
Rearrangement on Lattices with Pick-n-Swaps:
Optimality Structures and Efficient Algorithms

Jingjin Yu

Abstract

We study a class of rearrangement problems under a novel pick-n-swap pre-
hensile manipulation model, in which a robotic manipulator, capable of carrying
an item and making item swaps, is tasked to sort items stored in lattices of vari-
able dimensions in a time-optimal manner. We systematically analyze the intrinsic
optimality structure, which is fairly rich and intriguing, under different levels of
item distinguishability (fully labeled, where each item has a unique label, or par-
tially labeled, where multiple items may be of the same type) and different lattice
dimensions. Focusing on the most practical setting of one and two dimensions, we
develop low polynomial time cycle-following-based algorithms that optimally per-
form rearrangements on 1D lattices under both fully- and partially-labeled settings.
On the other hand, we show that rearrangement on 2D and higher-dimensional
lattices become computationally intractable to optimally solve. Despite their NP-
hardness, we prove that efficient cycle-following-based algorithms remain optimal
in the asymptotic sense for 2D fully- and partially-labeled settings, in expectation,
using the interesting fact that random permutations induce only a small number of
cycles. We further improve these algorithms to provide 1.x-optimality when the
number of items is small. Simulation studies corroborate the effectiveness of our
algorithms. The implementation of the algorithms from the paper can be found at
github.com/arc-l/lattice-rearrangement.

1 Introduction
Effective object manipulation [1], a difficult task and motion planning challenge for
machines to master, is essential in fulfilling the true potential of autonomous robots
in factories and warehouses, and at home. In tackling the challenge, in the past few
decades, while some research has emphasized integrated solutions with promising
results[2, 3, 4, 5], significant efforts have also been devoted to examining key com-
ponents including rearrangement planning [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
and manipulation [18, 19, 20, 21, 22], among others, as a thorough understanding of
these components is indispensable toward the end goal of enabling truly intelligent
object manipulation.

For the same reason, in this work, we perform a systematic structural and algo-
rithmic study on a class of prehensile rearrangement problems where items are stored
in individual cells of a lattice of dimension d = 1,2, . . . (see Fig. 1, bottom row, for

1

https://github.com/arc-l/lattice-rearrangement/

2 1211101 43 5 6 7 8 9

794 126 83 1112 105

2

12

11

10

1

4

3

5

6

7

8

9

16

15

14

13

13

14

8

2

9

10

5

4

7

1

11

16

12

3

6

15

Figure 1: [top row] Real-world examples of items stored in lattice/grids that need re-
arrangement from time to time. [top left] Shirts. [top right] Shoe display. [bottom row]
Examples of the rearrangement problem formulations studied in this work. [bottom
left] A set of 12 items in a row that must be rearranged either according to the labels or
according to the types (colors). [bottom right] A set of 16 items in a two-dimensional
lattice that must be rearranged either according to the labels or according to the types
(colors).

example start and goal configurations), under a novel pick-n-swap model. The stored
items may be fully labeled or partially labeled. In a fully-labeled setting, each item
has a unique label and must go to a specific lattice cell. In a partially-labeled setting,
multiple items may have the same label or type and are thus interchangeable. A robotic
manipulator, capable of picking up items, carrying them around (a single item at a
time), and executing item swaps, is tasked to rearrange items to reach a desired goal
configuration in a time-optimal manner. Efficient solutions for rearrangement prob-
lems on lattices to restore the items to a desired order find many practical applications,
including the rearrangement of products at stores and showrooms (see Fig. 1, top row),
the sorting of books on bookshelves, and inventory management in autonomous ver-
tical warehouses, to list a few. To accomplish the task, the robot must carefully plan
a sequence with which the items are picked and subsequently placed, to minimize the
number of pick-n-swaps and the associated end-effector travel.

Our study of the rearrangement problems under the pick-n-swap prehensile manip-
ulation model is motivated by the recent emergence of dual-gripper end-effectors. Such
setups have clear potential in rendering rearrangement tasks more efficiently solvable,
given the capacity of carrying more than one item at a time. A dual-gripper end-effector
provides functionality that falls between a single-arm-single-gripper setup and a dual-
arm setup, leaning closer to a dual-arm setup. While not as flexible as a dual-arm
setup, a dual-gripper setup has at least two distinct advantages: it is much more afford-

2

able and it does not require a sophisticated motion planning routine to coordinate arm
movements. Whereas this research limits the workspace to be lattice-like, the struc-
tures analyzed and algorithms developed here can be extended to enable dual-gripper
end-effectors to be more efficient in a fully continuous workspace as well.

Due to the intricate interaction between minimizing the number of pick-n-swaps
and minimizing the end-effector travel, time-optimal rearrangement on lattices demon-
strates a rich and complex structure. In exploring the structure, our study of the lattice
rearrangement problem under the pick-n-swap model brings forth the following contri-
butions:

• For the fully-labeled setting, we show that a random rearrangement instance in-
duces the forming of O(logm) cycles over m items. Each cycle decides an op-
timal pick-n-swap sequence within the cycle in a deterministic manner. For the
partially-labeled setting, similar but more complex cycle structures are present.
The combinatorial cycle structure applies generally to rearrangement problems,
which go beyond lattice-based settings.

• Building on the intriguing and easily computable cycle structure, for 1D lat-
tices, for the fully-labeled setting, efficient algorithms are developed that decide
the optimal pick-n-swap sequence which simultaneously minimizes the number
of pick-n-swap operations and the end-effector travel. For the partially-labeled
setting, our algorithms compute optimal pick-n-swap sequences that minimize
the end-effector travel after minimizing the number of pick-n-swaps and allow
trade-offs between the two component objectives.

• For 2D and high-dimensional lattices, we show that minimizing the end-effector
travel becomes NP-hard for both fully-labeled and partially-labeled settings.
This demonstrates a dichotomy in computational complexity between 1D and
higher dimensions for optimally solving the lattice rearrangement problem.

• For 2D and high-dimensional lattices, despite the hardness, we show that, be-
cause the number of cycles is small, efficient algorithms can be developed that
compute optimal solutions in the asymptotic sense. That is, as the number of
items goes to infinity, the solution converges to the optimal one, in expectation.
For the 2D setting, we further develop additional principled heuristics such that
even when the number of items is small, the solution is near-optimal, i.e., 1.x-
optimal.

This paper is based on the conference publication [23]. In comparison to the conference
version, this manuscript provides: (1) a more thorough and clearer presentation, includ-
ing complete, revised proofs for all theorems, (2) significantly stronger guarantees on
our algorithms for the labeled settings as well as many unlabeled settings, showing that
they often ensure global optimality (Remark 3, Corollary 3.1, Remark 6, Corollary 5.1,
and Remark 8), and (3) expanded discussion of alternative problem formulations and
their implications, and interesting open problems.

Related work. Multi-object rearrangement is computationally challenging. As a
variation of multi-robot motion planning problems, rearrangement inherits the PSPACE-
hard complexity [24]. When geometric constraints must be considered, the relatively

3

simple Navigation Among Movable Obstacle (NAMO) problem is shown to be NP-hard
[25]. If consideration of plan quality is further required, as is often the case in prac-
tice, optimally resolving dependency [26] or planning an optimal object pick-n-place
sequence is both NP-hard [14]. Rearrangement problems addressed in this paper have
a somewhat similar complexity structure.

Despite the high computational complexity, due to its high utility, multi-object
rearrangement has been extensively studied, with much research working with non-
prehensile (e.g., pushing) manipulations, sometimes assisted with prehensile (grasp-
ing) actions. A complete sensing-planning-control framework is proposed in [27] for
the singulation of objects in clutter, which uses both perturbations pushes and grasping
actions. In [28], hierarchical supervised learning from demonstration is applied to the
singulation task. Based on over-segmented RGB-D images, in [29], a push proposal
network is constructed for push-only singulation. Results that bridge singulation and
clutter removal include [30, 31], where learning-based methods are trained to dictate
when to push or grasp. To deal with the combinatorial explosions inherent in rearrange-
ment, a randomized kinodynamic planner is employed in [10] for rearranging objects
on a tabletop, allowing the effective exploration of configurations. [32] further inte-
grates a physics-based model to enable the use of the entire robotic arm for complex
rearrangement manipulations. A physics-based approach is also used in [33] for han-
dling grasping in clutter. For a similar task, [34] uses a receding horizon planner with
a learned value function that interleaves planning and plan execution.

[15] has developed an Iterated Local Search (ILS) method for accomplishing multi-
ple tabletop rearrangement tasks including singulation, separation, formation, and sort-
ing of many identically shaped cubes. In [35], Monte Carlo Tree Search is combined
with deep learning for separating many objects into coherent clusters within a bounded
workspace. In contrast to [15], non-convex objects are supported. More recently, [17]
proposed a bi-level planner that employs both pushing and overhand grasping that is
capable of sorting up to 200 objects.

On work that uses mainly prehensile actions, the earliest is perhaps the study of
NAMO problems [7, 36], which applies backtracking search to effectively deal with
monotone and linear NAMO instances, among others. Exploring the dependency graph
structure, difficult non-monotone tabletop rearrangement instances are solved using
monotone solvers as subroutines [11, 37]. [14] shows that tabletop rearrangement em-
beds a Feedback Vertex Set (FVS) problem [38] and the Traveling Salesperson Problem
(TSP) [39], both of which are NP-hard, rendering optimally solving these problems
intractable. Nevertheless, integer programming models are provided that can quickly
compute high-quality rearrangement solutions for practical-sized problem instances. In
exploring object dependency structures, studies like [11, 14] put more emphasis on the
combinatorial aspects of object rearrangement. In [16], a polynomial-time, complete
planner for reasoning rearrangement for object retrieval in a constrained, shelf-like set-
ting is proposed. In a subsequent study [40], the number of objects to be relocated for
retrieval is minimized while considering sensor occlusion.

