Transverse-Read-Codes for Domain Wall Memories

Yeow Meng Chee, Senior Member, IEEE, Alexander Vardy, Fellow, IEEE, Van Khu Vu, and Eitan Yaakobi, Senior
Member, IEEE

Abstract—Transverse-read is a novel technique to detect the
number of ‘1’s stored in a domain wall memory, also known as
racetrack memory, without shifting any domains. Motivated by the
technique, we propose a novel scheme to combine transverse-read
and shift-operation such that we can reduce the number of shift-
operations while still achieving high capacity. We also show that
this scheme is helpful to correct errors in domain wall memory.
A set of valid-words in this transverse-read channel is called a
transverse-read code. Our goal in this work is to study transverse-
read codes with respect to their properties, capacity, and applica-
tions.

We first present several properties of transverse-read codes and
show that they are equivalent to a family of constrained codes.
Then, we compute the maximal asymptotic rate of transverse-read
codes for certain parameters. Furthermore, we also present several
constructions of transverse-read codes with high rate. Finally, we
design several transverse-read codes that can correct limited-shift-
errors and limited-magnitude errors in domain wall memory.

I. INTRODUCTION

Spintronic domain-wall memory (DWM), also referred as
racetrack memory, is a promising candidate as a memory solu-
tion that can overcome the density limitations of spin-transfer
torque magnetic memory (STT-MRAM), while still retaining
its static energy benefits [2]-[5]. DWM is constructed from
ferromagnetic nanowires, referred to as fapes or racetracks,
which are separated into domains and are connected to a sin-
gle or a few access transistors to create access ports. The state
of the magnetic domains is accessed by shifting them along
the nanowire and aligning the target domain to an access de-
vice. Unfortunately, due to process variation of deeply-scaled
domain-wall memories [2], slight fluctuations in current com-
bined with imperfections in the nanowires can cause faults in
the shift process. These faults include over- and under-shifting
of the tape, and thus for domain-wall memory to become vi-
able, the shifting reliability must be addressed. As a result,
several innovative approaches have been developed to de-
tect and correct shift-errors in racetrack memory [6]-[10].
Besides that, the access latency and the energy consump-
tion in racetrack memory depend on the average number of
shift-operations. Several works studied how to reduce the
number of shift operations in racetrack memory [11], [12].

This paper was presented in part at the 2021 IEEE International Symposium
on Information Theory (ISIT) [1].

Y. M. Chee is with Department of Industrial Systems Engineering and
Management, National University of Singapore, Singapore (e-mail: ym-
chee@nus.edu.sg).

A. Vardy was with Department of Electrical and Computer Engineer-
ing, University of California San Diego, La Jolla, CA 92093, USA (e-mail:
avardy @ucsd.edu).

V. K. Vu is with Department of Industrial Systems Engineering
and Management, National University of Singapore, Singaporel (e-mail:
isevvk @nus.edu.sg).

E. Yaakobi is with Department of Computer Science, Technion — Israel Insti-
tute of Technology, Haifa, 3200003 Israel (e-mail: yaakobi@cs.technion.ac.il).

Another approach to overcome the faults in the shifting pro-
cess of the DWM was proposed recently in [13]-[15]. In these
works, a novel transverse-read (TR) mechanism was developed
in order to provide global information about the data stored
within a nanowire. In particular, transverse-read can detect the
number of ones among the data stored in a DWM without shift-
ing any domains, while still requiring ultra-low power. However,
detecting only the number of ones in the DWM significantly re-
duces the information rate that can be stored within the memory.
Hence, the authors of [15] also demonstrated how TR can be
applied to partial segments of the nanowire, such as from an
end to an access point or between two access points. This en-
ables a segmented TR which allows access to all of the bits of
an arbitrarily long nanowire in several steps, while maintaining
isolated current paths. While independently sensing several seg-
ments can increase the memory’s information rate, this increase
is still far from reaching its full potential.

In this work, we propose a novel scheme that simultane-
ously combines the two important features of DWM. On one
hand, we use transverse-reads in order to sense the number of
ones between two consecutive access points, and on the other
hand we still shift all the domains so that we can transverse-
read to sense the number of ones in different segments every
time. In general, we consider a message * = (z1,...,z,) of
n information bits stored in n domains and consecutive access
points such that each time we can transverse-read a segment of
length /. That is, in the first read, the Hamming weight of the
first length-¢ segment x1,...,x, is sensed. Next, we shift all
domains in ¢ positions and sense the Hamming weight of the
length-¢ segment (z541,...,xs54¢) in the second read. We keep
shifting and sensing until the last segment (k541 ..., Trots)
(for simplicity, we assume that there is an integer k such that
n = ké +). For example, we consider the case n = 12, = 2,
and / = 4. If « = (0,0,1,0,1,0,1,1,0,0,0,0), the output in
our reading scheme is (1,2,3,2,0). There exist other vectors,
for example y = (0,0,0,1,0,1,1,1,0,0,0,0) # a, that have
the same output (1,2,3,2,0). Hence, we may not obtain the
full capacity using this scheme. First, we observe that the in-
formation rate in this scheme depends on § and ¢. For example,
when § = ¢ = 2, we show in this paper that the information
rate is log(3)/2 ~ 0.7925. Then, we observe that this scheme
significantly reduces the number of shift-operations by a fac-
tor of about § times. For example, when § = 2, if we just
shift normally about n/2 times, we can read only half of the
information bits, however using our scheme, we can achieve in-
formation rate roughly 0.7925. Our first question of interest is
whether we can achieve higher information rates. Hence, we are
interested in finding the trade-off between the number of shift-
operations and the maximal information rate under this setup.
Furthermore, we can show that this scheme is also helpful to
correct shift-errors in DWM. From a practical point of view,

this scheme captures the two features of DWM in order to sig-
nificantly reduce the number of shift operations and mitigate
the shift errors, while still supporting high information rates.
From a theoretical point of view, it poses several interesting
challenges in combinatorics and algorithms.

The rest of this paper is organized as follows. In Section II,
we present the necessary notations and define the codes for-
mally. In Section III, we study transverse-read codes with re-
spect to their properties, maximal asymptotic rates, and con-
structions. Then, in Section IV, we show that our scheme of
using transverse-read codes is helpful to correct shift-errors in
domain wall memories. Finally, in Section V, we summarise
our contributions in this work and discuss some future works.

