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Abstract— A true interpreting agent not only understands
sign language and translates to text, but also understands
text and translates to signs. Much of the AI work in sign
language translation to date has focused mainly on translating
from signs to text. Towards the latter goal, we propose a text-
to-sign translation model, SignNet, which exploits the notion
of similarity (and dissimilarity) of visual signs in translating.
This module presented is only one part of a dual-learning two
task process involving text-to-sign (T2S) as well as sign-to-text
(S2T). We currently implement SignNet as a single channel
architecture so that the output of the T2S task can be fed
into S2T in a continuous dual learning framework. By single
channel, we refer to a single modality, the body pose joints.

In this work, we present SignNet, a T2S task using a novel
metric embedding learning process, to preserve the distances
between sign embeddings relative to their dissimilarity. We also
describe how to choose positive and negative examples of signs
for similarity testing. From our analysis, we observe that metric
embedding learning-based model perform significantly better
than the other models with traditional losses, when evaluated
using BLEU scores. In the task of gloss to pose, SignNet
performed as well as its state-of-the-art (SoTA) counterparts
and outperformed them in the task of text to pose, by showing
noteworthy enhancements in BLEU 1 - BLEU 4 scores (BLEU
1: 31 — 39; =~26% improvement and BLEU 4: 1043 —
11.84; ~14% improvement) when tested on the popular RWTH
PHOENIX-Weather-2014T benchmark dataset

I. INTRODUCTION

Two-way voice-controlled systems such as Alexa by Ama-
zon, Siri by Apple, Bixby by Samsung, etc. are becoming
more popular with recent advances in technology. These
systems have proven extremely beneficial for hearing and
speaking individuals, but not necessarily so for the Deaf-
and-Hard-of-Hearing (DHH) community. For this and many
other similar reasons, sign language analysis is becoming a
more prevalent research area in the Al community.

But much of the Al work to date has focused primarily
on translating sign language to text (which can be readily
extended to speech). Unfortunately, this again puts the ad-
vantage on the side of the hearing-centric rather than the
DHH, where they receive information in their own natural
language. In this work, we present a model that when
coupled with some of the current state-of-the-art sign-to-
text (then to voice) technologies, can facilitate two-way sign
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Fig. 1. An overview of our proposed SignNet architecture, showing the
text encoder learn a sign embedding; a sign similarity learning mechanism
is then implemented in the embedding space, resulting in more precise
generation of sequences of sign poses via the decoder. L, andLy are the
losses propagated backwards through the network. Details of the architecture
are described in Section III.

language analysis. The work presented here is only one
half of an overall strategy, involving the dual-learning of
two complementary tasks - text-to-sign (T2S) and sign-to-
text (S2T). We currently implement SignNet as a single
channel architecture so that the output of the T2S task can be
seamlessly fed into S2T in a continuous dual learning frame-
work. By single channel, we refer to a single modality, the
body pose keypoints. Although several different multichannel
frameworks (involving pose, optical flow, etc.) have been
proposed, they cannot as readily feed into a dual-learning
scheme, hence our focus at this time on single channel
generation.

The main intellectual merit of this paper is the introduction
of a learning mechanism, consisting of different aggregated
losses, including a novel similarity metric-based loss, useful
for efficient single channel pose generation during text to
sign language interpretation.

The main societal benefit of this work is the burgeoning of
a quintessential interpreting agent that not only understands
sign language and translates to text, but also understands text
and translates to signs. Our work plays a role in the function
of latter half of such an agent. Such an end-to-end sign
language interpretation agent will prove useful, not only to
the hearing-centric population (as is the case for most SoTA
Al models for continuous sign language translation) but
also to the DHH community. This is important as it allows
both the hearing and the DHH to converse freely with each
other, in their own preferred natural language. The model we
present takes as input text phrases, and translates these to
signs in form of poses (more on pose as a representation for
signs is discussed in Section III); we evaluate the generated



poses by verifying the translations using a sign-to-text model.

