L))

Check for
updates

Ranked Document Retrieval in External Memory

RAHUL SHAH, Department of Computer Science, Louisiana State University

CHENG SHENG, Department of Computer Science and Engineering, Chinese University of Hong Kong
SHARMA THANKACHAN, Department of Computer Science, North Carolina State University
JEFFREY VITTER, Department of Computer and Information Science, University of Mississippi

The ranked (or top-k) document retrieval problem is defined as follows: preprocess a collection {T1, Tz, . . ., Ty}
of d strings (called documents) of total length n into a data structure, such that for any given query (P, k),
where P is a string (called pattern) of length p > 1 and k € [1,d] is an integer, the identifiers of those k
documents that are most relevant to P can be reported, ideally in the sorted order of their relevance. The
seminal work by Hon et al. [FOCS 2009 and Journal of the ACM 2014] presented an O(n)-space (in words)
data structure with O(p + klog k) query time. The query time was later improved to O(p + k) [SODA 2012]
and further to O(p/log, n + k) [SIAM Journal on Computing 2017] by Navarro and Nekrich, where o is the
alphabet size. We revisit this problem in the external memory model and present three data structures. The
first one takes O(n)-space and answer queries in O(p/B +logg n+k/B+log*(n/B)) I/Os, where B is the block
size. The second one takes O(nlog*(n/B)) space and answer queries in optimal O(p/B + logg n + k/B) 1/Os.
In both cases, the answers are reported in the unsorted order of relevance. To handle sorted top-k document
retrieval, we present an O(n log(d/B)) space data structure with optimal query cost.

CCS Concepts: « Theory of computation — Data structures design and analysis;

Additional Key Words and Phrases: Data structures, text indexing, external memory

ACM Reference format:

Rahul Shah, Cheng Sheng, Sharma Thankachan, and Jeffrey Vitter. 2023. Ranked Document Retrieval in Ex-
ternal Memory. ACM Trans. Algorithms 19, 1, Article 5 (March 2023), 12 pages.
https://doi.org/10.1145/3559763

1 INTRODUCTION AND RELATED WORK

The inverted index is the most fundamental data structure in the field of information retrieval [25].
It is the backbone of every known search engine today [15]. For each word in any document collec-
tion, the inverted index maintains a list of all documents in that collection that contain the word.
Despite its power to answer various types of queries, the inverted index becomes inefficient, for

This research is supported by US NSF Grants CCF-1017623 and CCF-1218904.

Authors’ addresses: R. Shah, Department of Computer Science, Louisiana State University, 3325 Patrick F. Taylor Hall,
Baton Rouge, Louisiana 70803, USA; email: rahul@csc.Isu.edu; C. Sheng, Department of Computer Science and Engineer-
ing, Chinese University of Hong Kong; email: jeru.sheng@gmail.com; S. Thankachan, Department of Computer Science,
North Carolina State University, Engineering Building II-Campus Box 8206, 890 Oval Dr., Raleigh, North Carolina 27606,
USA; email: sharma.thankachan@gmail.com; J. Vitter, Department of Computer and Information Science, University of
Mississippi, 201 Weir Hall University, Oxford, Mississippi 38677, USA; email: jsv@olemiss.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1549-6325/2023/03-ART5 $15.00

https://doi.org/10.1145/3559763

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

5:2 R. Shah et al.

example, when queries are phrases instead of words [20]. Similar problems also occur in applica-
tions when word boundaries do not exist or cannot be identified uniquely in the documents, like
genome sequences in bioinformatics and text in many East-Asian languages. These applications
call for data structures to answer queries in a more general form, that is, (string) pattern matching.
Specifically, they demand the ability to identify all the documents that contain a specific pattern as
a substring. The usual inverted-index approach might require the maintenance of document lists
for all possible substrings of the documents. This approach can take quadratic space and hence is
neither theoretically interesting nor sensible from a practical viewpoint.

The first framework for answering document retrieval queries was proposed by Matias et al. [12].
Their data structures solve the document listing problem, where the task is to index a document
collection D = {T1, T, . . ., Ty}, such that whenever a string P (called pattern) of length p comes as
a query, the index report the identifiers of all those documents containing P (i.e., as a substring).
Later Muthukrishnan [14] initiated the study of relevance metric-based document retrieval, which
was then formalized by Hon et al. [10] as follows:

Problem 1 (Top-k Document Retrieval Problem). Let D = {T1,T,,...,T4} be a collection of d
strings (called documents) of total length n over a totally ordered alphabet > of size . Also for any
pattern P, let w(P, T;) be the relevance of T; w.r.t. P. The task is to build an index over D answering
the following query: Given a string P (called pattern) of length p > 1 and an integer k € [1,d],
report the identifiers of those k documents that are most relevant to P (ties are broken arbitrarily),
ideally in the sorted order of their w(P, .) values.

