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The ranked (or top-k) document retrieval problem is defined as follows: preprocess a collection {T1,T2, . . . ,Td }

of d strings (called documents) of total length n into a data structure, such that for any given query (P ,k ),

where P is a string (called pattern) of length p ≥ 1 and k ∈ [1,d] is an integer, the identifiers of those k

documents that are most relevant to P can be reported, ideally in the sorted order of their relevance. The

seminal work by Hon et al. [FOCS 2009 and Journal of the ACM 2014] presented an O (n)-space (in words)

data structure with O (p + k logk ) query time. The query time was later improved to O (p + k ) [SODA 2012]

and further to O (p/ logσ n + k ) [SIAM Journal on Computing 2017] by Navarro and Nekrich, where σ is the

alphabet size. We revisit this problem in the external memory model and present three data structures. The

first one takesO (n)-space and answer queries inO (p/B+ logB n+k/B+ log
∗ (n/B)) I/Os, where B is the block

size. The second one takes O (n log∗ (n/B)) space and answer queries in optimal O (p/B + logB n + k/B) I/Os.

In both cases, the answers are reported in the unsorted order of relevance. To handle sorted top-k document

retrieval, we present an O (n log(d/B)) space data structure with optimal query cost.
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1 INTRODUCTION AND RELATEDWORK

The inverted index is the most fundamental data structure in the field of information retrieval [25].

It is the backbone of every known search engine today [15]. For each word in any document collec-

tion, the inverted index maintains a list of all documents in that collection that contain the word.

Despite its power to answer various types of queries, the inverted index becomes inefficient, for
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example, when queries are phrases instead of words [20]. Similar problems also occur in applica-

tions when word boundaries do not exist or cannot be identified uniquely in the documents, like

genome sequences in bioinformatics and text in many East-Asian languages. These applications

call for data structures to answer queries in a more general form, that is, (string) pattern matching.

Specifically, they demand the ability to identify all the documents that contain a specific pattern as

a substring. The usual inverted-index approach might require the maintenance of document lists

for all possible substrings of the documents. This approach can take quadratic space and hence is

neither theoretically interesting nor sensible from a practical viewpoint.

The first framework for answering document retrieval queries was proposed byMatias et al. [12].

Their data structures solve the document listing problem, where the task is to index a document

collectionD = {T1,T2, . . . ,Td }, such that whenever a string P (called pattern) of length p comes as

a query, the index report the identifiers of all those documents containing P (i.e., as a substring).

Later Muthukrishnan [14] initiated the study of relevance metric-based document retrieval, which

was then formalized by Hon et al. [10] as follows:

Problem 1 (Top-k Document Retrieval Problem). Let D = {T1,T2, . . . ,Td } be a collection of d

strings (called documents) of total length n over a totally ordered alphabet Σ of size σ . Also for any

pattern P , letw (P ,Ti ) be the relevance ofTi w.r.t. P . The task is to build an index overD answering

the following query: Given a string P (called pattern) of length p ≥ 1 and an integer k ∈ [1,d],

report the identifiers of those k documents that are most relevant to P (ties are broken arbitrarily),

ideally in the sorted order of theirw (P , .) values.

The relevance metrics considered in the problem can be either pattern independent (e.g., PageR-

ank) or pattern dependent. In the latter case, w (P ,Ti ) can take into account information like the

frequency of the pattern occurrences (or term-frequency, the number of occurrences of P in a doc-

ument Ti ) and even the locations of the occurrences (e.g., min-dist [10], which takes proximity of

two closest occurrences of pattern as the score). As in the previous works, we assume that other

than a static weight that is fixed for each document i , w (P ,Ti ) is dependent only on the set of

occurrences (i.e., starting positions) of P in Ti . This means, metrics like w (P ,Ti ) as the size of the

maximal set of non-overlapping occurrences of P inTi do not qualify as they not only depends on

the set of occurrences but also the length of the pattern.