1) Importance of context in sign language translation:
Sign language has some unique linguistic aspects that prove
very challenging for automated sign translation, especially
those that involve the use of the 3D space around the signer
(referred to as the “signing space”) [8]. While conversing,
a signer will often associate places, people, and different
entities with specific 3D locations close to her body. For
example, a signer could finger-spell the name J.a.n.e.t., the
first time that person is mentioned in the conversation. The
signer would now point to a location around her body and
a spatial reference has now been created associating the
person named Janet to that 3D location. In the course of
the conversation, for every ensuing instance in which the
signer wants to refer to Janet, she will point to that location,
the spatial reference point. In some instances, the signer may
instead aim her gaze or tilt her head at the 3D location. As
the conversation progresses and Janet is no longer in context,
that reference point diminishes.

As another SL linguistic example, a signer may create
spatial reference points, one on her left side for the subject
and another on her right side for the object of the verb. In
the course of the conversation, if there is a need to compare
and contrast the subject and object, the signer may twist at
the waist and aim her torso to the right when discussing the
object and then similarly twist to the left for the subject.
This seeming exaggerated movement stresses which of the
entities is being discussed and this is called contrastive role
shifting.

There are significantly many more such 3D linguistic
structures in sign language, where the context of the con-
versation is imperative in fully comprehending and trans-
lating the signs. With so many complicated constructs in
sign language grammar, the current states of sign language
recognition, translation and generation are still in the very
infancy stages of research.

II. RELATED WORKS ON SIGN GENERATION

Although the domain of machine-based language transla-
tion has been quite well studied, using deep learning neural
machine translation (NMT) [1] models is still very active
research area. Sign language translation is an extension
of such language translation models, with the additional
complexity of incorporating video processing to assist with
the fact that sign languages are visio-temporal languages.
Several different approaches such as automated human-like
avatars, conditional video generation models using gener-
ative adversarial networks (GANSs), and video-based NMT
approaches have been applied to address the text-to-sign
language generation problem.

Other methods have been developed to assist deaf and
hard-of-hearing individuals communicate more effectively
with hearing individuals employ visual aids which construct
signs based on manufactured phrases [6], [9], [13]. Other
approaches for generating signs include the avatar creation
method [11] where the authors used a popular character ani-
mation system to created a signing avatar using already pre-

identified signs. The goal here was to explore the technical
feasibility of avatars for sign generation, and also develop
evaluation methods. Ebling et al. [5] furnished the avatars
with a more humanized form, removing several ambiguities
associated with employing sign language systems for effec-
tive communication.

More recently, neural network models have been used to
improve the quality of sign creation. Stoll et al. created a
system called Text2Sign in which Generative Adversarial
Networks (GANs) were used to generate sign videos. Zelinka
et al. [23] created signs using a skeletal model based on the
Openpose [4] framework. Each of these models generated
a sign for each word in a phrase, however, Saunders et
al. [17] improved on this by generating 3D continuous
signs using gloss for human posture generation. The same
group of authors created a 3D multi-channel sign language
generation approach using transformers and mixture den-
sity networks [19]. Other multi-channel works include[16].
These sign productions were developed and tested using the
RWTH PHOENIX-Weather-2014T (PHOENIX14T) German
sign language dataset [12], which has now become a bench-
mark for continuous sign language analysis. An extensive
review of sign language generation approaches up to 2021,
was presented by Rastgoo et al., [15].

Beyond this, in 2022, Viegas et al. [22] proposed a sign
generation model that included the use of facial expressions
(the first of its kind), to capture the grammatical and semantic
functions of sign language. And although they successfully
showed that the inclusion of facial expressions improved the
sign generation results, and this is an advancement in a more
comprehensive sign representation, their best performing
models were far below the SoTA values.

III. SIGNNET - GENERATING SIGNS FROM SPOKEN
LANGUAGE SENTENCES

Spoken language text phrases are fed to the text-to-pose
network as shown in Figure 1. For these initial texts, we
obtain their word embeddings and pass them as inputs to
the encoder. Positional information is added to the word
embeddings to maintain the word order information. Inter-
dependencies between different words of a sentence are
learned by performing multi-head attention and this infor-
mation is then passed on to the decoder.

In the decoder, 3D poses are used as the output
frame features. We first obtain 2D OpenPose joints
[4] for each frame of the signing video and then
obtain 3D pose features [23] from these 2D OpenPose
joints. Keeping pose generation in mind we mainly
target the upper body joints - hand joints, finger joints,
and body joints as far down as the trunk. All these
constitute 50 joint locations, thus giving us a vector of
size 150 for each frame. The input can be denoted as
POSE = {[(z0,:¥0,:20,),-- - (T129, 5 Y149, 5 2149,)], - - -
[(ION?yON’ ZON)’ RS (I149N7y1491\7721491\1)]}’ where
(z,y, z) represent the 3D joints and N is the number of
frames. For this work, we used the already extracted 3D
features from the Progressive Transformer model.



