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Abstract—Transverse-read is a novel technique to detect the
number of ‘1’s stored in a domain wall memory, also known as
racetrack memory, without shifting any domains. Motivated by the
technique, we propose a novel scheme to combine transverse-read
and shift-operation such that we can reduce the number of shift-
operations while still achieving high capacity. We also show that
this scheme is helpful to correct errors in domain wall memory.
A set of valid-words in this transverse-read channel is called a
transverse-read code. Our goal in this work is to study transverse-
read codes with respect to their properties, capacity, and applica-
tions.

We first present several properties of transverse-read codes and
show that they are equivalent to a family of constrained codes.
Then, we compute the maximal asymptotic rate of transverse-read
codes for certain parameters. Furthermore, we also present several
constructions of transverse-read codes with high rate. Finally, we
design several transverse-read codes that can correct limited-shift-
errors and limited-magnitude errors in domain wall memory.

I. INTRODUCTION

Spintronic domain-wall memory (DWM), also referred as

racetrack memory, is a promising candidate as a memory solu-

tion that can overcome the density limitations of spin-transfer

torque magnetic memory (STT-MRAM), while still retaining

its static energy benefits [2]–[5]. DWM is constructed from

ferromagnetic nanowires, referred to as tapes or racetracks,

which are separated into domains and are connected to a sin-

gle or a few access transistors to create access ports. The state

of the magnetic domains is accessed by shifting them along

the nanowire and aligning the target domain to an access de-

vice. Unfortunately, due to process variation of deeply-scaled

domain-wall memories [2], slight fluctuations in current com-

bined with imperfections in the nanowires can cause faults in

the shift process. These faults include over- and under-shifting

of the tape, and thus for domain-wall memory to become vi-

able, the shifting reliability must be addressed. As a result,

several innovative approaches have been developed to de-

tect and correct shift-errors in racetrack memory [6]–[10].

Besides that, the access latency and the energy consump-

tion in racetrack memory depend on the average number of

shift-operations. Several works studied how to reduce the

number of shift operations in racetrack memory [11], [12].
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Another approach to overcome the faults in the shifting pro-

cess of the DWM was proposed recently in [13]–[15]. In these

works, a novel transverse-read (TR) mechanism was developed

in order to provide global information about the data stored

within a nanowire. In particular, transverse-read can detect the

number of ones among the data stored in a DWM without shift-

ing any domains, while still requiring ultra-low power. However,

detecting only the number of ones in the DWM significantly re-

duces the information rate that can be stored within the memory.

Hence, the authors of [15] also demonstrated how TR can be

applied to partial segments of the nanowire, such as from an

end to an access point or between two access points. This en-

ables a segmented TR which allows access to all of the bits of

an arbitrarily long nanowire in several steps, while maintaining

isolated current paths. While independently sensing several seg-

ments can increase the memory’s information rate, this increase

is still far from reaching its full potential.

In this work, we propose a novel scheme that simultane-

ously combines the two important features of DWM. On one

hand, we use transverse-reads in order to sense the number of

ones between two consecutive access points, and on the other

hand we still shift all the domains so that we can transverse-

read to sense the number of ones in different segments every

time. In general, we consider a message x = (x1, . . . , xn) of

n information bits stored in n domains and consecutive access

points such that each time we can transverse-read a segment of

length �. That is, in the first read, the Hamming weight of the

first length-� segment x1, . . . , x� is sensed. Next, we shift all

domains in δ positions and sense the Hamming weight of the

length-� segment (xδ+1, . . . , xδ+�) in the second read. We keep

shifting and sensing until the last segment (xkδ+1, . . . , xkδ+�)
(for simplicity, we assume that there is an integer k such that

n = kδ+ �). For example, we consider the case n = 12, δ = 2,

and � = 4. If x = (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0), the output in

our reading scheme is (1, 2, 3, 2, 0). There exist other vectors,

for example y = (0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0) �= x, that have

the same output (1, 2, 3, 2, 0). Hence, we may not obtain the

full capacity using this scheme. First, we observe that the in-

formation rate in this scheme depends on δ and �. For example,

when δ = � = 2, we show in this paper that the information

rate is log(3)/2 ≈ 0.7925. Then, we observe that this scheme

significantly reduces the number of shift-operations by a fac-

tor of about δ times. For example, when δ = 2, if we just

shift normally about n/2 times, we can read only half of the

information bits, however using our scheme, we can achieve in-

formation rate roughly 0.7925. Our first question of interest is

whether we can achieve higher information rates. Hence, we are

interested in finding the trade-off between the number of shift-

operations and the maximal information rate under this setup.

Furthermore, we can show that this scheme is also helpful to

correct shift-errors in DWM. From a practical point of view,
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this scheme captures the two features of DWM in order to sig-

nificantly reduce the number of shift operations and mitigate

the shift errors, while still supporting high information rates.

From a theoretical point of view, it poses several interesting

challenges in combinatorics and algorithms.

The rest of this paper is organized as follows. In Section II,

we present the necessary notations and define the codes for-

mally. In Section III, we study transverse-read codes with re-

spect to their properties, maximal asymptotic rates, and con-

structions. Then, in Section IV, we show that our scheme of

using transverse-read codes is helpful to correct shift-errors in

domain wall memories. Finally, in Section V, we summarise

our contributions in this work and discuss some future works.

II. DEFINITIONS AND PRELIMINARIES

Let Σq = {0, 1, . . . , q − 1} denote the alphabet of size q
and [n] denote the set {1, 2, . . . , n}. For each sequence u =
(u1, . . . , un) ∈ Σn

q , let u[i;�] = (ui, ui+1, . . . , ui+�−1), 1 � i �
n − � + 1, denote the length-� substring of u, starting from

index i. A q-ary code C of length n is a set of q-ary sequences

of length n, that is, C ⊆ Σn
q . For each code C of length n,

we define its rate to be R(C) = logq(|C|)/n, where |C| is the

size of the code C. Let Φ : Σ�
q → N be a mapping from a q-

ary codeword of length � to a natural number. Let n, �, δ, k be

integers such that n−� = kδ. We define the following mapping,

Φ�,δ : Σn
q → N

k+1,

where Φ�,δ(x) =
(
Φ(x[1;�]),Φ(x[δ+1;�]), . . . ,Φ(x[kδ+1;�]

) ∈
N

k+1, given a vector x = (x1, . . . , xn) ∈ Σn
q . The vector

Φ�,δ(x) is called the (Φ, �, δ)-segment read vector of x.