II. DEFINITIONS AND PRELIMINARIES

Let ¥, = {0,1,...,¢ — 1} denote the alphabet of size ¢
and [n] denote the set {1,2,...,n}. For each sequence u =
(ul, - ,un) S Z:]Lv let Uy = (ui, Ui 1y ey uH_g_l), 1<i<
n — ¢ 4+ 1, denote the length-¢ substring of w, starting from
index i. A g-ary code C of length n is a set of ¢-ary sequences
of length n, that is, C C X7. For each code C of length n,
we define its rate to be R(C) = log,(|C|)/n, where |C| is the
size of the code C. Let O : Eg — N be a mapping from a ¢-
ary codeword of length ¢ to a natural number. Let n, ¢, d, k be
integers such that n—/¢ = k. We define the following mapping,

. k+1
(I)l,é : 22 — N s

where @y 5(z) = (P(zp), P(TEs10)s - P(Tpsr1sg) €
N*+1 given a vector & = (z1,...,7,) € Y- The vector
Oy 5(x) is called the (P,¢,0)-segment read vector of .
The mapping ®,; may not be injective, and thus there may
be two vectors @ and y such that @y 5(x) = P, s(y). Fur-
thermore, ®; s is also not surjective, that is, there is a vector
v € N¥*1 such that there does not exist any vector = € Xy
such that @ 5(x) = v. A vector u € NF! is called a valid
(®,¢,0)-segment read vector if there exists a vector € Xy
such that ®; 5(x) = u. A channel that only accepts the valid
(®,¢,0)-segment read vectors is called the (P, ¢, J)-segment
read channel.

Note that it is also possible to define the cyclic version of
these segment-read vectors, however, we prefer the more prac-
tical non-cyclic version. In this work, we always assume that
n—+{¢=Fko, ¢ and § are fixed while n and k tend to infinity.

If 6 = 1 and ®,; is injective, that is ®y1(x) # Pp1(y)
for all @ # vy, then the (®,¢,1)-segment read vector of x is
equivalent to an ¢-symbol read vector of x, defined and stud-
ied in [20], [21]. In this case, any vector in Zﬁl“ is a valid
(®, £, 1)-segment read vector, where m = ¢°. We are interested
in a code with the ability to correct errors which have been well
studied in the context of /-symbol read channel [20]-[24]. There
are many constructions of codes correcting substitution errors
[20]-[24], [28] and some other codes correct synchronization
errors, including deletions and sticky insertions [18].

In the general case, when ® can be any mapping (may not
injective), finding the maximal number of the (®, ¢, d)-segment
read vectors and the capacity of the (®, ¢, §)-segment read chan-
nel is an interesting challenge. Owing to their application in
nanopore sequencing of DNA [25], the (P, ¢, §)-segment read
channel has been studied independently recently. However, only

the case 0 = 1 was investigated and the codes do not have the
ability to correct errors. In this work, we focus on the case where
® is the weight function owing to the application in racetrack
memory and consider various cases of 4.

We now examine a model of domain wall memory of n do-
mains and two access points that are ¢ positions far apart. A
message, which is a binary vector of length n, will be stored in
these n domains. Two read-ports can transverse-read to sense
the weight of a segment of length ¢. For example, Figure 1 illus-
trates a domain wall memory with twelve domains and two ac-
cess ports. To read the information in the domain wall memory,
besides the transverse-read technique, we also need the shift op-
eration. In each shift operation in the domain wall memory, all
domains together move ¢ positions. Let & = (z1,...,2,) € Xy
and let the weight function w : % — ¥, _1),41 be such that
for any @ = (21, 22,...,2,) € X} then w(x) =Y 7" | x;. So,
w(x) is the weight of the vector x. We define

.\ k+1
TRy Sy — S0

where TRy s(x) = (w(z[1,q), W(TE41,0), - W([s41,0))-
We note that, owing to the application in domain-wall memory,
in this work, we only focus on the case ¢ = 2 and the stored
message x € X4. The output in the transverse-reading scheme
is TRy s(x). We observe that TRy 5(x) is actually the (®, ¢, 0)-
segment read vector of x. So, TRy s(x) is called the (¢,9)-
transverse-read vector of x. The mapping T'R, s is not injec-
tive, that is, there are two vectors x and y such that Tngg(m) =
TRy s(y). We are interested in a set of vectors & such that the
mapping T'R s is injective for this set.

Definition 1 Let n, 4,6, k be integers such that n — { = ké.

1) A binary ({,¢)-transverse-read code of length n, de-
noted by Crr(n;(,98), is defined as a set of vectors
such that for any two vectors x,y € Crgr(n;t,d),
TRz’g(iL') 75 TRg’(;(y). That is,

CTR(n; E, 5) = {a: € E;L :Va; 75 wj,TRg,(s(wi) 7& TRz,(s(:l:j)}.

2) The largest size of a length-n binary (¢, 0)-transverse-read
code will be denoted by A(n;{,) and the maximal asymp-
totic rate for fixed ¢ and § is given by

logy (A(n; £, 6))

R(¢,6) = limsup 1oL ,

k—o0

where n = 0 + ké.

Furthermore, the mapping T'I?, s is not always surjective, that

is, there exist ¢,/ and a vector u € Zlg_tll such that for all €

X7, it holds that TR, s(x) # u. So, we now define a new class

of vectors in £}

Definition 2 Let n, ¢, d, k be integers such that n — { = kd.

o A vector u € E]gj_'ll is called a valid ({,0)-transverse-
read vector if there exists a vector x € X5 such that
TRA(;(:B) = u.

o The set of all such vectors w of length k + 1 is called
the valid (¢, 0)-transverse-read code of length n and is
denoted by TR(n;(,8) C Eﬁ__ll.

o The maximal asymptotic rate of the valid (¢, 0)-transverse-
read code, given (.0, is

logy (ITR(n; ¢, 6)])

R(¢,6) = limsup w5+ 0)

k—oco

where n = ko + /.

We note that in this work, we only consider the case where
(n—20)/6 =k is an integer.

tn = 13,0 = 3,6 = 2,k = 5. Let * =
0,1,0,0,1,1,0) € XI% Then, TR32(x) =
is the (3, 2)-transverse-read vector of x. Hence,
(1,3,2,1,1,2) is a valid (3,2)-transverse-read vector. Let
v = (0,3,3,0,0,3). There does not exist any vector y € $13
such that TR3 2(y) = v. Hence, v = (0,3,3,0,0,3) is not a
valid (3, 2)-transverse-read vector.

Each codeword in the (¢,0)-transverse-read code is
equivalent to a valid (¢,0)-transverse-read vector. Hence,
|TR(n;¢,8)| = A(n;£,0). The channel that only accepts valid
(¢, 0)-transverse-read vectors is called the (¢, J)-transverse-
read channel. The capacity of the channel is the maximal
asymptotic rate of the (¢, d)-transverse-read code.

We note that to read data in a racetrack memory, we nor-
mally read bit by bit and need a shift operation each time we
read a bit. Hence, to read a message of length n, we need
to shift n times. Using the transverse-read, in each time, we
can scan a segment and will shift all domains by § positions
to read the next segment. Thus, to read a message of length
n, we only need to shift k = [n/d] times. For example, in
Figure 1, two access ports can transverse-read a segment of
length three and each time, we shift all domains two posi-
tions. If the stored message is a binary vector of length 13,
¢ = (c1,¢2,...,c13), the output in our reading scheme is
TR372(C> = (’U)(Cl, Co, 63), 11)(63, Cyq, 65), ey ’LU(Cll7 C12, 613)).
In this case, we only need to shift all domains six times. How-
ever, given ¢ and ¢, the maximal information rate in racetrack
memories is R (¢,), which may not achieve the full capacity.
Hence, in this work, we are interested in finding the maximal
size A(n,{,0) and the maximal asymptotic rate R (¢,). Given
0, we are also interested in finding the optimal ¢ such that the
asymptotic rate R (¢, 0) is maximal. Furthermore, we also seek
for some constructions of (¢, ¢)-transverse-read codes with
efficient encoding/decoding algorithms.