To retain the input ordering information in our model, we
implement positional encoding on input joints representation.
Since sign language heavily depends on the context, we learn
temporal dependencies by co-relating all the frames with
respect to a single frame, continuously for all the frames.

We learn the context between frames by performing the
scaled dot-product attention whose output - the vector V, is
weighted by the queries Q and keys K. To avoid exploding
values after the dot product, we scale by v/d as in [21].
Finally, to retain the context informatlon relevant to each
frame, Softmax activation (So ftmaz(9L— i )V) is applied on
the frames V. We learn the mapping between the frames and
words by taking the context information from the encoder
and performing a scaled dot product with word-based atten-
tion. These learned embeddings are then passed onto a linear
feed-forward network to predict continuous poses.

A. Metric Embedded Learning for Pose Similarity

We are interested in ensuring that the pose-based signs that
the SignNet architecture predicts are as similar as possible
to the ground-truth signs, and as distant as possible to
other signs in the same training batch. Figure. 2 provides
a visualization of the desired mechanism.

To accomplish this, we have:

I£(B) — f(D)|?=|If(B) = f(S)II* <0 (1)

d(B,T) d(B,S)

where B is a baseline sign, T is a truth sign required to be as
similar to B as possible and S is a false sign (not as similar
to the baseline); d(.) is the distance function.

To avoid the trivial solution where our function f(.) will
produce zero, or one where f(B) = f(T'), we introduce a
margin to impose a stronger constraint, similar to [20]. The
resulting distance function d(B,T,.S) is given as:

d(B,T,S) = max( (d(B,T) —d(B,S) +a),0) (2

We refer to the loss derived based on this distance as the
pose similarity metric-based loss function, in Equation 4.
Choosing the similarity metric samples:: While any
random choice can readily satisfy d(B,T) + o < d(B,S5),
the underlying neural network will simply not learn if it gets
it right too many times. But if the choice of samples is
done such that d(B,T) =~ d(B,S), the network is forced
to work hard to learn the differences. This seemingly simple
choice significantly increases the efficiency of the learning
algorithm. Hence, we select our samples as follows:

Consider a batch ||B|| = 4, where we are interested in
calculating the similarity loss for the first sample ¢+ = 1. The
baseline here is the ground-truth sign which we will refer to
as B, The truth T() is the network prediction for sample
i. Lastly, the false value S is the ground-truth for any other
sample j # i € {B}, where j is randomly selected.

B. Loss functions for training SignNet

1) Ly Regression loss (L) : The objective here is to learn
the probability p(V'|.S) of producing a sequence of sign-poses

V =(s1,...,s7) over T time steps, given a spoken/written
language sentence S = (w1, ..., wy) having U words.

Given the text sentence S as the inputs, the completed
decoder output sequence of pose-signs can be expressed
as S1.p = 81,...,587. The Mean Squared Error (MSE)
loss between the predicted sequence, $1.7, and the ground
truth,s7 . is given as:

"
Lo=LysE == ZslT—SlT 3)

2) Sign similarity metrlc-based loss (Lp): As shown in
Figure 2, L, is introduced to reduce the network confusing
similar signs. The sign similarity based loss over all M
samples can thus be given as:

M
Ly =) d(BY, TV, 50 @)

Justification: There is only a finite number of valid poses that
make up a sign, hence there is often significant overlap be-
tween signs in the same batch. Without the strong constraint
to separate truth and false examples, the network confuses
signs when generating from text.

3) Total loss: : SignNet for text-to-pose generation is
trained to improve the pose generation by using a weighted
combination of the regression and metric-based losses:

LTethPose = >\aLa + )\bLb- (5)

In our experiments, using a grid search, we obtained the
best performance with A\, = 5 and )\, = 5. Additional
ablations performed on the SignNet model are shown in
Table IV

IV. THE EVALUATION MODEL (POSE-TO-TEXT)

The poses generated from the first phase of SignNet are
evaluated in a sign-to-text translation network as shown in
Figure 3. In this network, the encoder is trained to learn
the inter-dependencies between the different pose sequences
from the input sign language video, where the inpus to the
encoder is a sequence of poses. The decoder learns the de-
pendencies between different words, and also between words
and pose sequences to provide efficient text translation. The
poses generated from SignNet (text to pose ) are dumped to
file during test time and they are then passed through this
evaluation network to obtain their text translations.

