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Abstract 

Rapid magnetic resonance imaging (MRI) and velocimetry (MRV) are non-invasive 

measurement techniques in 3D opaque systems with ~10 ms temporal resolution, enabling new 

opportunities to challenge the accuracy of computational models of flow. Comparisons between 

rapid MRI/MRV and computer simulations are limited by: (i) artifacts in rapid MRI techniques 

and (ii) non-trivial aspects of post-processing of computer simulation data to best match the 

measurement techniques. Here, we address these issues by starting with data from computer flow 

simulations of fluidized particles and feeding the data to a physics-based simulation of MRV 

measurements which captures potential artifacts introduced by the measurement techniques. Flow 

simulation data is then post-processed in various ways, demonstrating that (1) velocity and particle 

position data must be taken from flow simulations at different points in time to match MRV 

measurements and (2) imaging must be faster than flow fluctuation for MRV to produce effectively 

instantaneous velocity fields. 
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1 Introduction 

Magnetic resonance imaging (MRI) and velocimetry (MRV) are well-established methods of 

measuring flow in systems relevant to medicine and industry. MRI and MRV enable researchers 

to non-invasively examine the dynamics within optically opaque systems without the need for 

tracer particles that are used in typical experimental procedures such as confocal microscopy and 

Particle Imaging Velocimetry (PIV) 1. For instance, monitoring packed bed reactors in chemical 

industry with invasive techniques can only give overall properties such as pressure drop, liquid 

holdup, wetting efficiency and integral flow rates, while MRI can reveal inhomogeneity of the 

packing structure responsible for local variations of fluid velocities, holdup, and wetting 2. 

Therefore, in many circumstances, MR-based methods have an advantage over other flow 

measurement techniques employed in science and engineering. Resonance of nuclear spins of 

materials within a magnetic field is the phenomenon that forms the basis of nuclear magnetic 

resonance (NMR). In MRI, the spatial positions of the spins are resolved by applying magnetic 

field gradients to make the resonant frequency of nuclei depend on their spatial location, leading 

to “spin-density” images that depict the amount of NMR signal from each location in an image. In 

MRV, dedicated pulse sequences are employed to additionally determine the displacement of the 

spins. Phase contrast velocimetry (PCV) is a technique in MRV that enables encoding flow 

velocities in the x-, y- and z-directions based on the phase of NMR signal produced after applying 

bipolar pulsed field gradients 3. PCV can be combined with imaging gradients to produce a 

spatially resolved image of the velocity field in a flow system. Until recently, MRV was limited 

by temporal resolution to only measure a highly time-averaged velocity in a system 4. Much effort 

has been dedicated to improve the accuracy and temporal resolution of MRV techniques to 

measure flow systems with unsteady flow behavior on a temporally resolved level. 

Computer simulations which capture the physics of nuclear spin dynamics to model how MR 

would measure spin density or flow in a sample present an opportunity to evaluate the accuracy of 

MRI measurements. Ultimately, such insights have the potential to be used to improve 

accuracy and resolution of MR measurement techniques based on simulations which are 

inexpensive as compared to conducting MR experiments. MRI simulations can capture the effects 

of the following aspects on images 5 and flow measurements 6,7: (1) the “pulse sequence” of 

radiofrequency pulses and magnetic field gradients used 8–10, (2) sample NMR properties 11, (3) 

magnet and radiofrequency coil hardware 12, (4) sampling and reconstruction algorithm choice 13 

and (5) background noise 14. As such, simulations can reveal the difference between the effects 

arising from MRI physics and those caused by hardware imperfections, and hence, help researchers 

to optimize the available pulse sequences [3]. MRI simulations can help in designing novel pulse 

sequences 15 and reconstruction algorithms 13 for certain applications. Lastly, MRI simulations 

facilitate interpretation and analysis of experimental data through comparison 16. 

