant, but finite, so that the toroidal field

and gas-kinetic pressure can be expressed in terms of the total

pressure:

m b
b

b
=

+
=

+
b p u

p u
p u

2 1
,

1
. 84

2

0

tot tot( )
( )

( )
( )

Using Equation (82), this can be expressed in terms of the

dimensionless toroidal field amplitude, B(tor):

ò

m

y
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=

p u
B u B

B u j u
d

du
du

2
,
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u

u

tot
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1
1
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( )
[ ( ) ]

( ) ˜ ( )
˜

( )

( )

( )

For the current and reduced flux functions given by

Equations (46) and (54), the integral in Equation (85) can be

carried out by parts using Equation (A18):

y

y
y

= -

+ -

+

B u j u u j u

E

d u

d u

d

du
u j u

j u

E
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For a uniform current form factor, as in Equation (51), using

Equations (44) and (54), one obtains the following:

> = -

= -

-
-

-
-

-
-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

B u u ℓ u Q u Q u
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8 , 87E
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0
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1
2

( ) ( )[ ¯ ( ) ¯ ( )]

( )
˜ ( )

¯ ( )
( ) ˜ ( ) ( )

( ) ( )

( ) ( )

where ℓ(tor) is another induction coefficient, which is discussed

below (see Section 5.5) to characterize the energy of toroidal

magnetic field, expressed in terms of the current density

=j u j uE0
3

4 0
˜ ( ) ˜ ( ) and j uE 0

˜ ( ) given by Equation (55). The

toroidal field amplitude for the uniform current form factor

given by Equation (87) is shown in Figure 3 with the solid line.

For the current form factor with linear surface decrease given

by Equation (53), the toroidal field near the filament boundary

can be calculated by applying the general formula in

Equation (86) to the reduced flux function given by

Equation (56). Thus, calculated toroidal field amplitude is

shown in Figure 3 with the dashed line. A comparison of the

curves in Figure 3 shows how the singularity in the toroidal

field near the boundary (infinite spatial derivative of the solid

line as k k¢  ¢
0) is eliminated by using a linearly decreasing

current near the surface (dashed line).
Equation (85) allows us to express the total magnetic field

(including the toroidal component) that satisfies the reduced GS
equation:

b k
k

=

´ 
+

-
¢

¢j

¥

⎡
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⎡
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3
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3
2
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( ) ( )

( ) ( )( )
( ) ( )

where ej= ez×R/r. Since the toroidal field amplitude,

B(tor)
(u), is positive as is the toroidal current density, j0(u),

the choice of plus or minus sign in Equation (88) corresponds

to the positive or negative helicity, sign(Bj/Jj). The magnetic

field calculated using Equation (39) for κ� κ0 and with

Equation (88) for κ� κ0 and with field amplitudes obtained

assuming uniform current form factor is shown in Figure 4

for k= ¢ =¥R 1, 0.10 .
This magnetic field produced by an azimuthal current (white

magnetic field lines) and magnetic field inside the toroidal
filament (red and blue color) satisfies the reduced GS equation.
However, the right (zoomed) panel demonstrates that the
equilibrium is not yet complete. As emphasized in Section 5.1,
under equilibrium conditions, the (yellow) boundary of the
filament, where the total pressure turns to zero (hence it is
constant), must coincide with a magnetic surface. Inspection of
Figure 4 shows that magnetic surfaces defined by closed
(poloidal) magnetic field lines (white lines) intersect the plasma
boundary (yellow circle) at multiple locations, indicating the
absence of true equilibrium.
For constant β, one can find the corresponding gas-kinetic

pressure inside the filament using Equation (85):

 b
b m

=
+

¥P u u
R

r

B u B

1 2
. 89

c
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3

3

tor 2

0

( )
[ ( ) ]
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Assuming constant electron and ion temperatures inside the

filament, Te and Ti, one can also derive the distribution of

plasma density that will form the ejecta:

r
b
b m

=
+

¥

+
u u
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B u B m

k1 2
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c i
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( )
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where mi and Zi are the average mass and charge state of ions,

and kB is the Boltzmann constant. An equation for the Alfvén-

wave speed in the j-direction,

m r b
= =j

j +
V

B k

m

2
, 91

T Z T

i
A,
2

2

0

B i i e ( )
( )

directly follows from Equation (90). This useful parameter is

constant as long as β, Ti, and Te are assumed to be constant.
The total ejected mass can be expressed in terms of the total

pressure integral over the filament volume:

ò
ò

r
b

= =
+

+

m

j

j⎛⎝ ⎞⎠M dV

P dV

V

2

1
, 92

B

2

A,
2

2

0

( )
( )

which is calculated and discussed in Section 5.5.