The framework of Hon et al. [9, 10] takes linear space and answers the query in O (p + k logk )

time, assuming integer alphabet, i.e., Σ = {0, 1, 2, . . . ,nO (1) }. They reduced this problem to a four-

sided orthogonal range query in three-dimensional (3D) grid, which is defined as follows: The

data consist of a set S of 3D points (with integer coordinate values), and the query consists of four

(integer) parameters x ′,x ′′,y ′, and z ′, and output is the set of all those points (xi ,yi , zi ) ∈ S such

that xi ∈ [x
′,x ′′],yi ≤ y ′ and zi ≥ z ′. While any data structure for (general) four-sided orthogonal

range searching in optimal time needs super-linear space [5], the desired bounds can nevertheless

be achieved by identifying a particular property that one dimension of the reduced subproblem can

only have p distinct values. The query time was then brought down toO (p+k ) [16] and further to

O (p/ logσ n + k ) [17] by Navarro and Nekrich. Recently, Munro et al. [13] proposed a linear space

structure, which can answer a more powerful query, called ranked document selection (report the

kth most relevant document) in O (p + logk ) time. Even though there has been a series of work

on this topic, including in theory as well as in practical IR communities, most implementations (as

well as theoretical results) have focused on RAM-based compressed indexes (see References [8, 15]

for surveys on this topic).

We introduce an alternative framework for solving the top-k document retrieval problem and

obtain the first non-trivial (comparison-based) externalmemory solutions. Thismodel (a.k.a. cache-

aware model, I/O model, and disk access model) was introduced by Aggarwal and Vitter [2]. Here
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the CPU is connected directly to an internal memory (whose size is M words), which is then

connected to a very large external memory (disk). The disk is partitioned into blocks (pages), and

the size of each block is B words. The CPU can only work on data inside the internal memory.

Therefore, to work on some data in the external memory, the corresponding blocks have to be

transferred to internal memory. The transfer of a block from external memory to internal memory

(or vice versa) is referred to as an I/O operation. The operations inside the internal memory are

orders of magnitude faster than the time for an I/O operation. Therefore, they are considered free,

and an algorithm’s efficiency is measured by the number of I/O operations.

We now present our main results.1 Unlike the previous results in the RAM model, we do not

make the integer alphabet assumption. Instead, we assume that the characters are encoded inO (1)

machine words, and any two characters stored in the internal memory can be compared for free.

The optimal query cost isO (p/B + logB n + k/B) I/Os, since p is the input size, k is the output size,

and Ω(logB n) I/Os are necessarily for any (comparison-based) searching.

Theorem 1. There exists anO (n)-word structure for answering top-k (unsorted) document retrieval

queries in O (p/B + logB n + k/B + log
∗ (n/B)) I/Os, where B is the block size.

Theorem 2. There exists an O (n log∗ (n/B))-word structure for answering top-k (unsorted) docu-

ment retrieval queries in optimal O (p/B + logB n + k/B) I/Os, where B is the block size.

Theorem 3. There exists an O (n log(d/B))-word structure for answering top-k (sorted) document

retrieval queries in optimal O (p/B + logB n + k/B) I/Os, where B is the block size.

We remark that some of our techniques are closely related to the work by Larsen and

Walderveen [11] on colored range queries in 2D. Here, the task is to construct a data structure

over a set S of n colored points in 2D so that given an orthogonal range query [a,b] × [c,∞), we

can report the set of distinct colors in S∩[a,b]×[c,∞) efficiently. They presented anO (n log∗ (n/B))

space data structure with optimal query cost of O (logB n + k/B) I/Os, where k is the output size.

For more results on this topic, see References [7, 19, 21].

2 PRELIMINARY: TOP-k FRAMEWORK

This section briefly explains the framework for top-k document retrieval based on the work of Hon

et al. [10]. The generalized suffix tree (GST) of a document collectionD = {T1,T2, . . . ,Td } is the

combined compact trie (a.k.a. Patricia trie) of all the non-empty suffixes of all the documents after

appending each suffixwith a special character that is not in Σ, which is unique to the corresponding

document (say, $i for Ti ). Use n to denote the total length of all the documents, which is also the

number of leaves in GST. For each node u in the GST (referred by its pre-order rank), consider

the path from the root node to u. Let depth(u) be the number of nodes on the path, pre f ix (u) be

the string obtained by concatenating all the edge labels of the path, and size (u) be the number of

leaves underu. For a pattern P that appears in at least one document, the locus of P , denoted byuP ,

is the node closest to the root such that P is a prefix of pre f ix (uP ). Moving forward, we assume

that P is non-empty (i.e., p ≥ 1); therefore, uP � root .

Nodes are marked with documents as follows. A leaf node ℓ is marked with a (unique) document

Ti ∈ D if the suffix represented by ℓ belongs to Ti . An internal node u is marked with Ti if it is

the lowest common ancestor (LCA) of two leaves marked withTi . Notice that an internal node

can be marked with multiple documents. Additionally, we mark the root node with all documents.