Only a handful of studies have simulated MRV to assess the level of accuracy of MRV 

measurement techniques 6,17,18. These studies have input flow data produced by computational 

fluid dynamics (CFD) simulations into MRV simulations to produce simulated MRV 
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measurements of velocity (Fig. 1). These studies then compared the input CFD velocity data to 

the output simulated MRV velocity data to assess the accuracy of MRV measurements 19. One 

study has used the software JEMRIS 16 to conduct MRV simulations on steady flows in a cerebral 

venous network using CFD 6. Another study conducted temporally averaged MRV simulations on 

granular particle flow simulation data to assess the accuracy of comparing different temporal 

averaging techniques for flow data with the temporal averaging conducted in MRV 20. Recently, 

MRV techniques have been combined with rapid imaging pulse sequences to achieve temporally-

resolved measurements of granular flows in highly unsteady flow units known as fluidized beds 
21–24. While these rapid MRV techniques are promising for characterizing a number of complex 

flows, potential inaccuracies to MRV introduced by the rapid imaging techniques and fast flow 

dynamics are difficult to assess. We are unaware of prior MRV simulation studies which have 

tested rapid MRV pulse sequences for high temporal resolution applied to unsteady flows to 

characterize the accuracy of these MRV measurement techniques. 

 

 

Fig. 1 Schematic of the use of CFD and MRV simulations to assess the accuracy of MRV 

techniques to measure flow in specific flow systems. 

 

This study seeks to utilize CFD-Discrete Element Method (CFD-DEM) simulations to produce 

particle flow data for both steady and unsteady flows which then can be fed into MRV simulations 

to assess the accuracy of MRV techniques in measuring various flows (Fig. 1). MRI and CFD-

DEM have both been used extensively to study the complex dynamics of fluidized beds 25–29. 

Fluidized beds involve granular particles suspended by upward gas flow, creating rapid and 

complex dynamics in process units used in pharmaceuticals, polymers and clean energy 

technologies 30–32. Several prior studies have compared CFD-DEM simulation results with MRI 

experiments to assess the accuracy of CFD-DEM simulations, utilizing time-averaged and time-

resolved flow data 25,33. One prior study has utilized CFD-DEM data in MRV simulations with 

time-averaged flow measurements to study the effect of averaging techniques applied to flow 

measurements on how they compare with MRV measurements 20. Here, we seek to close the loop 

on recent studies comparing time-resolved CFD-DEM and MRV data. This is achieved by 
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incorporating MRV simulations that utilize CFD-DEM data to assess the accuracy of rapid MRV 

experimental techniques (Fig. 2). Further, we seek to gain insights into the best ways to post-

process CFD and DEM data to create accurate comparisons with MRI techniques, such that 

discrepancies between simulations and measurements come from inaccuracies in simulations or 

measurements, rather than inaccuracies in the post-processing for the comparison. 

 

Fig. 2 Schematic of the approaches of prior studies vs. this study to utilize MRV 

measurements and CFD-DEM simulations to understand the effect of MRV measurement 

artifacts and identify the best CFD-DEM post-processing methods. 

 

2 Numerical methods 

2.1 Flow modeling  

The Discrete Element Method (DEM) is a Lagrangian approach that models particle motion 

through tracking individual particles in space and time. For this purpose, Newton’s and Euler’s 

second laws are used for translational and rotational modes of motion, respectively. Cundall and 

Strack 34 were the first to introduce the DEM method in 1979 utilizing springs and dashpots as 

well as friction to account for the contact forces which arise between particles. CFD-DEM is the 

result of coupling this approach with Computational Fluid Dynamics (CFD), which makes it 

suitable for the simulation of fluid-particle systems. In CFD-DEM, the fluid is treated as a 

continuum whose motion can be described by volume-averaged Navier-Stokes (NS) equations. 

The flow field is divided into cells with size larger than the particle, but smaller than the system 

length scale. The effect of motion of particles on the fluid flow is accounted for by the volume 

fraction of each phase and the momentum exchange through the drag force 35. On an Eulerian grid 
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with a cell volume of 𝑉𝑐, the gas-phase volume-averaged NS equations in the presence of the 

particulate phase are: 

𝜕(𝜀g𝜌𝑔)

𝜕𝑡
+ ∇ ∙ (𝜀g𝜌g𝒖⃗⃗ 𝐠) = 0 (1) 

𝜕(𝜀g𝜌g𝒖⃗⃗ 𝐠)