The relevance metrics considered in the problem can be either pattern independent (e.g., PageR-
ank) or pattern dependent. In the latter case, w(P, T;) can take into account information like the
frequency of the pattern occurrences (or term-frequency, the number of occurrences of P in a doc-
ument T;) and even the locations of the occurrences (e.g., min-dist [10], which takes proximity of
two closest occurrences of pattern as the score). As in the previous works, we assume that other
than a static weight that is fixed for each document i, w(P,T;) is dependent only on the set of
occurrences (i.e., starting positions) of P in T;. This means, metrics like w(P, T;) as the size of the
maximal set of non-overlapping occurrences of P in T; do not qualify as they not only depends on
the set of occurrences but also the length of the pattern.

The framework of Hon et al. [9, 10] takes linear space and answers the query in O(p + k log k)
time, assuming integer alphabet, ie, ¥ = {0,1,2,..., noW }. They reduced this problem to a four-
sided orthogonal range query in three-dimensional (3D) grid, which is defined as follows: The
data consist of a set S of 3D points (with integer coordinate values), and the query consists of four
(integer) parameters x’, x”’, y’, and z’, and output is the set of all those points (x;,y;,z;) € S such
thatx; € [x’,x”],y; <y’ and z; > z’. While any data structure for (general) four-sided orthogonal
range searching in optimal time needs super-linear space [5], the desired bounds can nevertheless
be achieved by identifying a particular property that one dimension of the reduced subproblem can
only have p distinct values. The query time was then brought down to O(p + k) [16] and further to
O(p/log, n+ k) [17] by Navarro and Nekrich. Recently, Munro et al. [13] proposed a linear space
structure, which can answer a more powerful query, called ranked document selection (report the
kth most relevant document) in O(p + log k) time. Even though there has been a series of work
on this topic, including in theory as well as in practical IR communities, most implementations (as
well as theoretical results) have focused on RAM-based compressed indexes (see References [8, 15]
for surveys on this topic).

We introduce an alternative framework for solving the top-k document retrieval problem and
obtain the first non-trivial (comparison-based) external memory solutions. This model (a.k.a. cache-
aware model, I/O model, and disk access model) was introduced by Aggarwal and Vitter [2]. Here

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

Ranked Document Retrieval in External Memory 5:3

the CPU is connected directly to an internal memory (whose size is M words), which is then
connected to a very large external memory (disk). The disk is partitioned into blocks (pages), and
the size of each block is B words. The CPU can only work on data inside the internal memory.
Therefore, to work on some data in the external memory, the corresponding blocks have to be
transferred to internal memory. The transfer of a block from external memory to internal memory
(or vice versa) is referred to as an I/O operation. The operations inside the internal memory are
orders of magnitude faster than the time for an I/O operation. Therefore, they are considered free,
and an algorithm’s efficiency is measured by the number of I/O operations.

We now present our main results.! Unlike the previous results in the RAM model, we do not
make the integer alphabet assumption. Instead, we assume that the characters are encoded in O(1)
machine words, and any two characters stored in the internal memory can be compared for free.
The optimal query cost is O(p/B + logg n + k/B) 1/Os, since p is the input size, k is the output size,
and Q(logg n) I/Os are necessarily for any (comparison-based) searching.

THEOREM 1. There exists an O(n)-word structure for answering top-k (unsorted) document retrieval
queries in O(p/B + logg n + k/B + log"(n/B)) I/Os, where B is the block size.

THEOREM 2. There exists an O(nlog”(n/B))-word structure for answering top-k (unsorted) docu-
ment retrieval queries in optimal O(p/B + logg n + k/B) I/Os, where B is the block size.

THEOREM 3. There exists an O(nlog(d/B))-word structure for answering top-k (sorted) document
retrieval queries in optimal O(p/B + logg n + k/B) I/Os, where B is the block size.

We remark that some of our techniques are closely related to the work by Larsen and
Walderveen [11] on colored range queries in 2D. Here, the task is to construct a data structure
over a set S of n colored points in 2D so that given an orthogonal range query [a, b] X [c,), we
can report the set of distinct colors in SN[a, b]X[c, o) efficiently. They presented an O(nlog”(n/B))
space data structure with optimal query cost of O(logg n + k/B) 1/Os, where k is the output size.
For more results on this topic, see References [7, 19, 21].

2 PRELIMINARY: TOP-k FRAMEWORK

This section briefly explains the framework for top-k document retrieval based on the work of Hon
et al. [10]. The generalized suffix tree (GST) of a document collection D = {Ty, T, ..., Ty} is the
combined compact trie (a.k.a. Patricia trie) of all the non-empty suffixes of all the documents after
appending each suffix with a special character that is not in X, which is unique to the corresponding
document (say, $; for T;). Use n to denote the total length of all the documents, which is also the
number of leaves in GST. For each node u in the GST (referred by its pre-order rank), consider
the path from the root node to u. Let depth(u) be the number of nodes on the path, pre fix(u) be
the string obtained by concatenating all the edge labels of the path, and size(u) be the number of
leaves under u. For a pattern P that appears in at least one document, the locus of P, denoted by up,
is the node closest to the root such that P is a prefix of pre fix(up). Moving forward, we assume
that P is non-empty (i.e., p > 1); therefore, up # root.

