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Abstract. With many data breaches and spoofing attacks on our net-
works, it becomes imperative to provide a reliable method for verifying
the integrity of the source. Blockchain location-based proof-of-origin is
explored for tracking trucks and vehicles. Blockchain applications that
support quick authentication with these non-mutable ledger proper-
ties: consensus and implemented as smart contracts at the edge. This
Blockchain application will now be known as the POWTracker platform,
gathering data from multiple cameras. POWTracker is based on an exist-
ing GPS-based blockchain ledger and runs on an edge device that uses Al
consensus and multiple cameras. By using GPS algorithms, we present
a novel mining algorithm that rewards POW miners, providing a trust-
worthy, verifiable proof-of-location system.

Keywords: Spatial vehicle identification - Smart contract -
Blockchain - Re-identification algorithm - AI for edge devices -
Trustworthy Al

1 Introduction

A blockchain is an encrypted, distributed database in which all peers share
information. Blockchain technology can be reliably used in spatial applica-
tions requiring proof of location due to its decentralization, immutability, and
anonymity. Numerous consensus algorithms have been proposed, such as Proof-
of-Work (PoW), Proof-of-Stake (PoS), Byzantine Fault-Tolerant (BFT), and
Paxos. Because the spatial blockchain uses PoW, we will consider using the
Raft algorithm since it is scalable. The spatial blockchain can indeed be a public
network, but in the context of re-identification, all participants are known and
have smart-contract obligations to act correctly, which is why we use Raft as our
primary protocol. Raft is more efficient than other algorithms, and the imple-
mentation of the protocol is consistent as it is a distributed implementation.
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Here are the specific goals of the Proof-Of-Work (POWTracker) application:

— Aim 1: Investigating how Proof-of-Work for spatial algorithms can be inte-
grated into public blockchain: We will examine how linked data [24] can be
used, since it is immutable.

— Aim 2: Exploring consensus-based answers for user GPS queries: We will
examine how a model of queryable GPS can be implemented using crypto-
graphic consensus.

— Aim 3: Investigating mining of the existing POWTracker blocks based on a
GPS difficulty level.

— Aim 4: Exploring algorithms that can re-identify the same object using old
and new positions and execute a smart contract for proof-of-location.

The Text Discusses the Importance of the Research Question: Current
location-based applications rely on a centralized GPS system that is easy to
spoof and lacks data integrity. The ability to query and identify using geoloca-
tion, and perhaps not only track but re-identify the package, eliminating dupli-
cates at the other end and finer tamper-free details without paying a middle-
man. POWTracker will use Proof-of-Work consensus to create new truths in the
blockchain Hash blocks, which are immutable. The current mobile and smart-
phone applications use GPS to log their location trajectories [23] into a central
server, which are accurate but can be spoofed and manipulated. Geospatial-
aware [23] queryable protocol uses decentralized blockchain and allows miners
to authenticate and verify location information by answering spatial queries.
Point of Location (POL) data and background signatures can be included in the
location data. There are both visual and non-visual components in the spatial
data [4,23]. As soon as miners have completed the POW, a query is made to
determine whether the object has reached its destination. The shipper is paid
directly by the customer if the object is close to the customer because the smart
contract can be programmed to verify spatial verification automatically without
the help of a third party.

Research Gaps and how you will Address them: Ten years ago, Bitcoin [3] was
the first blockchain application. Rather than using computationally intensive
cryptographic algorithms, this design will explore domain adaptation (proof-of-
origin) for vehicle position. As current vehicle logging algorithms are susceptible
to tampering and inaccuracies, we train a domain model that is robust [9] to syn-
thetic fake data identification [1,16] at the point-of-origin. Using blockchain logs,
which cannot be altered, the re-identification algorithm uses domain-adapted
verification.