𝜕𝑡
+ ∇ ∙ (𝜀g𝜌g𝒖⃗⃗ 𝐠𝒖⃗⃗ 𝐠) = −𝜀g∇𝑝g + ∇ ∙ 𝝉̿𝐠 + 𝜀g𝜌g𝒈⃗⃗ + ∑ 𝛽

𝑉𝑝

𝑉c

𝑁𝑝

𝑝=1

(𝒖⃗⃗ 𝒑 − 𝒖⃗⃗ 𝐠) (2) 

where 𝜀g, 𝜌g, 𝑝g, and 𝒖⃗⃗ 𝐠 denote the void fraction, density, pressure, and local average velocity 

of the gas phase, respectively. In Equation (2), the velocity of the solid particle is shown as 𝒖⃗⃗ 𝒑, 𝛽 

is the interphase momentum exchange coefficient, 𝑉𝑝 is the volume of each particle, 𝑁𝑝 is the total 

number of particles, and 𝒈⃗⃗  represents the gravitational acceleration. 

Forces imposed on the particle include gravity, contact force between particles, and fluid-

particle interaction 35. Newton’s equations of motion account for the motion of 𝑁𝑝 spherical 

particles with the diameter of 𝑑𝑝 and density of 𝜌𝑝 according to the following: 

𝑚𝑝

𝑑𝒖⃗⃗ 𝒑

𝑑𝑡
= 𝑚𝑝𝒈⃗⃗ + 𝑭⃗⃗ 𝐜 + 𝑭⃗⃗ 𝐝 (3) 

 𝐼𝑝
𝑑𝝎⃗⃗⃗ 𝒑

𝑑𝑡
= 𝑻⃗⃗ 𝒑 (4) 

where 𝑚𝑝 is the particle’s mass, 𝑭⃗⃗ 𝐜 and 𝑭⃗⃗ 𝐝 are the net contact force with other particles and 

walls and the drag force exerted by the surrounding gas phase, respectively. 𝐼𝑝 is the moment of 

inertia of the particle, 𝝎⃗⃗⃗ 𝒑 is the particle angular velocity, and 𝑻⃗⃗ 𝒑 is the sum of all torques exerted 

on the particle. Momentum exchange in each fluid flow cell describes the fluid-particle interactions 

for the fluid phase, while force acting on each individual particle is considered for the fluid–particle 

drag force for the solid phase. 

2.2 Flow simulation setup 

In the examined flow systems of this study, spherical particles are moving in a 3D cylindrical 

container that is 190 mm in diameter at the base and 300 mm in height. The cases that will be 

studied include two less complex flow situations in which velocities are applied manually to the 

particles giving them (i) a parabolic velocity profile or (ii) a uniform velocity profile (i.e. plug 

flow). The two other flow cases come from CFD-DEM simulations of an incipiently fluidized bed 

into which two side-by-side high-velocity air jets are injected into (iii) 3 mm diameter particles 

and (iv) 1 mm diameter particles. In cases (iii) and (iv), two ports at the base of the system inject 

gas rapidly; these ports are 40 mm apart and each have a diameter of 7.95 mm. The minimum 

fluidization velocity (Umf) for the 3 mm particles is 0.7 m/s and 0.25 m/s for the 1 mm particles, 
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and the bed is incipiently fluidized with a corresponding gas flow rate through the distributor. The 

gas velocity through the injection ports is set at 40 m/s. Fig. 3a shows the CFD-DEM flow setup 

and the slice that will be ultimately used to extract data from for MRI simulations and CFD-DEM 

post-processing. Figs. 3b-d show cross-sectional views of how the particles attain velocities in 

different cases. Fig. 3b shows the velocities assigned to particles to provide a steady parabolic 

profile. Fig. 3c and 3d depict how the air jets interact with one another in different manners in 

fluidized beds with different particles sizes. 