Organization. The rest of the manuscript is organized as follows. In Sec. 2, we
formally define the lattice rearrangement problems studied in this paper. In Sec. 3
and Sec. 4, we provide structural analysis and describe algorithms for the fully- and
partially-labeled settings in 1D, respectively. 2D and higher dimensions are examined

4

in Sec. 5. We then empirically characterize the behavior of our algorithms through
simulation studies in Sec. 6, and discuss and conclude in Sec. 7.

2 Rearrangement on Lattices: Problem Formulation
We examine an object rearrangement problem where items are stored in a d-dimensional
lattice or grid, d = 1,2, . . ., with dimension i having a length or capacity of mi. Items
are assumed to be stored at full capacity, i.e., an m1 × . . . ×md lattice stores Πd

i=1mi

items (see, e.g., Fig. 1). The items may be fully labeled or partially labeled. In a the
fully-labeled setting, each item has a unique label from the set {1, . . . ,Πd

i=1mi} and
must be relocated to a specific location or coordinate on the lattice. In a partially-
labeled setting, there are k > 1 types of items where items within each type are con-
sidered interchangeable; items of the same type are to be grouped, via rearrangement,
into contiguous clusters.

It is assumed that a robotic manipulator is capable of picking up an item, temporar-
ily holding it, moving it to a different location, and swapping the held item with the
item at the new location. That is, in a single pick-n-swap operation where a robot end-
effector is located above a fixed lattice coordinate, the robot may execute one of the
following:

• pick up an item and hold it with the robot’s end-effector (only if no item is
already held by the robot),

• swap the item held by the robot’s end-effector with an item inside the lattice at
the given coordinate, or

• place the item held by the robot’s end-effector at the lattice coordinate if no item
is already at the coordinate.

In this paper, we use lattice coordinate and cell interchangeably. Such a pick-n-swap
model can be readily realized, for example, using two adjacent suction cups, two paral-
lel grippers mounted side-by-side, and so on. The pick-n-swap primitive also models,
to a lesser extent, a dual-arm robot or for that matter, how humans perform such rear-
rangement tasks. We have also examined alternative pick-n-place models, which are
discussed in Sec. 7.

The pick-n-swap model leads to a natural partition of the robot’s operations into
pick-n-swap operations and end-effector travel operations. A rearrangement plan can
then be represented as a sequence of lattice coordinates, P = {p0, p1, . . . , pN}, where
the robot end-effector starts from the rest position p0 and sequentially executes pick-
n-swap operations at p1, p2, and so on. For quantifying the quality of a rearrangement
plan P , it is assumed that each pick-n-swap incurs a (time) cost of cp and the (time) cost
of traveling a unit distance (the distance between two adjacent cells) by the end-effector
is ct. The total cost of completing a rearrangement plan is then

JT (P) = Ncp +
N

∑
i=0

dist(pi, pi+1)ct, (1)

5

where dist(pi, pi+1) is the effective distance traveled by the end-effector between pi
and pi+1; pN+1 = p0. The distance metric may be L1, Euclidean (L2), and so on,
depending on the end-effector’s motion mechanism. For example, if a human is to
arrange shoes for the setup shown in Fig. 1 [top right], then horizontal travel is likely
the main source of travel distance cost. This study works with Euclidean distances, i.e.,
dist(pi, pi+1) = ∥pi − pi+1∥2.

Remark 1. It is straightforward to observe that plans computed for the pick-n-swap
model are reversible; the associated optimality guarantees, if any, will also carry over.
This implies that the algorithms developed in this work can also be applied to (near-
)optimally randomize the locations of items stored in lattices.

Because a pick-n-swap operation requires precise robot arm placement and grasp
planning/execution involving contact between the end-effector and objects, similar to
[14], it is assumed that the total pick-n-swap cost dominates the total end-effector travel
cost. That is, on the right side of Eq. (1), the first term will be considered first, yielding
a sequential optimization problem in which minimizing the number of pick-n-swaps,
N , takes priority.

Remark 2. In this paper, we use “optimal in the asymptotic sense” to mean that the
optimality ratio will approach 1 as the number of items goes to infinity, as is commonly
used in asymptotic analysis in mathematics. This is not to be taken as the same as
asymptotically optimal algorithms used in computer science, which generally means
that an algorithm computes O(1)-optimal solutions in the worst case.

Remark 3. In general, the sequential optimization of two objectives that are not or-
thogonal to each other does not yield globally optimal solutions for the sum of the
two objectives. In our case, however, the sequential optimization procedure leads to
global optimality for the fully-labeled settings and some partially-labeled settings. For
all partially-labeled settings, our algorithms can also be adjusted to globally balance
between more pick-n-swaps and more end-effector travel based on the ratio cp ∶ ct.

As practical robotic rearrangement operations are generally limited to one and two
dimensions, our study also centers on the cases of d = 1,2, with some discussions of
higher dimensions. In the d = 1 case, let m1 =m be the capacity of the lattice, viewed
as a single row. It is assumed that p0 is at the leftmost cell. In the labeled setting,
the lattice is equivalent to a row with its cells labeled 1, . . . ,m from left to right; the
rearrangement problem is then to relocate the item with label i to the i-th cell. In the
partially-labeled setting, there are k types of items, k <m, possibly to be arranged into
contiguous clusters (see, e.g., Fig. 1 [lower left]), though we do not make assumptions
about the goal configurations.

In the d = 2 case, we have an m1(row) ×m2(column) lattice; p0 is at the top left
cell of the lattice. In the labeled setting, it is assumed without loss of generality that
lattice cells are labeled following a column-major order: cells in column i,1 ≤ i ≤m2,
are labeled (i − 1) ∗m1 + 1, . . . , im1, from top to bottom, respectively. In the goal
configuration, the item labeled j must be located at cell j. In the partially-labeled set-
ting, besides considering arbitrary goal configurations, two natural goal configuration

6

patterns are analyzed in more detail, with one having the goals of the same type aggre-
gated (e.g., Fig. 1 [bottom right]) and the other having each type occupying a single
lattice column.

For convenience, we denote the one-dimensional labeled and partially-labeled prob-
lems, as stated above, as the labeled one-dimensional rearrangement (LOR) prob-
lem and the partially-labeled one-dimensional rearrangement (POR) problem, respec-
tively. The two-dimensional problems corresponding to LOR and POR are named
as LTR and PTR, respectively. In this study, we analyze the structural properties of
LOR/POR/LTR/PTR as induced by minimizing the objective specified in Eq. (1). Based
on the findings, we design efficient algorithms for computing (near)-optimal plans for
these rearrangement problems.

3 Fully-Labeled Rearrangement in 1D
For combinatorial optimization problems involving the reconfiguration of many bodies,
the labeled settings are often more challenging (e.g., [41, 14]). In arranging items
stored in lattices, in contrast, the labeled case is structurally simpler. This is due to the
“linear” dependencies among the items to be relocated, as will become clear shortly.
This allows the computation of (exact) optimal solutions for LOR.

Recall that LOR requires rearranging a row of m items. Therefore, LOR can be
viewed as going from one random permutation of m labeled items to the canonical
order [m] ∶= 1, . . . ,m. An LOR instance is therefore fully specified by a permutation
π of [m], where πi, 1 ≤ i ≤ m is the label of the item that occupies cell i in the initial
configuration. We start with a simple greedy cycle-following algorithm, SWEEPCY-
CLESLOR, that solves LOR near-optimally, in expectation, assuming that the initial
LOR instance is randomly generated. SWEEPCYCLESLOR minimizes the end-effector
travel distance to near-optimality after minimizing the number of pick-n-swap oper-
ations to the smallest possible. Then, we describe a more involved algorithm, OPT-
PLANLOR, that computes a rearrangement plan that also minimizes the end-effector
travel. Unlike SWEEPCYCLESLOR, OPTPLANLOR guarantees solution optimality
for each individual instance, i.e., it does not depend on the LOR instance being random.
After presenting SWEEPCYCLESLOR and OPTPLANLOR, we further show that al-
though they perform sequential optimization of Eq. (1), their optimality guarantees are
in fact global.

3.1 Cycle Following with Left to Right Sweeping
Consider an LOR instance with 9 items and the initial configuration π = (3,2,4,1,7,6,9,5,8).
The instance can be solved by starting with the leftmost item that needs rearrangement,
in this case 3, and moving it from cell 1 to cell 3, which replaces item 4 that in turn
replaces item 1. This yields a cycle 3 − 4 − 1 (see Fig. 2), often written as (341). After
following this cycle, the end-effector returns to cell 1. The end-effector then works
with the next leftmost item that is not at goal, 7, inducing another cycle 7985. Alto-
gether, there are two cycles, (341) and (7985), containing 7 items in total (here, we
deviate slightly from how cycles are normally counted in permutations, where a single

7

item in the correct cell would be counted as a cycle containing a single element as well,
which we ignore by default).

3 5967142 8 1 5967432 8

Figure 2: [left] The initial configuration of an LOR instance with two cycles: (341)
and (7985). A plan is shown that rearranges items following the cycle (341). [right]
The resulting intermediate configuration.

These cycles are uniquely determined by the initial configuration π. Noticing that
each cycle requires one more pick-n-swap than the number of items in the cycle, the
instance is solved using a minimum (3+1)+(4+1) = 9 pick-n-swaps. After processing
all cycles, the LOR instance is solved and the end-effector returns to its rest position
(cell 1). The straightforward algorithm SWEEPCYCLESLOR, a natural greedy algo-
rithm, is outlined in Alg. 1, in which the routine SWAP(ℓ, i, j) will pick up item j at
cell ℓ (if it is not ε, denoting a phantom item) and swap it with item i being held (if it
is not ε). It is clear that SWEEPCYCLESLOR runs in linear or O(m) time.