The mapping Φ�,δ may not be injective, and thus there may

be two vectors x and y such that Φ�,δ(x) = Φ�,δ(y). Fur-

thermore, Φ�,δ is also not surjective, that is, there is a vector

v ∈ N
k+1 such that there does not exist any vector x ∈ Σn

q

such that Φ�,δ(x) = v. A vector u ∈ N
k+1 is called a valid

(Φ, �, δ)-segment read vector if there exists a vector x ∈ Σn
q

such that Φ�,δ(x) = u. A channel that only accepts the valid

(Φ, �, δ)-segment read vectors is called the (Φ, �, δ)-segment
read channel.

Note that it is also possible to define the cyclic version of

these segment-read vectors, however, we prefer the more prac-

tical non-cyclic version. In this work, we always assume that

n− � = kδ, � and δ are fixed while n and k tend to infinity.

If δ = 1 and Φ�,1 is injective, that is Φ�,1(x) �= Φ�,1(y)
for all x �= y, then the (Φ, �, 1)-segment read vector of x is

equivalent to an �-symbol read vector of x, defined and stud-

ied in [20], [21]. In this case, any vector in Σk+1
m is a valid

(Φ, �, 1)-segment read vector, where m = q�. We are interested

in a code with the ability to correct errors which have been well

studied in the context of �-symbol read channel [20]–[24]. There

are many constructions of codes correcting substitution errors

[20]–[24], [28] and some other codes correct synchronization

errors, including deletions and sticky insertions [18].

In the general case, when Φ can be any mapping (may not

injective), finding the maximal number of the (Φ, �, δ)-segment

read vectors and the capacity of the (Φ, �, δ)-segment read chan-

nel is an interesting challenge. Owing to their application in

nanopore sequencing of DNA [25], the (Φ, �, δ)-segment read

channel has been studied independently recently. However, only

the case δ = 1 was investigated and the codes do not have the

ability to correct errors. In this work, we focus on the case where

Φ is the weight function owing to the application in racetrack

memory and consider various cases of δ.
We now examine a model of domain wall memory of n do-

mains and two access points that are � positions far apart. A

message, which is a binary vector of length n, will be stored in

these n domains. Two read-ports can transverse-read to sense

the weight of a segment of length �. For example, Figure 1 illus-

trates a domain wall memory with twelve domains and two ac-

cess ports. To read the information in the domain wall memory,

besides the transverse-read technique, we also need the shift op-

eration. In each shift operation in the domain wall memory, all

domains together move δ positions. Let x = (x1, . . . , xn) ∈ Σn
q

and let the weight function w : Σn
q → Σ(q−1)n+1 be such that

for any x = (x1, x2, . . . , xn) ∈ Σn
q then w(x) =

∑n
i=1 xi. So,

w(x) is the weight of the vector x. We define

TR�,δ : Σn
q → Σk+1

(q−1)�+1

where TR�,δ(x) = (w(x[1,�]),w(x[δ+1,�]), . . . ,w(x[kδ+1,�])).
We note that, owing to the application in domain-wall memory,

in this work, we only focus on the case q = 2 and the stored

message x ∈ Σn
2 . The output in the transverse-reading scheme

is TR�,δ(x). We observe that TR�,δ(x) is actually the (Φ, �, δ)-
segment read vector of x. So, TR�,δ(x) is called the (�, δ)-
transverse-read vector of x. The mapping TR�,δ is not injec-

tive, that is, there are two vectors x and y such that TR�,δ(x) =
TR�,δ(y). We are interested in a set of vectors x such that the

mapping TR�,δ is injective for this set.

Definition 1 Let n, �, δ, k be integers such that n− � = kδ.
1) A binary (�, δ)-transverse-read code of length n, de-

noted by CTR(n; �, δ), is defined as a set of vectors
such that for any two vectors x,y ∈ CTR(n; �, δ),
TR�,δ(x) �= TR�,δ(y). That is,

CTR(n; �, δ) = {x ∈ Σn
2 : ∀xi �= xj , TR�,δ(xi) �= TR�,δ(xj)}.

2) The largest size of a length-n binary (�, δ)-transverse-read
code will be denoted by A(n; �, δ) and the maximal asymp-
totic rate for fixed � and δ is given by

R(�, δ) = lim sup
k→∞

log2(A(n; �, δ))

kδ + �
,

where n = �+ kδ.

Furthermore, the mapping TR�,δ is not always surjective, that

is, there exist δ, � and a vector u ∈ Σk+1
�+1 such that for all x ∈

Σn
2 , it holds that TR�,δ(x) �= u. So, we now define a new class

of vectors in Σk+1
�+1 .

Definition 2 Let n, �, δ, k be integers such that n− � = kδ.
• A vector u ∈ Σk+1

�+1 is called a valid (�, δ)-transverse-
read vector if there exists a vector x ∈ Σn

2 such that
TR�,δ(x) = u.

• The set of all such vectors u of length k + 1 is called
the valid (�, δ)-transverse-read code of length n and is
denoted by TR(n; �, δ) ⊆ Σk+1

�+1 .
• The maximal asymptotic rate of the valid (�, δ)-transverse-

read code, given �, δ, is

R(�, δ) = lim sup
k→∞

log2(|TR(n; �, δ)|)
kδ + �

,
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where n = kδ + �.

We note that in this work, we only consider the case where

(n− �)/δ = k is an integer.

Example 1 Let n = 13, � = 3, δ = 2, k = 5. Let x =
(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0) ∈ Σ13

2 . Then, TR3,2(x) =
(1, 3, 2, 1, 1, 2) is the (3, 2)-transverse-read vector of x. Hence,
(1, 3, 2, 1, 1, 2) is a valid (3, 2)-transverse-read vector. Let
v = (0, 3, 3, 0, 0, 3). There does not exist any vector y ∈ Σ13

2

such that TR3,2(y) = v. Hence, v = (0, 3, 3, 0, 0, 3) is not a
valid (3, 2)-transverse-read vector.

Each codeword in the (�, δ)-transverse-read code is

equivalent to a valid (�, δ)-transverse-read vector. Hence,

|TR(n; �, δ)| = A(n; �, δ). The channel that only accepts valid

(�, δ)-transverse-read vectors is called the (�, δ)-transverse-
read channel. The capacity of the channel is the maximal

asymptotic rate of the (�, δ)-transverse-read code.