 

Fig. 3. CFD-DEM simulation setup. (a) The cylindrical bed filled with 3 mm particles and 

incipiently fluidized with a superficial gas velocity of 0.7 m/s, in addition to injection of two 

high velocity air jets at 40 m/s. The narrow black box shows the slice used in MRI simulations 

and to extract data for CFD-DEM post-processing. The same system is used without injection of 

high velocity air jets to make parabolic and plug flow profiles. (b) cross-sectional view of the 

system with 3 mm particles and a parabolic flow profile, (c) cross-sectional view of the system 

with 3 mm particles with Umf = 0.7 m/s and air jets’ velocities of 40 m/s, (d) cross-sectional view 

of the system with 1 mm particles with Umf = 0.25 m/s and air jets’ velocities of 40 m/s. 

2.3 Modeling of MRI 

JEMRIS (The Jülich Extensible MRI Simulator) software 36 is employed to conduct physics-

based simulations of MRV measurements for this study. This package is an extendable MRI 

simulation framework, written in C++, enabling the users to develop MRI sequences and simulate 

3D MRI experiments 37. The key feature of JEMRIS is that, instead of providing predefined MRI 

sequences and experimental setups, it comes with a number of basic building modules that enable 

the researchers to construct any new sequences that they desire. 
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In an MRI simulation, the object to be imaged is divided into equal subvolumes called 

“isochromats”. For convenience, the terms “isochromats” and “spins” will convey the same 

meaning throughout this text. Taking that into consideration, “isochromats summation” is the 

simulation method used in JEMRIS, meaning that it sums the magnetization signal generated by 

each of the spins contained in the system 19. This is the most popular method used to simulate 

MRI. The Bloch equations 38 describe quantum MRI physics from a classical physics perspective 

by giving the temporal evolution of the magnetization vector of the spins, 𝑀⃗⃗ , in the presence of an 

external magnetic field, 𝐵⃗ , and by taking into account the NMR properties of the sample 39. The 

NMR properties include the equilibrium magnetization, 𝑀⃗⃗ 0, the longitudinal relaxation time, 𝑇1 

(also known as spin-lattice relaxation time), and the transverse relaxation time, 𝑇2 (also known as 

spin-spin relaxation time). It is assumed that the isochromats possess uniform physical properties, 

such as relaxation times, equilibrium magnetization, and magnetic susceptibility 40. 

The magnetization of each spin is rotated into a transverse plane with respect to the axis of the 

main magnetic field by application of an RF pulse by an angle determined the duration and strength 

of the RF pulse. In between the application of RF pulses, the evolution of spin magnetization 

consists of 𝑇1 recovery, 𝑇2 relaxation, motion, as well as the effect of the applied gradients. A k-

space array is formed by summing the contribution of all spins at each time step during “sampling”. 

The ultimate image is generated by Fourier transformation of the k-space data 41.  

The evolution of magnetization of spins within a magnetic field, 𝐵⃗ , can be described by the 

Bloch equations: 

 
𝑑𝑀⃗⃗ 

𝑑𝑡
= 𝛾𝑀⃗⃗ × 𝐵⃗ − (

𝑀𝑥/𝑇2

𝑀𝑦/𝑇2

(𝑀𝑧 − 𝑀0)/𝑇1

) (5) 

where 𝛾 is the gyromagnetic ratio. Note that at equilibrium, the net magnetization vector, 𝑀⃗⃗ 0, 

points towards the direction of the static magnetic field in z-direction, typically denoted as, 𝐵0
⃗⃗⃗⃗ . As 

can be seen, Equation (5) is a set of three equations for each direction of magnetization, 𝑀⃗⃗ =

(𝑀𝑥, 𝑀𝑦, 𝑀𝑧). These equations can be solved to calculate the macroscopic magnetization in a voxel 

at a certain time 42. The macroscopic approach to treat the temporal evolution of spins in a bulk 

liquid assumes the spins to add up linearly in order to form a net magnetization vector that can be 

described by Bloch’s equations. Using the same argument, in this work we treat the behavior of 

all spins within one particle as one sum vector which are described by Bloch’s equations. 

All the MR sequence parameters, including RF pulses and gradients, are accounted for by the 

magnetic field term 𝐵⃗  40. The expression for this term at time 𝑡 and position 𝑟  is given by 

 𝐵⃗ (𝑟 , 𝑡) = (𝐺 (𝑡). 𝑟 +
Δω(𝑟 , t)

𝛾
) 𝑒 𝑧 + 𝐵⃗ 1(𝑟 , 𝑡) (6) 
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where 𝐺 (𝑡) are the gradient fields used to encode position in three spatial directions, Δω is the 

off-resonance term, and 𝐵⃗ 1 accounts for the RF field excitation, which is orthogonal to the main 

field (𝐵⃗ 1 ⊥ 𝑒 𝑧) 39,43. 