For each node u � root and each of its marked documents Ti , define a link to be a quadruple

(oriдin, tarдet ,doc, score ), where oriдin = u, tarдet is the lowest proper ancestor of u marked

with Ti , doc = i and score = w (pre f ix (u),Ti ). Let L denote the set of all such links.

1Theorem 2 was presented in the conference version of this article [22], but Theorems 1 and 3 are new.
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Lemma 1 ([10]). For each documentTi that contains a pattern P as a substring, there exists a unique

link in L whose origin is in the subtree of uP and whose target is a proper ancestor of uP . The score of

the link is exactly the score of Ti with respect to P .

Thus, the top-k document retrieval problem can be reduced to the problem of finding the top-k

links (according to their score) among all links in L stabbed by uP . We say that a link is stabbed

by a node u if its origin is in the subtree of u, and its target is a proper ancestor of u.

Lemma 2 ([10]). The number of links originating from the subtree of any node u is at most 2 ·

size (u) − 1, where size (u) denotes the number of leaves under u. Therefore, |L| ≤ 2n − 1.

Moving forward, we shall assume that all score values are distinct integers within [1, 2n − 1].

Otherwise, we achieve this by first sorting all links in the ascending order of their score values

(ties broken arbitrarily) and then replacing each link’s score by its position in the sorted list.

3 EXTERNAL MEMORY STRUCTURES

This section is dedicated to proving our results. The initial phase of searching the locus node uP of

P can be performed in optimal O (p/B + logB n) I/O’s using a string B-tree [6] data structure over

D and its space is O (n). Assuming uP exists and uP � root , we now focus on reporting the top-k

links stabbed by uP . Instead of solving this top-k version, we first solve a threshold version of the

problem, where the objective is to retrieve those links stabbed by uP with score at least a given

value τ . Among all the links in L stabbed by uP , let L (uP ,k, ·) be the set of k highest scored links

andL (uP , ·,τ ) be the set of links with score ≥τ . In Section 3.3, we propose a separate structure that

reduces the original top-k-form query (uP ,k, ·) into an equivalent threshold-form query (uP , ·,τ ).

Therefore, we can answer top-k-form queries using our structure for threshold-form queries.

3.1 A Data Structure for Handling Threshold-formQueries

The query is of the form (uP , ·,τ ) and the task is to output L (uP , ·,τ ). This problem can be de-

composed into simpler queries, which consist of a 3D dominance reporting andO (log(n/B)) three-

sided range reporting in 2D; both problems can be solved efficiently using known structures. The

main result is captured in Lemma 3 stated below.

Lemma 3. By maintaining an O (n)-space structure, we can report L (uP , ·,τ ) for any given

threshold-form query (uP , ·,τ ) in O (log2 (n/B) + z/B) I/Os, where z = |L (uP , ·,τ ) |.

For any node u in GST, define its rank as

rank (u) = ⌊log⌈size (u)/B⌉⌋ .

Note that rank (.) ∈ [0, ⌊log⌈n/B⌉⌋]. A maximal connected sub-graph consisting of nodes with

the same rank is called a component, and the rank of a component is the same as the rank of nodes

within it (see Figure 1). Therefore, a component with rank = 0 is a bottom level subtree of size

(number of leaves) at most B. From the definition, we can see that a node and at most one of its

children can have the same positive rank . Therefore, a component with rank > 0 forms a path

that goes top-down in the tree.

The number of links originating within a component with rank = 0 is O (B). These O (B) links

corresponding to each component with rank = 0 can be maintained separately as a list, taking

total O (n) space. Additionally, we maintain a pointer from each node in that component to this

list. Now, given a nodeuP , if rank (uP ) = 0, then the number of links originating within the subtree

ofuP is alsoO (B), and all of them can be processed inO (1) I/O’s by simply scanning the list of links

corresponding to the component to whichuP belongs to. The query processing is more challenging

when rank (uP ) > 0. For handling this, consider the following classification of links based on the

rank of their targets with respect to the rank of uP :
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Fig. 1. An illustration of rank components with B = 1.

(1) equi-ranked links: links with rank (tarдet ) = rank (uP )

(2) high-ranked links: links with rank (tarдet ) > rank (uP ).

Next, we show that the problem of retrieving all equi-ranked links in the output can be reduced

to a 3D dominance query, and the problem of retrieving all high-ranked links in the output can

be reduced to at most ⌊log⌈n/B⌉⌋ three-sided range queries in 2D. From now onwards, the origin,

target, and score of a link Li = (oi , ti , ·,wi ) are represented by oi , ti , andwi , respectively.