Besides that, both shift-operation and transverse-read may
not work perfectly and errors may occur. It is known that the
shift-errors can be modelled as synchronizations, including
sticky-insertions and deletions [7]-[9]. We also see that errors
in transverse-read vector may cause some substitution errors.
Hence, in this work, we also study some transverse-read codes
which can correct shift-errors and substitutions errors.

From Definitions 1 and 2, we can see that an (¢,0)-
transverse-read code is equivalent to a valid (¢, §)-transverse-
read code through the mapping TR, s. Hence, in this work,
we use the term (¢, §)-transverse-read code for both.

IIT. TRANSVERSE-READ CODES

In this section, given ¢,d, we study (¢, J)-transverse-read
codes, their properties, and aim to find the maximal asymp-
totic rate of these codes. We are also interested in constructing
these codes with efficient encoding and decoding algorithms.

We first present several basic results on A(n; ¢, §) and R (¢, §)
in the following theorem.

Theorem 1 Let n,?, 6, and k = (n —
gers.
1) For £ = 1, it holds that A(n;{ =
R(¢=1,0)=1/6.
2) For £ < 6, it holds that A(n;{,0)
R(L,8) = (D)
3) For 6 = 1 and some constant !, it holds that A(n;{,6 =
D=2 and R({,§ =1) = 1.

0)/6 be all positive inte-

1,6) = 25 +! and

= (+1)" 5! and

Proof:

1) To prove this claim for £ =1 and k = (n —1)/6, we con-
sider a vector = (z1,...,2,) € X and its transverse-
read vector TRys(x) = (T1,%541,---,Tko+1) €

E';jfll We observe that for any vector w € X5+1
u is a valid (/,)-transverse-read vector. Hence,

A(n,t = 1,0) = |TR(k,¢ = 1 5)\ = 2%+ and thus
R(¢=1,0) =limsup;,_, ., ,f(;g_lé 5

2) We now consider the case ¢ < d. Let & = (21,...,2,) €
35 and
TRes(x) = (w(@py), w(@pisg), - w(@rsi1.g) €
Z’;ill Since all segments @[5y, for 0 < @ < k,
are non-overlapping, any vector u € Zk+1 is a valid
(¢,0)-transverse-read vector. Hence, A(n,¢,0) =

—¢
ITR(k,0,0)] = (£ + 1)+ = (“5241 and thus
. k+1)(logs (£+1 log, (441

R(£,0) = limsupy._,, (HREED) — 08D,

3) To prove this claim, we consider two length-n vec-
tors w = (0,...,0,u1,...,up—¢) € X% and v =
(0,...,0,v1,...,0,—¢) € X% such that u # v. We ob-
serve that TRy 5-1(u) # TR;s=1(v). Let Crr(n,,9)
be a set of all vectors of length n that the first ¢ entries
are zeros. So, Crgr(n,?¢,8) is a binary (£,6 = 1)-
transverse-read code and |Crgr(n,f,6 = 1)] = 2"~*
Therefore, A(n,¢,§ = 1) > 2" ¢ and R({,6 = 1) =
lim supy,_, o &—jfl =1

|

For all cases in Theorem 1, we can find the maximal asymp-

totic rate of (¢, §)-transverse-read codes. In the rest of the paper,

we focus on the more challenging cases when 1 < § < £. First,
we establish the case where ¢ is a multiple of 6.

Theorem 2 Given two positive integers 0 and { such that 0 is
a multiple of 0, it holds that

log, (6 + 1)
—

Before we prove Theorem 2, we show the following result.

R(£,5) =

Lemma 1 Given two positive integers § and { such that { is a
multiple of 0, it holds that

log,(d + 1)

R(L,6) < ; (1

Proof: Let ny = n/d and ¢; = (/5 be two posi-
tive integers. Given a vector € = (1,...,x,) € 3%, let
f(iL’) = (fl,...,fnl) (S ESL}H where fi = w(a:[(i,l)gﬂ;g]) S
{0,...,0} for 1 < ¢ < ny. We see that TRy s—2(x) =
(w(f[l;él])vw(f[Q;él])v'"aw(f[nl—ll-‘rl;@l]) S E?Z1+1€)1(+)1 Let
Crr(n,?,8) be a binary (¢,0)-transverse-read code, that

is, for two different vectors x,y € Crgr(n,¢,0), it holds

‘ ‘ ‘Cl‘CQ‘CS‘64‘65‘06‘07‘08‘69‘010‘011‘012‘013‘ ‘

Fig. 1: Racetrack memory with twelve data domains and two heads

that TRys(x) # TRys(y). Hence, f(z) # f(y). So,
|Crr(n, £,0)| < 251, = (6 +1)", for any (£, J)-transverse-
read code Crr(n, ¢, d). Therefore, A(n, ¢,0) < (§+1)"/2, and
thus R(¢,0) < %. [|

We now construct a binary (/,¢)-transverse-read code

Crr(n,t,8) as follows.

Construction 1 Let F = {(f1, fo, .., fn,) : Ji =0 for all i =
L...,61} C X5, be a set of all (6 + 1)-ary vectors
of length ny such that their first {1 entries are all zeros.
We define the mapping ¢ : F — X4 such that, for each
f=U o fn) €F, 0(f) =2 = (21,...,20) € XY such
that T((;—1)511;5) = (09=917) if f; = j. Let n = dny, £ = 644,
and let Crr(n,t,0) = &¢(F) ={o(f) : f € F} be a set of all
vectors x of length n such that there is f € F and x = ¢(f).

For each € Crr(n;¢,d), we obtain TR, s(x) = TRy, 1(f)
where ¢(f) = «. Hence, given two vectors © # y €
Crr(n;£,0), TRy 5(x) # TRes(y). So, the code Crr(n;,9)
from Construction 1 is a (¢,0)-transverse-read code of length
n. Moreover, |F| = (§ + 1)~ and thus |Crgr(n,t,6)| =
| F| = (6 + 1)~ Therefore, A(n,£,6) = (6 + 1)~ and
thus, for any even integer /,

1 0+1
R(0.5) > %. @)
From inequalities 1 and 2, we obtain R({,d) = %.

Hence, Theorem 2 is proven.
In particular, when § = 2, we obtain the following corollary.

Corollary 1 Let ¢ be an even number. Then, it holds that

o log,(3)
2

R(L,5=2) = ~ 0.7925.