We note that to read data in a racetrack memory, we nor-

mally read bit by bit and need a shift operation each time we

read a bit. Hence, to read a message of length n, we need

to shift n times. Using the transverse-read, in each time, we

can scan a segment and will shift all domains by δ positions

to read the next segment. Thus, to read a message of length

n, we only need to shift k = �n/δ� times. For example, in

Figure 1, two access ports can transverse-read a segment of

length three and each time, we shift all domains two posi-

tions. If the stored message is a binary vector of length 13,

c = (c1, c2, . . . , c13), the output in our reading scheme is

TR3,2(c) = (w(c1, c2, c3),w(c3, c4, c5), . . . ,w(c11, c12, c13)).
In this case, we only need to shift all domains six times. How-

ever, given δ and �, the maximal information rate in racetrack

memories is R(�, δ), which may not achieve the full capacity.

Hence, in this work, we are interested in finding the maximal

size A(n, �, δ) and the maximal asymptotic rate R(�, δ). Given

δ, we are also interested in finding the optimal � such that the

asymptotic rate R(�, δ) is maximal. Furthermore, we also seek

for some constructions of (�, δ)-transverse-read codes with

efficient encoding/decoding algorithms.

Besides that, both shift-operation and transverse-read may

not work perfectly and errors may occur. It is known that the

shift-errors can be modelled as synchronizations, including

sticky-insertions and deletions [7]–[9]. We also see that errors

in transverse-read vector may cause some substitution errors.

Hence, in this work, we also study some transverse-read codes

which can correct shift-errors and substitutions errors.

From Definitions 1 and 2, we can see that an (�, δ)-
transverse-read code is equivalent to a valid (�, δ)-transverse-

read code through the mapping TR�,δ . Hence, in this work,

we use the term (�, δ)-transverse-read code for both.

III. TRANSVERSE-READ CODES

In this section, given �, δ, we study (�, δ)-transverse-read

codes, their properties, and aim to find the maximal asymp-

totic rate of these codes. We are also interested in constructing

these codes with efficient encoding and decoding algorithms.

We first present several basic results on A(n; �, δ) and R(�, δ)
in the following theorem.

Theorem 1 Let n, �, δ, and k = (n− �)/δ be all positive inte-
gers.

1) For � = 1, it holds that A(n; � = 1, δ) = 2
n−1
δ +1 and

R(� = 1, δ) = 1/δ.
2) For � � δ, it holds that A(n; �, δ) = (� + 1)

n−�
δ +1 and

R(�, δ) = log2(�+1)
δ .

3) For δ = 1 and some constant �, it holds that A(n; �, δ =
1) � 2n−� and R(�, δ = 1) = 1.

Proof:
1) To prove this claim for � = 1 and k = (n− 1)/δ, we con-

sider a vector x = (x1, . . . , xn) ∈ Σn
2 and its transverse-

read vector TR�,δ(x) = (x1, xδ+1, . . . , xkδ+1) ∈
Σk+1

�+1 . We observe that for any vector u ∈ Σk+1
2 ,

u is a valid (�, δ)-transverse-read vector. Hence,

A(n, � = 1, δ) = |TR(k, � = 1, δ)| = 2k+1 and thus

R(� = 1, δ) = lim supk→∞
k+1
kδ+� = 1

δ .

2) We now consider the case � � δ. Let x = (x1, . . . , xn) ∈
Σn

2 and

TR�,δ(x) =
(
w(x[1;�]), w(x[δ+1;�]), . . . , w(x[kδ+1;�]

) ∈
Σk+1

�+1 . Since all segments x[iδ+1;�], for 0 � i � k,

are non-overlapping, any vector u ∈ Σk+1
�+1 is a valid

(�, δ)-transverse-read vector. Hence, A(n, �, δ) =

|TR(k, �, �)| = (� + 1)k+1 = (� + 1)
(n−�)

δ +1 and thus

R(�, δ) = lim supk→∞
(k+1)(log2(�+1))

kδ+� = log2(�+1)
δ .

3) To prove this claim, we consider two length-n vec-

tors u = (0, . . . , 0, u1, . . . , un−�) ∈ Σn
2 and v =

(0, . . . , 0, v1, . . . , vn−�) ∈ Σn
2 such that u �= v. We ob-

serve that TR�,δ=1(u) �= TR�,δ=1(v). Let CTR(n, �, δ)
be a set of all vectors of length n that the first � entries

are zeros. So, CTR(n, �, δ) is a binary (�, δ = 1)-
transverse-read code and |CTR(n, �, δ = 1)| = 2n−�.

Therefore, A(n, �, δ = 1) � 2n−� and R(�, δ = 1) =
lim supk→∞

n−�
kδ+� = 1.

For all cases in Theorem 1, we can find the maximal asymp-

totic rate of (�, δ)-transverse-read codes. In the rest of the paper,

we focus on the more challenging cases when 1 < δ < �. First,

we establish the case where � is a multiple of δ.

Theorem 2 Given two positive integers δ and � such that � is
a multiple of δ, it holds that

R(�, δ) =
log2(δ + 1)

δ
.

Before we prove Theorem 2, we show the following result.

Lemma 1 Given two positive integers δ and � such that � is a
multiple of δ, it holds that

R(�, δ) � log2(δ + 1)

δ
. (1)

Proof: Let n1 = n/δ and �1 = �/δ be two posi-

tive integers. Given a vector x = (x1, . . . , xn) ∈ Σn
2 , let

f(x) = (f1, . . . , fn1
) ∈ Σn1

δ+1 where fi = w(x[(i−1)δ+1;δ]) ∈
{0, . . . , δ} for 1 � i � n1. We see that TR�,δ=2(x) =(
w(f[1;�1]), w(f[2;�1]), . . . , w(f[n1−�1+1;�1]

) ∈ Σn1−�1+1
(�+1)(δ) . Let

CTR(n, �, δ) be a binary (�, δ)-transverse-read code, that

is, for two different vectors x,y ∈ CTR(n, �, δ), it holds
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Fig. 1: Racetrack memory with twelve data domains and two heads

that TR�,δ(x) �= TR�,δ(y). Hence, f(x) �= f(y). So,

|CTR(n, �, δ)| � |Σn1

δ+1| = (δ + 1)n1 , for any (�, δ)-transverse-

read code CTR(n, �, δ). Therefore, A(n, �, δ) � (δ+1)n/2, and

thus R(�, δ) � log2(δ+1)
δ .

