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ABSTRACT

The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method and the density
matrix renormalisation group (DMRG) are powerful workhorses applied mostly in different scientific
fields. Although both methods are based on tensor network states, very different mathematical lan-
guages are used for describing them. This severely limits knowledge transfer and sometimes leads
to re-inventions of ideaswell known in the other field. Here, we reviewML-MCTDH andDMRG theory
using both MCTDH expressions and tensor network diagrams. We derive the ML-MCTDH equations
of motions using diagrams and compare them with time-dependent and time-independent DMRG
algorithms.We further review two selected recent advancements. The first advancement is related to
optimising unoccupied single-particle functions in MCTDH, which corresponds to subspace enrich-
ment in the DMRG. The second advancement is related to finding optimal tree structures and on
highlighting similarities and differences of tensor networks used in MCTDH and DMRG theories. We
hope that this contribution will foster more fruitful cross-fertilisation of ideas between ML-MCTDH
and DMRG.
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1. Introduction

The multiconfiguration time-dependent Hartree
(MCTDH) method and the density matrix renormali-
sation group (DMRG) were developed nearly simulta-
neously in the fields of molecular quantum dynamics
and condensed matter physics, respectively [1–4]. Both
methods have greatly influenced their respective field and
continue to do so. Thismay be seenmost clearly by notic-
ing that MCTDH and DMRG are being used outside
their initial field of research and are now established in
other fields such as ab initio molecular electronic struc-
ture [5–8] in the case of DMRG and strong-field electron
dynamics in the case of MCTDH [9–15], among many
other examples.

CONTACT Henrik R. Larsson mctdh24_molphys@larsson-research.de Department of Chemistry and Biochemistry, University of California, Merced,
CA 95343, USA

Initially, MCTDH and DMRG focused on very differ-
ent areas and applications.MCTDH is based on the time-
dependent Schrödinger equation (TDSE) whereas the
DMRG is based on the time-independent Schrödinger
equation (TISE). Around 20 years after their foundations,
both methods were extended. The less flexible MCTDH
wave function ansatz (relative to the DMRG), a Tucker
decomposition [16], was improved by the development of
themultilayerMCTDHmethod (ML-MCTDH) [17–19],
where a tree tensor network state (TTNS) or hierar-
chical Tucker format [20–26] is used. For the DMRG,
the focus on the TISE was broadened by extensions
to real-time evolution [27–30]. Furthermore, the wave-
function ansatz of the DMRG, a matrix product state
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(MPS) [31–35], which is a subset of TTNSs, was later
extended to TTNSs [36–40].1 Inspired by the DMRG,
other methods that extend TTNSs to general tensor net-
work states (TNSs) have been developed [41–50]. These
different individual developments led to very different
mathematical ‘languages’ used to describe DMRG, ML-
MCTDH, MPSs and TTNSs. In fact, describing DMRG
using MPSs even is a more recent concept that differs
dramatically from the original DMRG language [35, 51].
This language barrier is becoming more severe as more
and more DMRG approaches are used in systems typi-
cally treated with (ML-)MCTDH and vice versa [52–72].
It is very difficult to analyse similarities and differences
of methods developed by these two communities, even
when these methods actually are very similar or virtually
identical.

Here, with a focus on ML-MCTDH, we will high-
light connections between ML-MCTDH and DMRG
by ‘translating’ MCTDH expressions into the diagram-
matic language that is extensively used in TNS com-
munity but so far has not come to full use in the ML-
MCTDH community. We hope that these translations
will show more clearly the connections between ML-
MCTDH, DMRG and TNSs .2 We will highlight the
power of the diagrammatic language by deriving the
ML-MCTDH equations of motions through diagrams.
We will discuss an alternative way to solve the ML-
MCTDH equations of motions, which is given by time-
dependent and time-independent DMRG approaches.
Furthermore, we will show connections between DMRG
and ML-MCTDH advancements exemplified by two
advanced topics, (1) subspace enrichment (optimal
unoccupied single particle functions, SPFs), and (2) opti-
mal TTNS structures, which also includes a discus-
sion of why MPSs are preferred in molecular electronic
structure, compared to TTNSs in vibrational quantum
dynamics.

Our outline is as follows: Sections 2 and 3 briefly
review the ML-MCTDH and tensor network lan-
guages, respectively. Sections 4 and 5 ‘translate’ stan-
dard (ML-)MCTDH expressions and the ML-MCTDH
equations of motions, respectively. Section 6 fully
derives the ML-MCTDH equations of motions solely
using diagrams. Section 7 reviews TTNS canonicali-
sation/orthogonalisation procedures and DMRG-typical
sweeps. A time-dependent DMRG approach that can
be viewed as counterpart to the ML-MCTDH equa-
tions is reviewed in Section 8 and used for describing
the time-independent DMRG in Section 9. Sections 10
and 11 deal with two advanced topics on unoccupied
SPFs and on tree structure optimisations.We conclude in
Section 12.

2. Themultilayer multiconfiguration
time-dependent Hartree ansatz

To solve Schrödinger’s equation, the standard full con-
figuration interaction (FCI) approach is a Ritz–Galerkin
ansatz [26, 73], where the F-dimensional wavefunction
is represented by a direct product of ‘primitive’ bases

{|χ
(κ)
jκ

〉}
Nκ

jκ=1 of finite sizeNκ in each dimension κ ∈ [1, F]:

|�FCI〉 =

N1∑

j1=1

N2∑

j2=1

· · ·

NF∑

jF=1

Cj1,j2,...,jF

F⊗

κ=1

|χ
(κ)
jκ

〉. (1)

Here, we use Dirac’s notation [74, 75] and assume an
orthonormal primitive basis. Further, we will only dis-
cuss the case of distinguishable particles (or an appro-
priate mapping of indistinguishable particles, such as the
Jordan-Wigner transform) and thus do not assume any
(anti-)symmetry in the real- or complex-valued coeffi-
cient tensor C, whose entries are then to be determined.

In most molecular quantum dynamics applications,
the primitive basis is a spectral or pseudospectral grid-
like basis given by the discrete variable representation
(DVR) [76–81], which, among others, is also known as
Lagrange-mesh method [82] in some Physics literature
and as cardinal basis in some applied mathematics lit-
erature [80, 83]. Note that nonlinear bases, in particular
Gaussians, are possible as well [84, 85].

The FCI ansatz in Equation (1) is exact in the space
of the primitive basis (given no further approximations
on the Hamiltonian) but the number of entries in the
coefficient tensor C scales as ÑF , where Ñ is the geo-
metric mean of the basis sizes Nκ . To avoid this pro-
hibitive scaling, the (ML-)MCTDH ansatz approximates
Equation (1) by expanding |�〉 in another orthonor-
mal basis, the so-called single-particle functions (SPFs)

{|φ1;κ
jκ

〉}.3 The difference between the primitive basis and
the SPF basis is that the latter is variationally optimised
and thus fewer basis functions are required. The (ML-
)MCTDH ansatz then takes the form of

|�〉 =

n1∑

j1=1

n2∑

j2=1

· · ·

nd∑

jd=1

A1
j1,j2,...,jd

d⊗

κ=1

|φ1;κ
jκ

〉. (2)

Note that the SPFs may be multidimensional (thus d ≤

F); see below. The superscript 1 in A1
j1,j2,...,jd

and in |φ1;κ
jκ

〉

denotes the layer in ML-MCTDH. For time evolution,
both the d-dimensional tensor A1 and the SPFs are opti-
mised according to the Dirac–Frenkel–McLachlan time-
dependent variational principle (TDVP) [86–90].

Some remarks on the notation that is used here:
For consistency with the main body of ML-MCTDH



MOLECULAR PHYSICS 3

Table 1. Some notation used in this work and in MCTDH literature.

Description Symbol Alternative symbols

Physical dimension F D, f, L

Physical (‘primitive’) basis state |χ
(κ)
jκ

〉 |σ 〉

Physical basis dimension Nκ N[κ], nκ , k, σ
Number of layers L
Layer l

SPF basis state |φ
l;κ1 ,κ2 ,...,κl
i 〉 |ν

(κ ,q)
iq

〉, |ξ
(κ ,q,γ )
aγ

〉

Horizontal position in layer l κ n
Node/SPF position κ1 , κ2 , . . . , κL κ

Layer and node/SPF position z ≡ l; κ1 , κ2 , . . . , κl λ

z ≡ l; κ1 , κ2 , . . . , κl−1

Coefficient tensor position z′ ≡ l; κ1 , κ2 , . . . , κl−1

z′ + 1 ≡ l + 1; κ1 , κ2 , . . . , κl z′ ≡ l + 1; κ1 , κ2 , . . . , κl
Node/tensor/site/SPF dimension dκ1 ,κ2 ,...,κl−1

d[l;κ] , pκ , F(κ), Q(κ),M(κ , q)

Bond dim./rank/SPF basis size nκ1 ,κ2 ,...κl n[l;κ] ,m,M, D, χ , r

Generic SPF basis size nSPF m,M, D, χ , r
Total size of basis representing SPF n̄κ1 ,κ2 ,...,κl−1

SPF index i, j, k, x, j1 , j2 , . . . m, n
SPF composite index J ≡ j1 , j2 , . . . , jdκ1 ,κ2 ,...κl

SHF composite index Jκλ ≡ j1 , j2 , . . . , jκλ−1 ,

jκλ+1 , . . . , jdκ1 ,κ2 ,...κl

SPF tensor/site Al;κ1 ,κ2 ,...κl−1 ≡ Az
′

A[l;κ] , Bκ ,jκ , Cκ ,q,iq , χ [l;κ] ,�[l;κ]

Configuration |�z′

J 〉 |�z
J 〉

Single-hole function (SHF) |�z
i 〉

SHF configuration |
z
Jκl

〉 |�z
Jκl

〉

SPF projector P̂z P̂zκl
SHF projector P̂z

Single-particle density matrix ρρρz

Mean-field operator 〈Ĥz〉ij
Gauge operator ĝz ĥz

One-dimensional Hamiltonian term ĥ
(κ)
s

Notes: A non-exhaustive list of alternative symbols used in MCTDH, mathematics, and DMRG literature is given,
also. See Figure 1 for a concrete example of the usage of some of the symbols.

literature, here we closely but not exclusively follow the
notation of Manthe [19, 91]. It only marginally differs
from that of Meyer and Vendrell [92], but there are some
differences to the notation used byWang and Thoss (e. g.
the counting of layers differs) [18, 93]. Notably, all of
these notations are based on the originalMCTDHformu-
lations [1, 2]. A different notation exists in themathemat-
ics community [94–98]. A non-exhaustive comparison of
used symbols in the MCTDH, mathematics, and tensor
network communities is given in Table 1.

The ansatz in Equation (2) is very flexible and there are
three main realisations of it: (1) In the simplest MCTDH
ansatz, the SPFs are one-dimensional and d = F. The
SPFs are then represented by the same time-independent,
primitive basis used in the FCI ansatz, Equation (1).
MCTDH then has the same exponential scaling as the
FCI ansatz, but the base is reduced as the SPFs are opti-
mised and thus fewer of them are needed, compared to
the primitive basis.

(2) For MCTDH with mode combination [99], d<F

and the SPFs are expressed in terms of a multidimen-
sional (dκ -dimensional) basis. Typically, this basis is a
direct-product basis, but it also can be a non-direct-
product basis [100–102]. The multidimensional degrees

of freedom that describe the multidimensional SPFs are
then denoted as ‘logical.’ Mode combination is useful for
describing strongly correlated degrees of freedom. For
systems with F � 4, mode combination often leads to
a better efficiency than the normal MCTDH ansatz. In
the context of molecular electronic structure, an anti-
symmetrised MCTDH ansatz with mode combination is
equivalent to the time-dependent complete active space
self-consistent field (TD-CASSCF) algorithm [103–107].
This is also called multiconfiguration time-dependent
Hartree-Fock, MCTDHF [9–15].4 In TD-CASSCF, the
three-dimensional SPFs describing one electron would
be called molecular orbitals and the primitive basis func-
tions would be called atomic orbitals.