Nodes are marked with documents as follows. A leaf node ¢ is marked with a (unique) document
T; € D if the suffix represented by ¢ belongs to T;. An internal node u is marked with T; if it is
the lowest common ancestor (LCA) of two leaves marked with T;. Notice that an internal node
can be marked with multiple documents. Additionally, we mark the root node with all documents.
For each node u # root and each of its marked documents T;, define a link to be a quadruple
(origin, target, doc, score), where origin = u, target is the lowest proper ancestor of u marked
with T;, doc = i and score = w(pre fix(u), T;). Let L denote the set of all such links.

ITheorem 2 was presented in the conference version of this article [22], but Theorems 1 and 3 are new.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

5:4 R. Shah et al.

LEmMA 1 ([10]). Foreach document T; that contains a pattern P as a substring, there exists a unique
link in L whose origin is in the subtree of up and whose target is a proper ancestor of up. The score of
the link is exactly the score of T; with respect to P.

Thus, the top-k document retrieval problem can be reduced to the problem of finding the top-k
links (according to their score) among all links in £ stabbed by up. We say that a link is stabbed
by a node u if its origin is in the subtree of u, and its target is a proper ancestor of u.

LEMMA 2 ([10]). The number of links originating from the subtree of any node u is at most 2 -
size(u) — 1, where size(u) denotes the number of leaves under u. Therefore, | L| < 2n — 1.

Moving forward, we shall assume that all score values are distinct integers within [1,2n — 1].
Otherwise, we achieve this by first sorting all links in the ascending order of their score values
(ties broken arbitrarily) and then replacing each link’s score by its position in the sorted list.

3 EXTERNAL MEMORY STRUCTURES

This section is dedicated to proving our results. The initial phase of searching the locus node up of
P can be performed in optimal O(p/B + logg n) I/O’s using a string B-tree [6] data structure over
D and its space is O(n). Assuming up exists and up # root, we now focus on reporting the top-k
links stabbed by up. Instead of solving this top-k version, we first solve a threshold version of the
problem, where the objective is to retrieve those links stabbed by up with score at least a given
value 7. Among all the links in £ stabbed by up, let L(up, k, -) be the set of k highest scored links
and L(up, -, 7) be the set of links with score >7. In Section 3.3, we propose a separate structure that
reduces the original top-k-form query (up, k, -) into an equivalent threshold-form query (up, -, 7).
Therefore, we can answer top-k-form queries using our structure for threshold-form queries.

3.1 A Data Structure for Handling Threshold-form Queries

The query is of the form (up, -, 7) and the task is to output L(up, -, 7). This problem can be de-
composed into simpler queries, which consist of a 3D dominance reporting and O(log(n/B)) three-
sided range reporting in 2D; both problems can be solved efficiently using known structures. The
main result is captured in Lemma 3 stated below.

LEMMA 3. By maintaining an O(n)-space structure, we can report L(up,-,7) for any given
threshold-form query (up, -, 7) in O(log®(n/B) + z/B) I/Os, where z = | L(up, -, T)|.

For any node u in GST, define its rank as
rank(u) = |log[size(u)/B1].

Note that rank(.) € [0, |[log[n/B]]]. A maximal connected sub-graph consisting of nodes with
the same rank is called a component, and the rank of a component is the same as the rank of nodes
within it (see Figure 1). Therefore, a component with rank = 0 is a bottom level subtree of size
(number of leaves) at most B. From the definition, we can see that a node and at most one of its
children can have the same positive rank. Therefore, a component with rank > 0 forms a path
that goes top-down in the tree.

The number of links originating within a component with rank = 0 is O(B). These O(B) links
corresponding to each component with rank = 0 can be maintained separately as a list, taking
total O(n) space. Additionally, we maintain a pointer from each node in that component to this
list. Now, given a node up, if rank(up) = 0, then the number of links originating within the subtree
of up is also O(B), and all of them can be processed in O(1) I/O’s by simply scanning the list of links
corresponding to the component to which up belongs to. The query processing is more challenging
when rank(up) > 0. For handling this, consider the following classification of links based on the
rank of their targets with respect to the rank of up:

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

Ranked Document Retrieval in External Memory 5:5

Fig. 1. An illustration of rank components with B = 1.

(1) equi-ranked links: links with rank(target) = rank(up)
(2) high-ranked links: links with rank(target) > rank(up).

Next, we show that the problem of retrieving all equi-ranked links in the output can be reduced
to a 3D dominance query, and the problem of retrieving all high-ranked links in the output can
be reduced to at most [log[n/B]] three-sided range queries in 2D. From now onwards, the origin,
target, and score of a link L; = (0;, ¢;, -, w;) are represented by o;, t;, and w;, respectively.

3.1.1 Processing Equi-ranked Links. Let C be a component and S¢ be the set of all links L; whose
target t; is a node in C. Since up is a node in C, among all equi-ranked links, we need to consider
only the links L; € Sc, because the origin o; of any other equi-ranked link L; ¢ Sc, will not be in
the subtree of up. For any link L; € S¢, let pseudo-origin s; be the pre-order rank of the lowest
ancestor of its origin o; within C (see Figure 2). Then a link L; € S¢ originates in the subtree of any
node u within C if and only if s; > u. Based on the above observations, all equi-ranked output links
are those L; € Sc with t; < up <'s; and w; > 7. To solve the subproblem of reporting equi-ranked
links in external memory, we treat each link L; € Sc as a 3D point (¢;, s;, w;) and maintain a 3D
dominance query structure over those points. Now the output with respect to up and 7 are those
links corresponding to the points within (—co, up) X [up,) X [z, o). Such a structure for S¢ can
be maintained in O(|Sc|) words of space and can answer the query in O(logg [Sc| + z¢q/B) 1/0’s
using the result by Afshani [1], where |Sc| is the number of points (corresponding to links in S¢)
and z.q is the output size. Thus overall these structures occupy O(n)-space.