3.1.1 Processing Equi-ranked Links. LetC be a component and SC be the set of all links Li whose

target ti is a node in C . Since uP is a node in C , among all equi-ranked links, we need to consider

only the links Li ∈ SC , because the origin oj of any other equi-ranked link Lj � SC , will not be in

the subtree of uP . For any link Li ∈ SC , let pseudo-origin si be the pre-order rank of the lowest

ancestor of its origin oi withinC (see Figure 2). Then a link Li ∈ SC originates in the subtree of any

nodeu withinC if and only if si ≥ u. Based on the above observations, all equi-ranked output links

are those Li ∈ SC with ti < uP ≤ si andwi ≥ τ . To solve the subproblem of reporting equi-ranked

links in external memory, we treat each link Li ∈ SC as a 3D point (ti , si ,wi ) and maintain a 3D

dominance query structure over those points. Now the output with respect to uP and τ are those

links corresponding to the points within (−∞,uP ) × [uP ,∞) × [τ ,∞). Such a structure for SC can

be maintained in O ( |SC |) words of space and can answer the query in O (logB |SC | + zeq/B) I/O’s

using the result by Afshani [1], where |SC | is the number of points (corresponding to links in SC )

and zeq is the output size. Thus overall these structures occupy O (n)-space.

Lemma 4. Using anO (n)-space structure, we can report all the equi-ranked links in L (uP , ·,τ ) for

any given threshold-form query (uP , ·,τ ) with rank (uP ) > 0 in O (logB n + zeq/B) I/Os, where zeq is

the output size.

3.1.2 Processing High-ranked Links. The following is an important observation.

Observation 1. Any link Li with its origin oi within the subtree of a node u is stabbed by u if

rank (ti ) > rank (u), where ti is the target of Li .

This implies while looking for the high-ranked links in the output, the condition of ti being

a proper ancestor of uP can be ignored. The reason is that it will be automatically satisfied if

oi ∈ [uP , ûP ], where ûP is (pre-order rank of) right-most leaf in the subtree rooted at uP . Let Gr

be the set of all links with rank equals r for 1 ≤ r ≤ ⌊log⌈n/B⌉⌋. Since there are onlyO (log(n/B))

sets, we shall maintain separate structures for links in each Gr by considering only oriдin and
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Fig. 2. An illustration of the pseudo-origin si of the link Li with respect to component C .

score values. We treat each link Li ∈ Gr as a 2D point (oi ,wi ) and maintain a three-sided range

query structure over them for all r ∈ [1, ⌊log⌈n/B⌉⌋]. All high-ranked output links can be obtained

by retrieving those links in Li ∈ Gr with the corresponding point (oi ,wi ) ∈ [uP ,u
′
P ] × [τ ,∞] for

r = [rank (uP )+1, ⌊log⌈n/B⌉⌋]. By using the linear space data structure in Reference [3], the space

and I/O bounds for a particular r is given by O ( |Gr |) words and O (logB |Gr | + zr /B), where zr
is the number of output links in Gr . Since a link can be a part of at most one Gr , the total space

consumption isO (n) words and the total query I/Os are proportional to logB n · log(n/B)+zhi/B =

O (log2 (n/B) + zhi/B), where zhi represents the number of high-ranked output links.

Lemma 5. Using anO (n)-space structure, we can report all the high-ranked links in L (uP , ·,τ ) for

any given threshold-form query (uP , ·,τ ) with rank (uP ) > 0 inO (log2 (n/B) +zhi/B) I/Os, where zhi
is the output size.

By combining Lemmas 4 and 5, and the solution for the case of rank (uP ) = 0, we obtain Lemma 3.

3.1.3 A Straightforward Generalization of Lemma 3.

Lemma 6. For any fixed node u in GST, let L (u) ⊆ L be the set of links originating from the

subtree of u. Also, let S be any subset of L (u). Then, by maintaining an auxiliary structure of space

O ( |S |) with the GST, we can report L (uP , ·,τ ) ∩ S for any given threshold-form query (uP , ·,τ ) in

O (log2 (m/B) +z/B) I/Os, provided uP is in the subtree of u. Herem = size (u) and z is the output size.

Proof. In the proof of Lemma 3, replace GST with the subtree rooted at u and L with S . Here

we assume that GST (and therefore the subtree rooted at u) is already available. �

3.2 Better Data Structures for Handling Threshold-formQueries

We prove the following results in this section.