(3) For ML-MCTDH, d<F holds as well, but the
dκ -dimensional SPFs in Equation (2) are expanded recur-
sively using the very same MCTDH ansatz, i. e.

|φ1;κ
i 〉 =

nκ ,1∑

j1=1

nκ ,2∑

j2=1

· · ·

nκ ,dκ∑

jdκ =1

A2;κ
i;j1,j2,...,jdκ

dκ⊗

λ=1

|φ2;κ ,λ
jλ

〉. (3)

|φ2;κ ,λ
jλ

〉 are then either described by the primitive basis
(possibly with mode combination) or they are again
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Figure 1. ExampleML-MCTDH tree/TTNS displaying the notation. Bonds (vertices) denoting physical indices corresponding to primitive
basis functions are shown in orange. Their size is given by Ni but also implicitly through nκ1 ,κ2 ,...,κl . Bonds denoting ‘virtual’ indices for
single-particle functions (SPFs) are shown inblack. The treehas L = 4 layers. Their basis sizes arenκ1 ,κ2 ,...,κl , their dimension isdκ1 ,κ2 ,...,κl−1

,

and the total number of SPFs at one node is nκ1 ,κ2 ,...,κl−1
. Note that the SPF |φ

l;κ1 ,κ2 ,...,κl
i 〉 ≡ |φz

i 〉 is described by the tensorA
l+1;κ1 ,κ2 ,...,κl ≡

Az
′+1 and those from lower nodes connecting to Az

′+1. Some of the SPFs and SPF coefficient tensors are shown as well. The tensors that
describe two particular SPFs are marked by dotted rectangles.

expanded using the MCTDH ansatz. This is repeated
recursively until the last layer L is reached.

The recursive structure of the ML-MCTDH ansatz
can be represented using tree diagrams [19] as shown
in Figure 1, which also gives an example of some ML-
MCTDH notation. In the ML-MCTDH context, these
diagrams are almost exclusively used to depict the tree
structure of a particular ML-MCTDH wavefunction.
Only recently have they been used to represent some
other MCTDH-related quantities [59, 108–110]. As we
will show below in Section 3, there is a direct connec-
tion of these ML-MCTDH diagrams to the tensor net-
work diagrams used in DMRG literature [30, 35, 48, 59].
Among others, we will further show how these diagrams
can be used for deriving the ML-MCTDH equations of
motions.

In the commonly used notation, the dκ1,κ2,...,κl−1-

dimensional SPFs of layer l are denoted by |φ
l;κ1,κ2,...,κl
i 〉.

The additional symbols, κ1, κ2, . . . , κl specify the exact
location of the SPFs in the tree. The indices κ1, κ2, . . . , κl
are determined by traversing the tree using depth-first
search starting at l = 1. During the traversal, the hor-
izontal position of the path through the tree taken at
layer λ is given by κλ. To avoid dealing with the cluttered
notation used for indexing and specifying the locations
of tensors and functions in the tree, MCTDH develop-
ers often simplify the notation by defining the composite
index J ≡ j1, j2, . . . , jdκ1,κ2,...,κl

, which specifies the entries

of the tensors Al+1;κ1,κ2,...,κl . Depending on the context, J
can also specify a raveled index with range [1, n̄κ1,κ2,...,κl]

with

n̄κ1,κ2,...,κl =

dκ1,κ2,...,κl∏

λ=1

nκ1,κ2,...,κl ,κλ
. (4)

We further simplify the notation5 by defining the
compound indices z ≡ l; κ1, κ2, . . . , κl, z

′ ≡ l; κ1, κ2, . . . ,
κl−1, and z′ + 1 ≡ l + 1; κ1, κ2, . . . , κl. z specifies the
layer and location of an SPF, and z′ that of an SPF ten-
sor.6 This simplified notation leads to a more compact
description of the SPFs as

|φz
i 〉 =

∑

J=1

Az′+1
i;J |�z′+1

J 〉, (5)

where

|�z′+1
J 〉 ≡ |�

l+1,κ1,κ2,...,κl
j1,j2,...,jdκ1,κ2,...κl

〉

=

dκ1,κ2,...,κl⊗

κl+1=1

|φ
l+1;κ1,κ2,...,κl ,κl+1
jκl+1

〉 (6)

are the configurations.
Armed with this simplified notation, we introduce the

counterpart of the SPFs, the single-hole functions (SHFs)
|�z

i 〉, which are defined by projecting the corresponding
SPFs 〈φz

i | onto the ML-MCTDH state |�〉, i. e.

|�z
i 〉 = 〈φz

i | �〉. (7)
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Using the orthonormality conditions of the SPFs, we can
describe |�〉 as sum of product of SHFs and SPFs,

|�〉 =

nκ1,κ2,...,κl∑

i=1

〈φz
i | �〉 ⊗ |φz

i 〉 ≡

nκ1,κ2,...,κl∑

i=1

|�z
i 〉 ⊗ |φz

i 〉.

(8)
The SHFs are useful for defining effective operators, as
shown below in Section 5.1.

In traditional DMRG language [4, 35, 51], Equation
(8), corresponds to using single-site DMRG and expand-
ing the state in terms of a system block, {|Ai〉}, and an
environment block, {|Bi〉}:

|�DMRG〉 =
∑

i

|Ai〉 ⊗ |Bi〉, (9)

where the system block is given in MCTDH notation by
the SHFs and the environment block is given by the SPFs.

Figure 2. Example of mapping a tensor Aijkl to a node with four
vertices/bonds in a tensor network diagram. Panels (b)–(d) show
additional notations introduced here for specifying complex con-
jugation (b), time-derivative (c), and diagonal tensors (d).

3. Tensor network diagrams

The complete tensor contraction pattern to retrieve the
full ML-MCTDH state/TTNS represented by the primi-
tive basis from the tensors/SPF representations Az′ actu-
ally is given by the diagram shown in Figure 1. This is
possible by introducing ameans of translating these types
of tensor network diagrams to mathematical equations.
Since the nineteenth century, scholars have described
tensor algebra using graphical notations [111–113]; see
Ref. [114] for an overview. Tensor network diagrams
were first used by Penrose in the 1950s [115] and can
be highly useful not only to visualise but also to derive
mathematical expressions [30, 35, 47, 48, 116, 117]. The
notion of tensor networks leads to TNSs. In a tensor
network diagram, each tensor is represented as a node
and each of the tensor’s indices are represented as edges
or ‘bonds;’ see Figure 2 for a representative example.
Some additional definitions are often introduced. In the
following, an asterisk on top of the node denotes com-
plex conjugation. A dot denotes the time-derivative of
a tensor and a diagonal line denotes diagonal tensors,
as shown in Figure 2. As the TTNS is the wavefunc-
tion ansatz of the ML-MCTDH method, in the follow-
ing, the terms TTNS and ML-MCTDH state are used
interchangeably.

Similar to Einstein’s summation convention [118],
contractions of tensors (summations over common
indices) are defined by connecting the common bonds
(edges) of those nodes whose corresponding indices
should be contracted. Figure 3 depicts two
examples.

Tensor network diagrams are not only helpful to visu-
alise tensor contractions, but they also can be used
to derive equations and to denote specific properties.
Figure 4 shows an example of calculating the derivative
of a tensor network through a diagram.

Figure 3. Two exemplary tensor contractions. Shown are the individual tensors, the actual tensor network diagrams, where
bonds/vertices corresponding to the indices that are contracted over are connected, as well as the mathematical equations. (a) shows
the contraction of an MCTDH state/Tucker tensor decomposition. (b) shows the a, bths entry of the product of the matrices A, B, and C.
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Figure 4. Example of how to use diagrams to derive mathemat-
ical expressions. Shown is the derivative of the tensor network

from Figure 3 (a) with respect to Apqr , i.e.
∂

∂Aijk

∣∣∣
i=p,j=q,k=r

.

4. Tensor network diagrams in comparison to
MCTDH language

Aiming at comparing the MCTDH language with ten-
sor diagrams, here we give a translation of commonly
usedMCTDH expressions.We will use theML-MCTDH
state/TTNS shown in Figure 5 as example. Note that,
given the flexibility of TTNSs in terms of their struc-
ture, TTNS equations are best represented with the help
of example trees. Generalisations to other tree structures
are straightforward. This is different toMPSs or projected
entangled pair states, since those TNSs have simpler
structures (one- or two-dimensional grids, respectively).

In the diagram of a TTNS, indices that are free ‘dan-
gling’ bonds, i. e. that are not connected to another node,
are called physical. In tensor network diagrams, all other
bonds of a TTNS are called virtual. Physical and vir-
tual bonds cannot always directly be distinguished in
more general diagrammatic expressions and need to be
inferred from the initial TTNS. To simplify this, in the
following diagrams, we will always colour physical bonds
orange and virtual bonds black. Here, each tensor has
its own specific colour, as given in Figure 5. In tensor
network diagrams, the number of SPFs, nκ1,κ2,...,κl , cor-
responds to the dimension of a bond and hence is also

Figure 5. Example ML tree/TTNS that is used here for deriving
ML-MCTDH expressions. The TTNS has three layers and describes
a three-dimensional state.

called bonddimensionD (sometimes also rank r inmath-
ematics or number of kept states,M, in traditionalDMRG
language; compare with Table 1). In the following we will
use nSPF when referring to the bond dimension/number
of SPFs in general and nκ1,κ2,...,κl when referring to a
specific node. The dimensions of the physical bonds are
given as that of the primitive basis.

Unlike a complete TTNS, functions such as SPFs or
SHFs do have free virtual bonds. Any functionmust con-
tain one or more free physical bonds and, typically, one
single free virtual bond that denotes the function num-
ber (e. g. i in |φz

i 〉).
7 The physical bonds then denote

the function values.8 Orthonormality is often depicted
either by using arrows instead of bonds or by using special
symbols for the nodes such as triangles. Here, we follow
the convention fromML-MCTDH and some mathemat-
ics literature [23, 26, 94] and depict orthonormality by
the direction of the virtual bonds. If the virtual bond is
pointing upward (towards layer 1, away from the phys-
ical bonds), then the function/tensor is orthonormal.
Note that there always is only one single virtual bond
pointing upward. If the virtual bond is pointing down-
ward (towards the physical bonds/the last layer), then the
function/tensor is non-orthonormal.9

An example of a configuration (group of SPFs/nodes)
is shown in Figure 6 together with a contraction of the
configurations with a coefficient tensor, which leads to
an SPF. Examples of SPFs in comparison to single coef-
ficient tensors are shown in Figure 7. A coefficient tensor
Az′ is just a single node and its connecting bonds. The

values of Az′+1
i;J can be obtained from the SPFs {|φz

i 〉}i
by projecting all SPFs connecting to z onto {|φz

i 〉}i, com-
pare with Equation (5–6). Note that for the last layer in
the tree, a node can be interpreted either as tensor or
as SPF, see Figure 7(c–d). Which interpretation is used

Figure 6. Example configuration. Shown are |�2;2
J 〉 from Figure 5

in the dashed rectangle. A contraction of |�2;2
J 〉with A2;2i;J , leads to

the SPF |φ1;2
i 〉.
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Figure 7. Diagrams of SPFs in comparison to tensors. Four exam-

ples of SPFs |φz
i 〉 and tensorsA

z′+1 taken from Figure 5 are shown.
(a) and (c) are SPFs as they contain physical bonds. (b) and (d) are
tensors as the diagrams only contain a single node. The node in
(c) is identical to that in (d) and can be interpreted either as SPF or
tensor, depending on the context.

Figure 8. Example of matricisation and orthonormal matrices as
diagrams. (a) Matricisation of the tensor Aijk into QXj , where X is
a composite index for i and k. (b) Diagrammatic notation of the
orthonormality ofQ and, equivalently,A. The straight line denotes
a unit matrix.

depends on the context. A1 is called root tensor and the
corresponding node is called root node.

It is often useful to reshape (and permute) a tensor
into a matrix, which is called matricisation (or flatten-
ing or matrix unfolding) [23]. For example, a tensor
Aijk of size n1 × n2 × n3 may be permuted and reshaped
into a matrix Q by using the mapping Aijk ≡ QXj where
X is a composite index X = i · n3 + k. This is helpful
for realising orthonormality relationships, e. g.Q†Q = 1,
or more explicitly,

∑
X Q∗

XjQXj̃ = δjj̃ and, equivalently,∑
ik A

∗
ijkAij̃k = δjj̃. Figure 8 gives an example of matrici-

sation and orthonormality relationships in diagrams.

In ML-MCTDH, the orthonormality of the SPFs
means that each of the tensors Az′ used to construct
the SPFs in a diagram can be matricised into orthonor-
mal matrices Qz′ ≡ Ql+1;κ1,κ2,...,κl of size n̄κ1,κ2,...,κl ×

nκ1,κ2,...,κl , where n̄κ1,κ2,...,κl is the total size of all the
bonds pointing downward, as defined in Equation (4).
In this case, the matricisation is performed by using the
composite index J (corresponding to the bonds point-

ing downward, towards the physical bonds) inAz′

i;J as row
index and the SPF index (the bond pointing upward to

the root node) i as column index; thus Az′

i;J ≡ Qz′

J,i. This
leads to extremely useful simplifications of the diagrams.
For example, the squared norm of anML-MCTDH state,
〈�| �〉, simply is given by that of the root node coeffi-
cient tensor, ‖A1‖22. This is shown diagrammatically in
Figure 9.