We now construct a binary (�, δ)-transverse-read code

CTR(n, �, δ) as follows.

Construction 1 Let F = {(f1, f2, . . . , fn1
) : fi = 0 for all i =

1, . . . , �1} ⊆ Σn1

δ+1 be a set of all (δ + 1)-ary vectors
of length n1 such that their first �1 entries are all zeros.
We define the mapping φ : F → Σn

2 such that, for each
f = (f1, . . . , fn1) ∈ F , φ(f) = x = (x1, . . . , xn) ∈ Σn

2 such
that x[(i−1)δ+1;δ] = (0δ−j1j) if fi = j. Let n = δn1, � = δ�1,
and let CTR(n, �, δ) = φ(F) = {φ(f) : f ∈ F} be a set of all
vectors x of length n such that there is f ∈ F and x = φ(f).

For each x ∈ CTR(n; �, δ), we obtain TR�,δ(x) = TR�1,1(f)
where φ(f) = x. Hence, given two vectors x �= y ∈
CTR(n; �, δ), TR�,δ(x) �= TR�,δ(y). So, the code CTR(n; �, δ)
from Construction 1 is a (�, δ)-transverse-read code of length

n. Moreover, |F| = (δ + 1)n1−�1 and thus |CTR(n, �, δ)| =
|F| = (δ + 1)n1−�1 . Therefore, A(n, �, δ) � (δ + 1)n1−�1 and

thus, for any even integer �,

R(�, δ) � log2(δ + 1)

δ
. (2)

From inequalities 1 and 2, we obtain R(�, δ) = log2 δ+1
δ .

Hence, Theorem 2 is proven.

In particular, when δ = 2, we obtain the following corollary.

Corollary 1 Let � be an even number. Then, it holds that

R(�, δ = 2) =
log2(3)

2
≈ 0.7925.

Next, we continue to study the case where δ = 2, � is an

odd integer and provide a construction of a (�, δ)-transverse-

read code as follows.

Construction 2 Given two odd integers n and �, let k = (n−
�)/2. We define the mapping

g : Σk
3 → Σn

2

as follows. For each u = (u1, . . . , uk) ∈ Σk
3 , g(u) = c =

(c1, . . . , cn) ∈ Σn
2 such that ci = 0 for all i = 1, . . . , �

and for 1 � i � k, (c�+2i−1, c�+2i) = (0, 0) if ui = 0,
(c�+2i−1, c�+2i) = (0, 1) if ui = 1 , and (c�+2i−1, c�+2i) =
(1, 1) if ui = 2. Let CTR(n, �, 2) = {g(u) : u ∈ Σk

3}.

We now consider u �= v ∈ Σk
3 , then g(u) �= g(v). Hence,

|CTR(n, �, δ = 2)| = |Σk
3 | = 3k. Moreover, if g(u) �= g(v)

then TR�,2(g(u)) �= TR�,2(g(v)). Thus, the code CTR(n, �, 2)
constructed above is an (�, δ)-transverse-read code. Hence,

A(n, �, 2) � |CTR(n, �, 2)| = 3k and thus, for any odd integer

�,

R(�, 2) � log2 3

2
≈ 0.7925. (3)

From inequalities (2) and (3), we obtain the following result for

any integer �.

Lemma 2 For any integer � � 2, we obtain the following lower
bound on the rate of the (�, δ)-transverse-read code when δ =
2,

R(�, δ = 2) � log2 3

2
≈ 0.7925.

Now, we extend the result in Lemma 2 for arbitrary values of

� and δ such that � > δ. Namely, we construct a binary (�, δ)-
transverse-read code as follows.

Construction 3 Given four integers k, �, δ, n such that kδ =
n− �. We define the mapping ψ as follows,

ψ : Σk
δ+1 → Σn

2 ,

for each u = (u1, . . . , uk) ∈ Σk
δ+1, then ψ(u) = c =

(c1, . . . , cn) ∈ Σn
2 such that ci = 0 for 1 � i � � and for

1 � i � k, if ui = j then c[�+δ(i−1)+1;δ−j] is all-zero vector
of length δ − j and c[�+δ(i)−j+1;j] is all-one vector of length
j. Let CTR(n, �, δ) = {ψ(u) : u ∈ Σk

δ+1}.

We state the result formally as follows.

Theorem 3 The code CTR(n, �, δ) constructed in Construction
3 is a binary (�, δ)-transverse-read code of length n and thus
A(n, �, δ) � (δ + 1)k.

Proof: We consider any two vectors u,v ∈ Σk
δ+1

such that u �= v. Let i be the smallest index such that

ui �= vi. Hence, ψ(u)[�+δ(i−1)+1;δ] �= ψ(v)[�+δ(i−1)+1;δ]. Thus

ψ(u) �= ψ(v). We now consider two vectors TR�,δ(ψ(u)) and

TR�,δ(ψ(v)) and see that TR�,δ(ψ(u))i+1 = w(ψ(u)[δi;�]) �=
w(ψ(v)[δi;�]) = TR�,δ(ψ(v))i+1. Hence, TR�,δ(ψ(u)) �=
TR�,δ(ψ(v)).

Therefore, we conclude that the code CTR(n, �, δ) con-

structed in Construction 3 is a binary (�, δ)-transverse-read

code since for any x,y ∈ CTR(n, �, δ), we get TR�,δ(x) �=
TR�,δ(y). Moreover, |CTR(n, �, δ)| = |Σk

δ+1| = (δ + 1)k since

ψ is an injection. Hence, A(n, �, δ) � |CTR(n, �, δ)| = (δ+1)k

and the theorem is proved.

From Theorem 3, we obtain the following result on the lower

bound on the maximal asymptotic rate of (�, δ)-transverse-read

codes.

Corollary 2 If � and δ are two integers such that � > δ > 1
then

R(�, δ) � log2(δ + 1)

δ
.

Furthermore, from Construction 3, there is a binary (�, δ)-
transverse-read code with an efficient encoding algorithm.