Theorem 4. By maintaining an O (n)-space structure, we can report L (uP , ·,τ ) for any given

threshold-form query (uP , ·,τ ) in O (logB n + z/B + log
∗ (n/B)) I/Os, where z = |L (uP , ·,τ ) |.

Theorem 5. By maintaining an O (n log∗ (n/B)) space structure, we can report L (uP , ·,τ ) for any

given threshold-form query (uP , ·,τ ) in O (logB n + z/B+) I/Os, where z = |L (uP , ·,τ ) |.

We start with a sampling scheme that will be used heavily in the rest of this article.
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3.2.1 A Scheme for Sampling Nodes in a Given Tree [10]. Let T be any given tree (rooted and

ordered) with n leaves and д ∈ [1,n] be a parameter called the sampling factor. Also, assume that

all internal nodes in T have at least two children. The following is a scheme that designatesO (n/д)

nodes as marked nodes (we call them д-marked nodes): mark every дth leaf node (in the left to

right order) and then mark the LCA of all pairs of marked leaves. Additionally, we ensure that the

root is always marked. Given any nodeu with size (u) ≥ д, at least one node underu is marked. For

any unmarked node u its highest marked descendent u∗ (if it exists) is unique, and we can locate

it via a single LCA query in O (1) time.2 Moreover, size (u) − size (u∗) < 2д.

We categorize the nodes in GST and associated links into different types in [1, log∗ (n/B)]

based on this marking scheme as follows. Let h ∈ [1, log∗ (n/B)], дh = B (log(h) (n/B))3 and

Kh = B (log(h) (n/B))2, where log(1) (·) = log(·) and log(h) (·) = log log(h−1) (·) for h > 1 and

log∗ x = min{j | log(j ) x ≤ 1}. We then replace each дh and Kh by 2 ⌊logдh ⌋ and 2 ⌊logKh ⌋ , respec-

tively (i.e., rounding down to the nearest power of two). This guarantees that every дh-marked

node is also дh+1-marked. Also define д0 = n + 1.

• A node is of type 1 if at least one node in its subtree is д1-marked. Any other node is of

type h ∈ [2, log∗ (n/B)] if in its subtree, at least one node is дh-marked and no node is дh−1-

marked. Therefore, size (·) of any type-h node is O (дh−1). The nodes remaining are also of

type log∗ (n/B) and their size (·) is O (B). Note that the type of the parent of a type-h node is

≤ h.

• A subtree rooted at a node u is a type-h subtree if u’s type is h and u’s parent’s type is < h.

Whenu is the root note, the tree rooted atu is the entire GST, which we call a type-1 subtree.

• A link is of type-h if its target is a type-h node,3 and let Lh be the set of all type-h links.

Along with each node and link, we store its type explicitly.

Our approach to handle a query (uP , ·,τ ) is the following. Let r be the type of uP . Recall our

assumption that uP � root (otherwise, P is an empty string). When r = log∗ (n/B), we extract

L (uP , ·,τ ) ⊆ L (uP ) via a linear scan of L (uP ). It takes only |L (uP ) |/B ≤ 2 · size (uP )/B = O (1)

I/Os. Now if r ∈ [1, log∗ (n/B)), then we report all type-h links in the output, i.e., Lh ∩ L (uP , ·,τ )

for all values of h < r first, and then for h = r . All type-h links with h > r can be ignored, because

such links cannot be stabbed by any type-r node. This follows from the monotonicity of types (the

parent of a type-h node is of type h′ ≤ h). We now present the details.

3.2.2 Structures for Reporting Type-h Links with h < r .

Lemma 7. We can maintain an O (n)-space structure, such that given a query (uP , ·,τ ) with node

uP being of type-r , we can report (∪r−1
h=1
Lh ) ∩L (uP , ·,τ ) inO (logB n + log

∗ (n/B) +
∑r−1
h=1

zh/B) I/Os,

where zh = |Lh ∩ L (uP , ·,τ ) |.