The computation of the overlap, 〈φz
i | φ

z
j 〉, and the

projector onto an SPF space,

P̂z =

nκ1,κ2,...,κl∑

i=1

|φz
i 〉〈φ

z
i | (10)

are shown in Figure 10. Due to the orthonormality,
〈φz

i | φ
z
j 〉 reduces to δij. Note that even though formally

the SPFs are orthonormal, in practice the finite accuracy
of the ML-MCTDH differential equation solver leads to
small non-orthonormality errors of the SPFs. InMCTDH
implementations, this error is neglected in the tensor
contractions, but the SPF projector ismodified to take the
spurious non-orthonormalities into account via [119]

P̂znonorth =
∑

ij

|φz
i 〉[S

z]−1
ij 〈φz

j |, (11)

where Sz is the overlap matrix of {|φz
i 〉}.

An example of an SHF |�z
i 〉 is shown in Figure 11.

In contrast to the SPF, for an SHF the function index i

corresponds to a downward (and not upward) pointing
virtual bond and thus an SHF is non-orthonormal. They

Figure 9. Diagram of the overlap of a TTNS with itself (squared
norm). The TTNS from Figure 5 is used as example. The orthonor-
mality relationships of the SPFs greatly simplify the diagram.
Compare with Figure 8 (b).
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Figure 10. SPF overlap (a) and projection (b). |φ1;2
i 〉 from Figure 5

is used as example. For the overlap of orthonormal SPFs, compare
with Figure 8(b).

Figure 11. Example of a single-hole function (SHF), its construc-

tion and usage. (a) Construction of SHF |�1;2
i 〉 from Figure 5

through projection of |φ1;2
i 〉 onto |�〉. Orthonormality relations

simplify the SHF, compare with Figure 8(b). (b) Simplified |�1;2
i 〉

together with its counterpart, the SPF |φ1;2
i 〉. Contracted over i,

they form the total TTNS |�〉.

can be made orthogonal, however; see Section 5.1. The
relationship between the SHF-SPFdecomposition inML-
MCTDH and the system-environment decomposition in
traditional DMRG, Equation (9), is shown in Figure 12
(in this case we make an exception and show an MPS
instead of the TTNS from Figure 5).

The SHF definition can be generalised to doubly-
indexed SHFs defined as [19]

|�̃
l;κ1,κ2,...κl
k,i 〉

=
∑

j1

∑

j2

· · ·
∑

jκl−1

∑

jκl+1

Figure 12. Comparison of ML-MCTDH diagram and traditional
DMRG language. (a) The decomposition of an ML-MCTDH
state/MPS in terms of a single-hole function (SHF) and a single-
particle function (SPF); compare with Figure 11. (b) Single-site
DMRG setting with a system and an environment block. The sys-
tem (environment) block is spanned by the SHF (SPF) space;
compare with Equation (9).

Figure 13. Example of a doubly-indexed single-hole function

(SHF) and its usage. (a) |�̃2;2,2
k,i

〉 from Figure 5 as example of

a doubly-indexed SHF. (b) |�1;2
i 〉 (see Figure 11) together with

|�̃2;2,2
k,i

〉. Contracted over i, they form the SHF |�2;2,2
k

〉.

· · ·
∑

jdκ1,κ2,...,κl−1

A
l;κ1,κ2,...,κl−1
i;j1,j2,...,jκl−1,k,jκl+1,...,jdκ1,κ2,...,κl−1

κl−1⊗

τ=1

|φ
l;κ1,κ2,...,κl−1,τ
jτ

〉

dκ1,κ2,...,κl−1⊗

γ=κl+1

|φ
l;κ1,κ2,...,κl−1,γ
jγ

〉, (12)

where we have highlighted the two ‘hole indices’ i and
k by colours. An example is shown in Figure 13. Doubly-
indexed SHFs allow for a recursive definition of the SHFs:

|�z
k〉 =

∑

i

|�z−1
i 〉|�̃z

k,i〉. (13)

In a diagram, the doubly-indexed SHF simply is repre-
sented by two virtual bonds, one pointing downward and
one pointing upward; see Figure 13(b).
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5. ML-MCTDH equations and connection to
diagrams

The ML-MCTDH equations are based on the ML-
MCTDH ansatz, Equation (2), and the TDVP,

〈
δ�

∣∣∣∣Ĥ − i�
∂

∂t

∣∣∣∣ �
〉

= 0, (14)

where δ� denotes first-order variations of� with respect
to its parameters. In the following, we will set � = 1. For
the ML-MCTDH wavefunction ansatz, Equation (14) is
solved subject to two constraints: Firstly, the orthonor-
mality conditions of the SPFs, and secondly, their gauge
invariance,

〈φz
i | φ̇

z
j 〉 = −i〈φz

i |ĝ
z|φz

j 〉, (15)

where ĝz is some arbitrary, hermitian constraint oper-
ator and |φ̇z

j 〉 denotes the time derivative of |φz
j 〉. The

gauge invariance is discussed more in Section 7. In short,
unitary transformations of the SPFs/SHFs alter neither
orthonormality nor the state. This leads to an arbitrari-
ness of the SPFs that is manifested by the gauge invari-
ance. This arbitrariness is fixed by Equation (15). Various
choices of ĝz exist [90, 109, 120] and here, for simplicity,
we will use one of the most common choices and simply
set it to zero [1], i. e.

〈φz
i | φ̇

z
j 〉

!
= 0. (16)

Generalising the following equations to non-zero ĝz is
straightforward and some aspects of using a different
gauge will be discussed in Section 8.

5.1. Densitymatrices andmean fields

Before we proceed with defining the equations of
motions, we will define two additional quantities and
provide diagrammatic expressions for them. The “single-
particle” density matrix is defined as

ρz
ij = 〈�z

i | �
z
j 〉, (17)

and it is equal to the transpose of the one-particle
reduced-density matrix in electronic structure the-
ory [107]. In addition, it is related to the Gram matrix G
with entries Gij = 〈∂λi�| ∂λj�〉 of |�〉 with parameters
λi, which is used in similar theories [23, 54, 55, 57, 121,
122]. SPF orthonormality simplifies the computation of
ρz and an example is shown in Figure 14. Diagonalis-
ing it yields natural SPFs and SHFs. The eigenvalues of
ρz are called natural occupations. The SHFs with non-
vanishing natural occupations are then orthogonal, but
not orthonormal.

Figure 14. Diagram of a single-particle density matrix for the
TTNS from Figure 5. Compare with Equation (17).

Figure 15. Diagram of a mean-field matrix for the TTNS from
Figure 5. The dashed rectangle corresponds to the ‘operator part’
of the mean-field matrix and the indices specify the ‘matrix part.’
Compare with Equation (18).

The mean-field operators are defined as

〈Ĥz〉ij = 〈�z
i |Ĥ|�z

j 〉 = 〈�| φz
i 〉Ĥ〈φz

j | �〉, (18)

where we have inserted the definitions for the SHFs in
the second equation to highlight that Equation (18) still
defines an operator and not a scalar. Hence, 〈Ĥz〉ij is a
matrix of operators. An example diagram that highlights
the ‘operator part’ and the ‘matrix part’ (indices i and j)
of Equation (18) is depicted in Figure 15.

5.2. Equations ofmotions

Using the definitions of themean-fieldmatrices and den-
sity matrices, we now give concise expressions of theML-
MCTDH equations of motions. Equation (14) together
with Equation (16) leads to the following equations of
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motions for the SPFs [2]:

i|φ̇z
i 〉 = (1 − P̂z)

∑

j,k

(ρz)−1
ij 〈Ĥ〉

z
jk|φ

z
k〉. (19)

Note that in practice the single-particle density matrixρρρz

can be singular and typically needs to be regularised [2],
but alternatives exist [1, 123, 124]; see also Section 10.We
will make Equation (19) more explicit by projecting the
corresponding configurations onto Equation (19) so that
the equations ofmotions for the SPF coefficient tensor are
obtained as

iȦz′+1
i;J = 〈�z′+1

J |(1 − P̂z)
∑

jk

(ρz)−1
ij 〈Ĥ〉

z
jk|φ

z
k〉. (20)

For the root tensor in the first layer we obtain standard
Ritz–Galerkin-like [26, 73] equations of motions for the
TDSE expressed in a finite (but time-dependent) basis:

iȦ1
I =

∑

J

〈�1
I |Ĥ|�1

J 〉A
1
J . (21)

5.3. Some common forms of the Hamiltonian

Themost common formof Ĥ andother operators used by
MCTDH and many other methods is a sum-of-product
form (SoP), where the Hamiltonian is decomposed as a
sum of S direct products of one-dimensional operators:

ĤSoP =

S∑

s=1

cs

F⊗

κ=1

ˆ̃
h(κ)
s =

S∑

s=1

F⊗

κ=1

ĥ(κ)
s . (22)

In the second part of Equation (22) we have absorbed
the complex-valued coefficients cs into one of the oper-

ators ˆ̃
h

(κ)
s , for clarity. This Hamiltonian has the advan-

tage that its application on a state has a relatively simple
but favourably-scaling implementation [125, 126] based
on one single loop over well-optimised matrix-matrix
multiplications [127].

The counterpart to the SoPHamiltonian in theDMRG
community is the matrix product operator (MPO) [26,

35, 128, 129], which is defined as

ĤMPO =
∑

β1

∑

β2

· · ·
∑

βF−1

Ŵ1
β1

⊗

F−1⊗

κ=2

Ŵκ
βκ−1βκ

⊗ ŴF
βF−1

.

(23)
An MPO is a generalisation of an MPS to an operator.
Likewise, a tree tensor network operator can be defined
as generalisation of a TTNS to an operator [26]. In the
MCTDH community, for diagonal potential operators
this is known as multilayer potfit format [130], whose
advantages and disadvantages so far have not been fully
explored [131], however.

The SoP Hamiltonian can be represented as a MPO
that is diagonal in bond dimension [132, 133]: Defin-
ing s as raveled compound index β1,β2, . . . ,βF−1,
Equation (22) can be mapped onto Equation (23) by the
relation

Ŵκ ,SoP
βκ−1βκ

= δβκ−1βκ ĥ
(κ)
s . (24)

The SoP Hamiltonian and its mapping to an MPO is
shown diagrammatically in Figure 16.

For the ML-MCTDH equations, Equation (20), it is
useful to rewrite Ĥ in terms of an operator ĥz that acts
solely on the same space as that spanned by the config-

urations {|�z′+1
J 〉}J , and in terms of an operator Ĥz that

acts on the remaining space [19, 92]:

Ĥ =
∑

s=1

Ĥ
z
s ĥ

z
s =

∑

s=1

Ĥ
z
s

dκ1,κ2,...,κl∏

κl+1=1

ĥ
l+1;κ1,κ2,...,κl+1
s . (25)

ĥzs = ĥ
l;κ1,κ2,...,κl
s is defined recursively in the same way as

the SPFs,making this partitioning similar to the SHF-SPF
expansion of a TTNS, Equation (8). A virtually identi-
cal partitioning exists for the DMRG and this partition-
ing is trivially fulfilled both for SoPs and MPOs. Then
the ‘matrix’ representation of the mean-field operator,
Equation (18), which is a given by a four-dimensional

Figure 16. Diagram of a sum-of-product (SoP) operator andmapping to a particular matrix-product operator (MPO) with diagonal ten-
sors. Here, the dotted, diagonal line in the MPO tensors indicate tensors diagonal only with respect to the virtual bond dimension (black
lines). The orange lines denote the physical space. Compare with Equations (22)–(24).
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Figure 17. Diagram of a matrix representation of a mean-field
sum-of-product operator for the TTNS from Figure 5. The par-
titioning of this diagram into one single-hole function term
(mean field ‘matrix part’) and one configuration term (mean field
‘operator part’) is visualised by dotted rectangles. Compare with
Equation (26) and Figure 15.

tensor, can be represented as

[〈Ĥz〉ij]IJ =
∑

s=1

〈�z′+1
I |ĥzs |�

z′+1
J 〉〈�z

i |Ĥ
z
s |�

z
j 〉. (26)

An example diagram is shown in Figure 17. Note that
both the mean-field operators and the density matrices
can be evaluated efficiently in a recursive way starting
at the first layer for the density part and starting at the
last layer for the operator part [19]. This is related to the
site-per-site contraction of overlaps in the DMRG [35,
48].