LEmMA 4. Using an O(n)-space structure, we can report all the equi-ranked links in L (up, -, 7) for
any given threshold-form query (up, -,) with rank(up) > 0 in O(logg n + z.q/B) I/Os, where z.4 is
the output size.

3.1.2 Processing High-ranked Links. The following is an important observation.
OBSERVATION 1. Any link L; with its origin o; within the subtree of a node u is stabbed by u if
rank(t;) > rank(u), where t; is the target of L;.

This implies while looking for the high-ranked links in the output, the condition of t; being
a proper ancestor of up can be ignored. The reason is that it will be automatically satisfied if
0; € [up,ip], where dp is (pre-order rank of) right-most leaf in the subtree rooted at up. Let G,
be the set of all links with rank equals r for 1 < r < |log[n/B1]. Since there are only O(log(n/B))
sets, we shall maintain separate structures for links in each G, by considering only origin and

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

5:6 R. Shah et al.

Fig. 2. An illustration of the pseudo-origin s; of the link L; with respect to component C.

score values. We treat each link L; € G, as a 2D point (0;, w;) and maintain a three-sided range
query structure over them for all r € [1, |log[n/B]]]. All high-ranked output links can be obtained
by retrieving those links in L; € G, with the corresponding point (0;, w;) € [up, u}] X [z, 00] for
r = [rank(up) +1, [log[n/B1]]. By using the linear space data structure in Reference [3], the space
and I/O bounds for a particular r is given by O(|G,|) words and O(logg |G,| + z,/B), where z,
is the number of output links in G,. Since a link can be a part of at most one G,, the total space
consumption is O(n) words and the total query I/Os are proportional to logg n-log(n/B) + zp; /B =
O(log®(n/B) + z1;/B), where zj,; represents the number of high-ranked output links.

LEMMA 5. Using an O(n)-space structure, we can report all the high-ranked links in L(up, -, t) for
any given threshold-form query (up, -, T) with rank(up) > 0 in O(log?(n/B) + zp,;/B) I/Os, where zj;
is the output size.

By combining Lemmas 4 and 5, and the solution for the case of rank(up) = 0, we obtain Lemma 3.

3.1.3 A Straightforward Generalization of Lemma 3.

LEMMA 6. For any fixed node u in GST, let L(u) C L be the set of links originating from the
subtree of u. Also, let S be any subset of L(u). Then, by maintaining an auxiliary structure of space
O(|S]) with the GST, we can report L(up,-,7) NS for any given threshold-form query (up,-,7) in
O(log?(m/B) + z/B) I/Os, provided up is in the subtree of u. Here m = size(u) and z is the output size.

Proor. In the proof of Lemma 3, replace GST with the subtree rooted at u and £ with S. Here
we assume that GST (and therefore the subtree rooted at u) is already available. O
3.2 Better Data Structures for Handling Threshold-form Queries
We prove the following results in this section.

THEOREM 4. By maintaining an O(n)-space structure, we can report L(up,-,7) for any given
threshold-form query (up, -,) in O(logg n + z/B + log"(n/B)) I/Os, where z = | L(up, -, 7)|.

THEOREM 5. By maintaining an O(nlog*(n/B)) space structure, we can report L(up,-,) for any
given threshold-form query (up, -, 7) in O(logg n + z/B+) I/Os, where z = | L(up, -, 7)|.

We start with a sampling scheme that will be used heavily in the rest of this article.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

Ranked Document Retrieval in External Memory 5:7

3.2.1 A Scheme for Sampling Nodes in a Given Tree [10]. Let 7 be any given tree (rooted and
ordered) with n leaves and g € [1, n] be a parameter called the sampling factor. Also, assume that
all internal nodes in 7~ have at least two children. The following is a scheme that designates O(n/g)
nodes as marked nodes (we call them g-marked nodes): mark every gth leaf node (in the left to
right order) and then mark the LCA of all pairs of marked leaves. Additionally, we ensure that the
root is always marked. Given any node u with size(u) > g, at least one node under u is marked. For
any unmarked node u its highest marked descendent u™ (if it exists) is unique, and we can locate
it via a single LCA query in O(1) time.? Moreover, size(u) — size(u*) < 2g.