MRI simulators usually deal with samples which are static biological tissues. However, the 

sample in this study is a flow involving traveling spins. Therefore, we are required to determine 

the trajectory of each individual spin. If we adopt a Lagrangian approach to build the sample file, 

static tissues and flowing particles will be treated similarly and there is no need to have different 

solvers for each. In this approach, the position of each spin over time is recorded (𝑟 ⃗⃗ = 𝑟 ⃗⃗ (𝑡)) and 

fed to the Bloch equation solver to change the field value seen by the particle 40: 

 𝐵⃗ (𝑟 , 𝑡) = (𝐺 (𝑡). 𝑟 ⃗⃗ (𝑡) +
Δω(𝑟 , t)

𝛾
) 𝑒 𝑧 + 𝐵⃗ 1(𝑟 , 𝑡) (7) 

Fortunately, in CFD-DEM simulations, the DEM part is a Lagrangian approach which tracks 

the particles in space and time. Hence, we can extract the positions of each particle over time and 

introduce them to JEMRIS as the trajectories of a set of spins. Since JEMRIS default settings 

address only rigid samples, they allow only one trajectory for all the spins. The ability to import 

steady-state CFD data into JEMRIS was developed first in 2016 by Ancel et al. 40. However, here 

we are dealing with time-varying DEM data. A Matlab code was therefore written that extracts the 

position of each particle in the DEM data, and puts them in a certain format, including the 

activation command for each spin, recording the positions at a certain number of time steps, 

deactivating it, and then moving to the next spin. 

An Echo Planar Imaging (EPI) sequence was implemented within the JEMRIS framework (Fig. 

4) to compare with existing MRI measurements 24,44. While recently developed rapid MRI 

measurements for granular flows employ SENSE and partial-Fourier acceleration 24,45, a full k-

space simulation was performed here. The read and phase prewind were superposed to the velocity 

encoding gradients, in case velocity was encoded in that x-, y- or z-direction. The repetition time 

is 2 s, the echo time is 29.43 ms, a slice thickness of 15 mm, a Field-of-View of 195 × 265 mm² 

with 64 × 64 acquisition points. The Field-of-Flow is set to 6000 mm/s with a δ = ∆ of 2 ms. 
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Fig. 4: Pulse sequence diagram of an EPI sequence with 64 lines sampled in k-space. The dotted 

lines represent the gradients switched if velocity is encoded in the respective gradient direction. 

2.4  Other Post-Processing Methods for CFD-DEM Data  

 For comparison with JEMRIS MRV simulations, the CFD-DEM particle data was post-

processed in other manners which would be easier for flow simulation specialists to use to process 

data for comparison with MRV measurements. Five different methods (Methods a-e) were 

conducted, as shown schematically in Fig. 5. CFD-DEM data was taken every 0.5 ms, creating a 

total of 110 frames over the 55 ms of the pulse sequence duration, each frame providing 

information on the position and velocity of each individual particle. Each particle was mapped into 

a pixel based on the pixel in which the center of the particle was located. Method a determines 

particle position and velocity data used to make velocity maps based on averaging 110 frames over 

the entire duration of the pulse sequence. Method b determines the velocity map based on 

averaging particle velocity maps over the 11 frames during flow-encoding period. Method c uses 

the velocity map from a single frame at the center of the imaging period of the pulse sequence (i.e. 

center of k-space). Method d uses the velocity map from a single frame at the center of the flow-

encoding period (i.e. the bipolar gradient period). Method e takes the particle velocity data from a 

single frame at the center of the flow-encoding period and uses the particle position data from a 

single frame at the center of the imaging period. 

 

Fig. 5 Schematic of the post-processing methods (Methods a-e) other than JEMRIS applied to the 

particle position and velocity data from CFD-DEM simulations to produce particle velocity maps. 