Next, we continue to study the case where § = 2, ¢ is an
odd integer and provide a construction of a (¢, J)-transverse-
read code as follows.

Construction 2 Given two odd integers n and ¢, let k = (n —
0)/2. We define the mapping

g: ¥k ¥

as follows. For each uw = (uy,...,u;) € 3§ g(u) = ¢
(c1y...,¢cn) € XU such that ¢; = 0 for all i = 1,...,¢
and for 1 < i < k, (cop2i—1,co42:) = (0,0) if u; =
(Cov2im1,coq2i) = (0,1) if uy = 1, and (coqi—1, Cot2i)
(1,1) if u; = 2. Let Crr(n,4,2) = {g(u) : u € Xk}

o

We now consider u # v € Xk, then g(u) # g(v). Hence,
|Crr(n, 0,0 = 2)| = |Xk| = 3*. Moreover, if g(u) # g(v)
then TRy 2(g(w)) # TRy 2(g(v)). Thus, the code Crr(n, ¥, 2)
constructed above is an (¢, d)-transverse-read code. Hence,
A(n,€,2) > |Crr(n,¢,2)| = 3% and thus, for any odd integer
l,
~ 0.7925.

I 3
R((,2) > =22

3)

From inequalities (2) and (3), we obtain the following result for
any integer /.

Lemma 2 For any integer { > 2, we obtain the following lower
bound on the rate of the ({,0)-transverse-read code when § =
2,

R(L,6=2) > ~ 0.7925.

log, 3
2
Now, we extend the result in Lemma 2 for arbitrary values of
¢ and § such that £ > ¢. Namely, we construct a binary (¢, d)-
transverse-read code as follows.

Construction 3 Given four integers k,l,0,n such that ké =
n — . We define the mapping 1 as follows,

1/J : 2§—i—1 - ng

for each w = (uy,...,ux) € 5., then Y(u) = ¢ =
(c1y...,¢n) € X8 such that ¢; = 0 for 1 < i < £ and for
1<i <k ifu; = j then cpyysii—1)41;56—5 is all-zero vector
of length 6 — j and cjpy5(i)—j41.5) is all-one vector of length
j. Let Crr(n, 0,0) = {t(u) : u € E’gﬂ}.

We state the result formally as follows.

Theorem 3 The code Crr(n,t,d) constructed in Construction
3 is a binary (¢, 0)-transverse-read code of length n and thus
A(n,,0) = (6 + 1)k

Proof: We consider any two vectors u,v € E’g 11
such that w # w. Let ¢ be the smallest index such that
u; # v;. Hence, ¥(w)(o15(i—1)+1;6) 7 ¥(V)[e46(i—1)+1;6)- Thus
(u) # ¥(v). We now consider two vectors TRy 5(1(u)) and
TRys(¢(v)) and see that TRy 5(1h(w))ip1 = w(y(w)sig) 7
w(Y(v)5i) = TRes(Y(v))ig1. Hence, TRys5(¢(u)) #
TRy s5(1(v)).

Therefore, we conclude that the code Crr(n,¢,d) con-
structed in Construction 3 is a binary (¢,0)-transverse-read
code since for any x,y € Crr(n,{,d), we get TRy s(x) #
TRy,5(y). Moreover, |Crr(n,(,0)| =S5, | = (6 + 1) since
1 is an injection. Hence, A(n,/,8) > |Crr(n,¢,8)| = (§+1)*
and the theorem is proved. [|

From Theorem 3, we obtain the following result on the lower
bound on the maximal asymptotic rate of (¢, d)-transverse-read
codes.

Corollary 2 If ¢ and 6 are two integers such that { > § > 1

then
log, (6 + 1)

o

Furthermore, from Construction 3, there is a binary (¢,0)-
transverse-read code with an efficient encoding algorithm.

In the rest of this section, we present a technique to find the
asymptotic rate of (¢, ¢)-transverse-read codes exactly, given
¢ > ¢ > 1. To find the asymptotic rate of the above codes,

R(¢,6) >

we first prove that these codes are equivalent to a class of con-
strained codes avoiding some specific patterns and a class of
regular languages. Then, we can use some known techniques
in constrained codes and regular languages using finite state
machines to compute the maximal asymptotic rates.

We first consider the case ¢ = 3 and § = 2. We recall that
A(n,l,0) = |TR(k,¢,8)| where TR(k,¢,0) is the set of all
valid (¢, §)-transverse-read vectors of length k + 1. Let u =
(u,...,up1) € TR(E, L = 3,6 = 2) C X! be a valid
(¢ = 3,0 = 2)-transverse-read vector. So, there exists a vector
x € X such that TRy 5(x) = w. Then, for each 1 < i < k+1,
i = W(Toi—1, T2i, T2i1) = T2i—1 + T2 +22i41 € {0,1,2,3}.
We observe that TR(k,¢ = 3,6 = 2) is a regular language. It
is recognized by a non-deterministic state machine as in Fig-
ure 2. The machine is a graph of two nodes, 0 and 1. For
each w;, there is a corresponding tuple (29,1, Z2;, Z2;41) such
that u; = w(wa;_1, 22, T2i+1). The node j corresponds to the
state xo,11 = j for j = 0,1. We start with u; = 0, that is,
Toj—1 + To; + Toi41 = 0, and thus zo;_1 = 9; = Toj41 = 0.
The machine is at state 0. If u;11 = 0 then the machine remains
at the same state 0 and there is an edge labelled O from node 0 to
itself. If u; 1 = 1, thatis, ©o; 41 +x9;42+x2;+3 = 1, then zo; 43
can be either O or 1. Hence, there is an edge labelled 0 from node
0 to itself and there is an edge labelled 1 from node 0 to node
1. If Uil = 2, that is, Toi41 + Tojqpo + Toip3 = 2, then since
To;4+1 = 0, it holds that x9,, 9 = x9;413 = 1. Hence, the state
of the machine is 1 and there is an edge labelled 2 from node
0 to node 1. Once the machine is at state 1, that is, x9,43 = 1,
we consider the next symbol u; 1o = Z9;t3 + T2it4 + T2i45.
Since T2i4+3 = 1 we have Ui4-2 = 1. If Uit = 1 then T2i+4 =
T9;+5 = 0 and the machine will be at state 0. So, there is
an edge labelled 1 from node 1 to node 0. If u;.2 = 2 then
Toi4+4 + x2;45 = 1. Hence, x9;15 can be 0 or 1, that is, the
machine will be at state 0 or state 1. So, there is an edge la-
belled 2 from node 1 to node 0 and a self loop labelled 2 from
node 1 to itself. If w;42 = 3 then 29,44 = 2,45 = 1 and
the machine will be at state 1. So, there is a loop labelled 3
from node 1 to itself. Therefore, the state machine in Figure
2 is a non-deterministic finite state machine. It is well known
that for any regular language which can be recognized by a
non-deterministic finite state machine, it can be expressed by a
deterministic state machine. For example, in the case ¢ = 3 and
0 = 2, the regular language T'R(n, ¢, ¢) is recognized by a de-
terministic finite state machine as in Figure 3. In this diagram,
we have a new node “*” which is the state that x9;_; can be 0
or 1. The adjacency matrix of this deterministic diagram is:

Ag =

—_ ==

11
2 1
11

Next, using the well-known Perron-Frobenius theory [17], we
can exactly calculate the maximal asymptotic rate of (¢ = 3, =
2)-transverse-read codes to be (logy A)/2 = 0.8858 where \ =
3.4142 is the largest real eigenvalue of Ag.