Algorithm 1: SWEEPCYCLESLOR (π)

▷ are there more cycles?

1 while there are more items to be rearranged do
▷ follow & resolve the leftmost cycle

2 i← leftmost i where πi ≠ i
3 SWAP (i, ε, πi); g ← πi

4 while g ≠ i do
5 SWAP (g, g, πg); g ← πg

6 SWAP (i, i, ε)

The optimality properties of SWEEPCYCLESLOR are established in Proposition 3.1
and Proposition 3.2.

Proposition 3.1. SWEEPCYCLESLOR minimizes the number of required pick-n-swap
operations for LOR.

Proof. To solve a given cycle, it is clear that an item on the cycle must be first picked
up without any other items of the same cycle already held by the end-effector (note
that the end-effector may hold items from other cycles). Therefore, for each cycle,
one additional pick is unavoidable. Induction over the cycles of π then proves the
proposition.

Proposition 3.2. After minimizing the number of pick-n-swaps, SWEEPCYCLESLOR
computes optimal solutions for LOR in the asymptotic sense, minimizing end-effector
travel in expectation, assuming that π is a random permutation.

8

Proof. Given the initial configuration π, rearranging each cycle will cause the end-
effector to end at where it starts following SWEEPCYCLESLOR, which is the leftmost
location where a cycle starts. The total distance traveled by the end-effector can be
factored into (i) the distance traveled to solve each cycle, and (ii) the overhead of
traveling after solving a cycle to the next, including the overhead before starting the
first cycle and after completing the last cycle. For (i), because each cycle must be
rearranged to minimize the number of pick-n-swaps, the distance for solving each cycle
is already at the minimum possible. For (ii), the end effector travels from left to right
in between solving cycles. This adds no more than 2m distance in total. We show
that 2m is inconsequential in comparison to the distance incurred by (i). To compute
distance incurred by (i), given a random π, for a fixed i, the expected distance between
item i (located in cell π−1i , which is uniformly randomly distributed between 1 and m)
and cell i is

Ei =
i − 1 + . . . + 1 + 0 + 1 + . . . +m − i

m
.

Tallying over i from 1 to m, the expected total distance due to resolving all cycles
is then

Eπ = E1 + . . . +Em =
1

m

m−1
∑
i=1
(i2 + i) ≈

m2

3
,

which dominates 2m. Therefore, the total end-effector travel distance produced by
SWEEPCYCLESLOR is optimal in the asymptotic sense, in expectation.

Let Hm denote the m-th harmonic number.1 We can further estimate the expected
total cost according to Eq. (1).

Proposition 3.3. For LOR with random initial configurations, the expected total rear-
rangement cost is

TLOR(m) ≈ (m +Hm − 2)cp +
m2ct
3

. (2)

Proof. To compute the expected total cost including the cost of pick-n-swaps, we know
that the number of cycles (here cycles of size 1are included) in a random permutation
π of [m] is Hm [42], the m-th harmonic number. Given any π, the probability of
any item i is already at cell i is 1

m
. Therefore, the expected number of cycles of

length 1 is m
1

m
= 1, making the expected number of cycles containing at least two

items in a random permutation Hm − 1. The total number of pick-n-swaps is then
m − 1, the number of items that must be rearranged, plus Hm − 1, the extra number
of pick-and-swap operations for completing cycles. This yields m +Hm − 2. Adding
end-effector travel, the total (time) cost of rearrangement, in expectation, is then given
by Eq. (2).

1Hm = ∑m
i=1

1

i
≈ logm, where log refers to natural logarithm.

9

Remark 4. In proving Proposition 3.3, we make the observation that the two terms of
the objective function Eq. (1) are simultaneously minimized. This implies that SWEEP-
CYCLESLOR actually guarantees global optimality in the asymptotic sense for LOR.
We will make this more formal in Sec. 3.2, after introducing the optimal algorithm for
LOR.

SWEEPCYCLESLOR, as a natural greedy algorithm, minimizes the number of
pick-n-swaps. It also minimizes the end-effector travel distance in the asymptotic
sense. From here, any additional gain in minimizing Eq. (1) for LOR (and later, LTR)
must come from further minimizing the end-effector travel in a non-asymptotic manner
and without increasing the number of pick-n-swaps. The non-asymptotic improvement
is important in practice because the number of items that are involved is generally not
very large.

3.2 Cycle Sweeping with Cycle Switching
In SWEEPCYCLESLOR, each cycle is followed through one by one, without switching
to another cycle before one is complete. If we interleave the completion of cycles,
however, end-effector travel can be shortened without adding the number of pick-n-
swaps. In the example illustrated in Fig. 3, the plan by SWEEPCYCLESLOR uses
6 pick-n-swaps and a total end-effector distance of 14. The alternative plan, which
breaks cycles during the rearrangement process, uses also 6 pick-n-swaps but only a
total distance of 10.

4 2 5 1 3 2 5 4 3

1

1 2 4 5

3

1 2 5 4 3

4 2 5 1 3 2 3 4 5

1

2 4 1 3

5

42 1 5

3

Figure 3: [top] A rearrangement plan with a total distance of 3+ 3+ 4+ 4 = 14 as com-
puted by SWEEPCYCLESLOR. [bottom] A rearrangement plan with a total distance of
2 + 2 + 3 + 3 = 10. Both plans require six pick-n-swap operations; the latter one does
not wait for one cycle to finish.

From the example, we observe a switch from one cycle to another cycle before
completing rearranging the first can reduce end-effector travel. The saved distance cor-
responds to reducing the end-effector travel without holding an item. In the example,
the bottom plan avoids traveling from the leftmost location to item 5’s initial location
(and back), saving a distance of 2 + 2 = 4. The observation leads to the OPTPLAN-
LOR algorithm that groups cycles for more effective rearrangement. To describe the
algorithm, some definitions are in order. Given a permutation π, let Cπ be the set of all
cycles induced by π. For a c ∈ Cπ , let min(c) and max(c) be the smallest and largest

10

item labels of items in c, respectively. With a slight abuse of notation, the definitions
min and max extend to a set of cycles, i.e., for C ⊂ Cπ , min(C) =minc∈C min(c) and
max(C) =maxc∈C max(c).

We group elements of Cπ into equivalence classes as follows. Initially, let Cπ ∶=
{{ci} ∣ ci ∈ Cπ}. Elements of Cπ are grouped (via union) if their ranges overlap.
That is, for two cycle groups C1,C2 ∈ Cπ , if their ranges [min(C1),max(C1)] and
[min(C2),max(C2)] intersect, we update Cπ to (Cπ/{C1,C2}) ∪ {C1 ∪C2}.

Since there are only a finite number of cycles, the grouping process will stop and
yield a set of cycle groups that are pairwise disjoint. Then, a rearrangement plan can
be computed as follows. Let the leftmost group of cycles be C1 = {c1, c2, . . .} where
min(c1) < min(c2) < We start performing cycle following on c1 until the end-
effector passes over location min(c2) (where c2 starts) for the first time, at which point
we pause following c1 and switch to following c2. Similarly, as c2 is being followed,
we will switch to following c3 as the end-effector passes over min(c3) for the first
time, and so on. At some point, the end effector will reach max(C1), the rightmost
reach of the cycle group C1. If there are additional cycle groups on the right of C1, we
pause working with C1 and start working with the next cycle group on the right of C1,
and return to C1 after all items to the right of C1 are rearranged (iteratively).

An outline of the OPTPLANLOR algorithm is given in Alg. 2, which in turn calls
Alg. 3 and Alg. 4. It is not difficult to observe that OPTPLANLOR runs in O(m) time.
We further prove its distance optimality.

Algorithm 2: OPTPLANLOR (π)

▷ retrieve cycles as singleton sets

1 Cπ ← GETCYCLES (π)
▷ group cycles with overlapping ranges

2 while ∃C1,C2 ∈ Cπ with overlapping ranges do
3 Cπ ← (Cπ/{C1,C2}) ∪ {C1 ∪C2}
▷ process cycle groups

4 C ← left most cycle group in Cπ
5 PROCESSCYCLEGROUP (ε, C, π, Cπ)

Algorithm 3: PROCESSCYCLEGROUP (p, C, π, Cπ)

1 c← leftmost cycle in cycle group C
2 PROCESSCYCLE (p, c, C, π, Cπ)

Theorem 3.1. For LOR, OPTPLANLOR computes a rearrangement plan with mini-
mum end-effector travel, among all plans that minimize the number of pick-n-swaps.

Proof. We prove the theorem by showing that: (a) end-effector travel is minimal within
each cycle group, and (b) end-effector travel between two adjacent cycle groups is
minimized (this is trivially true).

11

Algorithm 4: PROCESSCYCLE (p, c, C, π, Cπ)

1 c′ ← leftmost cycle in cycle group C after c
2 C′ ← leftmost cycle group to the right of C in Cπ
▷ process cycle c from left

3 i←min(c); SWAP (i, p, πi); g ← πi

4 while g ≠ i do
▷ switch cycles within the group?

5 while c′ ≠ null and g >min(c′) do
6 PROCESSCYCLE (g, c′, C, π, Cπ)
7 c′ ← leftmost cycle in cycle group C after c′

▷ switch to the next cycle group?