Proof. Note that for allh < r ,Lh∩L (uP , ·,τ ) is the set of type-h links originating from the type-

h subtree containing uP (i.e., with origin within [uP , ûP ]) and score ≥ τ , where ûP is the rightmost

leaf underuP . To report them efficiently, we maintain for all h ∈ [1, log∗ (n/B)] and for each type-h

subtree with H being the set of type-h links originating from it, a (linear-space) structure over the

points in {(oi ,wi ) | (oi , ti , ·,wi ) ∈ H } for answering 2D three-sided range reporting queries in

optimal I/Os [1]. The total space over all such structures for a fixed h is proportional to the total

number of type-h links. Therefore, total space over all values of h is O (n). To report (the points

corresponding to the links in) Lh ∩ L (uP , ·,τ ), where h < r , we issue a 2D three-sided range

2Find the first and last marked leaves between the leftmost and the rightmost leaves, and then take their LCA. The LCA

queries can be answered in O (1) time by maintaining a structure of space O (n) bits [18].
3Note the similarity with the definition of link’s rank in Section 3.1.
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reporting query [uP , ûP ] × [τ ,∞) on the structure associated with the type-h tree containing uP .

The I/Os required is O (logB дh−1 + zh/B) for a fixed h. Therefore, the I/Os required for all values

of h < r is proportional to
∑r−1
h=1

logB дh−1 +
∑r−1
h=1
⌈zh/B⌉ = O (logB n + r + (

∑r−1
h=1

zh )/B) and

r ≤ log∗ (n/B). �

Lemma 8. We can maintain an O (n log∗ (n/B)) space structure, such that given a threshold-form

query (uP , ·,τ ) with node uP being of type-r , we can report (∪r−1
h=1
Lh ) ∩ L (uP , ·,τ ) in O (logB n +∑r−1

h=1
zh/B) I/Os, where zh = |Lh ∩ L (uP , ·,τ ) |.

Proof. Modify the proof of Lemma 7 as follows: replace H with H ′, where H ′ is the set of

all type-j links originating from that type-h subtree for all values of j < h. We can now report

(∪r−1
h=1
Lh ) ∩ L (uP , ·,τ ) via a single 2D three-sided range reporting query [uP , ûP ] × [τ ,∞) on

the (modified) structure associated with the type-r subtree containing uP in I/Os proportional to

logB (дr−1/B) +
∑r−1
h=1

zh/B = O (logB n +
∑r−1
h=1

zh/B). This modification increases the asymptotic

space complexity toO (n log∗ (n/B)), because each type-h link can now belong to h = O (log∗ (n/B))

structures. �

3.2.3 Structures for Reporting Type-r Links.

Lemma 9. We can maintain an O (n)-space structure, such that given a threshold-form query

(uP , ·,τ ) with node uP being of type-r , we can report Lr ∩ L (uP , ·,τ ) in O ((log(r ) (n/B))2 + zr /B)

I/Os, where zr = |Lr ∩ L (uP , ·,τ ) |.

Proof. For allh ∈ [0, log∗ (n/B)] and for each type-h subtree withH being the set of type-h links

originating from it, maintain the (linear-space) structure in Lemma 6 over H . The total space over

all such structures for a fixed h is proportional to the total number of type-h links. Therefore, total

space over all values ofh isO (n). To findLr ∩L (uP , ·,τ ) we query on the structure associated with

the type-r subtree containing uP . The I/Os required is log2 (дr−1/B) + zr /B = O ((log(r ) (n/B))2 +

zr /B). �

Note that the query cost in Lemma 9 is optimal when zr ≥ Kr . Therefore, we use that structure

only when zr ≥ Kr . For the case where zr < Kr , we introduce another structure in Lemma 11.

Since we do not know zr in advance, we use the following strategy for deciding which structure

to use: For each node u in GST with h being its type, we store τu , the score of Khth type-h link

stabbed by u. Then, zr ≥ Kr iff τ ≤ τuP . This takes only O (n) extra space and the choice can be

made in O (1) I/Os.

Before we present Lemma 11, we introduce some additional definitions. Let д be a sampling

factor and u∗ be a д-marked node. Also, let u ′ be the last node on the path from u∗ to root, before

another д-marked node. Therefore, u ′ is the highest node such that the highest marked node in

its subtree is u∗. Consider all links originating from the subtree of u ′. We classify them into four

groups (see Figure 3 for an illustration) and make some useful observations.

• f arLinks (u∗,д) is the set of links stabbed by both u∗ and u ′.

• smallLinks (u∗,д) is the set of links originating from u∗’s subtree, but not stabbed by u∗.

• nearLinks (u∗,д) is the set of links stabbed by u∗, but not by u ′.

• f rinдeLinks (u∗,д) is the set of links originating not from the subtree of u∗.

Lemma 10. For any д-marked node u∗, the size of nearLinks (u∗,д) ∪ f rinдeLinks (u∗,д) is O (д).