6. Derivation of ML-MCTDH using diagrams

Here we will use tensor network diagrams to derive the
ML-MCTDH equations of motion (20) and (21).

For solving the TDVP, we need the first-order varia-
tions δ� . They are related to the derivatives of the TTNS
with respect to all of its individual tensors components,
which we specify here as λx:

δ� =
∑

x

∂�

∂λx
δλx. (27)

Inserting δ� into the TDVP, Equation (14), leads to as
many terms as there are parameters λx in the TTNS for
δ� , and we get10

∑

x

δλ∗
x

〈
∂�

∂λx

∣∣∣∣Ĥ − i
∂

∂t

∣∣∣∣ �
〉

= 0. (28)

Since the variations δλx are arbitrary and independent
of each other, each of the terms in Equation (28) must
vanish independently of each other and independently
of the variations [87]. Hence, we get the following set of
equations

〈
∂�

∂λx

∣∣∣∣Ĥ − i
∂

∂t

∣∣∣∣ �
〉

= 0 for all x, (29)

⇔ i

〈
∂�

∂λx

∣∣∣∣�̇
〉

=

〈
∂�

∂λx

∣∣∣∣Ĥ
∣∣∣∣ �

〉
. (30)

Here, it will be useful to use the tensor structure to rewrite
Equation (30) in terms of the individual tensors of the
TTNS,

i

〈
∂�

∂Az′

∣∣∣∣�̇
〉

=

〈
∂�

∂Az′

∣∣∣∣Ĥ
∣∣∣∣�

〉
for all possible z′. (31)

Together with the gauge conditions Equation (16), each
of these equations will lead to the equations of motions
for a particular tensor.

For the derivations of the equations of motions for
each tensor, we again use the TTNS from Figure 5 as a
simple example but note that this can be easily gener-
alised to any TTNS, including TTNSs with more layers.
The first-order variation and time-derivative of � are
shown in Figure 18.

We start the derivation with the first term of δ� in
Figure 18, which is for the root node, A1. Inserting this
into Equation (31) leads to the expression in Figure 19(a).
Because we demand that the projection of an SPF onto
its time-derivative is zero, Equation (16), most of the
terms arising from �̇ vanish, and, using the SPF orthog-
onality relationships, Figure 10, straightforwardly we
obtain Equation (21), which is shown diagrammatically
in Figure 19(b).

Next we turn to the equations for Ȧ2;1 from the TTNS
in Figure 5. The derivation is shown in Figure 20. Insert-
ing the just-derived Equation (21), we obtain a specific
form of Equation (20) for this node. Compared to the
more general Equation (20), there are two variations:
Firstly, since a next layer l+ 1 does not exist for A2;1,
here the configurations |�z+1

I 〉 from Equation (21) just
correspond to the primitive basis representation. Sec-
ondly, in Figure 20 we moved ρρρz to the left-hand side in
Equation (20), which is closer to the original MCTDH
derivation and hints at other ways to solve for this
equation, namely by using the pseudo-inverse of A2;1 [1,
124] (see alsoRefs. [121, 134] and Section 10.1). Note that
the just-derived equations for A1 and A2;1 are sufficient
to fully program the plainMCTDH equations of motions
without the multilayer form.

The derivations for the equations for Ȧ2;2 is very sim-
ilar to that of Ȧ2;1 and shown in Figure 21. The main
difference is that here we actually have configurations
|�z+1

I 〉 appearing in the diagrams. This is because A2;2 is
not connected to any primitive basis, which only happens
in ML-MCTDH and not in plain MCTDH for non-root-
tensors.

We now turn to the derivations for the tensors in the
third layer. Since A3;2,1 is not any different from A3;2,2,
we will focus on only one of them. Inserting A3;2,2 into
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Figure 18. Derivatives of a TTNS. First-order variation of � , which contain derivatives with respect to the individual tensors Az
′
(upper

panel), and time derivative (lower panel) for the TTNS from Figure 5. Tensors denoting variations are marked with a δ.

Figure 19. Derivations of the equations of motions for the root tensorA1 (shown in the upper left rectangle) for the TTNS from Figure 5.
The Hamiltonian is denoted by the gray rectangle. The individual terms come from Figure 18. After making use of the SPF orthogonality
relationships, Figure 10, and the SPF gauge, Equation (16), one arrives at panel (b), which corresponds to Equation (21). The dotted

rectangle in the lower right of panel (b) highlights 〈�1
I |Ĥ|�1

J 〉.
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Figure 20. Derivations of the equations of motions for A2;1 (shown in the upper left rectangle) from the TTNS shown in Figure 5. Terms
that are trivially zero due to the gauge conditions have been set to zero immediately (compare with Figure 19). The SPF orthogonality
relationships, Figure 10, and the expression from Figure 19 have been used in panel (b) to simplify the expression in (a). This is marked
by gray ellipses.

Equation (31) leads to the diagrams shown in Figure 22.
Compared to the derivation for the first and second layer,
here the derivation is slightlymore involved as we have to
take the equations of the previous two layers into account.
We first simplify two terms appearing on the left-hand
side of Figure 22(b). For that we combine the results from
Figures 19 and 21, which gives the expression shown in
Figure 23. Note that two terms on the right-hand site
of Figure 23 cancel each other. Inserting this back into
Figure 22(b) leads to the final equations of motions as
shown in Figure 24. This corresponds to Equation (20)
for layer 3.

We note that next to the ‘standard’ approach that we
use here [1, 2, 18, 19], an alternative approach to derive
the ML-MCTDH equations of motions exist [96, 122,
135–139]. There, one first derives the projector P̂T that
projects onto the tangent space, that is, the space spanned
by the first-order variations. Then one solves

i|�̇〉 = P̂TĤ|�〉. (32)

P̂T can be written as P̂T ∝
∑

ij |∂λi�〉G−1
ij 〈∂λj�|, where

G−1 is the inverse of the Gram matrix.
With this formulation of P̂T one obtains the standard

ML-MCTDH equations of motions [138–140]. Using a
different expression of P̂T , this approach will become
important for the TDVP-DMRG scheme discussed in
Section 8.

7. Canonicalisation: change of root node and
sweeps

Here, we will discuss how to change the root node of the
ML-MCTDH state/TTNS without changing the actual
state that is represented, which is at the heart of DMRG
algorithms.

This ‘canonicalization’ exploits that the TTNS is
invariant under transformation by an invertible matrix
T. This is seen by inserting 1 = TT−1 into the SHF
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Figure 21. Same as Figure 20 but for A2;2.

expansion, Equation (8):

|�〉 =
∑

i

|�z
i 〉 ⊗ |φz

i 〉 =
∑

ik

δik|�
z
i 〉 ⊗ |φz

k〉

=
∑

ijk

TijT
−1
jk |�z

i 〉 ⊗ |φz
k〉 (33)

=
∑

j

|�̃z
j 〉 ⊗ |φ̃z

j 〉, (34)

where we introduced the T-transformed SHFs |�̃z
j 〉 and

SPFs |φ̃z
j 〉,

|�̃z
j 〉 =

∑

i

Tij|�
z
i 〉, (35)

|φ̃z
j 〉 =

∑

k

T−1
jk |φz

k〉. (36)

This is depicted diagrammatically in Figure 25(a).
T can be chosen to orthogonalise and normalise the

SHFs. This then leads to non-orthogonal T-transformed
SPFs. Since SPFs should be orthonormal, however, now
we can re-interpret Equation (34) and just exchange the
meanings of the T-transformed SHFs and SPFs by for-
mally turning the now orthonormal SHFs into SPFs and

vice versa. This leads to a change of the tree structure.
Additionally, if the transformation is done for the first
layer, the root node changes. This is shown in Figure
25(b).

In practice, due to orthonormality of all SPFs in the
TTNS, to orthogonalise and normalise the SHFs |�1;κ

jκ
〉

one only needs to orthogonalise the tensor A1 with
entries A1

j1,j2,...,jκ ,...,jd
. This is done by first transposing it

to Az̃′ with entries Az̃′

jκ ;J̃
, where z̃′ and J̃ correspond to

the labels for the tree structure with changed root node.

Then Az̃′

jκ ;J̃
is matricised (compare with Figure 8) and

orthogonalised. The matrix orthogonalisation and nor-
malisation can be done, e. g. using a QR matrix decom-
position, which corresponds to Gram-Schmidt orthog-
onalisation [23, 141]. The R in the QR matrix then
corresponds to T−1 in Equation (36) and is absorbed
in the tensor connecting to Az̃′ . This procedure, also
sometimes dubbed isometrisation [39], together with
the different orthonormality conditions (isometries) of
the initial root tensor is shown diagrammatically in
Figure 26.

Note that this change of canonicalisation can be done
with any SPF-SHF pair in the tree and not only that of
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Figure 22. First part of the derivation of the equations of motions for A3;2,2 (shown in the upper left rectangle) from the TTNS shown
in Figure 5. Terms that are trivially zero due to the gauge conditions have been set to zero immediately (compare with Figure 19). SPF
orthonormality simplifies the expression in (a), as shown in (b) (compare with Figure 9).

Figure 23. Expression for two diagrams on the left-hand site of Figure 22(b). The gray-lined (gray-dashed) ellipses show the expression
from Figure 19 (Figure 21). Note that the first and last term on the right-hand site cancel each other.
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Figure 24. Final expression of the equations of motions for A3;2,2

(shown in the upper left rectangle) from the TTNS shown in Figure
5. To arrive at this, the expression from Figure 23 is inserted in
Figure 22.

Figure 25. Gauge-invariance in a ML-MCTDH state/TTNS. (a)
Inserting a matrix T and its inverse along a virtual bond does not
change the state. The transformation matrix T and its inverse are
denoted as purple rectangles. They are absorbed into the pur-
ple tensors; compare with Equations (34)–(36). (b) If T is chosen

to orthogonalise and normalise the SHFs |�1;2
i 〉 then the tree

changes its structure and the SHFs turn into SPFs and vice versa;
see text for details. The dotted lines mark the splitting of the SHFs
and SPFs.

layer 1. Further, the canonicalisation allows us to sys-
tematically traverse the tree in a way that every tensor at
some point will become at least once a root node. This
is an important ingredient in any DMRG algorithm and
called sweep. It can be implemented using graph algo-
rithms such as depth-first search; see Figure 27 for an
example. Other ways to traverse a TTNS in one sweep
are possible as well [39].

As technical remark, instead of using a QR decom-
position to orthogonalise the SHFs one can also use
other orthogonalisation procedures such as singular-
value-decomposition (SVD) [23, 141] (using U in the

Figure 26. Change of root node (canonicalisation) from tensor
A1 toA2;2. (a) Steps performed in the canonicalisation: (I) Reshap-
ing and QR decomposition and (II) absorption of R into A2;2. This
leads to a different tree structure. (b) Orthogonality conditions
(isometries) of A1 for the two tree structures (canonical forms)
where A1 is the root node (left) and where A2;2 is the root node
(right). The straight line denotes a unit matrix.

Figure 27. Example of a sweep through a tree. Here, the sweep
is defined to start at a node in the last layer (lower left). At each
‘stop’ of the sweep,which is denotedbynumbers, the correspond-
ing tensor is orthogonalised, which changes the canonical formof
the tree. This defines one forward sweep. Reversing the direction
leads to a backward sweep that ends at the node that initialises
the forward sweep.

SVD A = USV† as orthogonal matrix and SV† as T−1).
This is equivalent to using the eigenvectors of the reduced
density matrix. Hence, this leads to natural SPFs, which
often result in improved numerics as then the Hamilto-
nian represented by the basis of the configurations often
is diagonally dominant. SPFs that diagonalise the separa-
ble part of the Hamiltonian are another commonly used
choice to improve numerics [142]. All of these choices
realise a particular gauge.

8. Time-dependent DMRG approximation

One major problem of the ML-MCTDH equations of
motions is that they can become highly nonlinear.
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Hence, sophisticated integrators need to be used for effi-
cient propagation [90]. To overcome this for standard
MCTDH, based on insights that SPFs typically evolve
slower than the actual wavefunction, an efficient integra-
tor targeting the structure of the MCTDH equations has
been developed and dubbed constant mean-field (CMF)
integrator [119, 143]. Therein, the equations of motions
for the SPFs, Equation (19), and those for the root tensor,
Equation (21), are decoupled by assuming that the con-
figurations, densitymatrices andmean fields are constant
in time during the propagation. This has the advantage
that the root tensor can be propagated using standard
exponential propagators [80] such as the short iterative
Lanczos (SIL) propagator [144]. The SIL propagation
leads to efficient error estimates [119, 143]. The equations
for the SPFs are then solved using a general purpose prop-
agator. The CMF integration scheme can be an order of
magnitude faster than propagating all MCTDH tensors
simultaneously. The error is of order �t3 with respect to
the adaptive time step �t.