In the rest of this section, we present a technique to find the

asymptotic rate of (�, δ)-transverse-read codes exactly, given

� > δ > 1. To find the asymptotic rate of the above codes,
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we first prove that these codes are equivalent to a class of con-

strained codes avoiding some specific patterns and a class of

regular languages. Then, we can use some known techniques

in constrained codes and regular languages using finite state

machines to compute the maximal asymptotic rates.

We first consider the case � = 3 and δ = 2. We recall that

A(n, �, δ) = |TR(k, �, δ)| where TR(k, �, δ) is the set of all

valid (�, δ)-transverse-read vectors of length k + 1. Let u =
(u1, . . . , uk+1) ∈ TR(k, � = 3, δ = 2) ⊆ Σk+1

4 be a valid

(� = 3, δ = 2)-transverse-read vector. So, there exists a vector

x ∈ Σn
2 such that TR�,δ(x) = u. Then, for each 1 � i � k+1,

ui = w(x2i−1, x2i, x2i+1) = x2i−1+x2i+x2i+1 ∈ {0, 1, 2, 3}.

We observe that TR(k, � = 3, δ = 2) is a regular language. It

is recognized by a non-deterministic state machine as in Fig-

ure 2. The machine is a graph of two nodes, 0 and 1. For

each ui, there is a corresponding tuple (x2i−1, x2i, x2i+1) such

that ui = w(x2i−1, x2i, x2i+1). The node j corresponds to the

state x2i+1 = j for j = 0, 1. We start with ui = 0, that is,

x2i−1 + x2i + x2i+1 = 0, and thus x2i−1 = x2i = x2i+1 = 0.

The machine is at state 0. If ui+1 = 0 then the machine remains

at the same state 0 and there is an edge labelled 0 from node 0 to

itself. If ui+1 = 1, that is, x2i+1+x2i+2+x2i+3 = 1, then x2i+3

can be either 0 or 1. Hence, there is an edge labelled 0 from node

0 to itself and there is an edge labelled 1 from node 0 to node

1. If ui+1 = 2, that is, x2i+1 + x2i+2 + x2i+3 = 2, then since

x2i+1 = 0, it holds that x2i+2 = x2i+3 = 1. Hence, the state

of the machine is 1 and there is an edge labelled 2 from node

0 to node 1. Once the machine is at state 1, that is, x2i+3 = 1,
we consider the next symbol ui+2 = x2i+3 + x2i+4 + x2i+5.

Since x2i+3 = 1 we have ui+2 � 1. If ui+2 = 1 then x2i+4 =
x2i+5 = 0 and the machine will be at state 0. So, there is

an edge labelled 1 from node 1 to node 0. If ui+2 = 2 then

x2i+4 + x2i+5 = 1. Hence, x2i+5 can be 0 or 1, that is, the

machine will be at state 0 or state 1. So, there is an edge la-

belled 2 from node 1 to node 0 and a self loop labelled 2 from

node 1 to itself. If ui+2 = 3 then x2i+4 = x2i+5 = 1 and

the machine will be at state 1. So, there is a loop labelled 3

from node 1 to itself. Therefore, the state machine in Figure

2 is a non-deterministic finite state machine. It is well known

that for any regular language which can be recognized by a

non-deterministic finite state machine, it can be expressed by a

deterministic state machine. For example, in the case � = 3 and

δ = 2, the regular language TR(n, �, δ) is recognized by a de-

terministic finite state machine as in Figure 3. In this diagram,

we have a new node “*” which is the state that x2i−1 can be 0

or 1. The adjacency matrix of this deterministic diagram is:

AG =

⎛
⎝
1 1 1
1 2 1
1 1 1

⎞
⎠

Next, using the well-known Perron-Frobenius theory [17], we

can exactly calculate the maximal asymptotic rate of (� = 3, δ =
2)-transverse-read codes to be (log2 λ)/2 = 0.8858 where λ =
3.4142 is the largest real eigenvalue of AG.

Additionally, the code TR(k, �, δ), which can be expressed

by the state machine in Figure 3, is also a constrained system.

We now state the following result.

10
1, 2

2, 30, 1

1, 2

Fig. 2: Non-deterministic finite state transition diagram � =
3, δ = 2
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0 1

0 3
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1, 2
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1
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1
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Fig. 3: Deterministic finite state transition diagram � = 3, δ = 2

Theorem 4 We consider the following set

F = {(3, (1, 2)i, 0), (3, (1, 2)i, 1, 3), (0, (2, 1)i, 3), (0, (2, 1)i, 2, 0)}.

A valid (� = 3, δ = 2)-transverse-read code is a constrained
code avoiding all patterns in F .

Theorem 4 can be proven by showing that both above codes

have the same finite state transition diagram as in Figure 3.

Next, we aim to extend the above results for other values of

� > δ > 1. We now build a non-deterministic finite state ma-

chine G�,δ = (V �,δ, E�,δ) where V �,δ is the set of all vertices

and E�,δ is the set of all edges. The graph G�,δ has |V �,δ| =
2�−δ vertices and each vertex represents a binary word of length

s = � − δ. If � � 2s, there are directed edges from the vertex

x = (x1, . . . , xs) to the vertex y = (y1, . . . , ys) with labels

{a, a + 1, . . . , a + � − 2s} where a =
∑s

i=1(xi + yi) for any

pair of vertices. If � < 2s, there is a directed edge from the ver-

tex x = (x1, . . . , xs) to the vertex y = (y1, . . . , ys) if and only

if x[δ+1;s−δ] = y[1;s−δ]. Such an edge is labelled by b where

b =
∑s

i=1 xi +
∑s

j=s−δ+1 yj . So, in both cases, we can build

a non-deterministic finite state machine of the transverse-read

channel.

For example, when � = 5 and δ = 2, we can build a non-

deterministic finite state machine of (� = 5, δ = 2) as in Figure

4. In the graph, there are 8 nodes, each of which is a state of

the machine. We start with u1 = 0 and the machine is at state

(0, 0, 0). If u2 = 0, then the machine stays at state (0, 0, 0) and

there is a loop with label 0 from (0, 0, 0) into itself. If u2 = 1,

the machine can move to state (0, 1, 0) or (0, 0, 1). There is an

edge from state (0, 0, 0) to state (0, 1, 0) with label 1 and an

edge from state (0, 0, 0) to state (0, 0, 1) with label 1. If u2 = 2,

the machine can move to state (0, 1, 1). There is an edge from

state (0, 0, 0) to state (0, 1, 1) with label 2. We can consider

other states and build the non-deterministic state machine of 8

nodes and multiple edges as in Figure 4. For simplicity in the

illustration, in Figure 4, we only label all edges that go out from

nodes (0,0,0) and (1,1,1).