Proof. Let F denote the set of leaves in the subtree of u ′, but not in the subtree of u∗. Then,

|nearLinks (u∗,д) | ≤ |F |, because for every document Tj , there is at most one link (·, ·, j, ·) ∈

nearLinks (u∗,д), and it exists iff a leaf in F and a leaf underu∗ aremarkedwithTj . To bound the size
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Fig. 3. Categorization of Links originating from the subtree of u ′.

of f rinдeLinks (u∗,д), let us partition it into two sets, say, A and B. All links in f rinдeLinks (u∗,д)

with their origin on the path fromu∗ tou ′ are inA and B = f rinдeLinks (u∗,д)\A. Then, |B | ≤ 2|F |,

|A| ≤ |B | and | f rinдeLinks (u∗,д) | = |A| + |B | ≤ 4|F |. Finally, |F | = size (u ′) − size (u∗) ≤ 2д. �

Let u be any node on the path from u∗ to u ′. Then, u stabs (i) all links in f arLinks (u∗,д),

(ii) none of the links in smallLinks (u∗,д), (iii) a link (oi , ti , ·,wi ) ∈ nearLinks (u∗,д) iff ti < u,

and (iv) a link (oi , ti , ·,wi ) ∈ f rinдeLinks (u∗,д) iff ti is a proper ancestor of u and LCA(oi ,u
∗) ≥ u.

With these observations, we now present Lemma 11.

Lemma 11. We can maintain an O (n)-space structure, such that given a threshold-form query

(uP , ·,τ ) with node uP being of type-r , we can report Lr ∩ L (uP , ·,τ ) in O (logB n + zr /B) I/Os, if

zr < Kr . Here zr = |Lr ∩ L (uP , ·,τ ) |.

Proof. For each h ∈ [1, log∗ (n/B)], we maintain a structure, which is constructed as follows.

Identify all дh-marked nodes. Then, for each дh-marked node u∗, with u ′ being the last node on

the path from u∗ to root, before another д-marked node, obtain the set Qh (u
∗) by collecting all

type-h links in nearLinks (u∗,д) ∪ f rinдeLinks (u∗,д) and the top-Kh links from the S , where S is

the set of all type-h links in f arLinks (u∗,д). Note that a node u on the path from u∗ to u ′ stabs a

link (oi , ti , ·,wi ) ∈ Q (u∗) iff ti < uP ≤ LCA(oi ,u
∗). Therefore, the top-k type-h links stabbed by

u are guaranteed to form a subset of Q (u∗) if k < Kh . We map each link (oi , ti , ·,wi ) ∈ Qh (u
∗)

into a 3D point (LCA(oi ,u
∗), ti ,wi ). These points are preprocessed into an O ( |Qh (u

∗) |) space

data structure that can answer 3D dominance reporting queries in optimal I/Os. This completes

the description of our data structure. To bound its space, note that the same link cannot be in

nearLinks (·,д) ∪ f rinдeLinks (·,д) for two different д-marked nodes. Therefore, the total space

taken by all structures for a fixed h isO (nh +nKh/дh ), where nh is the number of type-h links. The

final space is proportional to

log∗ (n/B )∑

h=1

nh + n ·
Kh

дh
=

log∗ (n/B )∑

h=1

nh +
n

Θ(log(h) (n/B))
= O (n).

To answer a query (uP ,τ ), we first identify the highest дr -marked node (say u∗P ) in the subtree

of uP . Then issue a 3D dominance reporting query [uP ,∞) × (−∞,uP ) × [τ ,∞) on the set of points

corresponding to Qr (u
∗
P ). Our answer is the set of links corresponding to the reported points and

the I/Os required is proportional to logB |Qh (u
∗
P ) | + zr /B, i.e., O (logB n + zr /B). �
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By combing the results in Lemmas 9 and 11, we obtain the following result.

Lemma 12. We can maintain an O (n)-space structure, such that given a threshold-form query

(uP , ·,τ ) with node uP being of type-r , we can report Lr ∩L (uP , ·,τ ) inO (logB n+zr /B) I/Os, where

zr = |Lr ∩ L (uP , ·,τ ) |.

Finally, Theorem 4 (respectively, Theorem 5) follows from Lemma 7, (respectively, Lemma 8)

and Lemma 12.

3.3 Completing the Proofs of Theorems 1–3

We first present and prove Lemma 13, which is a reduction the top-k version to the threshold

version of our problem.