As CMF is designed for normal MCTDH, its direct
usage for ML-MCTDH is limited to the first two lay-
ers in a TTNS. While in principle the CMF idea can be
extended to any layer in ML-MCTDH, there it is not as
powerful as only the root tensor can be propagated using
an exponential integrator. Hence, the standardCMF inte-
gratormay not offer significant improvements for TTNSs
with many layers. An integrator that we call here TDVP-
DMRGputs the CMF integrator to its extreme and allows
for using exponential integrators for all tensors by mak-
ing use of sweeps [61, 96]. The idea of TDVP-DMRG
was motivated by finding an alternative way to solve the
MCTDH equations of motions [95, 96], but it has been
introduced in several fields almost simultaneously. Thus,
it is also known as projector splitting integrator (PSI)-
MCTDH [97, 108, 110, 139], Lubich integrator [109, 145]
(named after its inventor [95, 96, 98]) as well as ‘tensor-
train KSL’ for the case ofMPSs [137, 146]. TDVP-DMRG
has first been used for MPSs (and later for standard
MCTDH [97, 98]). The first application of TDVP-DMRG
to TTNSs we are aware of is Ref. [147]. For a mathemat-
ical analysis, see Ref. [148]. We have recently used it for
the challenging case of large-amplitude dynamics of the
fluxional Zundel ion [70].

Here, before sketching the derivation, we first explain
the basic ideas of TDVP-DMRG using somewhat hand-
waving arguments. Since the TTNS changes its root
node during the TDVP-DMRG sweep, the ML-MCTDH
labelling scheme, which is tied to a particular rood node,
is difficult to use. Instead, we will use generic symbols
such as A and B to denote tensors. A diagrammatic
illustration for our example tree (Figure 5) is shown in
Figure 28.We start the sweep in Figure 28(a)with a tensor

in one of the last layers, which we dub here A(t). The
first propagation step in TDVP-DMRG, Figure 28(b),
follows the CMF scheme and propagates A(t) to time
t + �t using Equation (21) with the approximation of
time-independent configurations |�1

I 〉.
Instead of following the CMF scheme and solving

the complicated Equation (20) for propagating the ten-
sor B(t) adjacent to A(t + �t) in Figure 28(c), we
orthogonaliseA(t + �t)using, e. g. aQRdecomposition.
This gives A(t + �t) = Q(t + �t)R(t + �t), as shown
in Figure 28(d). Then A(t + �t) is exchanged by Q(t +

�t) and R(t + �t), which is a new, additional node in
the tree, see Figure 28(e). For changing the root node
to B(t), we need to absorb R(t + �t) into B(t). How-
ever, R(t + �t) is at a different time step than B(t). In
order to have matching times for R and B, we inter-
pret R(t + �t) as actual root node and back-propagate

R(t + �t) toR(t), which is shown in Figure 28(f-g). This
back-propagation again uses the root tensor MCTDH
equations, Equation (21), but note that the configura-
tions used in Equation (21) for propagatingR(t) describe
different propagation times, namely t + �t for the parts
of the configurations associated with A and t for the
parts of the configurations associated with B. After back-
propagation of R(t + �t), R(t) is absorbed into B(t),
which becomes the new root node of the TTNS; see
Figure 28(h). The described procedure is repeated: B(t)

is propagated and orthogonalizsed, the resulting R(t +

�t) from the QR-decomposition of B(t + �t) is back-
propagated and absorbed into the new root node C(t);
see Figure 28(i). Doing this for each tensor in the TTNS
finally leads to the fully propagated state |�(t + �t)〉 .11

We now sketch the derivation of TDVP-DMRG. To
simplify expressions, we here only derive it for MPSs,
but generalising the TDVP-DMRG scheme for trees is
straightforward, as we have demonstrated in Figures 26
and 28. AnMPS corresponds to a linear, unbalanced tree,
and each node has two virtual bonds and one physical
bond, save for the tensors at the end, which only have one
virtual bond.We can write an F-dimensionalMPS whose
canonical form (root node) is centred at dimension κ as

|�〉 =
∑

ijκk

A
[κ]
ijκk

|φ
[κ],1
i 〉 ⊗ |χ

(κ)
jκ

〉 ⊗ |φ
[κ],2
k 〉. (37)

See Figure 29(a) for an example diagram. Here we use a
slightly modified ML-MCTDH notation where we add
the location of the root node/canonical form using [κ]
and where we have dropped the label for the first layer in
the root tensor and the SPFs. To change the root node to
dimension κ + 1, we QR-decompose the root tensor as

A
[κ]
ijκk

=
∑

x

Q
[κ]
ijκx

R
[κ]
xk , (38)
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Figure 28. TDVP-DMRG scheme for the TTNS from Figure 5. Panels (a)–(h) show different steps in the algorithm for propagating the
first tensor A and for changing the root node to the neighbouring tensor B. Panel (i) shows the TTNS for propagated tensors A and B.
As the tree structure changes during the sweep, we here use generic symbols A, B, C, Q, R for labelling specific tensors. Here, C(t) is the
only tensor with 3 virtual bonds. Hence, during the sweep, C(t) will appear twice as root node, but it will only be propagated once to
time t + �t. C(t + �t) then will be skipped the next time it is root node during the sweep. This is the main difference when applying
TDVP-DMRG to TTNSs instead of MPSs. See the text for details.

and use Q as expansion coefficients of the new SPFs for
the root node at dimension κ + 1 (compare with Figure
26):

|φ[κ+1],1
x 〉 =

∑

ijκ

Q
[κ]
ijκx

|φ
[κ],1
i 〉 ⊗ |χ

(κ)
jκ

〉. (39)

Using the newly formed |φ
[κ+1],1
x 〉, we obtain an interme-

diate state with R as root node:

|�〉 =
∑

xk

R
[κ]
xk |φ

[κ+1],1
i 〉 ⊗ |φ

[κ],2
k 〉, (40)

which combines |φ[κ+1],1
i 〉 and |φ

[κ],2
k 〉 in one TTNS. This

representation is known as bond-canonical form in MPS
language. It is the one used for back-propagating R in

Figure 28. Absorbing R into |φ
[κ],2
k 〉 as in Figure 26 then

leads to the TTNS representation with orthogonalisation
centre/root node at κ + 1.

TDVP-DMRG makes use of the TDVP written in
terms of the tangent space projector P̂T , Equation (32),
using a special form of P̂T [61, 137] that utilises different

canonical forms of the MPS:

P̂T =

F∑

κ=1

P̂+
κ −

F−1∑

κ=1

P̂−
κ , (41)

with

P̂+
κ =

∑

i

|φ
[κ],1
i 〉〈φ

[κ],1
i | ⊗ 1̂κ ⊗

∑

k

|φ
[κ],2
k 〉〈φ

[κ],2
k |,

and (42)

P̂−
κ =

∑

x

|φ[κ+1],1
x 〉〈φ[κ+1],1

x | ⊗
∑

k

|φ
[κ],2
k 〉〈φ

[κ],2
k |.

(43)

See Figure 29(b) for example diagrams. Note that P̂−
κ uses

the SPFs from the bond-canonical form, Equation (40).
The first sum in Equation (41) projects onto all possi-
ble TTNSs that only differ at one site (compare with the
first-order variations shown in Figure 18). The second
sum subtracts all components that are identical with the
current state [30], save for the gauge.
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Figure 29. Example MPS and parts of tangent space MPS projector. (a) Example of the notation used in Equation (37) for κ = 2. (b)

Projectors P̂+
2 and P̂−

2 for the MPS shown in (a). These projectors are part of the tangent space projector, Equation (41). P̂−
2 makes use of

Equation (40), where A[κ]
ijκ k

was replaced by Q[κ]ijκ x
from Equation (39), thus the different colour of that node.

Using Equation (41) and assuming a time-indepen-
dent Hamiltonian, we can then write the TDVP propa-
gation, Equation (32), from time t to t + �t as [65, 137]

|�(t + �t)〉

= exp
(
−i�tP̂TĤ

)
|�(t)〉 (44)

= exp
[
−i�t

(
P̂+
1 − P̂−

1 + · · · + P̂+
F−1

−P̂−
F−1 + P̂+

F

)
Ĥ

]
|�(t)〉

≈ exp
(
−i�tP̂+

1 Ĥ
)

exp
(
+i�tP̂−

1 Ĥ
)

· · · exp
(
−i�tP̂+

F−1Ĥ
)

exp
(
+i�tP̂−

F−1Ĥ
)
exp

(
−i�tP̂+

F Ĥ
)

|�(t)〉

+ O(�t2), (45)

where we approximated the exponential using Lie-
Trotter splitting. This leads to the scheme discussed
above and shown in Figure 28 for a TTNS. exp(+i�tP̂−

κ

Ĥ) forward-propagates F root nodes and exp(+i�tP̂−
κ Ĥ)

backward-propagates F−1 R matrices. For more details
on the derivation of different aspects we refer to Refs. [30,
61, 65, 95, 96, 108, 110, 137, 139, 150]. An expression
similar to Equation (45) may be obtained for TTNSs by
ensuring that tensorswithmore than two virtual bonds in
a TTNS will be propagated only once during one sweep
(the time propagation can be omitted during instances
of the sweep where these tensors become the new root
node) [110, 148, 149]; a mathematical proof of this is
missing, however [148]. Using �t → �t/2 as time step
and combining Equation (45) with a backward sweep
leads to a Lie-Trotter splitting error of order O(�t3).
This is of the same order as that of the CMF integrator.
Compared to the CMF scheme for MCTDH, however,
no adaptive time step so far has been implemented and

typically different time steps needs to be tried out. Using
composition schemes, higher orders are possible as well,
but this so far has not been explored.

An interesting special case of TDVP-DMRG that
resembles more ML-MCTDH than DMRG is the ‘non-
hierarchical’ propagation scheme introduced by Weike
and Manthe [109]. Therein, based on Löwdin-orthogo-
nalised [151] SHFs (by using [ρρρz]−1/2 as transforma-
tion matrix), a time-dependent and node-dependent
gauge operator ĝz(t) is defined that leads to symmet-
ric equations of motions for the SHFs and for the SPFs.
This makes all SHFs orthonormal and the SPFs non-
orthogonal. The equations of motions for all tensors
then take a form similar to that of the root tensor,
Equation (21), plus an additional term for the operator
ĝ1;κ(t):

iȦ1
I =

∑

J

〈�1
I |Ĥ|�1

J 〉A
1
J −

d∑

κ

∑

J

〈�1
I |ĝ

1;κ(t)|�1
J 〉A

1
J .

(46)
Together with the Löwdin orthogonalisation, these addi-
tional gauge-operator terms ĝ1;κ for each dimension of
A1 roughly correspond to the decomposition and back-
propagation of theR tensor in TDVP-DMRG, and hereR
is constrained to be [ρρρz]+1/2. Thus, compared to TDVP-
DMRG, there is no Lie-Trotter splitting but instead, due
to the specific orbital gauge, the effective Hamiltonian
becomes time-dependent. While making use of DMRG
ideas (exploiting different orthogonality schemes), this
propagator is straightforward to implement using exist-
ingMCTDHcodes. Further, it has the appealing property
that all tensors can be propagated simultaneously using
a CMF integrator with adaptive time step. This renders
an implementation of the propagator embarrassingly par-
allel. Another ‘basis-update and Galerkin’ (BUG) inte-
grator for Tucker decompositions recently has been pro-
posed by Ceruti and Lubich [152]. It does not make use
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of backward propagation and enables parallel propaga-
tion, but the initial version does not conserve norm and
energy. A bond-dimension-adaptive and norm/energy-
conserving extension of this for TTNSs is mentioned in
Section 10.2.

We end this section by noting that many other meth-
ods to solve the TDSE exist in the context of the DMRG.
Many of these are, however, targeted at certain model
Hamiltonians. See Ref. [30] for a recent review for TDVP-
DMRG and other propagation methods for MPSs.