We categorize the nodes in GST and associated links into different types in [1,log"(n/B)]
based on this marking scheme as follows. Let h € [1,log"(n/B)], g = B(log(h)(n/B))3 and
Ky = B(log™ (n/B))?, where logV(-) = log(:) and log”(-) = loglog" V() for h > 1 and
log" x = min{j | log) x < 1}. We then replace each g, and K}, by 2110891) and 218 Knl respec-
tively (i.e., rounding down to the nearest power of two). This guarantees that every g,-marked
node is also gp;-marked. Also define gp = n + 1.

e A node is of type 1 if at least one node in its subtree is g;-marked. Any other node is of
type h € [2,log"(n/B)] if in its subtree, at least one node is g,-marked and no node is gp_;-
marked. Therefore, size(:) of any type-h node is O(gp—1). The nodes remaining are also of
type log™ (n/B) and their size(-) is O(B). Note that the type of the parent of a type-h node is
< h.

o A subtree rooted at a node u is a type-h subtree if u’s type is h and u’s parent’s type is < h.
When u is the root note, the tree rooted at u is the entire GST, which we call a type-1 subtree.

o Alink is of type-h if its target is a type-h node,® and let £}, be the set of all type-h links.

Along with each node and link, we store its type explicitly.

Our approach to handle a query (up, -, 7) is the following. Let r be the type of up. Recall our
assumption that up # root (otherwise, P is an empty string). When r = log™(n/B), we extract
L(up,-,7) € L(up) via a linear scan of L (up). It takes only | L(up)|/B < 2 - size(up)/B = O(1)
I/Os. Now if r € [1,log"(n/B)), then we report all type-h links in the output, i.e., L N L(up, -, 1)
for all values of h < r first, and then for h = r. All type-h links with h > r can be ignored, because
such links cannot be stabbed by any type-r node. This follows from the monotonicity of types (the
parent of a type-h node is of type h” < h). We now present the details.

3.2.2 Structures for Reporting Type-h Links with h < r.

LEMMA 7. We can maintain an O(n)-space structure, such that given a query (up, -, 7) with node
up being of type-r, we can report (Uz;llﬁh) N L(up, -,) in O(logg n+1log*(n/B) + 2;:1 z1,/B) I/Os,
where zy, = | L N L(up, -, 7)|.

Proor. Note thatforallh < r, LN L(up, -, 7) is the set of type-h links originating from the type-
h subtree containing up (i.e., with origin within [up, @p]) and score > 7, where #p is the rightmost
leaf under up. To report them efficiently, we maintain for all & € [1,log"(n/B)] and for each type-h
subtree with H being the set of type-h links originating from it, a (linear-space) structure over the
points in {(o;, w;) | (0i,t;,-, w;) € H} for answering 2D three-sided range reporting queries in
optimal I/Os [1]. The total space over all such structures for a fixed h is proportional to the total
number of type-h links. Therefore, total space over all values of h is O(n). To report (the points
corresponding to the links in) £, N L(up, -, 7), where h < r, we issue a 2D three-sided range

%Find the first and last marked leaves between the leftmost and the rightmost leaves, and then take their LCA. The LCA
queries can be answered in O(1) time by maintaining a structure of space O(n) bits [18].
3Note the similarity with the definition of link’s rank in Section 3.1.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

5:8 R. Shah et al.

reporting query [up,ip] X [z, 00) on the structure associated with the type-h tree containing up.
The I/Os required is O(logg gn—1 + z,/B) for a fixed h. Therefore, the I/Os required for all values
of h < r is proportional to Z;l;ll logg gn-1 + 22;11 [zp/Bl = O(loggn +r + (Z;l;ll zp)/B) and
r < log*(n/B). |

LEMMA 8. We can maintain an O(nlog"(n/B)) space structure, such that given a threshold-form
query (up, -, T) with node up being of type-r, we can report (U;:lﬁh) N L(up,-,7) in O(loggn +
Y2t zn/B) VOs, where zj, = | Ly 0 L(up, . 7).

Proor. Modify the proof of Lemma 7 as follows: replace H with H’, where H’ is the set of
all type-j links originating from that type-h subtree for all values of j < h. We can now report
(U;:l-l:h) N L(up,-,7) via a single 2D three-sided range reporting query [up, ilp] X [7,0) on
the (modified) structure associated with the type-r subtree containing up in I/Os proportional to
logg(g,-1/B) + Z;:l zp/B = O(loggn + Z;l;ll zp/B). This modification increases the asymptotic
space complexity to O(nlog*(n/B)), because each type-h link can now belong to h = O(log" (n/B))
structures. a

3.2.3 Structures for Reporting Type-r Links.

LEMMA 9. We can maintain an O(n)-space structure, such that given a threshold-form query
(up, -, 7) with node up being of type-r, we can report L, N L(up,-,7) in O((log(r)(n/B))2 + z,/B)
I/Os, where z, = | L, N L(up, -, 7).

Proor. Forall h € [0,log"(n/B)] and for each type-h subtree with H being the set of type-h links
originating from it, maintain the (linear-space) structure in Lemma 6 over H. The total space over
all such structures for a fixed h is proportional to the total number of type-h links. Therefore, total
space over all values of his O(n). To find £, N L (up, -, T) we query on the structure associated with
the type-r subtree containing up. The 1/Os required is log(g,_/B) + z,/B = O((log(r)(n/B))2 +
z,/B). O

Note that the query cost in Lemma 9 is optimal when z, > K. Therefore, we use that structure
only when z, > K,. For the case where z, < K,, we introduce another structure in Lemma 11.
Since we do not know z, in advance, we use the following strategy for deciding which structure
to use: For each node u in GST with h being its type, we store 7, the score of Kjth type-h link
stabbed by u. Then, z, > K, iff r < 7. This takes only O(n) extra space and the choice can be
made in O(1) I/Os.