A. Loss functions for training the evaluation model
1) Recognition loss (L.):

Gloss definition:: Gloss is the written set of notations
used to transcribe sign language into its written/spoken
counterpart. Given that sign language is a visual-spatial
language, in the absence of videos, gloss notations can be
used to capture the sign-for-sign word ordering. It does this
by providing different symbols useful for representing the
spatial-temporal, facial and 3D body grammar present in sign
language. The grammar of sign language is very different
from that of its spoken/written language counterpart, but the
use of gloss alleviates this problem.
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The loss based on sign similarity metrics minimizes the distance between a Baseline sign (ground-truth) and the Truth-like sign (the prediction

for a sample-under-investigation), while maximizing the distance between the Baseline and a falSe sample( a different truth sign selected from the same
batch as the sample-under-investigation). The LHS shows the the sets of samples before training and the RHS shows how similar signs have become closer,
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a) Gloss-driven recognition:: Hence, we train the eval-
uation model first using the recognition loss. Given the input
sign video, as a sequence of sign poses V = (s1,...,87)
and the sequence of glosses G = (g1, ..., gn) corresponding
to V, the goal here is to learn p(G|V'). Because this sign
to gloss mapping is monotonic and the word orderings
are relatively consistent between signs and glosses, though
requiring alignment between sequences of varied lengths, we
employ the connectionist temporal classification loss, or CTC
loss [7] for SL recognition.

CTC computes the loss between the unsegmented stream
of input sign-pose embeddings and the target sequence of
glosses. First, we obtain the pose-level gloss probabilities
p(g:|V') by projecting the embeddings through a linear layer
and softmax activation.

Then if we consider a path # = (mq,---,7p), the
probability of a viable path given the video can be written
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SignNet pose-to-text (for evaluation): L., andL, are the losses used. Details in Section III (Best viewed in color).

as p(m|V). CTC is thus used marginalize over the possible
alignments of V' to G, such that:

Petc(GIV) = > p(x|V) 6)
TeM
where M is the set of viable paths in the sequence G;
Hence,
‘Cc = ‘Cctc =1~ p(GT|V) (7)

where G7 is the ground-truth gloss sequence corresponding
to video V.

2) Translation loss (L4): The primary task of the eval-
uation model is to generate a written/spoken language sen-
tence S = (wy,...,wy) given a sign video V, as defined
previously. The translation process discussed here aims to
learn p(S|V'). Going from pose to sentences, in the decoding



phase, we have:

U U

p(S|V) = Hp('wi|wi71) = H Z;s, ®)

i=1 i=1

where U is the length of the sentence and Z = (Z; 1) =
[21,...,2y]" is the probability distribution of the sentence
when translated; Z;j, is the probability of word w; having
a word label k, given w;_;. The loss function is therefore:

Lq=1-p(ST|V) ©)

where ST is the ground truth sentence corresponding to
video V, comprising of the aggregation of the ground truth
probability of words during the decoding phase.

3) Pose-to-text total loss(LposeaTert): The evaluation
model maximizes its performance by using a weighted
combination of the recognition and translation losses for text
translation:

ACPose2Tezt = )\ch + )\de- (10)

The best performance of the evaluation model was obtained
with A\, = 100 and Ay = 100 (multiplying the losses
by a factor of 100 improves the performance, probably by
boosting the gradients to be propagated).

V. EXPERIMENTS AND RESULTS
A. Dataset and Metrics

We evaluate SignNet on the RWTH-PHOENIX-Weather
benchmark dataset (RWTH) and wuse the same split
(7096/519/642, train/dev/test) as provided by the original
authors[3].

To evaluate our SignNet pose-to-text translation we use
BiLingual Evaluation Understudy (BLEU) [14] metric that
evaluates how good the translation is by comparing the pre-
dicted text to its ground truth equivalent. BLEU 1 - BLEU 4
scores evaluate the performance based on 1-gram (individual
words) to 4-gram words (group of consecutive four words).
Additionally, we evaluate our text-to-pose network using the
dynamic time warping (DTW) [2] algorithm. We use DTW
to help align the poses to as close to ground truth as possible.