Lemma 13. By maintaining an O (n)-space structure, we can compute a threshold value τ for any

given (uP ,k, ·) in O (1) time, such that L (uP ,k, ·) ⊆ L (uP , ·,τ ) and |L (uP , ·,τ ) | = O (k + logn).

Proof. The structure is constructed as follows: Identify all the д-marked nodes in the GST for

д = ⌈logn⌉. At every д-marked nodeu∗, store the score of qth highest scored link stabbed byu∗ for

q = 1, 2, 4, 8, . . .. The total space is (n/д) logn = O (n) words. To answer a query (uP ,k ), find the

highestmarked nodeu∗ (if it exists) in the subtree ofuP inO (1) time. Now compute i = ⌈log(k+2д)⌉

and report τ as the score of 2i th highest scored link stabbed by u∗. The correctness follows from

the following facts: (i) size (u∗) − size (uP ) < 2д and (ii) w (pre f ix (uP ),Tj ) � w (pre f ix (u∗),Tj )

only if there exists a leaf marked withTj and located under uP , but not under u
∗. In the remaining

case when there is no marked node under uP , we report 1 (the lowest possible score after rank-

space reduction). This works because the size of L (uP , ·, 1) is trivially bounded by size (uP ) < д =

O (logn). �

3.3.1 Proof of Theorem 1. We maintain the structures in Theorem 4, Lemma 13, and a string

B-tree over D in O (n) total space. To answer a query (P ,k ), we follow the steps below:

• Locate the locus node uP of P via querying the string B-tree in O (p/B + logB n) I/Os.

• Convert our top-k-form query (uP ,k, ·) into a corresponding threshold-form query (uP , ·,τ )

using the structure in Lemma 13.

• Obtain L (uP , ·,τ ) in O (logB n + log∗ (n/B) + z/B) I/Os using the structure in Theorem 4,

where z = |L (uP , ·,τ ) |.

• Finally, extractL (uP ,k, ·) fromL (uP , ·,τ ) in I/Os proportional to |L (uP , ·,τ ) |/B = O ((logn+

k )/B) as follows: select the kth highest scored link using a optimal external-memory selec-

tion algorithm [4, 23, 24] and discard every link that has score lower than that.

The total I/Os are O (p/B + logB n + k/B + log
∗ (n/B)).

3.3.2 Proof of Theorem 2. Just modify the proof of Theorem 1 by replacing Theorem 4 with

Theorem 5. This makes the total space O (n log∗ (n/B)) and query cost optimal.

3.3.3 Proof of Theorem 3. We prove the following lemma first.

Lemma 14. For every integerд, there exists anO (n)-word structure, such that given any top-k-form

query (uP ,k, ·) with k ≤ д, we can report the top-k links stabbed by uP in the sorted order in O (д/B)

I/Os.

Proof. The structure is constructed as follows. Identify all д-marked nodes. Then, for each д-

marked node u∗, obtain the setQ (u∗) by collecting all links in nearLinks (u∗,д), f rinдeLinks (u∗,д)

and the top-д links in f arLinks (u∗,д). Therefore, |Q (u∗) | = O (д) (refer to Lemma 10). Also, for all

nodesu,L (u,д, ·) ⊆ Q (u∗), whereu∗ is the highestд-marked node in the subtree ofu. Wemaintain
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Q (·) for all д-marked nodes explicitly as a list of links sorted by scores. Additionally, for each

maximal subtree containing no д-marked node, we maintain a sorted list of all links originating

from the subtree. The total space is n + д · n/д = O (n). To answer a query (uP ,k, ·) with u
∗ being

the highest д-marked node in the subtree of uP , simply go through the sorted list associated with

u∗ and report first k links that are stabbed by uP . If there is no д-marked node in the subtree of

uP , then go through the sorted list associated with the maximal subtree (with no д marked node)

containing uP and report the first k links in that list stabbed by uP . In both cases, the size of the

list is bounded by O (д); therefore, I/Os required is O (д/B). �

To obtain the result in Theorem 3, we maintain a string B-tree over D and the structure in

Lemma 14 for each д ∈ {B, 2B, 4B, . . . , 2 ⌈log(d/B )⌉B}. The total space isO (n log(d/B)) words. We an-

swer a query (uP ,k, ·) using the structure for д = B2 ⌈log(k/B )⌉ in д/B = O (1+k/B) I/Os. Combining

this with the cost of the initial pattern search in the string B-tree gives the claimed result.
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