Before we present Lemma 11, we introduce some additional definitions. Let g be a sampling
factor and u* be a g-marked node. Also, let u” be the last node on the path from u* to root, before
another g-marked node. Therefore, u” is the highest node such that the highest marked node in
its subtree is u*. Consider all links originating from the subtree of u’. We classify them into four
groups (see Figure 3 for an illustration) and make some useful observations.

e farLinks(u*,g) is the set of links stabbed by both u* and u’.

e smallLinks(u®, g) is the set of links originating from u*’s subtree, but not stabbed by u*.
e nearLinks(u*, g) is the set of links stabbed by u*, but not by u’.

e fringeLinks(u*, g) is the set of links originating not from the subtree of u*.

LEmMMA 10. For any g-marked node u*, the size of nearLinks(u®, g) U fringeLinks(u*, g) is O(g).

ProOF. Let F denote the set of leaves in the subtree of u’, but not in the subtree of u*. Then,
|nearLinks(u*,g)| < |F|, because for every document Tj, there is at most one link (-,-,j,) €
nearLinks(u®, g), and it exists iff a leaf in F and a leaf under ™ are marked with T;. To bound the size

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

Ranked Document Retrieval in External Memory 5:9

near small far

Fig. 3. Categorization of Links originating from the subtree of u’.

of fringeLinks(u*, g), let us partition it into two sets, say, A and B. All links in fringeLinks(u*, g)
with their origin on the path from u* to u” are in A and B = fringeLinks(u*, g)\A. Then, |B| < 2|F|,
|A] < |B| and | fringeLinks(u*, g)| = |A| + |B| < 4|F|. Finally, |F| = size(u’) — size(u”) < 2g. O

Let u be any node on the path from u* to u’. Then, u stabs (i) all links in farLinks(u*, g),
(i) none of the links in smallLinks(u*, g), (iii) a link (o;,t;,-, w;) € nearLinks(u*,g) iff t; < u,
and (iv) a link (o;, t;, -, w;) € fringeLinks(u®, g) iff t; is a proper ancestor of u and LCA(0;,u*) > u.
With these observations, we now present Lemma 11.

LEMMA 11. We can maintain an O(n)-space structure, such that given a threshold-form query
(up, -, 7) with node up being of type-r, we can report L, N L(up,-,7) in O(logg n + z,/B) I/Os, if
z, < K,. Herez, = | L, 0 L(up,-,7)|.

ProoOF. For each h € [1,log"(n/B)], we maintain a structure, which is constructed as follows.
Identify all gj-marked nodes. Then, for each gj-marked node u*, with u’ being the last node on
the path from u* to root, before another g-marked node, obtain the set Q,(u*) by collecting all
type-h links in nearLinks(u*, g) U fringeLinks(u®, g) and the top-Kj, links from the S, where S is
the set of all type-h links in farLinks(u*, g). Note that a node u on the path from u* to u’ stabs a
link (o;,t;,-,w;) € Q(u*) iff t; < up < LCA(o;,u”). Therefore, the top-k type-h links stabbed by
u are guaranteed to form a subset of Q(u*) if k < Kj. We map each link (o0;, t;,-, w;) € Qp(u¥)
into a 3D point (LCA(o0;, u*), t;, w;). These points are preprocessed into an O(|Qp(u*)|) space
data structure that can answer 3D dominance reporting queries in optimal I/Os. This completes
the description of our data structure. To bound its space, note that the same link cannot be in
nearLinks(-,g) U fringeLinks(-,g) for two different g-marked nodes. Therefore, the total space
taken by all structures for a fixed h is O(ny, + nKy/gy), where ny, is the number of type-h links. The
final space is proportional to

log™(n/B) log™(n/B)

Ky
np+n-— = M+
h=1 9h h=1 ©(log™" (n/B))
To answer a query (up, 7), we first identify the highest g,-marked node (say u}) in the subtree
of up. Then issue a 3D dominance reporting query [up, 00) X (=00, up) X [z, 00) on the set of points
corresponding to Q,(up). Our answer is the set of links corresponding to the reported points and
the I/Os required is proportional to logy |Qx (up)| + z,/B, i.e., O(logg n + 2z, /B). |

n

= O(n).

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

5:10 R. Shah et al.

By combing the results in Lemmas 9 and 11, we obtain the following result.

LEMMA 12. We can maintain an O(n)-space structure, such that given a threshold-form query
(up, -,) with node up being of type-r, we can report L, N L(up,-,7) in O(logg n+z,/B) I/Os, where
Zr = |-£r n L(upa) T)"

Finally, Theorem 4 (respectively, Theorem 5) follows from Lemma 7, (respectively, Lemma 8)
and Lemma 12.

3.3 Completing the Proofs of Theorems 1-3

We first present and prove Lemma 13, which is a reduction the top-k version to the threshold
version of our problem.

LEMMA 13. By maintaining an O(n)-space structure, we can compute a threshold value T for any
given (up, k,-) in O(1) time, such that L(up,k,-) € L(up,-,7) and | L(up,-,7)| = O(k + logn).