2 Review of Spatial Blockchain

Blockchain has been incorporated into industry-leading supply chain networks
in automotive, banking, healthcare, insurance, media entertainment, retail con-
sumer goods, and travel and transportation. Identification, tickets, and boarding
passes can cause a frustrating logistical bottleneck for passengers and carriers. By
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providing the ability to create a single identification token (nounce) [26] that can
be validated throughout the trip, blockchain systems could simplify boarding,
reduce terminal congestion, and reduce the need for multiple travel documents.
As shown in Fig. 1, blockchain can also be used for POL, when a supply chain
network requires data provenance, as described in the introduction. In order to
establish the provenance of each part, blockchain can consolidate details such
as manufactures, production dates, and batches. Maintaining immutable records
makes it possible to schedule maintenance, provide work order documentation,
and prevent fraud. As Blockchain uses hash [25], the integrity of the data is
protected from tampering. As illustrated in Fig. 2, we will hash the GPS coordi-
nates consisting of longitude and latitude into a 256-bit unique number using the
blockchain concept for POL. The blockchain is built using concepts like linked
lists, hash functions, and Peer-to-Peer consensus networks. The next section will
discuss each one in detail and how to use multiple cameras [20] for smart-contract
consensus. The mining puzzle is adapted to the needs of edge smart contracts in
our proposed transportation vehicle framework.

Fig. 1. A simple application of spatial proof-of-location.

3 Mining Bitcoin on a Blockchain

[3] is a mathematical Proof-of-Work that solves a complex puzzle to enable
new bitcoins to be added to the blockchain ledger. A mining difficulty of [3]
is determined by the network of miners competing to solve the hashing puzzle
simultaneously using powerful GPUs, and the first miner to solve it wins bitcoins.
This is accomplished by taking the current hash or the genesis block’s hash and
finding a smaller hash. Initially, miners create nonces (numbers used once), which
are 32-bit numbers compared to the target hash. After the nonces are hashed,
the 256-bit hash is produced, which is a guess because the space of possible
hashes is so large. When the generated hash is less than the target hash, the
miner is rewarded with bitcoins.
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4 Methodology - Ledger

As part of this section, we will design the ledger [25] for a spatial blockchain that
consists of data structures such as linked data. Through the implementation of
a basic linked list [1], the building blocks of a supply chain hypothesis which is
resistant to cyberattacks will be introduced, such as GPS and truck routes.

4.1 Non-mutable Spatial Blockchain

In aim 1, we will develop the spatial version of blockchain using the non-
immutable property [25]. Equations (1) and (2) shows how vehicle GPS and
location be encoded into a blockchain ledger using a nonce. The new;,. contain
an encoded hash that serves as the start chain hash for encoding the vehicle’s
next route as shown in Fig. 2.

newoe = hashgps—ioc + Truckiq + Timegtamp (1)
= hashgps_1oe + hashmonce (2)

The truck route is encoded and its chain is described in Fig.3, we build
a proof-of-location between point A and point B by storing the GPS location
provided by the truck during its entire route in an immutable blockchain. The
immutable blockchain is created using a hash of each GPS location along the
route. The immutable linked-data verifies the same truck’s route, giving proof
of the truck’s location. The next block uses the previous block’s hash to add
the new GPS location, so that if one of the location values changes, the stored
hashes will no longer match the truck’s complete route log. An ID for each truck
can be used to scale the design to multiple routes. The hash of the truck’s GPS
location may be the same for each route, but when combined with the ID and
timestamp, the nuance is unique. Furthermore, the GPS locations are stored
in the blockchain as 256-bit hashes which maintain privacy since blockchain
ledgers are publicly visible by design. The blockchain consensus can be attacked
internally if one blockchain peer is malicious, and the framework cannot validate
actual values as it does not use spatial data from neighbors.

g \) % r 2
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22.527600-42.641300
SHA-256

Fig. 2. An example of GPS meter accuracy hash which is unique.
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4.2 Spatial Blockchains that are Verifiable

The Egs. (3) and (4) show a proof of concept for a blockchain [23] with mining
incentives. The previous hashing design as Eq. (2) is very precise by using the
original GPS. Currently, the proof-of-location [23] does not have a consensus
because it relies on single GPS signals. Therefore, the truck can secretly collabo-
rate with the agent and manipulate the location information through illegitimate
means.