9. Time-independent DMRG

Since ML-MCTDH approximates the TDSE, eigenstates
can be obtained throughML-MCTDH by propagation in
imaginary time [153]. To overcome the same issues as in
real-time propagation, a CMF variant for imaginary time
evolution and standard MCTDH has been developed
by Meyer et al. and dubbed improved relaxation [142,
154], where the propagation of the root tensor is replaced
by Davidson’s iterative diagonalisation method [155].
Improved relaxation can be viewed as a vibrational mul-
ticonfiguration self-consistent field approach [156–158],
where the optimisation of the SPFs through direct min-
imisation (e. g. via Jacobi rotations [157, 158]) is replaced
by imaginary time propagation. Alternatively, Manthe
developed a modified Lanczos scheme that takes into
account the different SPF spaces of each MCTDH state
during the Lanczos procedure [159, 160]. State averag-
ing can be used to target several states at once [142, 156,
161, 162]. While improved relaxation can be straightfor-
wardly generalised fromMCTDH toML-MCTDH [163],
the same issues as discussed in Section 8 remain. Fur-
ther, it is very difficult to target many excited states and
most (ML-)MCTDH eigenstate optimisations so far have
targeted the few lowest eigenstates or excited states that
are easily to identify, e. g. by a particular excitation in one
mode.

As alternative to the ML-MCTDH algorithm for tar-
geting eigenstates, the TDVP-DMRG method can be
used for eigenstates as well by imaginary time prop-
agation. Like improved relaxation, the imaginary time
propagation of the root node can be replaced by directly
diagonalising the effective Hamiltonian (in its renor-
malised basis), 〈�1

I |Ĥ|�1
J 〉. Eigenstate optimisation only

requires following the energy gradient. Hence, the back-
propagation in imaginary time of R is not necessary and
R can directly be absorbed into the next tensor. This then
leads to the (one-site) DMRGalgorithm [3, 4], which also
is known as alternating least squares (ALS) scheme [23,
26, 164]. Thus, the DMRG algorithm actually is sim-
pler than TDVP-DMRG and all that is required during

Figure 30. Performance of ML-MCTDH and TTNS/DMRG for a
12-dimensional model of acetonitrile, which employs a quartic
Taylor expansion [167]. Absolute errors of the ground state (a) and
the lowest 13 states (b) using the state averaging approach. The
green curve shows the performance of the DMRG algorithm and
the blue curves show that of theML-MCTDHmethod, using either
improved relaxation (dark blue) or imaginary time propagation
(pale blue; error after each time step of 1 fs). All three methods
use exactly the same initial TTNS for both optimisations without
adapting the number of single particle functions (thus the ground
state computation is more accurate). The iteration is proportional
to the runtime of each method. All three methods have the same
computational scaling but different prefactors. Reprinted from
Ref. [59], with the permission of AIP Publishing.

the sweep is sequentially solving an effective eigenvalue
problem.

The DMRG decouples the full nonlinear equations
that would appear when following the energy gradi-
ent for all tensors simultaneously (which is done in
ML-MCTH imaginary time propagation). Actually, (one-
site) DMRG resembles a fixed-point iteration where,
for each tensor, an eigenvalue problem is solved iter-
atively, which is similar to the self-consistent field
algorithm used in mean-field methods. Indeed, the
DMRG algorithm can be derived by introducing a
Lagrangian similar to the TDVP [165]. A numeri-
cal comparison of ML-MCTDH-based algorithms with
the DMRG algorithm is shown in Figure 30. DMRG
requires many fewer iterations to converge than ML-
MCTDH. Note, however, that state averaging can only
be done approximately using the DMRG [59, 166], and
for the same accuracy state-averaged DMRG requires
a slightly larger bond dimension than state-averaged
ML-MCTDH.

DMRG can also be extended to the computation of
excited states. A simple way to do that is to use level shift-
ing, that is, to compute the NS lowest states successively
by shifting theNS − 1 previously computed states |�i〉 in
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energy,

Ĥ → Ĥ + Z

NS−1∑

i=1

|�i〉〈�i|, (47)

whereZ is some large number [168].While this approach
may seem to break downwhen the states are very approx-
imate, we have successively used it to accurately com-
pute more than 1000 eigenstates of complicated prob-
lems such as the 15-dimensional vibrational problem of
the fluxional Zundel ion [70]. As long as many of the
NS lowest states are actually of interest, this approach
is fast, accurate, and straightforward to use [59]. Ulti-
mately, however, the density of states becomes too large
at large energies and more sophisticated approaches are
required to directly target highly-energetic eigenstates
with desired properties. Some ways to achieve that are
using the DMRG algorithm but targeting excited states
in the effective Hamiltonian [59, 169], solving the eigen-
value problem of (ω − Ĥ)2 or (ω − Ĥ)−1, where ω is
the target energy [64], or using global approaches that
describe the eigenstate as sum of TTNSs [170, 171].

10. Propagating unoccupied SPFs and subspace
enrichment

Here, we will discuss how to deal with the ill-defined
propagation of unoccupied SPFs and how to enlarge or
‘enrich’ the SPF subspace. Both topics are related to each
other and research on these topics recently has been very
active both in the MCTDH and DMRG communities.

10.1. Propagating unoccupied SPFs

In most scenarios, the number of required SPFs (bond
dimension of the TTNS) increases with time. Many sim-
ulations even start with a single Hartree product as ini-
tial state (only one SPF occupied in each dimension,
nSPF = 1), and, after a few time steps, the state can rapidly
become correlated. To take that into account, one either
must use an initial TTNS with a larger bond dimen-
sion (additional initially unoccupied SPFs), or one must
dynamically add SPFs during the time evolution. The first
one is the default case in MCTDH, and the second one a
recent development [102, 172, 173].

In either cases, the single-particle density matrix
ρρρz that needs to be inverted in the SPF equations of
motions, Equation (19), becomes singular (vanishing
natural occupations).12 To avoid singular matrices, in
practice they are being regularised during time prop-
agation [2]. For many typical applications, regularisa-
tion works well. This is the case even when non-direct-
product SPF spaces are being used and new SPFs are
added and removed during the simulations [102]. Instead

of inverting the densitymatrix, one can pseudo-invert the
regularised coefficient tensor,13 which leads to improved
stability [1, 124, 145]. Even with improved stability, how-
ever, the regularisation can still become an issue both in
terms of numerical stability and numerical efficiency [95,
123, 174, 175].

Formally, in TDVP-DMRG there is no inverse of the
single-particle matrix involved, and no explicit regulari-
sation is required. While the TDVP-DMRG approach is
robust with respect to small natural occupations [138],
orthogonalising the SHFs is ill-defined for singular den-
sity matrices and then any orthogonalisation procedure
also becomes arbitrary. However, arguments that it is
not possible to propagate unoccupied SPFs in TDVP-
DMRG [145] do not hold, as one can always mod-
ify the unoccupied SPFs appropriately, for example,
either using the procedures described in Section 10.2
or even using the standard MCTDH regularisation
approach.

In general, methods that use the TDVP can only
describe SPFs to first order in time and thus there always
is an arbitrariness regarding unoccupied SPFs [123].
This holds both for (ML-)MCTDH and TDVP-DMRG,
regardless of the way the regularisation is performed (or
whether it is ‘hidden’ by using matrix decompositions or
gauges [109]). Hence in certain scenarios care must be
taken to converge simulations properly [109, 175, 176],
even though standard regularisation works fine for a
plethora of use cases.

10.2. Subspace enlargement: optimising

unoccupied SPFs

Instead of trying to propagate unoccupied SPFs, which
is ill-defined, one can instead optimise them differently.
There are different ways to optimise unoccupied SPFs,
which in DMRG language also is known as subspace
enrichment or subspace enlargement. Here, we will first
discuss the two-site DMRG approach, then continue
with MCTDH approaches, and finally discuss one-site
DMRG approaches. Many of these are related to each
other.

10.2.1. Two-site DMRG approach

In practice, some but not all possible issues arising from
the first-order description of the SPFs are alleviated in
TDVP-DMRG by using the so-called two-site algorithm,
where the local propagation problem is solved in the sub-
space of not one but two tensors in the tree. This is done
by first contracting the root tensor and one of its neigh-
bours, then propagating the contracted tensor, and finally
‘de-contracting’ the propagated tensor using, e. g. SVD.
In MCTDH language, we define the SHF configurations
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Figure 31. Effective two-site Hamiltonian. The TTNS from Figure
5 is used as example. Diagonalising the effective Hamiltonian
optimises the tensor shown in the dotted rectangle, which is a
contraction ofA1 withA2;2. The gray rectangle corresponds to the

Hamiltonian Ĥ. Compare with Equation (49).

as

|

l;κ1,κ2,...,κl
Jκl

〉 =

dκ1,κ2,...,κl⊗

κ̃l=1

κ̃l �=κl

|φ
l;κ1,κ2,...,κ̃l
jκ̃l

〉, (48)

where Jκλ contains all indices jκ̃l but jκl . Then the two-
site DMRG solves the Schrödinger equation in the space
of the SHF and SPF configurations, thus two-site DMRG
effectively optimises an SHF-SPF coefficient tensor pair.
This leads to an effective Hamiltonian with matrix ele-
ments

〈
1;κ
Iκ �

2;κ
I′ |Ĥ|
1;κ

Jκ �
2;κ
J′ 〉, (49)

compare with Figure 31.
The two-site variant can avoid convergence issues

and is particularly important for symmetry-adapted
DMRG [35]. Before one can orthogonalise to the next
node in the sweep, the two-site tensor needs to be decon-
tracted using, e. g. an SVD. This allows for a straight-
forward way to dynamically adjust the bond dimension
(number of SPFs). By observing the sum of discarded
singular values, one obtains an error estimate, which
can be used for energy extrapolations [7, 177, 178]. In
fact, standard DMRG initially was formulated as two-site
algorithm [3] and the one-site version is a more recent
development [179]. Note, however, that two-site TDVP-
DMRG still is based on the TDVP and thus possible
issues due to unoccupied SPFs may not be fully resolved.
Two-site DMRG also is known as modified ALS [164].

10.2.2. Lee/Fischer/Manthe approach

Developing algorithms to systematically extend the SPF
space/bond dimension is straightforward and both for
MCTDH and for one-site TDVP-DMRG many schemes
have been developed to extend the number of SPFs/bond
dimension dynamically during time [69, 102, 146, 172,
173, 180, 181]. It is more difficult to actually optimise
the newly added and thus unoccupied SPFs. To optimise

unoccupied SPFs/to enlarge the subspace, in the DMRG
and MCTDH communities, different approaches have
been developed. We first discuss solutions developed in
the context of MCTDH. There, the general idea is that
instead of propagating SPFs that are unoccupied at time
t, which is ill-defined, they are optimised bymaximising a
quantity related to the overlap of the then-occupied SPFs
at time t + �t. This allows for a natural expansion of the
SPF space during the time evolution. Such an expression
can be derived in various ways, but the general form of
the expression derived by different scientists is similar.

Lee and Fischer derived an expression for optimal
SPFs for bosonic MCTDH [15, 182, 183] by minimis-
ing 〈�|[i ∂

∂t − Ĥ]†[i ∂
∂t − Ĥ]|�〉 [184]. Manthe derived

the same expression in the language of ordinary (ML-
) MCTDH by analysing the expansion of the single-
particle densitymatrix to second order in time [123, 185].
To analyse the expressionManthe arrived at, we consider
here only natural SHFs, denoted by |�̃z

µ〉.14 By inspect-
ing the natural occupations, we divide the SHFs and
corresponding SPFs in occupied (µ ∈ occ) and unoccu-
pied ones. Note that this introduces a numerical parame-
ter. The expression used for finding optimal unoccupied
SPFs then contains the following operator represented by

the configurations {|�z′+1
J 〉}J :

Ĥ
z
IJ = 〈�|Ĥ|�z′+1

J 〉
(
1̂ − P̂

z
occ

)
〈�z′+1

I |Ĥ|�〉, (50)

where P̂z
occ projects onto the space of the occupied natu-

ral SHFs:

P̂
z
occ =

∑

µ∈occ

|�̃z
µ〉

1

pzµ
〈�̃z

µ|. (51)

The optimal unoccupied SPFs are then identified by the
eigenstates with the largest eigenvalue of the operator

�̂z
occ = (1̂ − P̂zocc)Ĥ

z(1̂ − P̂zocc), (52)

where P̂zocc projects onto the occupied natural SPFs. Since

�̂z
occ contains both (1̂ − P̂zocc) and (1̂ − P̂z

occ), it cov-
ers the space that is not included in the tangent space.
The eigenstates can be computed efficiently using iter-
ative eigenvalue solvers such as the Lanczos solver. See
Figure 32 for an example diagram.