5.4. Balancing the Hoop Force by a Strapping Field

We demonstrated that the reduced GS equation
(Equation (80)) ensures the cancellation of the dominant
pinching force at each point inside the filament. However, in
the full force balance, there is an unbalanced radial force
described by Equation (81) that does not vanish locally. The
first three terms in Equation (81) describe the density of the
hoop force directed radially outward (compare them with the
integrand in Equation (76)). This force is fully determined by
the parameters of the plasma configuration. The last term in
Equation (81) describes the effect of the strapping field on the
toroidal current, which may oppose the hoop force if the
strapping field is negative (i.e., antiparallel to the magnetic
moment).
Since the hoop force density and the current density are

different functions of the coordinates, the local forces cannot be
balanced by a uniform strapping field. Alternatively, if we
express the strapping magnetic field from Equation (81), both

Figure 3. Amplitudes of the toroidal field component for uniform current (solid
line) and for linear surface decrease current (dashed line), for the same filament
and in the same coordinate as used in Figure 2.
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the divergence and the curl of this field would not vanish. This
situation can be rectified by ensuring that global equilibrium,
holds, i.e., requiring that the integrated radial force (given by
Equation (81)) vanishes over the plasma volume. This means
that the integrated hoop force is balanced by the overall effect
of the adjusted strapping field. This can be achieved by taking
the scalar product of Equation (81) and R and integrating the
resulting scalar equation over the entire plasma volume. This
way, we obtain Equation (76) as an integral radial force balance
equation, unambiguously determining the strapping field:

ò m
p+ + + =j j j

¥
⎛
⎝⎜

⎞
⎠⎟

J A B
P V R I B

2 2
3 d 2 0, 93

2

0

2 tot s ( )( )

where in Equation (76) we substituted Equation (40) for the

magnetic moment,. As we discussed in Section 5.2, in the

absence of a strapping field, B(s)
= 0, the radial hoop force

(parameterized by the volume integral of a function that is

positive definite everywhere) would disrupt the current filament

over the major radius. However, the Ampère force from the

strapping field, ´ =j j je e eJ B J Bz r
s s( ) ( )( ) ( ) , tends to contract

the filament in case B(s)
< 0, and it may balance the hoop force.

The condition for the force balance can be parameterized in

terms of the inductance, L0, since the volume integral

evaluating the hoop force in Equation (93) is very close to

the magnetic free energy (exactly coincides with that for γ= 4/
3—see Section 5.2 for more details):
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The strapping field is antiparallel to the Bc field, and its

magnitude can be derived from the inductance. Equation (94)

shows that in order to derive the strapping field that is needed

for obtaining full equilibrium solutions, one has calculate the

inductance for the given current density profile. This derivation

is discussed in Section 5.5.
In Figure 5 we consider the same configuration as in Figure 4

( k= ¢ =¥R 1, 0.10 ), but with a superposed uniform strapping
field given by Equation (94) (the inductance for n= 0 is
determined by Equation (108), discussed below). The left panel
shows a drastically changed topology compared to the no-
strapping-field configuration in Figure 4. The separator surface
separates the external region of the strapping field from the
region of the field generated by the filament current. In the right
panel, the coincidence of the filament boundary (yellow color)
with a magnetic surface (white line) demonstrates that in the
presence of a strapping field, this equilibrium condition is
satisfied, while in the configuration with no-strapping field (see
Figure 4), this condition is not met.
Alternatively, the equilibrium condition can be verified if the

near-equilibrium magnetic field (given by Equation (88)), gas-
kinetic pressure (Equation (89)), and density (Equation (90))
distributions are used as the initial condition for the Relaxation
MagnetoHydroDynamics (R-MHD) model. In this model, an
artificial friction force density, −ρU/τ, is added to the
momentum equation, which is oppositely directed than the
plasma velocity vector, U. The friction force relaxes the
residual plasma motions with a characteristic time of
t = const, thus damping the possible oscillations around the
equilibrium state.
The result of such a simulation is presented in Figure 6. The

initial condition corresponds to a current filament with major
and minor radii of R0= 0.202/0.99Re, a= 0.04/0.99Re, so

that R∞= 0.1Re and k¢ = 0.10 . The horizontal (z) and vertical
(r) coordinates are also measured in units of solar radii, Re.
The uniform strapping field is chosen to be B(s)

= 2.7 G, while
the current is Itot≈ 1.5× 1011 A, expressed in terms of the
strapping field using the equilibrium condition, Equation (94).
The other parameters are Te= Ti= 5× 105 K and β= 0.1. As
we recommend for any application, the uniform current form
factor is used with linear surface decrease in a narrow region

Figure 4. Left panel: solution of the reduced GS equation, in the meridional cross section (z, r plane), for k= ¢ = =¥R B1, 0.1, 1c0 and positive helicity. White
lines: field lines of the poloidal field (Bz, Br). Color: toroidal magnetic field, Bj, perpendicular to the image plane, outgoing field being positive, incoming one being
negative. The figure corresponds to positive helicity; otherwise, the blue and red circles would swap. Right panel: close-up image of the cross section of the plasma
filament.
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(ε= 0.1); however, the inductance characterizing equilibrium

strapping field is calculated for purely uniform current (ε= 0).
The meridional cross section of the initial field distribution is

shown in the left panel of Figure 6. The white circles show the

closed magnetic field lines of the poloidal field (=the

meridional cross sections of the magnetic surfaces), with the

color scale showing the levels of rBj [G · Re] (=constant levels

of the poloidal current function). While the exact Grad–

Shafranov equation requires the poloidal current function to be

constant at magnetic surfaces (see Section 5.1 for more detail),

in the initial plasma configuration there is a slightly visible

misalignment between the level contours of the current

function and the magnetic surfaces.
Using this initial condition, we integrate the axisymmetric