Additionally, the code T'R(k,¢,0), which can be expressed
by the state machine in Figure 3, is also a constrained system.
We now state the following result.

Fig. 2: Non-deterministic finite state transition diagram ¢ =
3,0 =2

Fig. 3: Deterministic finite state transition diagram ¢ = 3, = 2

Theorem 4 We consider the following set
F=AGa1,

A valid (¢ = 3,0 = 2)-transverse-read code is a constrained
code avoiding all patterns in F.

2)%,0),(3,(1,2)",1,3),(0,(2,1)",3), (0, (2,1)",2,0)}.

Theorem 4 can be proven by showing that both above codes
have the same finite state transition diagram as in Figure 3.

Next, we aim to extend the above results for other values of
¢ > > 1. We now build a non-deterministic finite state ma-
chine G5 = (V%% E%%) where V% is the set of all vertices
and E% is the set of all edges. The graph Gy s has V5| =
2¢=9 vertices and each vertex represents a binary word of length
s =+{—0.If { > 2s, there are directed edges from the vertex
xr = (x1,...,x5) to the vertex y = (y1,...,ys) with labels
{a,a+1,...,a+ ¢ —2s} where a = >_;_,(z; +y;) for any
pair of vertices. If £ < 2s, there is a directed edge from the ver-
tex * = (x1,...,xs) to the vertex y = (y1, ..., ys) if and only
if T(511,5-6) = y[l s—s]- Such an edge is labelled by b where
b= i 1%+ 5 . s.19j- So, in both cases, we can build
a non-deterministic finite state machine of the transverse-read
channel.

For example, when ¢ = 5 and 6 = 2, we can build a non-
deterministic finite state machine of (¢ = 5, = 2) as in Figure
4. In the graph, there are 8 nodes, each of which is a state of
the machine. We start with u; = 0 and the machine is at state
(0,0,0). If uz = 0, then the machine stays at state (0,0,0) and
there is a loop with label 0 from (0,0, 0) into itself. If us = 1,
the machine can move to state (0,1,0) or (0,0, 1). There is an
edge from state (0,0,0) to state (0,1,0) with label 1 and an
edge from state (0,0, 0) to state (0,0, 1) with label 1. If ugs = 2,
the machine can move to state (0, 1,1). There is an edge from
state (0,0,0) to state (0,1,1) with label 2. We can consider
other states and build the non-deterministic state machine of 8
nodes and multiple edges as in Figure 4. For simplicity in the
illustration, in Figure 4, we only label all edges that go out from
nodes (0,0,0) and (1,1,1).

Once we have a non-deterministic finite state machine, it is
a folklore that we can convert from a non-deterministic finite
state machine to a deterministic finite state machine. Hence,

Fig. 4: Non-deterministic finite state transition diagram ¢ =
5,0 =2.

we can compute the capacity of the constrained channel repre-
sented by this machine, and thus the maximal asymptotic rate of
transverse-read codes. Several numerical results were computed
and are tabulated in Table I.

TABLE I: The maximal asymptotic rates of (¢,)-transverse-
read codes.

=3 (=4 =5 =6 L=17 =38
6=2 | 0.8857 | 0.7925 | 0.9258 | 0.7925 | 0.9361 | 0.7925
6 =3 | 0.6667 | 0.7298 | 0.7475 | 0.6667 | 0.7702 | 0.7744
6=4 0.5 0.5805 | 0.6243 | 0.6462 | 0.6462 | 0.5805

From the results in Table I, we see that 0.936 = T'Ry—7 s—2 >
TRy—5.5=2 > TRy—3 5=2 > TRi—25—2 = 0.795. So, using
our scheme, even if we reduce the number of shift-operations
to 50%, we can still achieve the information rate 93.6% when
¢ = 5. We observe in Table I that the asymptotic rates of
(¢,6 = 2) are increasing when ¢ is odd and increasing. For
any value of /, the rate satisfies TRy ;-2 < 1. We are inter-
ested in finding the maximum asymptotic rates TRy ;—o for
all odd numbers ¢. We obtained a trivial lower bound and an
upper bound, 0.936 < max, TRy s—> < 1. We now state the
following conjecture and will study further in future work.

Conjecture 1 Let 6 = 2 and (1,05 be two odd number such
that 01 > 5.

1) The following inequality holds,
TRy, s=2 > TRy, s=2.

2) For any € > 0, there exists an odd number { such that
TRps5—2>1—¢.

We remark that the algorithm converts a non-deterministic
state machine with v nodes to a deterministic state machine
with 2¥ nodes. Hence, it is not efficient to compute the capac-
ity of the transverse-read channel when ¢ is large. However,
when /¢ is small, it is fast to build a deterministic finite state
machine of (¢, 0)-transverse-read channel. Using the state ma-
chine, it is possible to construct an (¢, d)-transverse-read code
achieving the capacity with efficient encoding/decoding algo-
rithms. We may use the well-known finite state splitting algo-
rithms [17] or some rank/unrank algorithms. In the following
section, we will study the ability of correcting shift-errors and
substitution-errors of these codes.

IV. TRANSVERSE-READ CODES CORRECTING ERRORS

Given £, §, in this work, we consider the channel that only ac-
cepts (¢, 0)-transverse-read vectors. In the previous section, we
investigated the capacity of the channel which is the maximal
asymptotic rate of (¢, ¢)-transverse-read code and constructed
some codes with high rate. In this section, we study and con-
struct some error-correcting codes for the (¢, §)-transverse-read
channel. We consider two types of errors in the channel, namely,
shift-errors and substitution errors. We construct codes correct-
ing shift-errors in Subsection IV-A and codes correcting substi-
tution errors in Subsection I'V-B.