While Equation (52) contains the unoccupied SPFs
that are optimal to second-order in time, the term

〈�|Ĥ|�z′+1
J 〉〈�z′+1

I |Ĥ|�〉 in Equation (50) is costly to

compute as it contains Ĥ2 partially evaluated in the
primitive basis. For SoP operators (and similarly for
MPOs), Ĥ2 can be expressed using the partition from
Equation (25) as

〈�|Ĥ|�z′+1
J 〉〈�z′+1

I |Ĥ|�〉
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Figure 32. Operator related to optimal unoccupied SPFs. Com-
pare with Equation (50). The TTNS from Figure 5 is used as exam-

ple. The gray rectangle corresponds to the Hamiltonian Ĥ and
the blue square corresponds to the inverse of the natural occu-
pations (overlaps of the natural SHFs). The blue-striped region
corresponds to the approximation introduced in Equation (56).

This avoids computing Ĥ2 in the space of the primitive basis.

=

S∑

s,s′

〈�|Ĥz
s ĥ

z
s |�

z′+1
J 〉〈�z′+1

I |Ĥz
s′ ĥ

z
s′ |�〉. (53)

Inserting the SHF-SPF expansion Equation (8) leads to

〈�|Ĥ|�z′+1
J 〉〈�z′+1

I |Ĥ|�〉

=

S∑

s,s′

∑

ij

〈�z
i |Ĥ

z
s Ĥ

z
s′ |�

z
j 〉〈φ

z
i |ĥ

z
s |�

z′+1
J 〉〈�z′+1

I |ĥzs′ |φ
z
j 〉,

(54)

which contains a double sum over all S terms in
the SoP Hamiltonian. To avoid a scaling of O(S2),
Equation (54) can be approximated by including only
the ‘diagonal’ terms with s = s′, which then leads to a
favourably-scaling implementation. Manthe showed that
this approximation leads to sufficiently optimal unoccu-
pied SPFs [185].

10.2.3. Mendive-Tapia/Meyer approach

Using a different derivation, Mendive-Tapia and Meyer
arrived at an expression for the coefficients of the
optimal unoccupied SPFs [173]. They further derived
an expression for the optimal unoccupied SPFs that
is identical to Equation (50) except for the costly

〈�|Ĥ|�z′+1
J 〉〈�z′+1

I |Ĥ|�〉, which is approximated by

projecting this expression onto the configurations of
the SHFs. This leads to an efficient implementation for
an approximation of �̂. Using another derivation that
resemblesmore that of Lee and Fischer [184],Martinazzo
and Burghardt arrived at essentially the same expres-
sion [186].

We now show that the two-site TDVP-DMRG
algorithm relates to the expression from Mendive-Tapia
and Meyer. Their derivation was for ordinary MCTDH,
but this can be straightforwardly extended to ML-
MCTDH. Using the SHF configurations, Equation (48),
we can define the following state

|̃FzJκl 〉 =
(
1̂ − P̂

z
)

〈
z
Jκl�

z′+1
I |Ĥ|�〉. (55)

Then Ĥz
IJ from Equation (50) projected onto the space of

the SHF configurations, dubbed here ˆ̃
H

z

IJ , can be written
as15

ˆ̃
H

z

IJ =
∑

Jκl

|̃FzJκl 〉〈̃F
z
Jκl |. (56)

In a similar fashion, by projecting |̃Fz
Jκl

〉 onto (1 −

P̂zocc) we can obtain an expression for an approximated
�z

occ. How does this relate to the two-site algorithm?

|
z
Jκl

�z′+1
I 〉 used in Equation (55) contains both the con-

figurations of the SHF and the configurations of the
corresponding SPF. The SHFs and SPFs themselves are
obtained by contracting with a coefficient tensor. So
two coefficient tensors are required to retrieve the total

TTNS from |
z
Jκl

�z′+1
I 〉, which accordingly describe the

configurations used in the two-site DMRG algorithm!
This is easily seen by comparing Figure 33, where

〈
z
Jκl

�z′+1
I |Ĥ|�〉 is depicted, with the corresponding

two-site effective Hamiltonian shown in Figure 31.
Note that the computational cost of usingEquation (56)

is smaller than that of using the two-site DMRG
algorithm as the configurations in one node are con-
tracted in Equation (56).16 Hence, the expression found
by Mendive-Tapia and Meyer can be interpreted as an
approximation of the two-site DMRG algorithm,17 and
either this or Manthe’s expressions can be used not only
in ML-MCTDH but also in one-site DMRG to increase
the SPF space (thus increasing the bond dimension).
Note that these expressions can be used both for imag-
inary and for real-time propagation, and thus they can
be combined with both DMRG and TDVP-DMRG.

10.2.4. One-site DMRG approaches

We now discuss solutions to avoid dealing with the issue
of propagating unoccupied SPFs developed in the context
of DMRG. Yang and White suggested enlarging the TNS
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Figure 33. State used for finding optimal unoccupied SPFs based
on Equations (55) and (56). Compare with Figures 31 and 32.

by using additional, approximate global Lanczos propa-
gations [187], where Ĥ explicitly (but approximately) acts
onto |�〉. Another, more common approach initiated by
White is based on perturbing the state during the DMRG
sweep [179]. There the starting point is slightly different
to that of MCTDH.While the SPFs are extended directly
using eigenvectors of �̂z

occ fromEquation (52), in DMRG
context this happens in SHF representation by adding
some new states |Fzx〉 to the SHF space andmodifying the
SHF-SPF orthogonalisation procedure. This can be done
by either adding rows to the matricised coefficient tensor

Az′ with entriesAz′

iJ representing the SHF [188], or by cre-

ating an SHF density matrix γγγ = Az′†Az′ and perturbing
it using [179]

γγγ → γγγ +
∑

x

|Fzx〉〈F
z
x|. (57)

Note that γγγ represents the SHF space and is not identi-
cal to the single-particle densitymatrix. Both procedures,
adding rows toAz′ or perturbing γ , are identical but have
different computational scalings [59, 188].

Next to the difference that the SHF space and not
the SPF space is enlarged, another major difference to
MCTDH subspace enlargement schemes is that time-
independent DMRG schemes may include an additional
compression of the new state with larger nSPF to the orig-
inal number of SPFs. This compression alters |�〉, hence

the name subspace enrichment. It is used for avoiding
local minima with unwanted symmetries in DMRG.

10.2.5. White approach

Themost commonly used enrichment scheme in DMRG
is the one developed by White [179]. It is based on
Equation (57) but has also been extended to the SVD-
based enrichment [188]. To make the connection to
the MCTDH expansion schemes more clear, we will
exchange the SPFs and SHFs in the following (or equiv-
alently, system and environment in DMRG language).
Thus we will not perturb the SHF density matrix,
Equation (57) but rather diagonalise the SPF opera-
tor Equation (52).18 In this representation, using first-
order perturbation theory and considering the SHF-
SPF decomposition of the Hamiltonian, Equation (25),
White derived the following term, which we show here
in MCTDH notation:

ˆ̃
H

z

IJ =

S∑

s,s′

∑

ij

1

ǫsǫs′
Msis′j〈φ

z
i |ĥ

z
s |�

z′+1
J 〉〈�z′+1

I |ĥzs′ |φ
z
j 〉,

(58)
where ǫs corresponds to energies for each sum term
evaluated in the SPF basis, and where

Msis′j = 〈�z
i |Ĥ

z
s (1̂ − P̂

z)Ĥz
s′ |�

z
j 〉. (59)

Note that aside from ǫs, and an exchange of SPFs and
SHFs in White’s original expression (which we do not
show here), Equation (58) is identical to the expression
derived by Manthe, compare with Equations (50) and

(54) (there P̂z is not included). For SoP operators or,
equivalently, MPOs with S terms, Manthe avoided the

O(S2) scaling by evaluating the P̂z-part of Equation (59)
exactly but only considering the terms with s = s′ for the
1̂-part. White made a more severe approximation and
assumedMsis′j ≈ δss′δij. Then Equation (58) evaluates to

ˆ̃
H

z

IJ ≈

S∑

s

∑

i

as〈φ
z
i |ĥ

z
s |�

z′+1
J 〉〈�z′+1

I |ĥzs′ |φ
z
i 〉, (60)

with as = 1/ǫs. Instead of evaluating as explicitly, White
set it to an empirical parameter that does not depend on s.
The more severe approximations done by White are use-
ful as White considered time-independent DMRG and
was seeking for a way to overcome local minima and to
improve convergence.

10.2.6. Energy variance approaches

Related subspace expansion methods have been devel-
oped that are based on minimizing the two-site contri-
bution to the energy variance [189, 190],

〈�|(Ĥ − E)Q̂T2(Ĥ − E)|�〉, (61)
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where Q̂T2 project onto the space that is orthogonal to
the two-site tangent space (the zero- and one-site con-
tributions are already included in one-site DMRG) [150,
189].19 While Equation (61) leads to a very different
derivation for finding optimal unoccupied SPFs, this,
essentially, is the same approach as that ofMendive-Tapia
and Meyer, Equation (56). A recent scheme to efficiently
approximate Equation (61) uses sequences of SVDs [191,
192].20

10.2.7. BUG integrator approach

An extension of the non-energy-conserving BUG inte-
grator [152], which we briefly mentioned in Section 8,
further allows for subspace extension and is norm and
energy-conserving [193, 194]. Therein, the SPF space at
time t is augmented by that at time t + �t and the bond
dimension can be increased by up to a factor of two at
each time step. It has recently been extended from the
Tucker format to TTNSs [195].

11. Tree structures

Here, we will discuss why TTNSs are commonly used
for molecular (ro-)vibrational quantum dynamics sim-
ulations whereas MPSs and not TTNSs are mostly
used in other fields. As this discussion depends on
the quantum problem, we restrict our comparison
to molecular systems and compare molecular elec-
tronic structure with molecular vibrational dynam-
ics. In addition, and related to this, we will discuss
some strategies to find optimal tree structures for
TTNSs.

11.1. TTNSs orMPSs?

Compared to MPSs, TTNSs can more efficiently cap-
ture different groups of correlated degrees of freedom
and efficiently separate them from less-correlated degrees
of freedom. These degrees of freedom correspond to
either orbitals in electronic structure theory or vibra-
tional (and rotational) modes/coordinates in vibrational
quantum dynamics. For example, a reaction can typically
be described by some reactionmodes that are highly cor-
related, and some spectator or ‘bath’ modes that do not
take direct part in the reaction. TTNSs allow for an effi-
cient separation of these groups of correlated or uncorre-
lated modes. Compared to MPSs, TTNSs thus often con-
verge faster with respect to the number of required SPFs,
nSPF, both in vibrational dynamics [59] and in molecu-
lar electronic structure [26, 37, 40, 196, 197]. If that is the
case, why are TTNSs rarely used for electronic structure
simulations? The reason is a different computational scal-
ing. MPSs have tensors of size nSPF × nSPF × N. MPSs

describing electronic structures are most efficiently rep-
resented in Fock space [26]. The physical dimension is
then N ≤ 4 and thus negligible. Thus, every electronic
structure MPS tensor operation scales at least as nSPF2,
where nSPF ranges from 500 to even 30, 000 [178, 198,
199]. In contrast, TTNS tensors scale at least as nSPF3,
since the minimal ‘useful’ tensor dimension in a tree
is 3. Accordingly, the scaling of TTNS operations in elec-
tronic structure is a factor of ∼ nSPF larger than that
of MPSs [196, 197]. Even if TTNSs require a smaller
nSPF for convergence, overall MPSs are computationally
more advantageous in many electronic structure situa-
tions. This may change if the tree structure can also be
exploited for the Hamiltonian (using a TTNO and not
an MPO), together with a numerical compression of the
operator [129, 200]. A similar scaling argument applies
to the use of mode combination for electronic structure
simulations, which can be advantageous only in special
cases [68, 133].

In contrast, vibrational dynamics simulations aremost
often performed in Hilbert space, and there the physi-
cal dimension is of similar magnitude than nSPF: N ∼

nSPF ∼ O(10) .21 Then the argument above does not
apply any more and TTNSs frequently offer a clear com-
putational advantage over MPSs. This has been numer-
ically verified in Ref. [59] and a reduction of the ten-
sor sizes and a decrease of the computational runtime
was observed when using TTNSs instead of MPSs for
the 12-dimensional vibrational acetonitrile system. Note
that vibrational dynamics can also be performed in Fock
space [201–203] andMPSs can efficiently describe vibra-
tional dynamics as well [62–66, 69, 71]. Note further
that nSPF is much smaller than in typical molecular elec-
tronic structure simulations. For example, our simula-
tions on the Zundel system used nSPF ≤ 150 to obtain
∼ 1000 vibrational excited states with an energy error
of ≪ 1 cm−1 [70]. Despite the ‘small’ nSPF, compared
to electronic structure, in terms of nSPF this is one of
the largest vibrational TTNS/ML-MCTDH simulations
done on realistic non-model systems. Many applications
do not require such a tight energy convergence (e. g. as
other observables are of interest) and thus require an
even smaller nSPF. The computational challenge is then
different and lies in the efficient simulation of time evo-
lution or computing many excited states, sophisticated
post-processing to obtain the required observables, and
setting up realistic Hamiltonians [13, 204–207].