R-MHD equations with a relaxation time of τ= 1× 103 s, on a

grid of 1000× 500 cells covering the coordinate range of

−0.5Re� z� 0.5Re, 0� r� 0.5Re, to evolve the initial

distribution for t= 6× 103 s. A background plasma of

negligible pressure but finite density is added outside the

filament to limit the characteristic speeds of the MHD

perturbations and avoid too small time steps. The result of

the numerical simulation is presented in the right panel of

Figure 6. Perfect alignment of the current function levels with

the magnetic surfaces demonstrates that the plasma filament

reached equilibrium. The video file shows that the relaxation to

equilibrium proceeds via damping of small-amplitude internal

oscillations, with no collapse by the pinch-effect (prevented by

the counter-pressure of the toroidal field) and no disruption by

the hoop force (prevented by the strapping field).

5.5. Magnetic Energy and Inductance

A contribution to the integral in Equation (94) determining

the strapping field from the free energy of the poloidal

magnetic field, ò p= j jE J A r H H dv du2 v u
p 1

2
( )( ) , can be

derived from Equations (5), (14), and (15):
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where the external field inductance,
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(see Equation (26)) quantifies the energy of the magnetic field

produced by surface currents concentrated on the filament

boundary. In the particular case of n= 0 harmonic, the external

inductance,

m
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(see Equations (44) and (96)) is shown in Figure 7 (solid black

curve). For a thin filament (k¢  00 ), the toroidal functions in

Equation (97) can be approximated with the help of

Equations (A6) and (A7):
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(see the dashed black curve in Figure 7). Comparison of the

green and magenta curves in Figure 7 shows that the accuracy

Figure 5. Left panel: same as in Figure 4, with superposed uniform strapping field, B(s)
= −L0Bc/(2πμ0R∞), where the inductance for n = 0 harmonics is given by

Equation (108) below. White lines: field lines of the poloidal field (Bz, Br). Color: toroidal magnetic field, Bj, perpendicular to the image plane, the outgoing field
being positive, and the incoming one being negative. The figure corresponds to positive helicity; otherwise, the blue and red circles would swap. Right panel: close-up
image of the cross section of the plasma filament. Coincidence of the filament boundary (yellow color) with the magnetic surface (white line) demonstrates that the
equilibrium condition is satisfied.

13

The Astrophysical Journal, 955:126 (22pp), 2023 October 1 Sokolov & Gombosi



of this approximation for a thin filaments is good enough to

make it attractive for CME modeling.
Another contribution to the poloidal field energy is

characterized by the positive definite self-induction coefficient,
which we calculate only for the n= 0 harmonic:

òm
p

y
m

= -
¥
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¥
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j u u

u
du

L

R
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. 99
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00
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( ) ( )

For the manufactured current profile given by Equation (46)
and the reduced flux function from Equation (54), the

integration in Equation (99) can be done using
Equation (A18):
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In the case of a uniform form factor (see Equation (55)), the
limiting value of the self-inductance coefficient for thin
filaments (i.e., u0→∞ and k¢  00 ) can be obtained if we
de-normalize the currents the following way:

m
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and then apply L’Hôpital’s rule to the second fraction. By

differentiating both numerator and denominator over du0 at

constant j̃ and jE
˜ , and by using Equation (19) to derive

dI(u0)/du0 and Equation (47) to express

= --
-

dQ u du I u j uE
1

0 0 0 01
2

¯ ( ) ( ) ( ), one finds:
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since according to Equation (A7) p ¥ =-
-

Q u 2
1

01
2

¯ ( ) .

The rest of the integral, E0, determining the strapping field in
Equation (94) for constant plasma β, can be expressed in terms

Figure 6. Close-up image of the meridional cross section of the plasma filament. The z, r coordinates are measured in units of Re. White curves: closed field lines of
the poloidal field (Bz, Br) (=meridional cross sections of the magnetic surfaces). Color: level contours of the poloidal current function, rBj, in G × Re. Left panel:
initial, close to equilibrium field distribution given by Equation (88). Slight misalignment between the levels of the current function and magnetic surfaces demonstrate
imperfection of estimated equilibrium. Right panel: same quantities are visualized after relaxation to “true” equilibrium after 6000 s simulation with the R-MHD
equations. Perfect alignment of the constant current surfaces with magnetic surfaces demonstrate that the configuration reached the equilibrium state, which is
reasonably close to the estimated one. An animation of this figure is available. The animation starts at 0 s and end 6000 s later. The real-time duration of the animation
is 6 s.