Proor. The structure is constructed as follows: Identify all the g-marked nodes in the GST for
g = [logn]. At every g-marked node u”, store the score of qth highest scored link stabbed by u* for
q = 1,2,4,8, The total space is (n/g)logn = O(n) words. To answer a query (up, k), find the
highest marked node u* (if it exists) in the subtree of up in O(1) time. Now compute i = [log(k+2g)]
and report 7 as the score of 2’th highest scored link stabbed by u*. The correctness follows from
the following facts: (i) size(u”) — size(up) < 2g and (ii) w(prefix(up),T;) # w(prefix(u*),T;)
only if there exists a leaf marked with T; and located under up, but not under u*. In the remaining
case when there is no marked node under up, we report 1 (the lowest possible score after rank-
space reduction). This works because the size of L(up, -, 1) is trivially bounded by size(up) < g =
O(logn). O

3.3.1 Proof of Theorem 1. We maintain the structures in Theorem 4, Lemma 13, and a string
B-tree over D in O(n) total space. To answer a query (P, k), we follow the steps below:

e Locate the locus node up of P via querying the string B-tree in O(p/B + logg n) I/Os.

e Convert our top-k-form query (up, k, -) into a corresponding threshold-form query (up, -, 7)
using the structure in Lemma 13.

e Obtain L(up,-,7) in O(logg n + log*(n/B) + z/B) I/Os using the structure in Theorem 4,
where z = | L(up, -, 7)|.

e Finally, extract L(up, k, -) from L (up, -, 7) inI/Os proportional to | L (up, -, 7)|/B = O((log n+
k)/B) as follows: select the kth highest scored link using a optimal external-memory selec-
tion algorithm [4, 23, 24] and discard every link that has score lower than that.

The total I/Os are O(p/B + logg n + k/B + log*(n/B)).

3.3.2 Proof of Theorem 2. Just modify the proof of Theorem 1 by replacing Theorem 4 with
Theorem 5. This makes the total space O(nlog*(n/B)) and query cost optimal.

3.3.3 Proof of Theorem 3. We prove the following lemma first.

LEMMA 14. For every integer g, there exists an O(n)-word structure, such that given any top-k-form
query (up, k,-) with k < g, we can report the top-k links stabbed by up in the sorted order in O(g/B)
I/Os.

Proor. The structure is constructed as follows. Identify all g-marked nodes. Then, for each g-
marked node u*, obtain the set Q(u*) by collecting all links in nearLinks(u*, g), fringeLinks(u*, g)
and the top-g links in farLinks(u®, g). Therefore, |Q(u*)| = O(g) (refer to Lemma 10). Also, for all
nodesu, L(u,g,-) € Q(u*), where u* is the highest g-marked node in the subtree of u. We maintain

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

Ranked Document Retrieval in External Memory 5:11

Q(-) for all g-marked nodes explicitly as a list of links sorted by scores. Additionally, for each
maximal subtree containing no g-marked node, we maintain a sorted list of all links originating
from the subtree. The total space is n + g - n/g = O(n). To answer a query (up, k, -) with u* being
the highest g-marked node in the subtree of up, simply go through the sorted list associated with
u* and report first k links that are stabbed by up. If there is no g-marked node in the subtree of
up, then go through the sorted list associated with the maximal subtree (with no g marked node)
containing up and report the first k links in that list stabbed by up. In both cases, the size of the
list is bounded by O(g); therefore, I/Os required is O(g/B). O

To obtain the result in Theorem 3, we maintain a string B-tree over D and the structure in
Lemma 14 for each g € {B, 2B, 4B, ...,2 Mog(d/B)1B}. The total space is O(nlog(d/B)) words. We an-
swer a query (up, k, -) using the structure for g = B2M°e(*/B)1 in g/B = O(1 + k/B) I/Os. Combining
this with the cost of the initial pattern search in the string B-tree gives the claimed result.

REFERENCES

[1] Peyman Afshani. 2008. On dominance reporting in 3D. In Proceedings of the 16th Annual European Symposium on
Algorithms (ESA’08), Lecture Notes in Computer Science, Dan Halperin and Kurt Mehlhorn (Eds.), Vol. 5193. Springer,
41-51. https://doi.org/10.1007/978-3-540-87744-8_4

[2] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The input/output complexity of sorting and related problems. Commun.
ACM 31, 9 (1988), 1116-1127. https://doi.org/10.1145/48529.48535

[3] Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. 1999. On two-dimensional indexability and optimal range search
indexing. In Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
Victor Vianu and Christos H. Papadimitriou (Eds.). ACM Press, 346-357. https://doi.org/10.1145/303976.304010

[4] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre Tarjan. 1973. Time bounds for
selection. 7. Comput. Syst. Sci. 7, 4 (1973), 448-461. https://doi.org/10.1016/S0022-0000(73)80033-9

[5] Bernard Chazelle. 1990. Lower bounds for orthogonal range searching: L. the reporting case. 7. ACM 37, 2 (1990),
200-212. https://doi.org/10.1145/77600.77614