While training SignNet for efficient pose generation we
use DTW as our evaluation metric and optimize the network
for the lowest DTW score. For the evaluation network
BLEU is used as the evaluation metric for the pose-to-text
translation.

B. Results

1) Predictions and ground-truth texts: In Table I we list
some of our best translations of the generated pose (based
on high BLEU scores).

2) Predictions and ground-truth poses: We select one of
the best generated pose sequences (based on the lowest DTW
costs) obtained from SignNet, and show in Figure 4 how our
predicted pose closely aligns with the ground truth.

3) Comparisons with other methods: In Table II, we
compare the performance of our SignNet translations for
generated poses with the single channel poses generated
by recent sign language production mechanisms, as well as
a baseline method using 2D OpenPose features. Although
several multichannel mechanism have been presented in the
literature, in this work, we focus on single channel.

To verify that our metric embedded learning helps in
improving the pose generation, we evaluate our model with
and without metric embedded loss. Table III shows that
SignNet with metric embedding loss provides a good boost in
performance by achieving higher BLEU 1 - BLEU 4 scores.

Table IV shows the results obtained from performing
ablations, to determine the best performing loss combination
weights when testing the SignNet model.

C. Optimization and implementation

The input data used in training SignNet are 3D poses gen-
erated by extracting 2D openpose [4] joints, then converting
them to 3D poses [23]. We only chose joints from the head
to the trunk and the ordering of the joints closely followed
the standard Openpose [4] structure.

SignNet provided the best performance when using 2 en-
coder and decoder layers. Our evaluation network performed
the best with 7 encoder layers and 2 decoder layers (see
Fig 3)with an embedding dimension of 128. We optimized
SignNet using Adam optimizer [10] with a learning rate of
0.001 and plateau scheduling.

D. Discussion

We perform various experiments to evaluate the perfor-
mance of our SignNet network. Table II highlights its pose
generation capabilities. We first generate output poses on the
dev set and test after training SignNet as shown in Figure 1.
After the poses are generated, we pass them back as input
through the evaluation network (Figure 3). This allows us to
determine how good our predicted poses are.

We observe that our metric embedded learning boosts the
performance of SignNet, achieving BLEU 1 score improve-
ment from 31.80/31.36 (G2P/ T2P) — 39.14/36.76 (G2P/
T2P) through BLEU 4 score improvements from 10.43/10.51
— 11.84/10.66 (G2P/ T2P). To investigate how well the 2D
pose points would perform compared with 3D points, we
trained SignNet with 2D pose generated from OpenPose [4]
and compared it with the model trained on 3D pose. We
observe that SignNet T2P trained on 3D points provides large
improvements (BLEU 1: 23.42 — 36.76, BLEU 4: 6.32 —
10.66) when compared to the model trained on 2D poses.

Limitations:: The main limitation of our proposed
SignNet model is its exposure to a relatively confined
dataset whose subject domain is the weather and having a
collective group of homogeneous signers. Also, although
we have developed a context-aware architecture, many
aspects of sign language traits, especially those involving
long-range temporal dependencies among signs are still
not well understood in current-day automated SLT models.
For example, it is not clear that a model such as proposed
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Fig. 4. Ground Truth (Top) and Predicted (Bottom) poses using metric embedded learning. Test samples with lower loss and same time frames are chosen

for display.
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G: liebe zuschauer guten abend

E: dear viewers good evening

G: liebe guten abend
E: love good evening

G: im stiden freundliches wetter

E: in the south friendly weather

G: im weht wetter
E: in the blowing weather

G: und nun die wettervorhersage fiir morgen sonntag
den fiinften dezember

E: and now the weather forecast for tomorrow sun-
day the fifth of december

G: und die wettervorhersage fiir morgen donnerstag
den achtzehnten juli

E: and the weather forecast for tomorrow thursday
the eighteenth of july

G: der wind weht meist schwach aus unter-
schiedlichen richtungen

E:the wind usually blows weakly from different
directions

G: im weht schwach schwach aus unterschiedlichen
richtungen
E: im blowing weak weak from different directions