8 if g ==max(C) and C′ ≠ null then
9 PROCESSCYCLEGROUP (g, C′, π, Cπ)

▷ following the current cycle

10 SWAP (g, g, πg); g ← πg

11 SWAP (i, i, p);

To prove (a), for an item with label i, let π−1i be its initial location (this is natural
since we then have ππ−1i

= i). Notice that the minimum distance the end-effector must
travel while carrying item i is ∣π−1i − i∣. In PROCESSCYCLE, within a cycle group, an
item i is moved exactly a total distance of ∣π−1i − i∣, even though it may be done in
multiple steps. For example, in the top figure of Fig. 3, item 4 is moved a distance of
3 in a single move. In the bottom figure, item 4 is first moved a distance of 2 and later
followed by a move of distance 1. We note that an item i may be moved more than
∣π−1i − i∣ by OPTPLANLOR if it is carried from one cycle group to another, but such
travel is attributed to travel between adjacent cycle groups, which is unavoidable.

It is clear that Proposition 3.3 and Theorem 3.1 optimize Eq. (1) globally because
each of the two terms of Eq. (1) is optimized globally.

Corollary 3.1. For LOR, in minimizing Eq. (1), SWEEPCYCLESLOR computes glob-
ally optimal solutions in the asymptotic sense in expectation and OPTPLANLOR com-
putes globally optimal solutions.

Remark 5. Alg. 2 has a pre-processing stage where the cycles are ordered. We note
that this stage can be interleaved with the actual processing stage (Alg. 3). We have
opted for the standalone pre-processing stage to make the algorithm hopefully more
clear and the running time analysis more straightforward.

4 Partially-Labeled Rearrangement in 1D
In the (fully) labeled setting, each item requiring rearranging has a single possible desti-
nation, limiting the combinatorial explosion of feasible rearrangement plans. This is no

12

longer the case in the partially-labeled setting where each item of a given type can have
multiple goal arrangements (e.g., in Fig. 1 [left], item 6 may go to locations 4,5, or 6).
In other words, a partially-labeled problem can be viewed as many labeled problems
mixed together, demanding additional computational efforts for selecting a best label-
ing to solve the problem. Nevertheless, we show that the one-dimensional partially-
labeled problem POR can still be optimally solved despite the significant added com-
plexity.

We describe an optimal algorithm for POR, OPTPLANPOR, that applies to arbitrary
goal configurations. Because the algorithm is somewhat involved, for readability, we
describe the algorithm over a natural but restricted class of POR instances where each
type of item form a contiguous section in the goal configuration (see, e.g., Fig. 4). In
such instances, for a given type 1 ≤ t ≤ k, let ni be the number of items of type t,
∑

k
t=1 nt = m. In the goal configuration, items of type t fill locations between ℓt =

∑
t−1
i=1 ni + 1 and rt = ∑

t
i=1 ni, inclusive. Define range(t) ∶= [ℓt, rt]. An instance of

this restricted POR problem is then fully specified by the initial configuration of the
items as a sequence of types, i.e., (t1, . . . , tm), where 1 ≤ ti ≤ k.

4.1 Algorithm Description
In the first phase, simple matchings are made between initial and goal locations. Start-
ing from the left side, for the item at location i with type ti, i ∉ range(ti), we select its
goal to be the leftmost available one. Fig. 4 [top left] shows an example. The match-
ings induce a set of cycles (Fig. 4, [top right], with the addition of the vertical edges
corresponding to pick-n-swap operations), which are distance optimal for end-effector
travel but do not minimize the number of pick-n-swaps. As is the case with LOR, each
cycle requires one more pick-n-swap plus the number of items in the cycle. We call the
subroutine FORMCYCLES and note that additional end-effector travel between these
cycles is needed for obtaining a full rearrangement plan.

In the second phase, the initial set of cycles are merged in a pairwise manner when
two cycles have edges going to the same item type in the same direction (either both
left or both right). Formally, two cycles can be merged in this phase if they contain
two items ti and tj , respectively, and ti, tj satisfy ti = tj and i, j are either both on
the left of range(ti) or both on the right of range(ti). For example, the left two cy-
cles in Fig. 4 [top right] can be merged by swapping the goals of the left two type 2
edges (first and third from the top row), yielding Fig. 4 [bottom left]. The process re-
duces the number of pick-n-swap operations but does not incur additional end-effector
travel, because each merge keeps the total distance unchanged. We call this subroutine
MERGECYCLES.

In the third phase, cycles are further merged in a pairwise manner if two cycles
have edges going to the same type but in different directions. Formally, two cycles can
be merged in this phase if they contain two items ti and tj , respectively, ti = tj , and i, j
are on two different sides of range(ti). For example, in Fig. 4 [bottom left], the two
cycles both have edges going into the third type, but in different directions. Merging
these two cycles, as shown in Fig. 4 [bottom right], will reduce the number of pick-
n-swaps by one but will incur additional end-effector travel. We note that to ensure
total distance optimality, the merge here needs to be done by computing a minimum

13

2 2 2 3 3 3 4 441 1 1 2 2 2 3 3 3 4 441 1 1

2 2 2 3 3 3 4 441 1 1 2 2 2 3 3 3 4 441 1 1

1 3 1 3 2 4 3 442 1 2 1 3 1 3 2 4 3 442 1 2

1 3 1 3 2 4 3 442 1 2 1 3 1 3 2 4 3 442 1 2

Figure 4: Illustration of the first three phases of the OPTPLANPOR algorithm. [top
left] The edges show a simple matching of items with proper goals. [top right] The
matchings induce three cycles, two of which are marked with solid lines and one with
dashed lines. [bottom left] Swapping the two type 2 edges on the left merges two
cycles without adding end-effector travel. [bottom right] Swapping the two type 3
edges merges two cycles but incurs additional end-effector travel costs.

spanning tree (MST) based on the added distances when two cycles are merged. We
call the associated subroutine MERGECYCLESMST.

After the third phase completes, we obtain a set of cycles that minimizes the num-
ber of pick-n-swaps. These cycles are now much like the cycles in the labeled case
and are swept through and switched similarly. We call this last subroutine GROUP-
SWEEPCYCLESPOR, which connects all cycles and composes the full rearrangement
plan.

4.2 Algorithm Outline and Optimality Properties
The OPTPLANPOR algorithm and the MERGECYCLESMST subroutine are outlined
in Alg. 5 and Alg. 6. The other subroutines, FORMCYCLES, MERGECYCLES, and
GROUPSWEEPCYCLESPOR are relatively straightforward to implement based on the
description; we omit the pseudo-code.

Algorithm 5: OPTPLANPOR (t1, . . . , tm)

▷ phase 1: form cycles, C is a list of cycles

1 C ← FORMCYCLES (t1, . . . , tm)
▷ phase 2: merge cycles, w/o added distance

2 C′ ← MERGECYCLES (C)
▷ phase 3: merge cycles, w/ added distance

3 C′′ ← MERGECYCLESMST (C′)
▷ phase 4: group, sweep, and switch cycles

4 GROUPSWEEPCYCLESPOR (C′′)

14

Algorithm 6: MERGECYCLESMST (C)

▷ initialize a cycle merge distance graph

1 VC ← C; EC ← {}; W ← {}; GC ← (VC ,EC ,W);
▷ compute ‘‘merge distance’’ between cycles

2 for all ci, cj ∈ VC do
3 EC ← EC ∪ {eij = (ci, cj)}
4 wij ← CYCLEDISTANCE (ci, cj); W ←W ∪ {wij}
▷ compute a minimum spanning forest over GC

5 F ← MST (GC)
▷ merge cycles for each tree T in F

6 C′ ← {}
7 for each tree T in F do
8 while T has an edge eij = (ci, cj) do
9 ci ← merge ci and cj

10 collapse edge eij in T

11 Add the single cycle c in T to C′

12 return C′

In MERGECYCLESMST, a graph GC is constructed that captures the distances
between cycles that can be merged to reduce the number of pick-n-swaps. The function
CYCLEDISTANCE computes the closest distance between two cycles for merging in the
obvious way. This distance in Fig. 4 [bottom right] is 1 (we note that the actual swap
will incur a cost doubling this distance). After GC is constructed, which can have
multiple connected components, a minimum spanning tree algorithm is executed, e.g.,
Prim’s algorithm ([43]), yielding a spanning forest F of GC . Each tree T in F will
result in a single merged cycle; different merged cycles from different trees cannot be
merged further to reduce the number of pick-n-swaps.

We proceed to establish key properties of OPTPLANPOR and the subroutines.
From here on, arbitrary goal configurations are assumed unless stated otherwise.

Proposition 4.1. For POR with k types of items, MERGECYCLES creates cycles that
are distance optimal. When goals are aggregated by item types, there are at most k − 1
cycles after completing the MERGECYCLES subroutine.

Proof. FORMCYCLES creates cycles that are distance optimal by construction. This
is clear by looking at the minimum number of times the end-effector must pass over
or stop at a given cell of the lattice in order to move items of a given type to the
goals. For each initial and goal pair, and type, this number is fully determined and
realized by FORMCYCLES. For example, for sorting the first type in Fig. 4, the end-
effector must pass cell 3 at least once and must also stop at the cell at least once,
because all type 1 items should be to the left of cell 4 in the goal configuration and
there are two type 1 items in the initial configuration to the right of cell 3. The cycles
created by FORMCYCLES realize this minimum end-effector travel. Then, because
MERGECYCLES does not add additional distance, the total distance remains at the
minimum.

15

For the rest of the proposition, in the case where the goal configuration has the
types aggregated, each type can participate in at most two cycles after MERGECYCLES
is performed. For example, in Fig. 4 [bottom left], two cycles exist that contain items
of type 3. There is a single cycle for types 1,2, and 4. Moreover, the leftmost and
rightmost types in the goal configuration can each only participate in a single cycle.
This is because all items of type t in the initial configuration to the left (or right) of
range(t) will be in a single cycle after MERGECYCLES is performed, by construction.
Since each cycle requires at least two types of items, for k types, there can be at most
k − 1 cycles after MERGECYCLES.