A. Limited-Shift-Errors

In this subsection, we start with the (¢, ¢)-transverse-read
channel when ¢ = 2 and § = 1. We consider a domain
wall memory of n domains and two access ports which are
within two locations. These two access ports can transverse-
read to detect the number of ones in a segment of length
(. Let ¢ = (x1,...,2,) € X3 be the stored vector in
the domain wall memory. Using the transverse-read tech-
nique in each segment of length / = 2 and shift-operation
one position in each step, we obtain the output vector
TRy1(x) = (x1 + 22,22 + X3, ...,Tp_1 + xy) Which is the
transverse-read vector of . In this scheme, a shift-operation
might not work perfectly and errors may occur. For example,
an under-shift error occurs at the first position, the first en-
try in the output is repeated, and thus, we obtain the output
(1 + 22,21 + 2,29+ X3, ..., Zp—1 +). This kind of error
can be modelled as a sticky-insertion. Besides that, if there is
an over-shift error, one entry in the output is deleted. For ex-
ample, if an over-shift occurs at the second position, we obtain
the output (x1 + 2,23+ x4, ..., Ty—1 + ;). So, an over-shift
error can be modelled as a deletion in the transverse-read
vector. Our goal in this subsection is to correct these errors.

Normally, to correct these errors, one may need to use some
classical codes correcting deletions and sticky-insertions. We
note that, there are several asymptotically optimal binary codes
that correct ¢ sticky-insertion errors with only ¢logn redun-
dancy bits. However, it is much more complicated to correct ¢ >
1 deletions. In this work, we show that transverse-read codes
have some special properties that are useful for correcting these
shift-errors. Let us consider a vector = (x1, 22, 3, T4, T5) =
(0,0,1,1,0) and its transverse-read vector TRo 1(x) = (1 +
X9, To + X3, 3 + 24,24 +x5) = (0,1,2,1). Once an over-shift
occurs, a symbol in TRy 1 () is deleted and we may obtain an

invalid word. For example, an over-shift occurs in the second
position and the symbol x5 + x5 = 1 is deleted. Hence, we ob-
tain the vector (0, 2, 1). However, the word (0, 2, 1) is not a valid
(2,1)-transverse-read vector since 0 can not be followed by a 2.
Hence, we can detect and locate a single deletion in this case.
Based on this simple observation, we can show a strong con-
nection between a code correcting sticky-deletions and a code
correcting ¢ deletions in our channel where there are no consec-
utive deletions. We note that, a sticky-deletion is an error that a
bit in a run is deleted but the whole run cannot be deleted. Codes
correcting sticky-deletions have attracted a lot of attention re-
cently [26], [27] and there are known constructions of codes
correcting ¢ sticky-deletions with at most tlog(n) + o(logn)
bits of redundancy. Hence, we are able to design a code cor-
recting ¢ deletions, where there are no consecutive deletions,
with at most tlog(n) + o(logn) bits of redundancy. For sim-
plicity, we first present the result for =2, = 1, and t = 1. If
there is no error, then we showed in part 4 of Theorem 1 that
the maximal size of the (2,1)-transverse-read code is 27~ 1. In
the following result, we will show that the maximal size of the
(2,1)-transverse-read code correcting is O(2" /nt).

Theorem 5 Let Cy C X% be a binary code correcting a single
sticky-deletion. Then, the code Cy can correct a single deletion
in the (2,1)-transverse-read code. That is, if a deletion occurs
in a transverse-read vector TRy 1(c) where ¢ € Cy, we can
recover the original word c.

Proof: Let ¢ = (c1,¢2,...,¢,) € Cy be a stored
word. Then, v = TRy1(c) = (u1,ug,...,u,—1), Where
u; = ¢; + ciy1, 1s the (2,1)-transverse-read vector of c. We
observe that in a valid (2,1)-transverse-read vector, the run
of I’s has odd length if it is bounded by two different sym-
bols, that is (0,1,...,1,2) or (2,1,...,1,0), and the run of
I’s has even length if it is bounded by the same symbol, that
is (0,1,...,1,0) or (2,1,...,1,2). Hence, if the symbol 1 is
deleted in the valid (2,1)-transverse-read vector, we can detect
and locate the error and thus correct it. We now consider the
case where the symbol O or 2 was deleted. Note that if u; =0
then ¢; = ¢;41 = 0 and if u; = 2 then ¢; = ¢;4; = 1. Hence,
if the symbol O or 2 is deleted in the transverse-read vector
u, a sticky-deletion occurs in the stored word ¢. Since ¢ € C;
which can correct a single sticky-deletion, we can correct the
error and recover the original word c. Hence, we can recover
the stored word c. Therefore, code C; can correct a single
deletion in the (2,1)-transverse-read code. [|
It is known that correcting a sticky-deletion is easier than cor-
recting a deletion. Hence, the transverse-read code is helpful in
correcting a deletion (over shift error). It is interesting that we
can also extend the result for codes correcting multiple dele-
tions. We present the result on codes correcting multiple dele-
tions where there is at most a single deletion in each run as
follows.

Theorem 6 Givent > 1, let Cy be a code of length n correcting
t sticky-deletions. If there are at most t deletions in a (2,1)-
transverse-read vector TRy 1(c) where ¢ € C; such that there
is at most a single deletion in each run of same symbols (length
of each run can be one), then we can recover the original word
c.

Proof: To prove the theorem, we just need to follow
iteratively the argument in the proof of Theorem 5. Let
c = (c1,¢9,...,¢,) € C1 be a stored word. Then, u =
TRQJ(C) = (ul,u2, L. ,un_l), where u; = ¢; + ¢;41, is the
(2,1)-transverse-read vector of ¢. Let v = (v1,v2, ..., Vp_t_1)
be the output that we receive after ¢ deletions occur. Since w is
a valid (2, 1)-transverse-read vector, if 0170 or 2172 is a sub-
string of w, then r is an even number. If there is a deletion in
a run of symbols 1’s in a pattern 0170 or 2172, we can detect
this error by checking the parity of r. To correct this error, we
just need to add the symbol 1 in this position of the vector v.
Furthermore, if 01°2 or 21°0 is a substring of w then s is an
odd number. Similarly, we can detect and correct a deletion in
each run of 1I’s. After we correct all deletions in each run of
I’s in the output, we obtain a valid (2, 1)-transverse-read vec-
tor of length m, v’. So, there is a vector ¢/ € XJ* such that
TR21(c') = v'. If m < n, we can obtain v’ from v after
deleting (n — m) symbols of 0’s or 2’s. That is, we can ob-
tain ¢’ from ¢ after (n — m) sticky-deletions. Since the code
C; can correct at most ¢ deletions and n — m < ¢, we can cor-
rect all these errors to recover c. This completes the theorem’s
proof. [|
From the above proof of Theorem 6, we can obtain a sim-
ple decoding algorithm to correct at most ¢ deletions in the
transverse-read code. So far, we showed that our scheme of us-
ing (¢,0)-transverse-read code is helpful to correct shift-errors
for { = 2 and § = 1. The main idea is to use codes correcting
sticky-deletion to correct deletions, using some special proper-
ties of (2,1)-transverse-read codes. This idea is presented in [18]
for codes correcting deletions in the symbol-pair read channel.
We note that the best known results on codes correcting ¢ dele-
tions require at least 4tlogn + o(tlogn) bits of redundancy
[29] while it is possible to correct ¢ sticky-deletions using only
tlog n+o(logn) bits of redundancy, given a constant ¢. Hence,
in our scheme for / = 2 and § = 1, it is easier to correct
shift-errors.