11.2. Optimal tree structure

The efficiency of MPSs depends on the ordering of the
degrees of freedom in theMPS. Strongly coupled degrees
of freedom should be placed closely in anMPS. Given the
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establishments of many sophisticated algorithms using
global optimisation approaches and insights from quan-
tum information theory [7, 178, 208–210], this non-
trivial optimisation problem can be considered as solved.

Less attention has been devoted to optimise tree struc-
tures, which is more complicated. One main guiding
principle to set up an efficient tree is that the optimal ten-
sor dimension is three [21, 37, 59, 196, 197]. Any tree
structure can be expressed using three-dimensional ten-
sors and restricting the tensor dimensions to three allows
for an easier development of programs [197]. Why using
tree-dimensional tensors and not higher-dimensional
tensors? The size of each tensor scales with ndSPF, where
d is the dimension. Applications of SoP operators onto
a tensor scales as nd+1

SPF [125, 126]. Thus, the higher the
tensor dimension, the worse the scaling! The lowest pos-
sible tensor dimension that still allows for generating
trees should be used, which is three. Two-dimensional
tensors are sometimes used inML-MCTDH applications
(including our example in Figure 5), but they cannot
express tree branching, and they either can be restricted
to be diagonal [120, 211], or they can be absorbed in a
neighbouring tensor, as is the case for the R matrix in
DMRG sweeps (see Figure 28).

If three-dimensional tensors are the most optimal
ones and two-dimensional tensors should be avoided
to get TTNSs with most optimal scaling with respect
to the number of parameters, why are seemingly non-
optimal tensor dimensions being used in actual ML-
MCTDH applications? We are not aware that this has
been discussed in ML-MCTDH literature and we here
provide three possible answers. (1) One practical reason
is that mode combination immediately leads to high-
dimensional tensors. For model systems mode combina-
tion can be avoided, but for non-model systems, mode
combination is crucial for optimally fitting the potential
into SoP form [206, 212, 213]. (2) Another, more specu-
lative reason is that higher-dimensional tensors allow for
a ‘closer’ connection of highly correlated groups. Solely
using three-dimensional tensors leads to more layers and
more tensors in the tree. While we have not observed
numerical difficulties using DMRG algorithms, many
tensors and layers in a TTNS may lead to difficulties
when integrating the ML-MCTDH equations of motion.
(3) Trees with many layers lead to computational disad-
vantages when using quadrature to evaluate the potential
operator in ML-MCTDH [19], although recent devel-
opments have improved this [214]. Thus, while three-
dimensional tensors may give the most optimal scaling
with respect to number of parameters and operator appli-
cations, there are other reasons that do not allow for
solely using three-dimensional tensors. Further studies
are needed to clarify this.

Optimising the tree structure is difficult for non-
model systems (and sometimes even for model systems)
and in typical ML-MCTDH application, the setup of the
tree structure is mostly guided by chemical intuition and
trial and error [92, 215, 216]. To improve this, we intro-
duced a systematic and automated way to find optimal
tree based on some starting guess [59], that is, an ini-
tial, unoptimized tree, is ‘disentangled’ to a more optimal
tree where correlated and uncorrelated degrees of free-
domare better separated fromeach other. As the ordering
in anMPS, this is anNP-hard problem and heuristic opti-
misation methods need to be used [217]. Our ‘disentan-
gling’ method was initially based on a greedy approach
and contains four steps: (1) A tensor and its neighbour
are randomly chosen, contracted, and set as new root
node. (2) The dimensions of the resulting two-site tensor
are then randomly perturbed. (3) At a randomly chosen
bipartition, the two-site tensor is ‘decontracted’ using an
SVD. (4) The resulting two tensors are kept whenever
the size of the so-obtained pair of tensors is smaller than
that of the initial pair of tensors. These four steps are
repeated as long as there is a considerable reduction in the
total number of parameters. This simple but fast proce-
dure leads to very good results, and we could find a more
optimal tree structure for the 12-dimensional vibrational
acetonitrile system [59].We recently extended our greedy
approach to simulated annealing, which allows us to
overcome local minima found by the greedy approach.
Further, we added the option to remove and to add nodes,
which makes this tree structure optimisation completely
general.

An example of our tree structure optimisation is
shown in Figure 34 for the problem of finding an opti-
mal tree for the 33-dimensional Eigen ion [207, 218].
Our tree optimisation procedure leads to a TTNS (Figure
34(b)) that for a bond dimension of 70 gives an energy
that is∼ 13 cm−1 lower than the unoptimised one shown
in Figure 34(a), which served as initial guess and was
taken from Ref. [207, 218]. Even with nSPF = 300 the
energy of the unoptimised tree still is lower than that
of the optimised tree with nSPF = 70! Note that, save
for the mode combination, the unoptimised tree con-
tains four-dimensional tensors whereas the optimised
tree only contains three-dimensional tensors, which is
consistent with our discussion above.

Our optimisation procedure also allows us to get
insights into themolecular system as it identifies strongly
coupled modes. Our tree structure optimisation can be
used for each eigenstate, and it can be used during a time
propagation by optimising the structure after every few
time steps.

In condensed matter physics, related tree structure
optimisationwere recently proposed that are either based
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Figure 34. TTNSs with (un-)optimised structure of the 33-dimensional vibrational Eigen ion. (a) Tree structure used in Ref. [207, 218]. (b)
Optimised structure using the algorithm fromRef. [59]. The symbols denote the specific coordinates [207]. The numbers denote the bond
dimension used during a DMRG ground state optimisation with an adaptive number of SPFs with maximum value set to nSPF

max = 70.
The DMRG-optimised energies for two values of nSPF

max are shown in the gray boxes. The mode combinations (groups of coordinates)
have not been optimised during the tree structure optimisation, but this is possible.

on entanglement bipartitions [219] or on structure opti-
misation similar to ours but done during the DMRG
optimisation [220]. These and our procedures are based
on some initial guess for the tree and an initial Hamilto-
nian. The former is straightforward to obtain but for the
latter for non-model systems one often needs to fit the
potential [206, 212, 213], which sometimes requires find-
ing optimal mode combinations. A recently suggested
approach to do this is to analyse correlations from clas-
sical molecular dynamics simulations in ways that are
very similar to quantum information approaches used
in DMRG [221]. Alternatively, one can first use a non-
optimal mode combination to get a non-optimal poten-
tial fit and then use the tree structure optimisation. By
inspecting which modes are grouped together, this auto-
matically also gives optimal mode combinations.

12. Conclusions

The ML-MCTDH method and the DMRG are powerful
algorithms with a common mathematical background,
but they were developed in different communities and

very different languages are used to describe the same
mathematical expressions. Here, we gave a direct and
thorough comparison of the ML-MCTDH and DMRG
theories by translating MCTDH expressions to tensor
network diagrams and by comparing ML-MCTDH and
DMRG algorithms to solve the Schrödinger equation.

Many independent developments in theML-MCTDH
and in DMRG communities are very similar to each
other, but different languages are used and often simi-
lar expressions are derived based on different approaches
and contexts. We highlighted this by showing the simi-
larities of theories used in both fields for the advanced
topic of subspace enrichment or, equivalently, finding
optimal unoccupied single-particle functions. Finally, we
discussed why trees are ubiquitously used in molecular
quantumdynamics but whyMPSs currently are preferred
in molecular electronic structure, and how to optimise
tree structures.

Different mathematical ‘languages’ have different
expressive powers. In our opinion, diagrams are par-
ticularly useful for highlighting tensor contractions,
and they offer convenient visual representations of the
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mathematical equations that can also be used for deriva-
tions, as we have shown here by deriving the ML-
MCTDH equations. In contrast, in our opinion, the
MCTDH language is very convenient for highlighting
different subspaces in a TTNS and hierarchical bases. We
hope that this contribution will help to foster more adap-
tion of using diagrams in MCTDH literature as well as
the use of MCTDH concepts in DMRG literature.

Many topics have not been addressed here, and we
did omit some developments from applied mathemat-
ics, as well as alternatives to the ML-MCTDH method
and the DMRG. For example, other topics that have been
addressed by both communities but that we did not dis-
cuss here relate to the tensor network representation of
the Hamiltonian and how to account for distinguish-
able particles, density matrices and finite temperature.
As the ML-MCTDH method and the DMRG are typi-
cally used in different areas of research, some topics are
more actively developed by one of the respective com-
munities. For example, topics that are more actively used
in MCTDH methods are pruning (configuration selec-
tion) and mixed basis-grid representations. Vice versa,
topics that are more actively used in the context of
the DMRG are symmetries, spectra calculations in fre-
quency domain, and global approaches that directly apply
the Hamiltonian onto the tensor network. Given these
examples, there is still much room for mutual cross-
fertilisation of ideas. We hope that this article will help
to foster more exchange of knowledge that will advance
the overarching topic of tensor network states.

Notes

1. Note that we interpret ML-MCTDH and DMRG as partic-
ular algorithms to solve the Schrödinger equation using the
same TTNS ansatz. With this interpretation, the DMRG
can be used for MPSs and TTNSs even though it has been
introduced as a way for approximating ground states as
MPSs.

2. Some incomplete translations have already been given, e. g.
in Refs. [23, 59, 108, 109, 135, 136].

3. To avoid defining ‘single-particle states,’ here we will use
the term ‘function’ for both the state |φ1;κ

jκ
〉 and its repre-

sentation, e. g. in position space, 〈x| φ1;κ
jκ

〉 = φ
1;κ
jκ

(x). Many
MCTDH derivations typically start with defining SPFs as
actual functions and then use Dirac’s notation for matrix
elements and projectors. Here, we prefer to use Dirac nota-
tion throughout.

4. Note that a method dubbed MCTDHF by Yeager and Jør-
gensen actually is a response CASSCF approach and thus
not explicitly time-dependent [222]. However, related pub-
lications already utilised the time-dependent variational
principle [223–225].

5. Note that in Ref. [59] we use a different notation where κ

means the horizontal position in layer l. Then giving l and
κ suffices to specify the location of an SPF in the tree.

6. Note that Vendrell and Meyer use the same symbol but a
different definition [92], where z does not contain κl, which
is added to the symbols separately.

7. Several virtual bonds are possible but rare. See below in
Equation (12) for an example given by the doubly-indexed
SHF.

8. A physical bond can also be interpreted as the vector
subspace that the state is element of. Then a TTNS dia-
gram actually represents a state |�〉 and not a particular
representation.

9. In special cases such as natural SHFs, virtual downward
pointing bonds can be orthogonal but not orthonormal, see
Section 5.

10. Note that we treat λ∗
x as independent of λx.

11. As technical remark, care must be taken for tensors placed
at tree branches to propagate them only once. These ten-
sors need to be skipped during parts of the sweep so that
they are only propagated once in one sweep. See Refs. [110,
147–150] for more details.

12. One could avoid explicit inversion and solve a linear sys-
tem instead. This is numerically more stable but does not
alleviate the singularity problem, however.

13. Matricising the tensor Az and dropping the z label,
ρρρ = A†A. Then the SPF equations of motions contain
(A†A)−1A†, which is the Moore-Penrose pseudoinverse
and which can be regularised directly, e. g. through SVD.

14. Extending this to non-natural SHFs is straightforward.
15. This applies the SHF projector twice. As projectors are

idempotent, this is identical to only applying the projector
once, as is done in Equation (50).

16. The SHF and SPF projectors do not increase the computa-
tional cost of Equation (56).

17. This is also discussed in Ref. [226].
18. Note that in an actual implementation, due to gauge invari-

ance, exchanging SPFs and SHFs leads to different numeri-
cal values, depending on how the SHFs are orthogonalised.

19. Q̂T2 can be formed either using SHF and SPF projectors or
explicitly by creating a null space [189].

20. Note that these SVD-based approximations [188, 192]
make use of temporary matrices that scale with the bond
dimension and the number of sum terms in an SoP Hamil-
tonian (or, equivalently, the MPO bond dimension). As
there can be more than O(100 − 1000) terms in typical
applications, this can lead to prohibitively large matrices
and additional approximations need to be introduced, e. g.
by only considering parts of the total Hamiltonian for the
subspace enrichment.

21. With mode combination, the effective physical basis size
can even be much larger than nSPF; see Figure 34 for an
example.
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