Lemma 4.1. For POR, MERGECYCLESMST reduces the number of pick-n-swaps to
the minimum while incurring the minimum amount of additional end-effector travel.

Proof. After MERGECYCLES, for each pair of the resulting cycles, they cannot be
merged to reduce the number of pick-n-swaps without incurring additional end-effector
travel. To see that this is the case, after MERGECYCLES, for each pair of cycles, say
c1 and c2, they can be merged to reduce the number of pick-n-swaps if and only if they
contain items of the same type. Suppose that c1 and c2 both involve items of the same
type, say t (there could be multiple such types for a pair of cycles), and c1 is to the left
of c2. Then it must be the case that edges of c1 for restoring type t items and edges of
c2 for restoring type t items do not intersect (by the construction of MERGECYCLES).
The third type in Fig. 4 [bottom left] gives an example. For a type t, denote the set
of edges of c1 (resp., c2) for restoring type t items as Et

1 (resp., Et
2). To merge c1

and c2, it requires for exactly one t, one edge of Et
1 and one edge of Et

2 to swap their
ends so that Et

1 and Et
2 will cross over range(t). This operation will incur additional

end-effector travel that cannot be avoided.
The optimal way to merge two cycles c1 and c2 sharing the same item types is by

doing the merge on the type t where Et
1 and Et

2 are closest to each other. Without loss
of generality, assume Et

1 is to the left of Et
2. The distance between Et

1 and Et
2 is then

simply the distance between the rightmost position reached by Et
1 and the leftmost po-

sition reached by Et
2. Computing this over all applicable types then yields the distance

between c1 and c2 (this is done in CYCLEDISTANCE in MERGECYCLESMST).
For all cycles that can be merged into a single cycle, the merging process naturally

induces a spanning tree of the involved cycles. The optimal merging sequence is then
given by a minimum spanning tree as computed in MERGECYCLESMST.

Theorem 4.1. For POR, OPTPLANPOR computes a rearrangement plan with the min-
imum end-effector travel after minimizing the total number of pick-n-swaps.

Proof. By Lemma 4.1, after MERGECYCLESMST, we obtain a set of cycles corre-
sponding to the least number of pick-n-swaps and the minimum end-effector travel
to realize this. What is left is to “connect” these cycles together to yield a complete
rearrangement plan. This connection process is performed using GROUPSWEEPCY-
CLESPOR, which maintains the number of pick-n-swaps and adds only the minimum
travel distance for cycles that are spatially disjoint. As a result, the overall OPTPLAN-
POR algorithm ensures distance optimality after minimizing the number of pick-n-
swaps.

16

Remark 6. From the discussions, theorems, and proofs, before the step of running
MERGECYCLESMST, OPTPLANPOR optimizes both terms of Eq. (1) simultaneously.
In executing MERGECYCLESMST, in merging two cycles c1 and c2, let the distance
cost of merging them be dist(c1, c2). If dist(c1, c2)ct ≥ cp, and c1 and c2 overlap
(meaning that c1 and c2 can be swept without additional distance cost but with one
extra pick-n-swap), then merging the two cycles will increase the total cost as defined
by Eq. (1). In this case, we can skip the merging of c1 and c2. More generally, OPT-
PLANPOR can be augmented to globally optimize Eq. (1) based on different cp ∶ ct
ratios. Because the required change is fairly involved and the benefit of doing global
optimization is small in comparison to optimizing Eq. (1) sequentially (since MERGE-
CYCLESMST will only apply to a very few cycles for random instances), we omit
further details.

In terms of running time, FORMCYCLES can be performed in linear time using
multiple passes over the initial and goal configurations. During the execution of FORM-
CYCLES, data structures can be built so that cycles are associated with types. With the
proper data structures, MERGECYCLES can be run in linear time by going through
the types one by one, resulting in an O(m) running time. For MERGECYCLESMST,
computing GC and the distances between cycles can be done in linear time through
amortization analysis. Computing a minimum spanning tree can be done in O(∣EC ∣ +

∣VC ∣ log ∣VC ∣) time [44]. Merging cycles can be done at the same time as the min-
imum spanning tree is built, which does not take additional time. GROUPSWEEP-
CYCLESPOR takes O(m) time. The total running time of OPTPLANPOR is then
O(m + ∣EC ∣ + ∣VC ∣ log ∣VC ∣). If the goals are aggregated based on types, there are at
most k − 1 cycles (Proposition 4.1) entering MERGECYCLESMST, resulting in a total
running time of O(m + k log k). In the general case, the running time is O(m logm).

5 Rearrangement in 2D and Higher Dimensions
For higher dimensions, it is straightforward to observe that the cycle-following struc-
ture for LOR and POR carry over. However, minimizing end-effector travel becomes
more challenging, as the problem now contains a Traveling Salesperson Problem (TSP),
as will be shown. Nevertheless, strategies can be derived that yield optimality in the
asymptotic sense.

5.1 Fully-Labeled 2D (LTR) and Higher Dimensions
5.1.1 Labeled Rearrangement in 2D (LTR).

An LTR instance is specified by its lattice dimension m1,m2, and a permutation π
of [m1m2]. Similar to LOR, minimizing the number of pick-n-swaps for LTR can be
achieved via cycle following. This allows proving results for LTR similar to Proposi-
tions 3.1 and 3.2. A natural extension toSWEEPCYCLESLOR can be made to support
the 2D setting: for an LTR instance with an initial configuration π, we compute all
its cycles as c1, . . . , ck. The new algorithm, which we call SWEEPCYCLESLTR, again

17

performs cycle following of the cycles and moves to cycle ci+1 after completing cycle
ci.

Then, we note that the cycle switching procedure for LOR (e.g, the process illus-
trated in Fig. 3) can be generalized to LTR. That is, for consecutive items a1 and b1
belonging to cycle c1 and an item a2 belonging to cycle c2, instead of going from a1
to b1, it can potentially save travel distance by going from a1 to a2, finishing c2 (and
possibly additional cycles), and then going to b1 to finish c1. The optimal switching
schedule can be computed using a minimum spanning tree procedure somewhat similar
to MERGECYCLESMST. There is however a key difference: in MERGECYCLESMST,
the cycles to be merged have symmetric distances but the distance from cycle c1 to c2
and the distance from cycle c2 to c1 are different in merging cycles for LTR. That is,
the graph where the cycles are vertices, over which a minimum spanning tree is to
be constructed, is now directed. This means that we need to apply a directed mini-
mum spanning tree algorithm [45, 46]. The end-effector rest position should also be
considered in computing the directed minimum spanning tree.

We call the overall cycle switching procedure for LTR as SWITCHCYCLESLTR,
which clearly runs in polynomial time. We omit the pseudo-code for these two al-
gorithms given their similarity to LOR and POR. These algorithms are optimal in the
asymptotic sense, in expectation.

Proposition 5.1. The number of pick-n-swaps is minimized by SWEEPCYCLESLTR
and SWITCHCYCLESLTR. Furthermore, they compute distance-optimal solutions in
the asymptotic sense for LTR in minimizing end-effector travel in expectation, assum-
ing that π is a random permutation.

Proof. It is clear that SWEEPCYCLESLTR and SWITCHCYCLESLTR minimize the
number of pick-n-swaps. Without loss of generality, assume m1 ≥ m2. Following
similar reasoning as used in the proof of Proposition 3.2, a random permutation π will
require an average distance Eπ = Ω((m1 +m2)m1m2) = Ω(m

2
1m2). In expectation,

there are Hm1m2 ≈ logm1m2 = O(logm1) cycles. Traveling through all these cycles
once then incurs a distance cost of no more than O(m1 logm1), which is inconsequen-
tial as compared to Ω(m2

1m2).

For m1 = m2 = m, the expected distance from cycles over a random LTR instance
can be readily computed as ((2 +

√
2 + 5 ln(

√
2 + 1))/15)m2 ≈ 0.52m2. We omit

the details but note that this is equivalent to computing the average distance between
two points in a unit square (see, e.g., [47]), via a double integration, and multiply
that distance by m2. SWEEPCYCLESLTR can be implemented by making a constant
number of linear passes over the m1 ×m2 lattice, yielding an O(m1m2) running time.
SWITCHCYCLESLTR requires more work; a naive implementation requires O(m3

1m
3
2)

running time, mainly for checking switching distances between cycles. In a sense, the
optimality (in the asymptotic sense) provided by SWEEPCYCLESLTR and SWITCH-
CYCLESLTR is the best one can do, because optimizing distance for LTR, unlike for
LOR, is NP-hard. We note that the hardness holds regardless of whether the number of
pick-n-swaps is minimized.

Theorem 5.1. Minimizing the total end-effector travel distance for LTR is NP-hard.

18

Proof. We prove the claim via a reduction from the Euclidean TSP [39]. Given a
Euclidean TSP instance specified by a set of points embedded in a rectangular region
(e.g., Fig. 5, left), we superimpose a lattice over the region at some resolution m1 ×

m2. To construct the LTR instance, we set the initial condition π to be the identity
permutation, i.e., πi = i for all 1 ≤ i ≤ m1m2. Then, we update π for each of the
internal points (i.e., excluding the top left “starting” point) in the TSP instance. For a
given internal point in the TSP instance, let its coordinates be (x1, x2). Without loss
of generality, we may assume that (x1, x2) satisfy 1 < x1 < m1 and 1 < x2 < m2. We
update π such that πm1x2+x1 =m1(x2 − 1) + x1 and πm1(x2−1)+x1

=m1x2 + x1. That
is, each internal point in the TSP instance is converted to two adjacent items (pairs of
adjacent items in Fig. 5, right) that must be exchanged. We refer to each pair of the
adjacent items to be exchanged as a cluster.