3 Results and discussion 

In order to investigate the capability of the developed pulse sequence in JEMRIS to accurately 

capture the flow phenomena, two simpler cases of flow are studied first. For this purpose, the 

particles were assigned vertical velocities with parabolic profile shape in one case (Fig. 6, top 
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row), and uniform flow profile (i.e., plug flow) in the other case (Fig. 6, bottom row). The particles, 

3 mm in diameter, reach a maximum vertical velocity of 100 mm/s in both cases. The first column 

of Fig. 6 shows the results obtained from CFD-DEM simulations on a cross-sectional slice. The 

local velocities are averaged over a period of 55.22 ms. This is equal to the duration of the 

implemented MR pulse sequence and makes comparison between JEMRIS and CFD-DEM results 

possible. In averaging the CFD-DEM results, the velocities are extracted from a 15 mm thick slice, 

and displayed with a 64×64 resolution, equal to the slice thickness and image resolution used in 

JEMRIS simulation. The corresponding MRV simulation results are shown in the middle column. 

The field of view (FoV) and slice position in both CFD-DEM and JEMRIS simulations are as close 

to one another other as possible. The FoV is 200 × 200 mm, and the center of the slice is positioned 

at a height of 150 mm from the inlet. In the third column, the difference between the CFD-DEM 

and MRI simulations results are depicted. As it can be observed, the difference in both cases is 

near zero, which demonstrates the accuracy of the MRV simulation platform employed in this 

study. These results also demonstrate that averaging CFD-DEM data over the full duration of the 

pulse sequence creates an accurate comparison with the JEMRIS simulations in cases with steady 

flow. 
 

 

Fig. 6. Results of the CFD-DEM (left column), JEMRIS (middle column), and their 

difference (right column) for cases of parabolic flow profile (first row) and plug flow profile 

(second row). 

 

After establishing the functionality of the implemented pulse sequence in JEMRIS, CFD-DEM 

simulations are conducted for two scenarios of incipiently fluidized beds, along with injection of 

two high-velocity air jets adjacent to each from the base. The dimensions of the system and the 

height of the particles filling the system are akin to the cases described above for the plug flow 
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and parabolic flow simulations. As mentioned earlier, for the case of 3 mm particles, the bed is 

incipiently fluidized with a gas velocity of 0.7 m/s and the jet velocity through the injection ports 

is set at 40 m/s. The MRI measurements of this case were previously conducted by Penn et al. 44 

and time series images of particle concentration from MRI measurements and the CFD-DEM 

simulations are shown on axial slices in Fig. 7. From this figure, it can be observed that CFD-

DEM flow simulations can capture the major phenomena of jet interaction and bubble pinch off 

seen in experiments. 

 

Fig. 7. Time series of signal intensity images of 3-mm particles from (a) prior MRI 

measurements 44 and (b) CFD-DEM simulations. The images represent a central axial slice with 

a thickness of 10 mm. 

The results of the CFD-DEM simulation are then exported to JEMRIS to perform the MRI 

simulation. Fig. 8a shows the signal intensity image obtained on a central axial slice from JEMRIS. 

The color bar is normalized, such that the maximum signal in the image is shown as 1, and areas 

without any detected signal are shown as zero. The image represents the signal intensity imaged 

produced by the full 55-ms-long pulse sequence, and it can be observed that four distinct low-

signal regions exist. Two almost identical low-signal areas in the lower half of the figure, near the 

two injection ports, and another pair around the top surface of the bed, where two bubbles erupt. 

It was later observed in MRV that these areas show up highly noisy in the velocity plots due to the 

low signal intensity. Therefore, it was decided to mask the areas in the signal intensity image where 

the signal magnitude was less than 30% of the maximum signal, and the masked areas were then 

removed from the subsequent velocity calculations (Fig. 8b). Noise in low particle concentration 

regions was also seen in the prior experimental MRV data, and thus masking was used in the 

presentation and analysis of the prior data as well 44. 
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Fig. 8. Signal intensity images taken from a JEMRIS MRI simulation. (a) raw simulation output 

and (b) masking voxels with less than 30% of the maximum signal intensity with the masked 

areas removed from calculations. 