Once we have a non-deterministic finite state machine, it is

a folklore that we can convert from a non-deterministic finite

state machine to a deterministic finite state machine. Hence,
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Fig. 4: Non-deterministic finite state transition diagram � =
5, δ = 2.

we can compute the capacity of the constrained channel repre-

sented by this machine, and thus the maximal asymptotic rate of

transverse-read codes. Several numerical results were computed

and are tabulated in Table I.

TABLE I: The maximal asymptotic rates of (�, δ)-transverse-

read codes.

� = 3 � = 4 � = 5 � = 6 � = 7 � = 8
δ = 2 0.8857 0.7925 0.9258 0.7925 0.9361 0.7925
δ = 3 0.6667 0.7298 0.7475 0.6667 0.7702 0.7744
δ = 4 0.5 0.5805 0.6243 0.6462 0.6462 0.5805

From the results in Table I, we see that 0.936 = TR�=7,δ=2 >
TR�=5,δ=2 > TR�=3,δ=2 > TR�=2,δ=2 = 0.795. So, using

our scheme, even if we reduce the number of shift-operations

to 50%, we can still achieve the information rate 93.6% when

� = 5. We observe in Table I that the asymptotic rates of

(�, δ = 2) are increasing when � is odd and increasing. For

any value of �, the rate satisfies TR�,δ=2 � 1. We are inter-

ested in finding the maximum asymptotic rates TR�,δ=2 for

all odd numbers �. We obtained a trivial lower bound and an

upper bound, 0.936 � max� TR�,δ=2 � 1. We now state the

following conjecture and will study further in future work.

Conjecture 1 Let δ = 2 and �1, �2 be two odd number such
that �1 > �2.

1) The following inequality holds,

TR�1,δ=2 > TR�2,δ=2.

2) For any ε > 0, there exists an odd number � such that
TR�,δ=2 > 1− ε.

We remark that the algorithm converts a non-deterministic

state machine with v nodes to a deterministic state machine

with 2v nodes. Hence, it is not efficient to compute the capac-

ity of the transverse-read channel when � is large. However,

when � is small, it is fast to build a deterministic finite state

machine of (�, δ)-transverse-read channel. Using the state ma-

chine, it is possible to construct an (�, δ)-transverse-read code

achieving the capacity with efficient encoding/decoding algo-

rithms. We may use the well-known finite state splitting algo-

rithms [17] or some rank/unrank algorithms. In the following

section, we will study the ability of correcting shift-errors and

substitution-errors of these codes.

IV. TRANSVERSE-READ CODES CORRECTING ERRORS

Given �, δ, in this work, we consider the channel that only ac-

cepts (�, δ)-transverse-read vectors. In the previous section, we

investigated the capacity of the channel which is the maximal

asymptotic rate of (�, δ)-transverse-read code and constructed

some codes with high rate. In this section, we study and con-

struct some error-correcting codes for the (�, δ)-transverse-read

channel. We consider two types of errors in the channel, namely,

shift-errors and substitution errors. We construct codes correct-

ing shift-errors in Subsection IV-A and codes correcting substi-

tution errors in Subsection IV-B.

A. Limited-Shift-Errors

In this subsection, we start with the (�, δ)-transverse-read

channel when � = 2 and δ = 1. We consider a domain

wall memory of n domains and two access ports which are

within two locations. These two access ports can transverse-

read to detect the number of ones in a segment of length

�. Let x = (x1, . . . , xn) ∈ Σn
2 be the stored vector in

the domain wall memory. Using the transverse-read tech-

nique in each segment of length � = 2 and shift-operation

one position in each step, we obtain the output vector

TR2,1(x) = (x1 + x2, x2 + x3, . . . , xn−1 + xn) which is the

transverse-read vector of x. In this scheme, a shift-operation

might not work perfectly and errors may occur. For example,

an under-shift error occurs at the first position, the first en-

try in the output is repeated, and thus, we obtain the output

(x1 + x2, x1 + x2, x2 + x3, . . . , xn−1 + xn). This kind of error

can be modelled as a sticky-insertion. Besides that, if there is

an over-shift error, one entry in the output is deleted. For ex-

ample, if an over-shift occurs at the second position, we obtain

the output (x1+x2, x3+x4, . . . , xn−1+xn). So, an over-shift

error can be modelled as a deletion in the transverse-read

vector. Our goal in this subsection is to correct these errors.

Normally, to correct these errors, one may need to use some

classical codes correcting deletions and sticky-insertions. We

note that, there are several asymptotically optimal binary codes

that correct t sticky-insertion errors with only t log n redun-

dancy bits. However, it is much more complicated to correct t >
1 deletions. In this work, we show that transverse-read codes

have some special properties that are useful for correcting these

shift-errors. Let us consider a vector x = (x1, x2, x3, x4, x5) =
(0, 0, 1, 1, 0) and its transverse-read vector TR2,1(x) = (x1 +
x2, x2 + x3, x3 + x4, x4 + x5) = (0, 1, 2, 1). Once an over-shift

occurs, a symbol in TR2,1(x) is deleted and we may obtain an
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invalid word. For example, an over-shift occurs in the second

position and the symbol x2 +x3 = 1 is deleted. Hence, we ob-

tain the vector (0, 2, 1). However, the word (0, 2, 1) is not a valid

(2,1)-transverse-read vector since 0 can not be followed by a 2.

Hence, we can detect and locate a single deletion in this case.

Based on this simple observation, we can show a strong con-

nection between a code correcting sticky-deletions and a code

correcting t deletions in our channel where there are no consec-

utive deletions. We note that, a sticky-deletion is an error that a

bit in a run is deleted but the whole run cannot be deleted. Codes

correcting sticky-deletions have attracted a lot of attention re-

cently [26], [27] and there are known constructions of codes

correcting t sticky-deletions with at most t log(n) + o(log n)
bits of redundancy. Hence, we are able to design a code cor-

recting t deletions, where there are no consecutive deletions,

with at most t log(n) + o(log n) bits of redundancy. For sim-

plicity, we first present the result for � = 2, δ = 1, and t = 1. If

there is no error, then we showed in part 4 of Theorem 1 that

the maximal size of the (2,1)-transverse-read code is 2n−1. In

the following result, we will show that the maximal size of the

(2,1)-transverse-read code correcting is O(2n/nt).