(An animation of this figure is available.)

Figure 7. External field inductance, L0
ext( ) (Equation (97), black line), self-

inductance, L0
int( ) (Equation (101), blue line), and toroidal field inductance,

L0
tor( ) (Equation (106), brown line), for the n = 0 harmonic. The normalized

inductance coefficients are related to μ0R∞ and are presented as functions of

the / /k k= ¢ + ¢a R 2 10 0 0

2

( ) ratio. The functions and their arguments are all

calculated in terms of the value of k¢0 at the toroidal surface. For comparison,
approximate solutions given by Equations (98), (102), and (107) are shown by
the dashed lines.
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of the integral of total pressure:
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The integrand in Equation (103), describing the magnetic free

energy density due to the toroidal field, can be calculated by

multiplying the representative function, ptot(u) for the total

pressure (see Equation (85)) by ¥R r 3( ) while the volume

element equals dV=HuHv2πrdu dv. Integrating over du dv

using Equations (32) and (85) results in the following:
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In the special case of a uniform current form factor, this
expression can be rewritten using Equation (87):
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or, by simplifying Equation (87) using Equations (44), (55),

and (A12):
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In the approximation of thin filament, we have
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according to Equations (A5) and (A6) and analogous

derivations for Equation (101) above. Comparison of the exact

(solid lines) and approximate (dashed lines) expressions for the

self-inductance and toroidal field inductance in Figure 7 shows

that the differences between the exact solutions and the

approximate ones are hardly visible; therefore, it is fully

adequate to use the approximate solutions. With these

simplifications, the inductance of the n= 0 harmonic field,

determining the magnitude of hoop force, strapping field, and,

for a specific adiabatic index, also a magnetic free energy can

be obtained with the help of Equations (97) (102), (103), and

(107):
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is a frequently used constant, turning to 3/4 as β→ 0. The

expression for the hoop force, Equation (72) with the energy

integral given by Equation (108) can be compared with that

found in literature (see Equation (5) in Titov & Démoulin

(1999) and Equation (2) in Kliem & Török 2006). The

(inessential) difference of our approach is in the use of the

exact Equation (44) for the external field inductance instead of

the approximate Equation (98) and in the term allowing for, if

desired, the contribution from the gas-kinetic pressure.

However, the difference is small, which justifies our model.

5.6. Improved Equilibrium Theory for a Thin Filament

For a thin filament, the equilibrium condition can be

simplified, allowing us to improve the accuracy of the solution

and get it much closer to a real equilibrium. To achieve this, we

reevaluate the condition under which the sum of Equations (77)

and (78) vanishes,
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where: (1) similar to the dimensionless representative functions

for current and flux, yj ,˜ ˜ , we introduced analogous functions

for the pressures and magnetic field:
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(2) we divided the sum of Equations ((77) and (78)) by a

common factor, m ¥I R r ;0
tot 2 4( ) (3) we used Equations (2) and

(5) to express the ∇2 operator; and (4) we used Equation (32)

to relate the total current to Bc, μ0I
tot
= 2BcR∞. However, we

do not use the assumption of ptot= ptot(ψ) any longer. To the

contrary, while ψ is a function of u, ptot is now assumed to be a

function of both u and v.
For a thin current filament, i.e., for usinh 1, the term that

is proportional to usinh is dominant in Equation (110) and the

following simplifications are possible. First, by keeping only

the n= 0 term in the expansion given by Equation (A15), the

geometric factor multiplying the strapping field becomes
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( ) ¯ ( ) ¯ ( ) . Second, the strapping

field itself is approximated using Equations (94), (44), and (97):
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since for a thin filament the inductance of the external field

dominates (see Figure 7). Third, we use Equation (41) to

approximate the radial unit vector, » - -e e ev vsin cosr v u.

With these approximations, one can rewrite Equation (110)
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keeping only the leading terms in the factors multiplying ev, eu:
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In the zeroth-order approximation for small
v

u
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sinh
, one gets

¶ ¶ =p v 0tot˜ and the condition for the coefficient of eu to

vanish results in the reduced GS equation (Equation (80)),

giving:
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where the superscript “(0)” denotes the zeroth-order approx-

imation. To get the first-order approximation, Equations (114)

are used to evaluate the expression in braces in Equation (113).