Fig. 9 shows the vertical component of particle velocity (Vz) on a central slice with a thickness 

of 15 mm for the fluidized bed of 3 mm particles. The first row of Fig. 9 depicts the JEMRIS 

results, the second row depicts CFD-DEM data processed with different post-processing 

techniques and the third row shows the difference between JEMRIS and CFD-DEM with different 

post-processing techniques. Areas masked due to low particle concentration in either the first or 

second row of Fig. 9 show up as voided in the corresponding voxel in the difference plot. As can 

be seen from the third row of Fig. 9, the JEMRIS MRV simulation results are fairly close to the 

CFD-DEM results in most regions no matter how the CFD-DEM results are processed. However, 

there are some significant discrepancies in regions with high particle velocity between the jets and 

the bubbles. Post-processing techniques which give more weight to the velocities of the particles 

during the imaging portion of the pulse sequence (a and c) provide velocities in the high velocity 

region which are lower than those seen in the JEMRIS simulation. Post-processing techniques 

which give more weight to the flow encoding portion of the pulse sequence (b and d) provide 

velocities which are higher than those seen in the JEMRIS simulation and bubble positions which 

are lower than those seen in the JEMRIS simulation. Post-processing of the CFD-DEM data such 

that the particle velocities are taken at the center of the flow encoding yet the particle positions are 

taken at the center of the imaging gradients match JEMRIS simulation results most closely. The 

closeness of the match between CFD-DEM and JEMRIS is assessed by the normalized mean-

squared difference in the velocity measurements: 

𝜇MS =
1

𝑁
∑(

𝐽𝑖 − 𝐶𝑖

𝐶𝑖
)
2𝑁

𝑖=1

 (8) 

where 𝑁 is the number of pixels in the FoV, and 𝐽𝑖 and 𝐶𝑖 denote the vertical velocities in cell 𝑖 

from JEMRIS and CFD-DEM, respectively. The standard deviation of the normalized mean-

squared difference was calculated according to: 
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𝜎MS = √
1

𝑁
∑[(

𝐽𝑖 − 𝐶𝑖

𝐶𝑖
)
2

− 𝜇MS]

2𝑁

𝑖=1

 (9) 

The results in Fig. 9 can be explained as follows. The MRV portion of the pulse sequence 

encodes for particle velocity during the flow encoding gradients at the start of the pulse sequence, 

while the MRI portion of the pulse sequence encodes for particle positions during the imaging 

gradients, mainly when the imaging gradients pass through the center of k-space. Particle positions 

and velocities change as bubbles rise through the system during the 55 ms duration of the pulse 

sequence since the time for bubble pinch off, rise and eruption is roughly 144 ms as seen in Fig. 

7. As such, simply averaging the positions and velocities over the entire 55 ms (Fig. 9a) is not a 

fully accurate description of what the MRI pulse sequence is actually measuring, nor is taking the 

particle positions and velocities during the flow encoding (Figs. 9b and d) or the imaging (Fig. 

9c) portion of the pulse sequence. As such, the results indicate that when variations in flow 

dynamics occur over the same time frame as the length of the pulse sequence, processing of CFD 

or DEM data must take this into account by assessing velocities during flow encoding and 

concentration or signal intensity when imaging is at the center of k-space (Fig. 9e). Further, the 

results emphasize that rapid MRV techniques can only be taken as an effectively instantaneous 

measurement of dynamics when the time scale for fluctuations in flow and concentration is long 

as compared to the time of the pulse sequence. This conclusion is supported by the fact that the 

match between MRV and instantaneous particle velocities is very close for steady flows with 

effectively infinite time scales for flow fluctuations. In contrast, when the flow is unsteady in the 

fluidized beds, the faster the flow fluctuations become with decreasing particle size, the larger the 

mismatch between MRV and instantaneous particle velocities become, as seen in Table 1 and Fig. 

10. This relationship can be expressed with:  

𝑡flow fluc

𝑡pulse seq
=

𝑑𝑧/𝑉flow fluc

𝑡pulse seq
> 1  (9) 

The ratio 𝑡flow fluc/𝑡pulse seq quantifies the fluctuation of flow during the duration of the pulse 

sequence. A number much higher than one means that the flow varies slower than the pulse 

sequence captures it while a number smaller means that the flow changes within one duration. 