B. Limited Magnitude Errors

In the previous subsection, we studied transverse-read codes
correcting shift-errors in domain wall memories. In this sec-
tion, we focus on substitution errors. A substitution error occurs
when there is a misread in the transverse-read and a symbol is
read incorrectly. Let @ = (z1,...,2,) € X5 and TRz 1 () =
Yy = (Y1,.-,Yn—2) Where y; = w(x;3)). If there is an error
in the transverse-read vector at the ¢-th position, then we obtain
y; # ;. In this work, we assume that the magnitude of an error
caused by transverse-read is limited by a small number b, that is
|y: —y;| < b. Such an error is called a b-limited magnitude error.
Given two vectors u = (uq,...,u,) and v = (v1,...,v,), we
define the b-limited distance between u and v, denoted dj (u, v),
as follows. If there is an index ¢ such that |u; — v;| > b then
dp(u,v) = co. Otherwise, dp(u,v) = |{i : u; # v;}|. That is,
the D-limited distance between the two vectors of fixed length
is either infinity or the Hamming distance between two vectors.
For example, = (0,0,1,1,1,0,1,1) and TR31(z) = y =
(1,2,3,2,2,2). If the output is y' = (1, 2,2,2,1,2), we observe
that the 1-limited distance between y and ¥y’ is dy(y,y’) = 2.
An (¢, §)-transverse-read code Crr(n, ¢, 0) is said to be able to
correct ¢ b-limited magnitude errors if © € Crgr(n,l,d) C X8

is a stored message and y’ € Eng)/ TS the output in the

transverse-read channel such that dy,(y’, TRy s(x)) < ¢, then it
is possible to recover the vector « from the output y’. That is, if
there are at most ¢ b-limited magnitude errors in the transverse-
read channel, we can recover the original vector x in the code
CTR(”v ¢) 5)

In this subsection, we focus on the case b = 1 and design
a code to correct 1-limited magnitude errors in this channel.
Before we present the construction of our code, we present the
following codes.

Construction 4 For 0 < P, let the code SVT(n, P) be

SVT(n,P)={ce€Xy:) ic;=0 mod (P+1);

i=1

Zci =0 mod 3}.
i=1

We note that the above code SVT'(n, P) is similar to the well-
known shifted VT code [19]. The authors in [19] showed that
shifted-VT code can correct a deletion, given knowledge of the
location of the error within P positions. We now present a sim-
ilar result for a single 1-limited magnitude error.

Proposition 1 Given a codeword ¢ € SVT(n, P), and a vec-
tor ¢ such that the 1-limited distance between two vectors is
dy(e,c) = 1. If i is an index where ¢; # ¢, and we know that
i€{a+1,...,a+ P}, then we can recover c from ¢'. Or in
other words, the above code SV'T (n, P) can correct a single
1-limited-magnitude error given knowledge of the location of
the error within P consecutive positions.

Proof: We consider two vectors ¢ and ¢'. Since there is
only ?ne index i such that ¢; # ¢}, we obtain Z;:Ol (j+1)c;—
n— . . n n
2o +1)cs = (i+1)(ci —cj) and 327 ¢5 = 0, ¢ =
¢; — ¢,. We note that |¢; — ¢}| = 1, that is, ¢; — ¢} is either 1
or -1. Furthermore, Z;L;Ol (j+1)c; — Z;L;Ol (j +1)¢ is either
i+1or —i—1.Since > " ; ¢; =0 mod 3, we can determine if
¢; —cl is 1 or -1. And thus, we also can determine if Z?:_Ol (j+
1)e; — Z;L:_Ol(j +1)c} is i +1 or —i — 1. Hence, we can find
the exact value of the index i. From the corrupted vector ¢/, we
can recover the vector ¢ € SVT'(n, P). [|
Next, we present the constrained code for limited length of
period sub-vector. Let p and m be two positive integers where
p < m. Then, a length-m vector v € X" which satisfies v; =
Vipp for all 1 < 4 < m — p is said to have period p. For a
vector u € X, we denote by L(u,p) the length of its longest
subvector which has period p. By definition, L(u,p) > p and
for p =1, L(u,1) is the length of the longest run in w.

Example2 Ler v = (uq,...,u9) = (0,0,1,1,0,1,0,1,1) €
) be a word of length 9. Since the longest run in wu is of
length two, we have L(u,1) = 2. The subvector ul4,8] =
(1,0,1,0,1) of w has period 2 since uy = ug = ug = 1 and
us = uy = 0. This is the longest subvector of w of period 2,
and hence L(u,2) = 5.

Construction5 [7] Let Cpe(n,p,t) be a code of length n
such that the length of the longest sub-vector which has pe-
riod p of every codeword ¢ € Cpe(n,p,t) is at most t. That is,
Cpe(n,p,t) ={ce Xy : L(e,p) <t}

The code Cpe(n, p,t) was well-studied in [7]. The authors in [7]
showed that it is possible to construct the code Cp (1, p, [logn])
with only a single bit of redundancy. Now, we are ready to
present a code construction that can correct a single 1-limited
magnitude error for the (2,1)-transverse-read channel.

Construction 6 Let the code Ca1(n, 1) be

Ca1(n,1) = {c € Xy :c € Cpe(n,2,logn) and
TRQ,l(C) S SVT(TL — l,P = SIOgn)}

Theorem 7 The above code Cs1(n,1) can correct a single 1-
limited magnitude error for the (2,1)-transverse-read channel.

Proof: Given a vector ¢ € Cy1(n,1), we observe the
length of each run of symbol I’s in the vector TRs1(c). A
pattern (0,1%,0) and a pattern (2, 1%,2) are valid if and only
if k is even. A pattern (0,1%,2) and a pattern (2,1%,0) are
valid if and only if k is odd. We call this the run-length rule.
If a single 1-limited-magnitude error occurs at the index ¢ of
TRs1(c), one or two consecutive runs of symbols 1’s will
violate the run-length rule and thus the output will be an in-
valid (2,1)-transverse-read vector. The location of the error is
within the segment of one or two consecutive runs of symbols
I’s. Since ¢ € Cpe(n,2,logn), the longest sub-vector with pe-
riod two has length at most logn. Thus, the longest run of 1’s
in TR 1(c) has length at most logn — 1. So, we can locate
the error within the segment of length P = 3logn. Then, us-
ing the decoder of the code SVT'(n, P) in Construction 4, we
can correct the 1-limited magnitude error. This concludes the
proof. []
We note that the above construction of the code Ca1(n,1) is
a combination of Construction 4 and Construction 5. Since we
just need a single bit of redundancy to construct C(n, 2,logn)
in Construction 5 and at most loglogn + ¢ bits of redundancy
to construct SVT'(n — 1, P = 3logn) in Construction 4, we
need at most loglogn 4 ¢ + 1 bits of redundancy to construct
C2.1(n, 1) in Construction 6 for some constant c. The next the-
orem summarizes this result.