Theorem 5 Let C1 ⊂ Σn
2 be a binary code correcting a single

sticky-deletion. Then, the code C1 can correct a single deletion
in the (2,1)-transverse-read code. That is, if a deletion occurs
in a transverse-read vector TR2,1(c) where c ∈ C1, we can
recover the original word c.

Proof: Let c = (c1, c2, . . . , cn) ∈ C1 be a stored

word. Then, u = TR2,1(c) = (u1, u2, . . . , un−1), where

ui = ci + ci+1, is the (2,1)-transverse-read vector of c. We

observe that in a valid (2,1)-transverse-read vector, the run

of 1’s has odd length if it is bounded by two different sym-

bols, that is (0, 1, . . . , 1, 2) or (2, 1, . . . , 1, 0), and the run of

1’s has even length if it is bounded by the same symbol, that

is (0, 1, . . . , 1, 0) or (2, 1, . . . , 1, 2). Hence, if the symbol 1 is

deleted in the valid (2,1)-transverse-read vector, we can detect

and locate the error and thus correct it. We now consider the

case where the symbol 0 or 2 was deleted. Note that if ui = 0
then ci = ci+1 = 0 and if ui = 2 then ci = ci+1 = 1. Hence,

if the symbol 0 or 2 is deleted in the transverse-read vector

u, a sticky-deletion occurs in the stored word c. Since c ∈ C1
which can correct a single sticky-deletion, we can correct the

error and recover the original word c. Hence, we can recover

the stored word c. Therefore, code C1 can correct a single

deletion in the (2,1)-transverse-read code.
It is known that correcting a sticky-deletion is easier than cor-

recting a deletion. Hence, the transverse-read code is helpful in

correcting a deletion (over shift error). It is interesting that we

can also extend the result for codes correcting multiple dele-

tions. We present the result on codes correcting multiple dele-

tions where there is at most a single deletion in each run as

follows.

Theorem 6 Given t > 1, let Ct be a code of length n correcting
t sticky-deletions. If there are at most t deletions in a (2,1)-
transverse-read vector TR2,1(c) where c ∈ Ct such that there
is at most a single deletion in each run of same symbols (length
of each run can be one), then we can recover the original word
c.

Proof: To prove the theorem, we just need to follow

iteratively the argument in the proof of Theorem 5. Let

c = (c1, c2, . . . , cn) ∈ C1 be a stored word. Then, u =
TR2,1(c) = (u1, u2, . . . , un−1), where ui = ci + ci+1, is the

(2,1)-transverse-read vector of c. Let v = (v1, v2, . . . , vn−t−1)
be the output that we receive after t deletions occur. Since u is

a valid (2, 1)-transverse-read vector, if 01r0 or 21r2 is a sub-

string of u, then r is an even number. If there is a deletion in

a run of symbols 1’s in a pattern 01r0 or 21r2, we can detect

this error by checking the parity of r. To correct this error, we

just need to add the symbol 1 in this position of the vector v.

Furthermore, if 01s2 or 21s0 is a substring of u then s is an

odd number. Similarly, we can detect and correct a deletion in

each run of 1’s. After we correct all deletions in each run of

1’s in the output, we obtain a valid (2, 1)-transverse-read vec-

tor of length m, v′. So, there is a vector c′ ∈ Σm
2 such that

TR2,1(c
′) = v′. If m < n, we can obtain v′ from v after

deleting (n − m) symbols of 0’s or 2’s. That is, we can ob-

tain c′ from c after (n − m) sticky-deletions. Since the code

Ct can correct at most t deletions and n−m < t, we can cor-

rect all these errors to recover c. This completes the theorem’s

proof.

From the above proof of Theorem 6, we can obtain a sim-

ple decoding algorithm to correct at most t deletions in the

transverse-read code. So far, we showed that our scheme of us-

ing (�, δ)-transverse-read code is helpful to correct shift-errors

for � = 2 and δ = 1. The main idea is to use codes correcting

sticky-deletion to correct deletions, using some special proper-

ties of (2,1)-transverse-read codes. This idea is presented in [18]

for codes correcting deletions in the symbol-pair read channel.

We note that the best known results on codes correcting t dele-

tions require at least 4t log n + o(t log n) bits of redundancy

[29] while it is possible to correct t sticky-deletions using only

t log n+o(log n) bits of redundancy, given a constant t. Hence,

in our scheme for � = 2 and δ = 1, it is easier to correct

shift-errors.

B. Limited Magnitude Errors

In the previous subsection, we studied transverse-read codes

correcting shift-errors in domain wall memories. In this sec-

tion, we focus on substitution errors. A substitution error occurs

when there is a misread in the transverse-read and a symbol is

read incorrectly. Let x = (x1, . . . , xn) ∈ Σn
2 and TR3,1(x) =

y = (y1, . . . , yn−2) where yi = w(x[i;3]). If there is an error

in the transverse-read vector at the i-th position, then we obtain

y′i �= yi. In this work, we assume that the magnitude of an error

caused by transverse-read is limited by a small number b, that is

|y′i−yi| � b. Such an error is called a b-limited magnitude error.

Given two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we

define the b-limited distance between u and v, denoted db(u,v),
as follows. If there is an index i such that |ui − vi| > b then

db(u,v) = ∞. Otherwise, db(u,v) = |{i : ui �= vi}|. That is,

the b-limited distance between the two vectors of fixed length

is either infinity or the Hamming distance between two vectors.

For example, x = (0, 0, 1, 1, 1, 0, 1, 1) and TR3,1(x) = y =
(1, 2, 3, 2, 2, 2). If the output is y′ = (1, 2, 2, 2, 1, 2), we observe

that the 1-limited distance between y and y′ is db(y,y
′) = 2.

An (�, δ)-transverse-read code CTR(n, �, δ) is said to be able to

correct t b-limited magnitude errors if x ∈ CTR(n, �, δ) ⊂ Σn
2
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is a stored message and y′ ∈ Σ
(n−�)/δ+1
�+1 is the output in the

transverse-read channel such that db(y
′, TR�,δ(x)) � t, then it

is possible to recover the vector x from the output y′. That is, if

there are at most t b-limited magnitude errors in the transverse-

read channel, we can recover the original vector x in the code

CTR(n, �, δ).