Figure 5: [left] An Euclidean TSP instance, fully specified by a set of six points. [right]
A corresponding LTR instance where each point of the TSP instance inside the rectan-
gle is replaced by two items that must be exchanged. The top left point corresponds to
the end-effector’s rest position.

By selecting sufficiently large m1 and m2, the end-effector travel cost for solving
each cluster becomes negligible. Therefore, for the LTR instance, the optimal end-
effector travel cost is determined by the cost of end-effector travel between clusters.
An optimal solution to the TSP problem then maps to an optimal solution to the LTR
instance that minimizes end-effector travel (minor details are omitted).

On the other hand, in any valid solution to the LTR instance, the end-effector must
start from the rest position (the top left point), go to each cluster to make the exchange,
and eventually return to the rest position. Because the travel cost for solving each
cluster locally is negligible (again, some minor but formal arguments are omitted here),
a distance optimal solution then translates back to an optimal solution to the initial
Euclidean TSP instance.

It is clear that the decision version of the LTR instance is NP-complete because the
distance of a given rearrangement plan can be checked in linear time.

Remark 7. While LOR (and POR) can be optimally solved in polynomial time, LTR
becomes NP-hard, implying that we cannot optimally solve it exactly in polynomial

19

time unless P = NP. What is changed is that LOR is a 1D problem whereas LTR is a 2D
problem. Such transitions of computational complexity due to dimension changes are
also observed elsewhere, e.g., computing shortest paths or the visibility graph becomes
hard as dimension rises from two to three [48, 49].

Similar to the case for LOR, we make the observation that the algorithms for LTR si-
multaneously optimize the two terms in Eq. (1): both SWEEPCYCLESLTR and SWITCH-
CYCLESLTR ensure that the number of pick-n-swaps is minimized and the total end-
effector travel is optimal in the asymptotic sense. As a result, these algorithms provide
global optimality guarantees for LTR.

Corollary 5.1. For LTR, in minimizing Eq. (1), SWEEPCYCLESLTR and SWITCH-
CYCLESLTR compute globally optimal solutions in the asymptotic sense.

5.1.2 Labeled Rearrangement in Higher Dimensions.

We briefly discuss extensions to dimensions higher than two. It is straightforward to
observe that Proposition 5.1 and Theorem 5.1 continue to hold in higher dimensions
through a direct embedding, i.e., a two-dimensional problem can be readily reduced to
a d-dimensional problem via adding additional orthogonal dimensions.

Corollary 5.2. For labeled rearrangement on d-dimensional lattices, with a fixed
d ≥ 2, a cycle-following procedure, after minimizing the number of pick-n-swaps, also
yields a total end-effector travel distance that is optimal in the asymptotic sense, in
expectation.

Corollary 5.3. Minimizing the total end-effector travel distance for labeled rearrange-
ment on d-dimensional lattices, with a fixed d ≥ 2, is NP-hard.

5.2 Partially-Labeled 2D (PTR) and Higher Dimensions
Our main focus on PTR is finding near-optimal solutions. We present such an algorithm
for minimizing the number of pick-n-swaps and show that it is distance-optimal in the
asymptotic sense, in expectation, for two common goal configuration patterns shown
in Fig. 6. In goal configuration pattern A, items of the same type are aggregated in
both dimensions. In pattern B, each type occupies a single column of the lattice. For
notational convenience, it is assumed that the number of types k =m1 =m2 is a perfect
square, e.g., k = 4 = 22. Our analysis does not depend on this last assumption.

For PTR, minimizing the number of pick-n-swaps can be realized in polynomial
time, as it is for POR: for each type, matchings can be made to yield cycles with min-
imum end-effector travel. These cycles can be merged using a procedure similar to
MERGECYCLES and MERGECYCLESMST, which minimizes the number of pick-n-
swaps.

On the other hand, similar to LTR, minimizing the end-effector travel is computa-
tionally intractable, regardless of whether the number of pick-n-swaps is minimized.
This is true because LTR is a special case of PTR.

Corollary 5.4. Computing a rearrangement plan for minimizing the travel distance for
PTR is NP-hard.

20

43 1 4

24 2 1

12 1 2

33 3 4

31 1 3

31 1 3

42 2 4

42 2 4

41 2 3

41 2 3

41 2 3

41 2 3

Figure 6: [left] An example of a PTR start configuration. [middle] The corresponding
goal configuration pattern A. [right] The corresponding goal configuration pattern B.

We note that we can also show that the hardness results continue to hold for goal
configuration patterns A and B. For pattern A, we may apply the same proof used for
proving Theorem 5.1 by treating each

√
k ×
√
k cell as a single cell, which reduces the

PTR problem to an LTR problem. For pattern B, the proof for Theorem 5.1 directly
applies.

Next, we describe a general algorithm for PTR, which does not depend on the goal
configuration pattern. The algorithm is similar to OPTPLANPOR for POR but with only
three phases; the two cycle-merging phases in POR are merged into a single phase. In
the first phase, for each type of item that needs to be rearranged, a bipartite graph is
constructed that connects all applicable initial configurations to all goal configurations,
with the edge weight being the distance between a pair of start and goal configurations.
Matching is then performed on this bipartite graph to get a 1-1 mapping between initial
and goal configurations. This can be done efficiently using the Hungarian algorithm
[50]. After the first phase, denoted as FORMCYCLESPTR, a set of initial cycles, C, is
formed.

In the second phase, cycles in C are merged through goal swaps. Two cycles can
be merged through goal swaps (similar to what is done in Fig. 4 [bottom left]→ Fig. 4
[bottom right]) if they contain items of the same type. Unlike POR, where some merges
do not change end-effector travel distance, a merge here will cause the total distance
to increase in general. Therefore, only a single cycle merging phase is done for PTR.
The procedure for doing so is the same as MERGECYCLESMST for POR: a graph G
is constructed where each cycle is a node and there is an edge between each pair of
mergeable cycles with the edge weight being the additional distance that is incurred
for the merge, due to goal swaps. A minimum spanning forest is then constructed for
merging all mergeable cycles. After the second phase, which we call MERGECYCLE-
SPTR, no more than k/2 cycles are left and the number of pick-n-swaps is minimized.
Let this set of cycles be C ′.

In the third and last phase, cycles in C ′ are again connected to form a complete
rearrangement plan. This is realized through another round of minimum spanning
tree computation, for which another graph G′ is needed for capturing the distance
between cycles. Here, for two cycles c1 and c2, the distance between them is sim-
ply minv1∈c1,v2∈c2 dist(v1, v2). Similar to the LTR case, here, the distance between
two cycles is directed. Therefore, G′ is also directed. We also include p0, the end-
effector’s initial location, as a vertex in G′ and compute its distance to cycles in C ′

in the same way. After the minimum spanning tree T is computed for G′, a double

21

covering of this tree starting at p0, going through the cycles and back, yields a com-
plete rearrangement plan with the minimum number of pick-n-swaps. Denoting the
last phase as SWEEPCYCLESPTR and the overall algorithm PLANPTR (we omit the
algorithm outline since it is fairly similar to OPTPLANPOR), we proceed to analyze
the distance optimality.

Theorem 5.2. PLANPTR computes distance-optimal solutions in the asymptotic sense
for PTR with goal configuration patterns A and B, in expectation.

Proof. We first examine pattern A. Intuitively, the required amount of distance for
moving items to a proper goal dominates other distances. To establish this, we esti-
mate the different costs. For a single item of a given type, the initial location can be
anywhere in the lattice. Therefore, the expected distance for restoring it, regardless
of where the goal is, is Ω(k). The total cost, in expectation, is then E = Ω(k3). It
is clear that the cycles computed by FORMCYCLESPTR, in expectation, have a total
length no more than E. Because the MERGECYCLESPTR subroutine only swaps goals
within a

√
k×
√
k square region, each swap will add at most O(

√
k) additional distance

(we omit the straightforward computation based on the triangle inequality). Therefore,
MERGECYCLESPTR will add at most O(k5/2) distance. In the last phase, because
at most k/2 cycles are connected, SWEEPCYCLESPTR incurs an additional connec-
tion distance cost of O(k2). Because MERGECYCLESPTR and SWEEPCYCLESPTR
only add costs that are asymptotically inconsequential as compared to E, PLANPTR is
distance-optimal in the asymptotic sense for PTR in expectation with goal configura-
tion pattern A.

For pattern B, it is clear that the expected cost remains at E = Ω(k3). For MERGE-
CYCLESPTR, although goal swaps may happen over a distance of up to k, we note that
no two different swaps will ever cross each other in the vertical direction. We readily
see that (again, via an application of the triangle inequality) the cumulative distance
increase per type is bounded by 2k. The total additional cost over all types due to
MERGECYCLESPTR is then bounded by O(k2). For pattern B, SWEEPCYCLESPTR
essentially goes from the leftmost column to the rightmost and back, which incurs
O(k) distance. Therefore, PLANPTR is distance-optimal in the asymptotic sense, in
expectation, for PTR with goal configuration pattern B.

Remark 8. Similar to the labeled setting, the structural results obtained for POR
and PTR readily extend to higher dimensions. For patterns A and B, it is clear that
PLANPTR optimizes Eq. (1) globally.

6 Simulation Studies
In this section, based on simulation studies, we highlight some properties of the rear-
rangement problems and corroborate the guarantees provided by our algorithms. We
implemented all algorithms described in the paper in Python. Each data point presented
in a figure is an average of over 100 randomly-generated instances according to some
distribution to be stated. We mention that our basic Python implementation is fairly
efficient; each instance, with some containing 10000 items, is solved within 1 second.