Particularly, for uniform current form,

y y= -p j utot 0
0( ˜ ) ˜ [ ˜ ˜ ( )]( ) ( ) , so that the first term inside the

braces vanishes. In the first-order approximation, corrections

that areµ v

u

cos

sinh
should be added to the magnetic and gas-kinetic

pressures, to get the factor multiplying ev vanish:
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where, according to Equations (5) and (7),
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The corrections given by Equations (115) and (116) have two

remarkable properties. First, the corrections do not modify the

integral E0 in Equation (94), hence, the estimate for the

strapping field. Indeed, E0 reduces to integrals of b2(u, v) and p

(u, v) over dudv; therefore, the contributions to the integrand,

which are proportional to vcos , vanish once integrated over dv.
Now, we use Equations (115) and (116) as well as

Equations (85), (88), and (89) to derive the first-order
approximation for the dimensional quantities:
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for a uniform current form factor. Within the adopted accuracy,
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2( ) ( ) . Finally, we arrive at the

following scaling for the current function (see Section 5.1 for

more detail): y y» ´ -jrB r uconst1
0

1
4

1
2[ ˜ ˜ ( )]( ) as well as for

pressure: y y» ´ -P r uconst1
0

1
2 [ ˜ ˜ ( )]( ) . The second remark-

able property of the first-order approximation is that these

quantities only depend on the function, y y-r u0
1
2 [ ˜ ˜ ( )], which

can be expressed in terms of the total flux function,

Ψtot
= Ψ+ B(s)r2/2, including the contribution from the uni-

form strapping field, as we demonstrate next.

To express the function, y y-r u u0
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2 [ ˜ ( ) ˜ ( )], that vanishes as

u→ u0, we redefine the total flux function by adding a

constant, equal to ¥B R
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s 2( ) , so that as u→ u0, the total flux

function vanishes, Ψtot
→ 0. Using Equations (32), (112), and

(A16), the redefined flux function can be transformed as
follows:
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Thus, the pressure and current functions both depend on the

function, y y-r u u0
1
2 [ ˜ ( ) ˜ ( )], which differs only by a constant

factor from the flux function, Ψtot. In order to eliminate the
extra contributions to the force in Equation (110), which are
aligned with eu and are proportional to vcos , one needs to

replace the = »j j u const
0

0
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approximation of the current

density with:
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This becomes Equation (119) for |r− R∞|= R∞. The extra

current harmonics, =j v C I vcos cos
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Equation (119) result in: (1) the generation of the first

harmonics of the reduced flux function, y µ u v Ccos ;1 3
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(2) the modification of the external field given by

16

The Astrophysical Journal, 955:126 (22pp), 2023 October 1 Sokolov & Gombosi



Equation (27); and (3) an extra requirement on the magnitude

of the strapping field, which, in addition to the zeroth-order

approximation of ∝L(ext)t0 given by Equation (112), also gives

a contribution of µC3
4
, in accordance with Equations (94) and

(108). However, to satisfy the exact equilibrium condition, the

strapping field must satisfy a more restrictive condition for not

only its “average” magnitude, but also for the particular

distribution over the current filament cross section (see details

in Zakharov & Shafranov 1986, including the shapes of

strapping field for different filament parameters), to separately

balance the force on three current harmonics (for n= 0, ±1).
Based on these considerations, we arrive at an important

conclusion. Although solving the reduced GS equation is
sufficient to finding a configuration sufficiently close to
equilibrium, this approach may look misaligned within the
general framework of the full GS, since the current function
and pressure are not directly expressed via the flux function.
However, this contradiction is resolved with the improved
approximation described here, since within the accuracy of the
approximation, the functional dependencies become

» ´ YjrB const1 tot( ) and » ´ YP const1 tot( ) , in compliance
with the full GS equation. Despite formally being more
accurate and consistent, the improved equilibrium solution is
more laborious and difficult to compute, and, which is even
more problematic, poses more severe restriction on the shape of
the strapping field. Specifically, three harmonic amplitudes,
y y- ,1

ext
0
ext( ) ( ), and y1

ext( ) for the external field in Equations (28)
and (29) should be prescribed. In a realistic magnetic field,
which hardly satisfies these requirements, the “improved”
solution can be even farther from equilibrium than the simple
and easy-to-compute single-harmonic solution for n= 0.
Solving the R-MHD equations with the simple n= 0 harmonic
solution as the initial condition seems to be a more practical,
and therefore preferred approach. This way, both the magnetic
configuration and its external field automatically adjust to the
realistic strapping field.

5.7. CME Generator Based on Finite β Zeroth Harmonic
Solution

In actual numerical simulations of CMEs, an important
distinction from idealized configurations is that only a part of
the toroidal filament rises above the solar surface, with the
center of configuration located at a depth, d, below the surface.
From simple geometric considerations, one can determine the
angular size of this circular arc above the solar surface:
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where Re is the solar radius. For small values of d, the

configuration gets close to an idealized situation when the

highly conducting solar surface cuts the circular ring of the

filament to two half circles. In this case, the “hidden” part of the

filament (that is under the solar surface) can be considered as an

“image” current below the surface. For such idealized

situations, one gets Δα≈ π. As long as in such a model the

CME is driven by the hoop force, the work done by this force

in the course of expansion (according to Equation (71)) can be

expressed via the change in the total magnetic free energy,

which, for the described circular arc, can be obtained from

Equation (108) as follows:
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The mass of the ejecta is obtained from Equations (92),
(103), and (107):
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where we assumed a low β plasma, so that 1+ β≈ 1, and the