[6] Paolo Ferragina and Roberto Grossi. 1999. The string B-tree: A new data structure for string search in external memory
and its applications. J. ACM 46, 2 (1999), 236-280. https://doi.org/10.1145/301970.301973

[7] Arnab Ganguly, J. Ian Munro, Yakov Nekrich, Rahul Shah, and Sharma V. Thankachan. 2019. Categorical range re-
porting with frequencies. In Proceedings of the 22nd International Conference on Database Theory (ICDT’19), LIPIcs’19,
Pablo Barcel6 and Marco Calautti (Eds.), Vol. 127. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 9:1-9:19. https:
//doi.org/10.4230/LIPIcs ICDT.2019.9

[8] Wing-Kai Hon, Manish Patil, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. 2013. Indexes for docu-
ment retrieval with relevance. In Space-Efficient Data Structures, Streams, and Algorithms—Papers in Honor of J. Ian
Munro on the Occasion of His 66th Birthday, Lecture Notes in Computer Science), Andrej Brodnik, Alejandro Lopez-
Ortiz, Venkatesh Raman, and Alfredo Viola (Eds.), Vol. 8066. Springer, 351-362. https://doi.org/10.1007/978-3-642-
40273-9_22

[9] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. 2014. Space-efficient frameworks for
top-k string retrieval. 7. ACM 61, 2 (2014), 9:1-9:36. https://doi.org/10.1145/2590774

[10] Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. 2009. Space-efficient framework for top-k string retrieval problems
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’09). 713-722. https://doi.org/10.1109/
FOCS.2009.19

[11] Kasper Green Larsen and Freek van Walderveen. 2013. Near-optimal range reporting structures for categorical data.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13), Sanjeev Khanna (Ed.).
SIAM, 265-276. https://doi.org/10.1137/1.9781611973105.20

[12] Yossi Matias, S. Muthukrishnan, Siileyman Cenk Sahinalp, and Jacob Ziv. 1998. Augmenting suffix trees, with appli-
cations (ESA’98). Springer-Verlag, London, UK, 67-78.

[13] J. Ian Munro, Gonzalo Navarro, Rahul Shah, and Sharma V. Thankachan. 2020. Ranked document selection. Theor.
Comput. Sci. 812 (2020), 149-159. https://doi.org/10.1016/j.tcs.2019.10.008

[14] S. Muthukrishnan. 2002. Efficient algorithms for document retrieval problems. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, David Eppstein (Ed.). ACM/SIAM, 657-666.

[15] Gonzalo Navarro. 2013. Spaces, trees, and colors: The algorithmic landscape of document retrieval on sequences. ACM
Comput. Surv. 46, 4 (2013), 52:1-52:47. https://doi.org/10.1145/2535933

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

5:12

[16]

[17]
(18]
[19]
[20]

[21]

[22]

[23]
[24]
[25]

R. Shah et al.

Gonzalo Navarro and Yakov Nekrich. 2012. Top-k document retrieval in optimal time and linear space. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12), Yuval Rabani (Ed.). SIAM, 1066-1077.
https://doi.org/10.1137/1.9781611973099.84

Gonzalo Navarro and Yakov Nekrich. 2017. Time-optimal top-k document retrieval. SIAM . Comput. 46, 1 (2017),
80-113. https://doi.org/10.1137/140998949

Gonzalo Navarro and Kunihiko Sadakane. 2014. Fully functional static and dynamic succinct trees. ACM Trans. Algor.
10, 3 (2014), 16:1-16:39. https://doi.org/10.1145/2601073

Yakov Nekrich. 2014. Efficient range searching for categorical and plain data. ACM Trans. Datab. Syst. 39, 1 (2014),
9:1-9:21. https://doi.org/10.1145/2543924

Manish Patil, Sharma V. Thankachan, Rahul Shah, Wing-Kai Hon, Jeffrey Scott Vitter, and Sabrina Chandrasekaran.
2011. Inverted indexes for phrases and strings (SIGIR’11). 555-564. https://doi.org/10.1145/2009916.2009992

Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jeffrey Scott Vitter. 2014. Categorical range
maxima queries. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS’14), Richard Hull and Martin Grohe (Eds.). ACM, 266-277. https://doi.org/10.1145/2594538.2594557
Rahul Shah, Cheng Sheng, Sharma V. Thankachan, and Jeffrey Scott Vitter. 2013. Top-k document retrieval in external
memory. In 21st Annual European Symposium on Algorithms (ESA’13), Lecture Notes in Computer Science, Hans L.
Bodlaender and Giuseppe F. Italiano (Eds.), Vol. 8125. Springer, 803-814. https://doi.org/10.1007/978-3-642-40450-4_68
Jop F. Sibeyn. 2006. External selection. 7. Algor. 58, 2 (2006), 104-117. https://doi.org/10.1016/].jalgor.2005.02.002
Yufei Tao. 2014. Lecture 1: External Memory Model and Sorting. Lecture Notes. Chinese University of Hong Kong.
Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM Comput. Surv. 38, 2, Article 6 (July
2006). https://doi.org/10.1145/1132956.1132959

Received 11 May 2020; revised 24 August 2022; accepted 24 August 2022

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 5. Publication date: March 2023.