NeWioe = hashanss—iog + Truckiq + Timegsamp (3)

== haShnonce + haShsubmeter—loc (4)

Modern mobile GPS cannot be trusted as they may be susceptible to spoofing
attacks, blockchain provides an additional level of security as shown in Eq. (4).
For a queryable mobile GPS, we assume that the truck can actually query its
location, rather than relying on GPS signals. Figure 4 shows a queryable mobile
GPS implementation with two independent stations located near the truck’s
checkpoint, where it needs proof of location. The communication between the
truck and the checkpoint must be encrypted. Our scalable scheme will use public
keys. Assuming that all trucks have access to the public keys of the proof-of-
location, the truck can encrypt using key; for tower 1 and key, for tower 2. An
encrypted message is sent to both towers using a single, one-time pad. The one-
time pad is then encrypted with key; and keys. Two towers receive the truck’s
id along with the GnssLog [11] encrypted with one-time pad. One-time pads are
decrypted by the towers using their private keys, which also decrypt messages
sent between them. The two-way authentication to query the truck GPS prevents
any spoofing suspected in the traditional GPS implementation. Figure4 shows
that the same blockchain ledger from the previous implementation also includes
a consensus of POL. As shown in the next section, the enhanced design allows
mining that is based on multiple camera consensus, so it is completely safe and
hard to spoof easily.

Spatial Blockchain Mining. In the context of spatial blockchains, we propose
a mining puzzle. Based on GPS accuracy, we model the complexity of the answer
to be mined based on Bitcoin mining. The GPS used in the previous section is
based only on the satellite, which is precise to a few meters. A miner will be
awarded if the GPS of the current truck can be improved to sub-meter accu-
racy, as described in the derived term hashsypmeter—ioc Eq. (4). The accuracy
of satellite-based GPS is subject to errors [6,8] due to reflected signals caused
by obstacles and buildings, and delays between signals received by using mul-
tiple satellites. In addition to using powerful GPUs for Bitcoin mining, spatial
miners use advanced Global Navigation Satellite System (GNSS), which can be
cross-linked with other ground-based satellites to correct global satellite GPS
errors. With Android smartphones, one can view raw GNSS logs [11], and one
can estimate the global position and velocity with sub-millimeter accuracy as
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Fig. 3. Design of a non-mutable spatial blockchain.

calculated in Eq. (5). We propose a incentive mining algorithm that must per-
form the following steps [11] for a potential payoff to build the next chain in the
ledger:
1: Read data from GnssLogger
: Compute pseudoranges
: Compute least square position and velocity
: Calculate the difference (error)
: Use Kalman filter to predict the sub-meter accuracy.

Ot W N

The simple least square is given by the equation:

bat — Tl (5)

where 7, =actual distance between truck and the satellite
x¥ . = position of the Truck
T, = position of the truck

A miner’s goal is to minimize the measured and estimated pseudorange for
every satellite (assuming at least four are required). Inertial Measurement Unit
(IMU) is a device that can measure acceleration and angular velocity, such as
from a car. IMU measurements are absolute values. By comparing GNSS values
with IMU absolute values, errors can be corrected using Eq. (5) to provide
submeter accuracy. As the mining blocks are mined and rewarded if POL is

e =l

k
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e

Fig. 4. Queryable GPS using Gnnss for spatial blockchain.

provided at sub-meter accuracy, the sub-meter positioning will be much closer
to the truck’s position than the initial GPS estimates.

5 Smart Contracts for Spatial Blockchains

Previously, we discussed a truck route from Fig. 3 that requires POL in order to
ensure that the goods arrive at the final destination without further delays which
are imported across borders using supply chain tracking. Our Proof-of-Work
for aims 1 to 4 successfully utilized only GPS locations requiring interaction
from the truck to the spatial blockchain network, causing some delays at each
location along the route. [19] is a way of running Proof-of-Origin on an edge
device [21] such as a smart camera. If the process were automated using smart
contract, we may not be able to rely on the position alone. A smart contract
that generates a response to a transaction can be integrated into an application
such as spatial vehicle monitoring using multiple-cameras. Due to the popularity
of deep learning and images of trucks from various cameras deployed along the
routes, multiple-camera monitoring is becoming increasingly popular. Our deep-
learning model will be trained with images from multiple cameras of the same
truck which is in transit. As shown in Fig. 5, a typical multi-camera setup is also
connected to a smart contract that can serve as an output of a deep learning
model [2] to identify the current trucks based on previously seen cameras. We
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provide POL using visual features [18] by combining Blockchain smart contract
and verificable GPS with trusted AI. We can see from the Egs. (6), (7) and (8)
that the smart contract’s output is only triggered when features of cam; and
camsy are the same as images of the earlier vehicle seen compared to cams.

NE€Wjoc = CAM feqture—1 + Cam feature—2 (6)
= CaMimage—3 (7)
= trusted AI smart contract (8)

v RE-TD p RE-ID
ﬁ ”

i~ :
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R R 4 T
= AR R P
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Fig. 5. Smart contract automation running at the edge device.