Alfvén speed inside the filament, VA,j, has been defined in

Equation (91). Assuming that in the CME the available free

energy is fully converted to the kinetic energy of ejecta,

=E M VCME
1

2 CME CME
2 , i.e., by neglecting the interaction of the

strapping field with the starting to expand flux rope, we can

estimate the asymptotic CME speed, which is independent of

the current, Itot, and the angular extent of the erupting arc, Δα:
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It can be seen that the normalized external inductance,
m ¥L R0

ext
0( )( ) , controls the physically important speed ratio,

jV VACME . According to Equation (95), this inductance is a

function of u0, but it also can be parameterized with k¢0 or with
the a/R0 ratio (see Figure 7). For a thin filament, this
coefficient is about 1.2–2.5, indicating that the CME speed
can exceed the Alfvén speed in the initial filament configura-
tion by a factor of 2 (see Equation (125)). Another potentially
important contribution to the energy budget is due to gravity.
With an account of negative potential energy, the energy

conservation law, 


- =E M M V

GM

RCME CME
1

2 CME CME
2 , gives:

m
= + -j

¥
⎜ ⎟⎛
⎝

⎞
⎠

V
L

R
c V V2 , 126GCME

2 0
ext

0

A,
2 2

3
4

( )
( )

where G is a gravitation constant, Me is a solar mass, and




= »V

GM

R

2
615 km s 127G [ ] ( )

is an escape velocity.
The fact that our model can produce super-Alfvénic CMEs

raises several interrelated questions, such as what is the
mechanism of energy conversion from magnetic free energy to
kinetic energy of the ejecta? How fast is the energy conversion?
Under these circumstances, an essential element of the CME

initiation scenario is magnetic reconnection. In addition to fast
removal of the field tying the current filament to the active
region and subsequent acceleration of the CME to super-
Alfvénic speeds, the reconnection can also explain the X-ray
flare accompanying the CME (see, e.g., Forbes 2000), as well
as the accelerated particle release (Masson et al. 2013).
This new scenario is demonstrated in Figure 8. Previously

(see Section 5.3), we considered a uniform horizontal strapping
field, which at the center of the current loop was oppositely
oriented to the magnetic field of the current filament, Bcnc.
However, the magnitude of this strapping field was smaller
than Bc, and therefore, the superposed field, + nB Bc c

s( )( ) , did
not change direction (see Figure 5 and compare it to the case of
the no-strapping field, depicted in Figure 4). In contrast with
the uniform field, the new scenario involves an altitude-
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dependent overarching strapping field. This strapping field
originates from the active region, and it is anchored to the solar
surface. The strapping field balances the hoop force at the apex,
and it can be sufficiently strong near the solar surface to flip the
direction of the superposed field. This flip results in the
formation of null points that are the seeds of future
reconnection.

A still idealized, but more realistic, case of a strapping field
created by a pair of positive and negative magnetic charges at
the axis of symmetry of the configuration, which mimic
positive and negative magnetic spots of a bipolar active region
(see Titov & Démoulin 1999) is illustrated in Figure 8. On the
left (panels (a) and (b)), we demonstrate how the field topology
depends on the distance, 2D, between the charges. Here we
used current filament parameters, R∞= 0.2Re, k¢ = 0.10 , Bc

= 1, while the depth of the configuration center was
d= 0.025Re. The magnitude of the charges was chosen in a
way that the field at the current filament location is sufficient
for strapping. For D? R∞ (not shown) the strapping field is
almost uniform, the only distinction from Figure 5 is that at
large distances the field lines connect to the solar surface. In the
intermediate case when D= R∞ (see Figure 8(a)), the field of
the current filament near the solar surface is balanced by the
strapping field; therefore, the null point forms near the origin.
When the strapping field is even more nonuniform, D= 0.7R∞

(see Figure 8(b)) the null point raises and gets closer to the
filament.

Figure 8(c) shows the 3D topology of the field for the
D= 0.7R∞ case. There are five families of topologically
different magnetic field lines:

1. Twisted magnetic field lines inside the filament (green
lines),

2. Circular field lines looping around the filament generated
by its current (white circles),

3. Arcade-type strapping magnetic field lines originating
from the magnetic charges (brown lines). Their tension
balances the hoop force and maintains the equilibrium,

4. Below the null line (marked by blue) there are black lines
connecting the positive and negative magnetic charges.
These field lines are completely disconnected from the
filament and its own field,

5. Stretched magnetic field lines with null points (yellow
lines). These are separators: the upper loop separates the
brown strapping field lines from the field lines looping
around the filament. The bottom loop separates the
strapping (brown) field lines from the black field lines
closed below the null line.