In this subsection, we focus on the case b = 1 and design

a code to correct 1-limited magnitude errors in this channel.

Before we present the construction of our code, we present the

following codes.

Construction 4 For 0 < P , let the code SV T (n, P ) be

SV T (n, P ) = {c ∈ Σn
q :

n∑
i=1

ici ≡ 0 mod (P + 1);

n∑
i=1

ci ≡ 0 mod 3}.

We note that the above code SV T (n, P ) is similar to the well-

known shifted VT code [19]. The authors in [19] showed that

shifted-VT code can correct a deletion, given knowledge of the

location of the error within P positions. We now present a sim-

ilar result for a single 1-limited magnitude error.

Proposition 1 Given a codeword c ∈ SV T (n, P ), and a vec-
tor c′ such that the 1-limited distance between two vectors is
d1(c, c

′) = 1. If i is an index where ci �= c′i and we know that
i ∈ {a + 1, . . . , a + P}, then we can recover c from c′. Or in
other words, the above code SV T (n, P ) can correct a single
1-limited-magnitude error given knowledge of the location of
the error within P consecutive positions.

Proof: We consider two vectors c and c′. Since there is

only one index i such that ci �= c′i, we obtain
∑n−1

j=0 (j+1)cj −∑n−1
j=0 (j + 1)c′j = (i+ 1)(ci − c′i) and

∑n
j=1 cj −

∑n
j=1 c

′
j =

ci − c′i. We note that |ci − c′i| = 1, that is, ci − c′i is either 1

or -1. Furthermore,
∑n−1

j=0 (j + 1)cj −
∑n−1

j=0 (j + 1)c′j is either

i+1 or −i−1. Since
∑n

i=1 ci ≡ 0 mod 3, we can determine if

ci−c′i is 1 or -1. And thus, we also can determine if
∑n−1

j=0 (j+

1)cj −
∑n−1

j=0 (j + 1)c′j is i+ 1 or −i− 1. Hence, we can find

the exact value of the index i. From the corrupted vector c′, we

can recover the vector c ∈ SV T (n, P ).

Next, we present the constrained code for limited length of

period sub-vector. Let p and m be two positive integers where

p � m. Then, a length-m vector v ∈ Σm
2 which satisfies vi =

vi+p for all 1 � i � m − p is said to have period p. For a

vector u ∈ Σn
2 , we denote by L(u, p) the length of its longest

subvector which has period p. By definition, L(u, p) � p and

for p = 1, L(u, 1) is the length of the longest run in u.

Example 2 Let u = (u1, . . . , u9) = (0, 0, 1, 1, 0, 1, 0, 1, 1) ∈
Σ9

2 be a word of length 9. Since the longest run in u is of
length two, we have L(u, 1) = 2. The subvector u[4, 8] =
(1, 0, 1, 0, 1) of u has period 2 since u4 = u6 = u8 = 1 and
u5 = u7 = 0. This is the longest subvector of u of period 2,
and hence L(u, 2) = 5.

Construction 5 [7] Let Cpe(n, p, t) be a code of length n
such that the length of the longest sub-vector which has pe-
riod p of every codeword c ∈ Cpe(n, p, t) is at most t. That is,
Cpe(n, p, t) = {c ∈ Σn

2 : L(c, p) � t}.

The code Cpe(n, p, t) was well-studied in [7]. The authors in [7]

showed that it is possible to construct the code Cpe(n, p, �log n�)
with only a single bit of redundancy. Now, we are ready to

present a code construction that can correct a single 1-limited

magnitude error for the (2,1)-transverse-read channel.

Construction 6 Let the code C2,1(n, 1) be

C2,1(n, 1) = {c ∈ Σn
2 :c ∈ Cpe(n, 2, log n) and

TR2,1(c) ∈ SV T (n− 1, P = 3 log n)}.

Theorem 7 The above code C2,1(n, 1) can correct a single 1-
limited magnitude error for the (2,1)-transverse-read channel.

Proof: Given a vector c ∈ C2,1(n, 1), we observe the

length of each run of symbol 1’s in the vector TR2,1(c). A

pattern (0, 1k, 0) and a pattern (2, 1k, 2) are valid if and only

if k is even. A pattern (0, 1k, 2) and a pattern (2, 1k, 0) are

valid if and only if k is odd. We call this the run-length rule.

If a single 1-limited-magnitude error occurs at the index i of

TR2,1(c), one or two consecutive runs of symbols 1’s will

violate the run-length rule and thus the output will be an in-

valid (2,1)-transverse-read vector. The location of the error is

within the segment of one or two consecutive runs of symbols

1’s. Since c ∈ Cpe(n, 2, log n), the longest sub-vector with pe-

riod two has length at most log n. Thus, the longest run of 1’s

in TR2,1(c) has length at most log n − 1. So, we can locate

the error within the segment of length P = 3 log n. Then, us-

ing the decoder of the code SV T (n, P ) in Construction 4, we

can correct the 1-limited magnitude error. This concludes the

proof.

We note that the above construction of the code C2,1(n, 1) is

a combination of Construction 4 and Construction 5. Since we

just need a single bit of redundancy to construct C(n, 2, log n)
in Construction 5 and at most log log n+ c bits of redundancy

to construct SV T (n − 1, P = 3 log n) in Construction 4, we

need at most log log n+ c + 1 bits of redundancy to construct

C2,1(n, 1) in Construction 6 for some constant c. The next the-

orem summarizes this result.

Theorem 8 There is a (2,1)-transverse-read code correcting a
single 1-limited magnitude error with at most log log n+ c bits
of redundancy for some constant c.

Lastly, we note that to correct a single substitution of limited

magnitude in the classical channel, it is required to use at least

log n bits of redundancy. The remarkable result in Theorem 8

is that we only need log log n+ c bits of redundancy to correct

one error in this channel.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a new scheme of reading in-

formation in domain wall memories to reduce the number of

shift-operations while still achieving high information rates. We

introduce a new family of codes, called (�, δ)-transverse-read
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codes, and study their properties, maximal asymptotic rates,

and constructions. Furthermore, we show that our scheme of

using transverse-read codes is helpful to correct shift-errors and

substitution errors in domain wall memories. Lastly, we de-

sign several codes which are able to correct multiple over-shift

errors and a code correcting a single limited magnitude error.
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