22

For practical-sized problems with a few hundred items, each takes less than 10−3 sec-
ond to solve. We do not present the computation time here as it will not be representa-
tive of an optimized implementation in C/C++. The source code, with implementations
of both greedy and optimized/optimal algorithms for LOR/POR/LTR/PTR problems, is
available at https://github.com/arc-l/lattice-rearrangement/.

For LOR and LTR, since cycle following is a natural strategy that minimizes the
number of pick-n-swaps, only end-effector travel is examined here. In Fig. 7 [left],
LOR instances are generated following the uniform random distribution. We then take
the end-effector travel distance computed by OPTPLANLOR and divide it by m2. The
figure shows that the ratio converges to 1/3 (the gray dotted horizontal line) as ex-
pected. We further note that the ratio’s range, between 0.33 and 0.345, is very small.
A contributing reason that the total travel cost is close to m2/3, even when m is small,
is that there are not many cycles so the distance due to traveling between cycles is very
minimal.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 100 1000 10000

 0.333

 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

 0.35

 10 100 1000 10000

uniform random uniform random

O
pt

.d
is

t.
/m

2

G
re

ed
y

/o
pt

.(
di

st
.)

10-random
√
m-random

Figure 7: Two plots illustrating properties of LOR and the associated algorithms. The
y-axes are unitless. The x-axes are the number of items in an instance, which is the case
for all figures in this section. [left] The optimal end-effector travel distance for LOR
(computed by OPTPLANLOR) divided by m2 where m is the number of items. [right]
End-effector travel distance ratio between SWEEPCYCLESLOR and OPTPLANLOR
(optimal) for three different initial arrangement patterns.

In Fig. 7 [right], the ratio of the travel distance between SWEEPCYCLESLOR (non-
optimal) and OPTPLANLOR (optimal) is evaluated over three item distribution pat-
terns: uniform random, 10-random, and

√
m-random, where x-random means that

every block of x items, counting from the left, are uniformly randomly distributed
in the generated LOR instances. OPTPLANLOR does significantly better than the
greedy (best-first) SWEEPCYCLESLOR, especially when the number of items m is
small, which actually corresponds to more practical settings. For the 10-random and
√
m-random settings, there are more cycles due to the partitioning, therefore allowing

more opportunities for cycle switching to engage in OPTPLANLOR, providing more
distance savings as a result.

For LTR, since cycle following is again natural, we focus on end-effector travel
(all plans have optimal numbers of pick-n-swaps). On an m ×m square lattice where
m is also a perfect square, we evaluate the performance of cycle-following algorithms

23

https://github.com/arc-l/lattice-rearrangement/

over three distributions: uniform random, column random, where items are uniformly
randomly distributed within columns, and block random, where items are randomized
within

√
m×
√
m blocks. Fig. 8 [left] presents the ratio of the distance from all cycles

divided by m2, which is the same for SWEEPCYCLESLTR and SWITCHCYCLESLTR.
That is, traveling between cycles is not included. We observe that both uniform ran-
dom and block random settings have travel distances that converge to about 0.52m2 as
predicted, whereas the column random setting, essentially a one-dimensional problem,
shows convergence to m2/3, also as expected.

 0.3

 0.4

 0.5

 0.6

 0.7

 100 1000

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 100 1000

C
yc

le
di

st
./

m
2

To
ta

l/
cy

cl
es

(d
is

t.)

uniform random

column random

block random uniform random

column random

block random

Figure 8: Properties of LTR and the associated algorithms. [left] Ratio of distance in-
curred by following cycles versus m2 for three item distributions. Two gray dotted hor-
izontal lines at around 0.52 and 1/3 are added for reference. [right] Total distance from
algorithms versus the total cycle distances for three distributions. Data for SWEEPCY-
CLESLTR is plotted using dashed lines and data for SWITCHCYCLESLTR is plotted
using solid lines.

In Fig. 8 [right], for each randomness setting, the solid (resp., dashed) line shows
the ratio between the distance cost from SWITCHCYCLESLTR (resp., SWEEPCYCLESLTR)
and the distance from cycles only. SWITCHCYCLESLTR clearly outperforms the greedy
SWEEPCYCLESLTR algorithm in all cases. For both uniform random and column ran-
dom, SWITCHCYCLESLTR incurs little extra distance beyond the necessary distance
needed for following cycles. For the uniform random setting, different cycles are all
entangled in the m ×m square, allowing plenty of opportunities for cycle switching.
Similarly, for the column random setting, edges of a cycle in a column are likely to
pass closely by a vertex of another cycle in a nearby column, presenting opportunities
for cycle switching. Cycles in different blocks in the block random setting tend to be
more apart; it less likely for the edge of a cycle in an

√
m ×
√
m block to pass closely

by the vertex of another cycle in another block.
For POR and PTR, we look at both the end-effector travel distance and the number

of pick-n-swaps. The ratios of distance and the number of pick-n-swaps between the
greedy algorithm and OPTPLANPOR are given in Fig. 9 for different numbers of item
types. The optimal OPTPLANPOR algorithm is 1-2% better than the greedy algorithm
on distance, and up to over 5% better on the number of pick-n-swaps (which carries
more importance).

Fig. 9 shows that OPTPLANPOR is consistently more effective in reducing both

24

 1

 1.02

 1.04

 1.06

 100 1000

 1

 1.01

 1.02

 1.03

 100 1000

G
re

ed
y

/o
pt

.(
di

st
.)

G
re

ed
y

/o
pt

.(
pi

ck
s)

2 types

4 types

6 types

8 types

10 types

2 types

4 types

6 types

8 types

10 types

Figure 9: Performance of the greedy algorithm versus the optimal algorithm
(OPTPLANPOR) for POR. [left] End-effector travel distance ratios for different num-
bers of types. [right] Ratios between the number of pick-n-swaps for the two algorithms
for different numbers of types.

the number of pick-n-swaps and the end-effector travel distance as compared with a
greedy algorithm. This is not surprising. For POR, due to many items having the same
types, greedy strategies tend to work more locally, leading to sub-optimality on both
the number of pick-n-swaps and the end-effector travel.

For PTR, while we no longer have algorithms for computing the optimal distance
(recall that the problem is NP-hard), our minimum spanning tree-based algorithm
still demonstrates a much better performance when compared to greedy best-first ap-
proaches, as shown in Fig. 10, for both patterns (pattern A and pattern B). The cost
differences, in this case, can be similarly explained as for the POR case, where greedy
approaches tend to work more locally.

 1

 1.04

 1.08

 1.12

 1.16

 100 1000

 1

 1.04

 1.08

 1.12

 1.16

 100 1000

G
re

ed
y

/M
ST

G
re

ed
y

/M
ST

pattern A, dist

pattern A, picks

pattern B, dist

pattern B, picks

Figure 10: Performance of the greedy algorithm versus the minimum spanning tree-
based cycle merging algorithm for PTR. [left] Distance and pick-n-swap ratios for
“block” item distribution. [right] Distance and pick-n-swap ratios for ‘column” item
distribution.

25

7 Conclusions and Discussions
In this paper, we have performed a systematic study of lattice-based robotic rearrange-
ment using the pick-n-swap primitive. For both the fully-labeled and the partially-
labeled settings under all lattice dimensions, we either provide efficient algorithms for
optimally solving the problem (i.e., LOR, POR), or provide algorithms that are optimal
in the asymptotic sense when the problem is NP-hard (LTR, PTR). We have demon-
strated, via simulation, that our algorithms perform fairly well with respect to absolute
optimality measures and in comparison with the already decent greedy best-first ap-
proaches. For the majority of the settings explored, our algorithms also provide global
optimality guarantees.

In addition to providing characterization and solutions for the specific problems,
our analysis points to a general solution structure for such rearrangement problems:
forming cycles naturally and then optimally connecting them, e.g., using a minimum
spanning tree. Combined with proper analysis, guarantees can often be obtained. We
believe this general cycle-following + connecting structural insight applies to enhanc-
ing the efficiency in solving rearrangement problems beyond lattice-based settings.

We conclude the paper with some open-ended discussions.
Non-random item distribution. The current study assumes that items are ran-

domly distributed in the lattice. If item distribution is not random, in all cases, the
number of pick-n-swaps can still be readily minimized. For overall optimality, for LOR,
the guarantee by SWEEPCYCLESLOR no longer holds, but OPTPLANLOR continues
to compute globally optimal solutions. For POR, OPTPLANPOR also continuous to
ensure solution optimality guarantee as before. For LTR and PTR, the distance opti-
mality guarantee (in the asymptotic sense) no longer holds. We project, however, that
the associated algorithms should continue to compute high-quality solutions.

Domain topology. The lattices examined in this work are embedded in Euclidean
spaces. This assumption may be relaxed. For example, an application may call for rear-
ranging items that form a circle. The algorithms developed in this study can be adapted
to work for such scenarios with relatively minor changes. The main update surrounds
the distance computation for two lattice points, which changes as the domain’s topol-
ogy changes. Depending on whether the end-effector travels along the circle or in
straight lines between two consecutive pick-n-swaps, the optimal rearrangement plan
will change. If the end-effector travels along the circle, then the optimality guarantee
for LOR and POR continues to hold (the algorithms will require some minor modifica-
tions). If the end-effector travel along straight lines between two points on a circle, the
situation is closer to the 2D setting with similar optimality guarantees.

Bi-criteria optimization. In our treatment of lattice-based rearrangement prob-
lems, there exists a fairly good level of flexibility that allows balancing between the two
(sometimes competing) objectives in Eq. (1). For example, in POR, a minimum total-
distance feasible solution is first computed, allowing a subsequent trade-off between
reducing the number of pick-n-swaps and adding additional end-effector travel. If we
enforce that the rearrangement task must be completed, then OPTPLANPOR (Alg. 5)
computes the full relevant Pareto frontier. On the other hand, our algorithms do not
produce the entire Pareto optimal frontier for the two objectives if partial solutions are
also considered.