5.1 Algorithm for Re-identification

(a) Re-Identification of Vehicles Entering (b) Re-Identification Algorithm Deployed
(CAM-A) and Leaving (CAM-B) a Tun- in a Edge-Device. Smart Contract Shows
nel. Multi-Camera Authentication.

Fig. 6. Vehicle re-identification using multi-camera system.

Instance Re-Identification [2,18] is a vital computer vision task, which targets
remote monitoring using drones for wildlife protection, vehicle re-identification,
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etc. Smart contracts can be used with the blockchain ledger previously designed
with GPS. To re-identify the truck at different locations, the smart contract uses
a deep learning model [17], which has been trained domain adapted multiple
cameras in the trunk’s route. Figure6(b) shows the deep learning framework
[18]. Re-identification is an artificial intelligence technique that finds a particular
vehicle, asset, or person from a large collection of videos. Like the expensive
3D-annotation task, the re-identification task consumes a lot of video-watching
time to find the vehicle, or person. Two or more cameras recording the same
vehicle or person will require re-identification algorithms. Using our example, if
we have three cameras, then a query is generated for the current instance of the
truck when proof-of-location is requested, similar to linked data in Fig.5. The
query image is submitted to the re-id trained model for visual authentication, as
shown in Fig.6(b). The query of the current instance of the truck includes the
previous instances (like the blockchain ledger). Therefore, we can confirm that
the current instance is part of the truck routes, enabling a consensus for POL.
AT and blockchain are used to make networked consensus that is trustworthy
and programmable through smart contracts that are difficult to guess.

6 Preliminary Results

The models for aims 1 to 4 have been designed, and the final smart contract
has been deployed to an edge device [2,19] the code can be found at the GitHub
repository. The results of the testing of aims 3 and 4 are shown below.

6.1 Computing Spatial Blockchain Proof-of-Work

Using the truck’s GNSS logs, we, as miners, develop a spatial POW diffi-
culty based on GPS accuracy to a sub-meter level. We use the dataset pro-
vided by Google, which is formatted in GNSS [11] format. (Details are avail-
able here: https://github.com/google/gps-measurement-tools: GNSS log data
are used: https://www.kaggle.com/google/android-smartphones-high-accuracy-
datasets MATLAB code is used for baseline position correction. Table 1 shows
a regular GPS reading with the Least Square method. We can get a more accu-
rate GNSS reading by correcting the estimated satellite distance, position, and
signal-to-noise errors with a more precise sub-meter GPS measurement as cal-
culated in Eq. (5). There are a number of external variables such as ionospheric
conditions, a challenging optimization problem, and the equivalent of finding a
hash smaller than the target in traditional blockchain consensus [22].
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Table 1. Results of linear regression to estimate satellite distances precisely.

Proof-of-work using GPS accuracy
Gnss (sub-meter)

Algorithm
Least

GPS (meter)
= (37.42361372

(37.42357595 =
122.09413204) 122.0936959)

Simple
Square
mation

Esti-

6.2 Implementing Smart Contract Using Multi-camera Consensus

The re-id algorithm uses visual clues instead of GPS to compute POW as
described in the earlier sections, combining aims 1 to 4 into a smart contract
running on a edge device. We train a multi-camera dataset [10] for vehicles using
a deep learning MOBILENetv2 [19] model using a cosine pair-wise loss function
[12] to separate fine grained vehicle classes [13]. The results of the training loss
[14] are shown in Fig.7. The ROC accuracy achieves 80% with a very low false-
positive rate. When a truck instance image is provided as illustrated in Fig. 6,
the results have very high similarities for other cameras [15]. An example query
using the pre-trained model [5] for the VERI-Wild dataset is shown for the cur-
rent truck instance in Fig.6(b). The results are ranked (in our case for three
cameras), showing a 99% match with one false positive. As discussed before, a
smart contract can be deployed to provide proof-of-location using visual clues [7]
alone running on the edge at near real-time speeds eliminating trucking delays.

Receiver Operating Characteristic

—-=- Random guess
—— ROC curve with model

1.0 A

True Positive Rate

0.2
’
’,

0.0 A

103 1072
False Positive Rate

Fig. 7. Triplet training loss for veri-wild dataset
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