G: sonst ein wechsel aus sonne und wolken

E:otherwise an alternation of sun and clouds

G: im seltener aus sonne und wolken

E: in the seldom sun and clouds

TABLE I
EXAMPLES OF OUR OUTPUTS: SHOWING THE GERMAN GROUND TRUTH TEXTS (LEFT COLUMN) AND THE PREDICTED TEXTS (RIGHT COLUMN),

OBTAINED BY PASSING THE PREDICTED POSES FROM SIGNNET THROUGH THE SIGN TO TEXT TRANSLATION EVALUATION NETWORK. THE

SUBSEQUENT ENGLISH TRANSLATIONS FOR BOTH THE GROUND TRUTH TEXTS AND PREDICTED ONES ARE ALSO DISPLAYED (G: GERMAN, E:

ENGLISH). THE GOOGLE GERMAN-TO-ENGLISH TRANSLATOR WAS USED.

Experiment type Test
BLEU 1 | BLEU 2 | BLEU 3 | BLEU 4

PT G2P [17] 31.8 19.19 13.51 10.43
PT T2P [17] 31.36 19.04 13.54 10.51
2D Pose (using SignNet) 23.42 13.13 8.75 6.32
With facial expressions (2022)[22] 27.76 18.86 14.11 11.32
Mixture of Motion Primitives[18] 35.89 23.27 16.86 13.30
SignNet G2P (ours) 39.14 23.98 16.41 11.84
SignNet T2P* (ours) 36.76 21.78 14.77 10.66

TABLE I
TRANSLATION PERFORMANCE ON PREDICTED POSES USING SIGNNET. G2P - GLOSS-TO-POSE, T2P - TEXT-TO-POSE. *NOTE IN THE LAST ROW

THAT THE NETWORK TAKES IN T

here can readily incorporate the unique but commonly-used
linguistic spatial constructs such as the repeated use of
spatial reference points, as described in the Section I.

EXTS AND GENERATES SIGN POSES.

VI. CONCLUSION

In this paper, we have presented SignNet, a text-to-sign
interpretation model which combines several different losses,
in particular a novel similarity metric-based loss which
significantly improves our sign generation performance. Be-
cause sign language has many linguistic aspects that involve
the 3D space around a signer, which create the context for



Experiment type Test

BLEU1 | BLEU2 | BLEU3 | BLEU4
SignNet G2P (ours w/o metric-based loss) 36.41 20.97 13.52 9.04
SignNet T2P (ours w/o metric-based loss) 36.19 20.77 13.27 8.8
SignNet G2P (ours w/ metric-based loss) 39.14 23.98 16.41 11.84
SignNet T2P (ours w/ metric-based loss) 36.76 21.78 14.77 10.66

TABLE III
TEXT TO SIGN TRANSLATION RESULTS USING SIGNNET WITH (W/) AND WITHOUT (W/O) METRIC-BASED LOSS FOR SIGN SIMILARITY.

Model Rec Trans. | BLEU 1 BLEU 2 | BLEU 3 | BLEU 4

wt. wt.

(Ma) | )
G2P 1 10 33.87 19.08 12.18 8.21
T2P 33.61 18.74 12.01 8.07
G2P 5 1 35.19 20.58 13.39 9.04
T2P 3491 20.27 13.06 8.85
G2P 5 5 39.14 23.98 16.41 11.84
T2P 36.76 21.78 14.77 10.66
G2P 5 10 32.46 17.84 10.89 7.21
T2P 32.71 17.85 11.12 7.33
G2P 10 5 33.73 18.66 11.44 7.44
T2P 33.35 18.52 11.65 791

TABLE IV

TEXT TO SIGN TRANSLATION RESULTS USING DIFFERENT VALUES OF
RECOGNITION AND TRANSLATION LOSS WEIGHTS

ensuing signs, SignNet is a context-aware network, that has
successfully learned temporal dependencies by co-relating all
the frames in an input sequence to each other.

We demonstrate that SignNet predicts “good” signs when
presented with input texts in scope. We demonstrate this
by qualitatively examining predicted signs and we compare
them with their ground-truth counterparts. Similarly, we
qualitatively compare predicted texts with the corresponding
ground truth.

Although there is still much to explore in our future work
as stated earlier, especially regarding the dual learning of
sign-to-text and text-to-sign simultaneously, in this work,
we have successfully presented a single channel text-to-sign
language generation model, partly useful for facilitating the
two-way natural language communication between hearing
and DHH individuals.
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