26

Bounded optimality. While not a focus of this work, if it is desirable, the algo-
rithms in this work can be shown to provide bounded optimality guarantees, in addition
to ensuring optimality in the asymptotic sense. This can be achieved by comparing the
extra travel distance with the minimum required distance for realizing the rearrange-
ment task.

Alternative pick-n-place primitives. We have examined a few other natural pick-
n-place primitives. It would appear that the pick-n-swap model provides a very nice
balance between the complexity of the system (e.g., end-effector, workspace) design
and achievable efficiency. For example, if the end-effector cannot swap items, e.g., it
moves a picked item to a temporary location if it cannot be directly placed, it will make
the system twice as inefficient; it will double the number of pick-n-place operations as
picks and places are always executed with end-effector travel in between. The travel
distance also doubles as a result. It could be interesting to look at a dual-arm extension
of this work. Because the two arms can be at two places, additional efficiency gain
should be possible. However, because collision avoidance must be considered in a
dual-arm setting, the coordination of arms becomes non-trivial and can interfere with
the rearrangement planning process. Some related studies on the dual-arm setting but
not for lattice rearrangement can be found in [13]. It is also interesting to examine
when a single end-effector can hold k ≥ 2 items, which should also allow additional
efficiency gain. In our preliminary experiments, we noticed additional travel distance
savings, as a function of k, diminish quickly as k increases. Both dual-arm and hold-k
settings will likely incur more computation costs.

Acknowledgments
This work is supported in part by NSF awards IIS-1734419, IIS-1845888, and CCF-
1934924. We sincerely thank the anonymous reviewers for bringing up many insightful
suggestions and intriguing questions, which have helped improve the quality and depth
of the study.

References
[1] M. T. Mason, “Toward robotic manipulation,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 1, pp. 1–28, 2018.

[2] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning in
the now,” in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 1470–1477.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuo-
motor policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp.
1334–1373, 2016.

[4] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and
K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.

27

[5] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor,
M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morona, P. Q.
Nair, D. Green, I. Taylor, W. Liu, T. Funkhouser, and A. Rodriguez, “Robotic
pick-and-place of novel objects in clutter with multi-affordance grasping and
cross-domain image matching,” The International Journal of Robotics Research,
vol. 41, no. 7, pp. 690–705, 2022.

[6] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrangement
tasks,” IEEE Transactions on Robotics and Automation, vol. 14, no. 4, pp. 549–
565, 1998.

[7] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles: Real-
time reasoning in complex environments,” International Journal of Humanoid
Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[8] K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal algorithms
for one-to-one pickup and delivery problems with applications to transportation
systems,” IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2261–
2276, 2013.

[9] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric rearrangement of
multiple movable objects on cluttered surfaces: A hybrid reasoning approach,”
in 2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 445–452.

[10] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic randomized
rearrangement planning via dynamic transitions between statically stable states,”
in 2015 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 3075–3082.

[11] A. Krontiris and K. E. Bekris, “Dealing with difficult instances of object rear-
rangement.” in Robotics: Science and Systems, vol. 1123, 2015.

[12] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning using
object-centric and robot-centric action spaces,” in 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2016, pp. 3940–3947.

[13] R. Shome, K. Solovey, J. Yu, K. Bekris, and D. Halperin, “Fast, high-quality
two-arm rearrangement in synchronous, monotone tabletop setups,” IEEE Trans-
actions on Automation Science and Engineering, vol. 18, no. 3, pp. 888–901,
2021.

[14] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu, “Complexity re-
sults and fast methods for optimal tabletop rearrangement with overhand grasps,”
The International Journal of Robotics Research, vol. 37, no. 13-14, pp. 1775–
1795, 2018.

[15] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object rearrangement,”
in 2019 International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 211–218.

28

[16] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle rearrangement
for object manipulation tasks in cluttered environments,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 183–189.

[17] Z. Pan and K. Hauser, “Decision making in joint push-grasp action space for
large-scale object sorting,” arXiv preprint arXiv:2010.10064, 2020.

[18] K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algorithmica,
vol. 10, no. 2, pp. 201–225, 1993.

[19] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation: Con-
trollability, planning, and experiments,” The International Journal of Robotics
Research, vol. 18, no. 1, pp. 64–92, 1999.

[20] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,” Robotics:
Science and systems VII, vol. 1, 2011.

[21] A. Boularias, J. Bagnell, and A. Stentz, “Learning to manipulate unknown objects
in clutter by reinforcement,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, no. 1, 2015.

[22] N. Chavan-Dafle and A. Rodriguez, “Prehensile pushing: In-hand manipulation
with push-primitives,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 6215–6222.

[23] J. Yu, “Rearrangement on lattices with pick-n-swaps: Optimality structures and
efficient algorithms,” in Robotics: Science and Systems, 2021.

[24] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of motion
planning for multiple independent objects; PSPACE-hardness of the” warehouse-
man’s problem”,” The International Journal of Robotics Research, vol. 3, no. 4,
pp. 76–88, 1984.

[25] G. Wilfong, “Motion planning in the presence of movable obstacles,” Annals of
Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 131–150, 1991.

[26] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized path plan-
ning for multiple robots: Optimal decoupling into sequential plans.” in Robotics:
Science and systems, vol. 2, no. 2.5, 2009, pp. 2–3.

[27] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects from a pile,”
in 2012 IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 3875–3882.

[28] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny, A. D. Dragan,
and K. Goldberg, “Robot grasping in clutter: Using a hierarchy of supervisors
for learning from demonstrations,” in 2016 IEEE International Conference on
Automation Science and Engineering (CASE). IEEE, 2016, pp. 827–834.

[29] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects using a push
proposal network,” in Robotics research. Springer, 2020, pp. 405–419.

29

[30] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning
synergies between pushing and grasping with self-supervised deep reinforcement
learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 4238–4245.

[31] B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction prediction
network with application to clutter removal,” in Proceedings IEEE International
Conference on Robotics & Automation, 2021, note: to appear.

[32] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonprehensile whole
arm rearrangement planning on physics manifolds,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 2508–2515.

[33] M. Moll, L. Kavraki, J. Rosell et al., “Randomized physics-based motion plan-
ning for grasping in cluttered and uncertain environments,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 712–719, 2017.

[34] W. Bejjani, R. Papallas, M. Leonetti, and M. R. Dogar, “Planning with a receding
horizon for manipulation in clutter using a learned value function,” in 2018 IEEE-
RAS 18th International Conference on Humanoid Robots (Humanoids). IEEE,
2018, pp. 1–9.

[35] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic, and J. A.
Stork, “Multi-object rearrangement with monte carlo tree search: A case study on
planar nonprehensile sorting,” arXiv preprint arXiv:1912.07024, 2019.

[36] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation planning
among movable obstacles,” in Proceedings 2007 IEEE international conference
on robotics and automation. IEEE, 2007, pp. 3327–3332.

[37] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrangement tasks:
A fast extension primitive for an incremental sampling-based planner,” in 2016
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 3924–3931.

[38] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of com-
puter computations. Springer, 1972, pp. 85–103.

[39] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-
complete,” Theoretical computer science, vol. 4, no. 3, pp. 237–244, 1977.

[40] C. Nam, J. Lee, Y. Cho, J. Lee, D. H. Kim, and C. Kim, “Planning for target
retrieval using a robotic manipulator in cluttered and occluded environments,”
arXiv preprint arXiv:1907.03956, 2019.

[41] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” The Interna-
tional Journal of Robotics Research, vol. 33, no. 1, pp. 82–97, 2014.

[42] P. Flajolet and R. Sedgewick, Analytic combinatorics. cambridge University
press, 2009.

30

[43] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell
System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[44] D. B. Johnson, “Priority queues with update and finding minimum spanning
trees,” Information Processing Letters, vol. 4, no. 3, pp. 53–57, 1975.

[45] Y.-J. Chu, “On the shortest arborescence of a directed graph,” Scientia Sinica,
vol. 14, pp. 1396–1400, 1965.

[46] J. Edmonds, “Optimum branchings,” Journal of Research of the national Bureau
of Standards B, vol. 71, no. 4, pp. 233–240, 1967.

[47] L. A. Santaló, Integral geometry and geometric probability. Cambridge univer-
sity press, 2004.

[48] J. Canny and J. Reif, “New lower bound techniques for robot motion planning
problems,” in 28th Annual Symposium on Foundations of Computer Science (sfcs
1987). IEEE, 1987, pp. 49–60.

[49] J. S. Mitchell and M. Sharir, “New results on shortest paths in three dimensions,”
in Proceedings of the twentieth annual symposium on computational geometry,
2004, pp. 124–133.

[50] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval re-
search logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

31

	1 Introduction
	2 Rearrangement on Lattices: Problem Formulation
	3 Fully-Labeled Rearrangement in 1D
	3.1 Cycle Following with Left to Right Sweeping
	3.2 Cycle Sweeping with Cycle Switching

	4 Partially-Labeled Rearrangement in 1D
	4.1 Algorithm Description
	4.2 Algorithm Outline and Optimality Properties

	5 Rearrangement in 2D and Higher Dimensions
	5.1 Fully-Labeled 2D (LTR) and Higher Dimensions
	5.1.1 Labeled Rearrangement in 2D (LTR).
	5.1.2 Labeled Rearrangement in Higher Dimensions.

	5.2 Partially-Labeled 2D (PTR) and Higher Dimensions

	6 Simulation Studies
	7 Conclusions and Discussions