Theorem 8 There is a (2,1)-transverse-read code correcting a
single 1-limited magnitude error with at most loglogn + c bits
of redundancy for some constant c.

Lastly, we note that to correct a single substitution of limited
magnitude in the classical channel, it is required to use at least
log n bits of redundancy. The remarkable result in Theorem 8
is that we only need log log n + ¢ bits of redundancy to correct
one error in this channel.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a new scheme of reading in-
formation in domain wall memories to reduce the number of
shift-operations while still achieving high information rates. We
introduce a new family of codes, called (¢, ¢)-transverse-read

codes, and study their properties, maximal asymptotic rates,
and constructions. Furthermore, we show that our scheme of
using transverse-read codes is helpful to correct shift-errors and
substitution errors in domain wall memories. Lastly, we de-
sign several codes which are able to correct multiple over-shift
errors and a code correcting a single limited magnitude error.

[1]

[2]
[3]

[4]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Y. M. Chee, A. Vardy, V. K. Vu, and E. Yaakobi, "Coding for transverse-
read in domain wall memories”, Proc. IEEE Int. Symp. on Inform. Theory,
pp. 2924-2929, 2021.

S.S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall race-
track memory, ” Science, vol. 320, no. 5873, pp. 190-194, 2008.

Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for
ultra high density and low power consumption,” in Design Automation
Conference (DAC), pp. 1-6, May 2013.

S. Parkin and S. H. Yang, “Memory on the racetrack,” Nature Nanotech.,
vol. 10, no. 3, pp. 195-198, 2015.

R. Blasing, A. Ali Khan, P. Filippou, C. Garg, F. Hameed, J. Castrillon,
and S. Parkin, “Magnetic racetrack memory: From physics to the cusp
of applications within a decade”, Proc. of the IEEE, vol. 18, no. 10, pp.
1303-1321, 2020.

C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang, and J. Shu, “Hi-fi playback: Tolerating position errors
in shift operations of racetrack memory,” 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), pp. 694706,
2015.

Y.M. Chee, H.M. Kiah, A. Vardy, V.K. Vu, and E. Yaakobi, “Coding for
racetrack memories,” IEEE Trans. on Inform. Theory, vol. 64, no. 11,
pp. 7094-7112, 2018.

Y.M. Chee, H.M. Kiah, A. Vardy, V.K. Vu, and E. Yaakobi, “Codes cor-
recting limited-shift errors in racetrack memories” Proc. IEEE Int. Symp.
on Inform. Theory, pp. 96-100, 2018.

G. Mappouras, A. Vahid, R. Calderbank, and D. J. Sorin, “Green-
Flag: Protecting 3D-Racetrack memory from shift errors”, 2019 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 1-12, 2019.

S. Archer, G. Mappouras, R. Calderbank, and D. J. Sorin, “Foos-
ball coding: Correcting shift errors and bit flip errors in 3D racetrack
memory”, 2020 50th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pp. 331-342, 2020.

E. Atoofian and A. Saghir, “Shift-aware racetrack memory”, 2015 33rd
IEEE Int. Conf. on Computer Design (ICCD), pp. 427-430, 2015.

A. Ali Khan, F. Hameed, R. Blasing, S. Parkin, and J. Castrillon,
“Shifts-Reduce: Minimizing shifts in racetrack memory 4.0”, ACM Trans.
on Architecture and Code Optimization, vol. 16, no. 4, pp. 56:1-56:23,
2019.

S. Olliver, S. Kline Jr., R. Kawsher, R. Melhem, S. Banja, and A.K. Jones,
“Leveraging transverse reads to Correct alignment faults in domain wall
memories,” 49th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp. 375-387, 2019.

S. Ollivier, D. Jr. Kline, R. Kawsher, R. Melhem, S. Banja, and
A. K. Jones, “The power of orthogonality”, 2019 IEEE Annual Symp.
on VLSI, pp. 100-102, 2019.

K. Roxy, S. Olliver, A. Hoque, S. Longofono, A.K. Jones, and S. Banja,
“A novel transverse read technique for domain-wall “racetrack” memo-
ries,” IEEE Transactions on Nanotechnology, vol. 19, pp. 648—652, 2020.
Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories”, IEEE Trans. on Inform. Theory, vol. 56, no. 4, pp. 1582—
1595, 2010.

B.H. Marcus, R.M. Roth, and P.H. Siegel, An introduction to coding for
constrained system, 5th edition, 2001.

Y. M. Chee and V. K. Vu, “Codes correcting synchronization errors for
symbol-pair read channels”, Proc. IEEE Int. Symp. on Inform. Theory,
pp. 746-750, 2020.

C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Code cor-
recting a burst of deletions or insertions”, IEEE Trans. on Inform. Theory,
vol. 63, no. 4, pp. 1971-1985, 2017.

Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels”, [EEE
Trans. on Inform. Theory, vol. 57, no. 12, pp. 8011-8020, 2011.

E. Yaakobi, J. Bruck, and P. H. Siegel, “Constructions and decoding of
cyclic codes over b-symbol read channels”, IEEE Trans on Inform. The-
ory, vol. 62, no. 4, pp. 1541-1551, 2016.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Y. M. Chee, L. Ji, H. M. Kiah, C. Wang, and J. Yin, “Maximum distance
separable codes for symbol-pair read channels,” IEEE Trans on Inform.
Theory, vol. 59, no. 11, pp. 7259-7267, 2013.

B. Ding, T. Zhang, and G. Ge, “Maximum distance separable codes for
b-symbol read channels,” Finite Fields and Their Applications, vol. 49,
pp. 180-197, 2018.

H. Q. Dinh, B. T. Nguyen, A. K. Singh, and S. Sriboonchitta, “On the
symbol-pair distance of repeated-root constacyclic codes of prime power
lengths,” vol. 64, no. 4, pp. 2417-2430, 2018.

R. Hulett, S. Chandak, M. Wootters, “On Coding for an Abstracted
Nanopore Channel for DNA Storage”, Proc. IEEE Int. Symp. on Inform.
Theory, pp. 2465-2470, 2021.

S. Wang, V. K. Vu, and V. Y.F. Tan, “Codes for Correcting t Limited-
Magnitude Sticky Deletions”, Proc. IEEE Int. Symp. on Inform. Theory,
2023.

H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-insertion cor-
recting codes with efficient encoding and decoding,” Proc. IEEE Int. Symp.
on Inform. Theory, pp. 2683-2687, 2017.

O. Elishco, R. Gabrys, and E. Yaakobi, “Bounds and constructions of
codes over symbol-pair read channels,” IEEE Trans on Inform. Theory,
vol. 66, no. 3, pp. 1385-1395, 2020.

J. Sima, R. Gabrys, and J. Bruck, “Optimal Systematic t-Deletion Cor-
recting Codes”, Proc. IEEE Int. Symp. on Inform. Theory, pp. 769-774,
2020.