Using numerical simulations for a nearly identical config-
uration, Roussev et al. (2003) demonstrated that reconnection
at the null line naturally results in loss of equilibrium (note the
similarity between our Figure 8(c) and Figure 1 in Roussev
et al. 2003). This loss of equilibrium is due to the fact that the
strapping field (brown lines) partially reconnects and its
strapping effect decreases. Note that the strapping field is
introduced to ensure equilibrium, while the height dependence
of the realistic strapping field in the active region naturally
results in the appearance of null points and null lines, which
make the configuration prone to magnetic reconnection, thus
potentially breaking the equilibrium.
It is important that when applying this methodology to

realistic CME simulations, it is not enough to choose a location
and appropriate model parameters to obtain an equilibrium
configuration of the underlying active region together with the
superposed filament model (as described by Titov et al. 2014).

Figure 8. Magnetic field lines from the current filament characterized by R∞ = 0.2Re, k¢ = 0.10 , Bc = 1, strapped by the field from a pair of positive and negative
magnetic charges. The configuration center is at a depth of d = 0.025Re below the solar surface; the distance, 2D, between the charges is D = R∞ for panel (a) and
D = 0.7R∞ for panels (b) and (c). Null points can be seen in panels (a) and (b), which show meridional cross sections of the configuration, similarly to Figures 4 and 5.
In the 3D topology, shown in panel (c), the null line is marked with a thick blue line.
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In addition, one must find a configuration that is ripe for
spontaneous eruption due to magnetic reconnection. Note that
reconnection by itself does not have to be spontaneous
(although it can be—see Roussev et al. 2003). Another
possible mechanism to enforce reconnection is horizontal
motion of photospheric plasma together with the frozen-in
footpoints of strapping field lines converging toward the
polarity inversion line, flux cancellation (see, e.g., Linker et al.
2003). Such motion builds up the current along the null loci
below the flux rope ending up with reconnection and further
eruption.

In Figure 9 we present such a configuration created to
simulate the CME event of 2013 April 11. The GONG
magnetogram as of 2013 April 11 is shown in the top-left
panel. Because of the limitations of the observed geometry,
there is significant uncertainty of the radial magnetic field
measurements in the polar regions. In order to reduce this
uncertainty and achieve better agreement of global simulation
results with observations, it is customary to modify the
photospheric radial magnetic field in the polar regions.
Specifically, the observed radial field, BR

obs( ), used as the
boundary condition at R= Re, is intensified in weak field
regions:

 =

´ +

=B B

B B

sign

min 3.5 , 5 Gs . 128

R R R R

R R

obs

obs obs

∣ ( )

( ∣ ∣ ∣ ∣ ) ( )

( )

( ) ( )

To get a 3D distribution of the strapping field, the Potential

Field Source Surface Model (PFSSM) is applied by expressing

the intensified field as a series of spherical harmonics to the

order of 180.
Once the 3D PFSSM field of the active region and the

approximate location of the CME source are obtained, we
iterate the locations of the two filament footpoints near the
polarity inversion line and analyze the PFSSM field along the
filament passing through these footpoints and the topology of
the total (superposed) field. The iterated locations are shown
with red and blue asterisks in the bottom-left panel of Figure 9,

displaying a zoomed fragment of the magnetogram. The best

choice for the center of configuration in heliographic

coordinates are (80°, 13°) as shown with the green asterisk in

the bottom-left panel of Figure 9) and the depth is d= 0.03Re.

The major and minor radii of the current filament are 0.21Re

and 0.04Re, with the horizontal axis of symmetry rotated 290°

counterclockwise from the local direction of heliographic

parallel. The helicity sign is negative.
Under these conditions, the strapping field along the filament

is approximately uniform and perpendicular to the plane of

filament. The magnitude of the strapping field, B(s)≈−2.7

Gauss, determines the current according Equation (94), thus

balancing the hoop force in equilibrium. On the other hand, the

topology of superposed field of the current filament on top of

the active region (presented in the right panel of Figure 9)

shows null points below the filament, which make the

configuration prone to reconnection, and thus eruption. As

we described in this paper, one must chose the model

parameters in a way that the resulting CME matches the total

mass and kinetic energy of the observed eruption. With these

choices, our proposed eruption generator will automatically

match a significant number of observational constraints.
Note then when the described configuration is used as an

initial condition for subsequent full MHD runs (similarly to the

way as described by Török et al. 2018), the solution with

b = >const 0 breaks an equilibrium due to imbalanced

gravity. The variation of b µ -
+

exp
g m h

k T T

i

B e i
( )( )

(where

  =g GM R 2), with altitude, h, can be introduced, which

prevents the ejecta from falling down along the filament. The

full force balance should also account for the component of

gravity force directed toward the local curvature center of the

filament, which partially balances the hoop force and, in effect,

reduces the strapping field required for equilibrium. Here we

omit these technical details, which are easy to derive from

Equation (121) for the mass of the ejecta.

Figure 9. Top left: GONG magnetogram as of 2013 April 11 with intensified weak field. Bottom left: zoomed in AR field with the chosen locations for the current
filament footpoints (red and blue asterisks) and the center of configuration (green asterisk). Right panel: the magnetic configuration superposed with realistic magnetic
field of the active region adjusted to simulate the CME event of 2013 April 11.
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6. Discussion and Summary

In this paper we described the relations between the current,
the poloidal field it produces, and the toroidal field preventing
the pinch-effect by accurate analytical expressions that allow
for finite thermal pressure. However, we only provide an
integral approximation for the strapping field. This is still very
useful, because in CME simulations, the strapping field is quite
uncertain: it is nonuniform and even if we were able to describe
an exact equilibrium of ideally shaped ring with the prescribed
current would not describe a realistic scenario. On the other
hand, the accurately described filament in which the pinch-
effect is prevented is capable of self-adjusting its height and
curvature radius to create an equilibrium configuration.

It is important that the direction of the strapping field is
opposite to that of Bc, and its magnitude for thin filament (of
large inductance and large stored magnetic free energy) can
exceed the field at the axis.

In summary, this paper presents a mathematically rigorous
extension of the Titov & Démoulin (1999) and Titov et al.
(2014) CME generator based on the Grad & Rubin (1958)–
Shafranov (1966) equation. The main new features of the
proposed model are as follows:

1. The filament is filled with plasma; thus, the model
describes a finite β initial configuration with finite mass
and energy,

2. The model describes an equilibrium solution that will
spontaneously erupt due to magnetic reconnection of the
strapping magnetic field arcade,

3. There are analytic expressions connecting the model
parameters to the asymptotic velocity and total mass of
the resulting CME, providing a way to connect the
simulated CME properties to multipoint
coronograph observations.
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Appendix
Toroidal Functions

A.1. Definition and Expressions via Hypergeometric Functions

The toroidal functions (see definition in Bateman &Erdé-
lyi1953) used in the present paper are

=

= =

-
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-
-

-
-

-
-
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They differ from the usually introduced associated Legendre

functions of semi-integer index, -
-Q ucosh
n
m
1
2

( ), -
-P ucosh
n
m
1
2

( ),

by a factor of u2 sinh . The associated Legendre function of

the first kind is expressed in terms of the hypergeometric series,

F(a, b; c; z) = 2F1(a, b; c; z) (see Equation (8).852(2) in

Gradshteyn & Ryzhik (2014) and also Equation (5) in Bateman

&Erdélyi1953):
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According to Equation (8.752(3)) in Gradshteyn & Ryzhik

(2014), ò=n n
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In the particular case of n= 0, the difference of the two

functions in Equation (A3) can be expressed through a single

toroidal function (see Bateman &Erdélyi1953, Equation (8)):
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For κ≈ 1 the original hypergeometric series in Equation (A2)

converges slowly, and it is worthwhile to transform the series

to one based on the variable, 1− κ2 (see Equations (15.1.2),

(15.8.10), and (15.8.12) in DLMF 2021). Specifically, at

k¢  0, one gets
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The toroidal function of the second kind is given by Equations

(8.736(4)) and (8.852(1)) in Gradshteyn & Ryzhik (2014):
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where (see Equation (8).852 in Gradshteyn & Ryzhik 2014):
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In the particular case of n= 0, Equation (A8) reduces to a
small difference of two separate hypergeometric functions, are
which both near unity. A more practical way to calculate this is
to express in Equation (A8) via a single function using
Equation (8).734(2) in Gradshteyn & Ryzhik (2014):

k
k

pk k k

=
¢

=- ¢ ¢

-
- -

⎛⎝ ⎞⎠

d

du
Q u Q u

F

3

3
3

2
,
5

2
; 2; . A10

1

2

1

2 2

1
2

1
2

[ ¯ ( )] ¯ ( )

( ) ( ) ( )

20

The Astrophysical Journal, 955:126 (22pp), 2023 October 1 Sokolov & Gombosi



For k¢  0, one gets

p pk

p k pk

» » - ¢

»- ¢ » ¢ » -

-
- -

-
-

- -

Q u Q u
d

du
Q u

d

du
Q u Q u

2 , ,

3 , . A11

1 1 1

2 1 1

1
2

1
2

1
2

1
2

1
2

¯ ( ) ¯ ( ) [ ¯ ( )]

( ) [ ¯ ( )] ¯ ( ) ( )

A.2. Wronskian of Toroidal Functions

The Wronskian of the Legendre functions may be found in
Bateman &Erdélyi (1953), Equation (13):
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A.3. Series of Toroidal Functions

The Fourier series for semi-integer powers of
= -¥r R u u vsinh cosh cos( ) can be obtained from the

following equation (see Shushkevich 1997):
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Another series can be obtained by differentiating
Equation (A13) over u and using Equations (8.736(4) and
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A particular linear combination of Equations (A14) and
(A15) has the following remarkable property:
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since the terms for n=±1 vanish.

A.4. Some Integrals of the Modified Toroidal Functions

The current form factor functions, j u
n
m ( )( ) , utilized in this

paper to approximate the profile of the toroidal current, are
eigenfunctions of the equation,
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For such current profiles, Equation (19) can be integrated
analytically. Upon integrating by parts and using the equation
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