Since the particle velocities fluctuate rapidly in time and space in fluidized beds, we approximate 

the fluctuating particle velocity, 𝑉flow fluc, as the particle velocities observed themselves, Vz. In this 

case, the fastest particle velocities are 1000 mm/s and a pixel is 3.1 mm long in flow direction (dz), 

which results in a value for 𝑡flow fluc of 31 ms. With a pulse sequence duration of 55 ms, the ratio 

is 0.56, and thus it is not accurate to assess the MRV measurement simulated by JEMRIS as an 

effective instantaneous measurement of flow dynamics. Based on this assessment, the faster 

velocities are in a heterogeneous multiphase flow, the less likely rapid MRV is to produce an 

accurate measurement of the instantaneous flow field. Note that for a steady flow as in Fig. 5, the 
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time scale for flow fluctuations is infinity and no accuracy reduction due to instantaneous 

dynamics is expected from different MRI pulse sequences. This is seen in Table 1, since all types 

of CFD-DEM post-processing match JEMRIS equally for the steady plug flow. Note that the two 

simple steady flows shown here only have one-dimensional flow in the direction out of the imaging 

plane. Steady flow cases with more complex flow profiles including non-zero flow components 

along the imaging plane are susceptible of imaging artifacts arising from particle location and 

velocity being registered when the particle is at different points in space and time, as seen here for 

the unsteady flows. 

Table 1. Normalized mean-squared difference (Eq. 8) between MRI simulation results and 

different post-processing methods of CFD-DEM. The numbers after ± indicate the standard 

deviation in the normalized mean-squared difference (Eq. 9) 

 Method a Method b Method c Method d Method e 

steady flow 

(plug flow) 

0.250 ± 

0.001 

0.250 ± 

0.001 

0.250 ± 

0.001 

0.250 ± 

0.001 

0.250 ± 

0.001 

Gas-jet injected 

Fluidized bed  (3 

mm particles) 

 177 ± 24  70 ± 12  78 ± 10  61 ± 11  26 ± 14 

Gas-jet injected 

Fluidized bed  (1 

mm particles) 

307 ± 9 741 ± 16  585 ± 19  770 ± 19 168 ± 8 

The same set of simulations are repeated for 1 mm particles, with all other simulation 

parameters kept the same. Since drag force from the gas flow pushes smaller particles around more 

easily, the particles move faster and the bubbles have more complex dynamics in the 1 mm particle 

case than in the 3 mm particle case. Results of the simulations and the difference plots are presented 

in Fig. 10. During the 55 ms of the pulse sequence, the shape and position of jets and bubbles 

changes a large amount (Fig. 11b), with significantly more change than during the same time 

frame for the 3 mm particles (Fig. 11a). Thus, depending on the post-processing technique for the 

CFD-DEM data (Fig. 10a-e) different regions are voided of data, corresponding to where bubbles 

are registered from the post-processing. Since MRV measures particle positions mainly when the 

imaging gradients are in the center of k-space, post-processing of CFD-DEM data which does the 

same (Fig. 10c and e) match the bubble positions most closely. However, since MRV measures 

particle velocities largely at the center of the flow encoding gradients, the post-processing of CFD-

DEM data in Fig. 10e matches that from JEMRIS most closely as quantified by the normalized 

mean-squared difference. The ratio 𝑡flow fluc/𝑡pulse seq sequence is even lower for the 1 mm 

particles at 0.036 due to the higher particle velocities, indicating that the approximation of rapid 

MRV as an instantaneous measurement of velocity field is even worse. This lower ratio explains 
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why Table 1 shows that the normalized mean-squared differences for the 1 mm particles in Fig. 

10 are higher than those for the 3 mm particles in Fig. 9. 

 

Fig. 9. Vertical velocity (Vz) obtained from JEMRIS (top row), CFD-DEM (a-e), and the 

corresponding difference plots (f-j), for 3 mm particles, and jet velocity of 40 m/s. (a and f) time-

averaged velocity over the time frame of the entire pulse sequence, (b and g) time-averaged 

velocity over the time frame of the bipolar gradients, (c and h) instantaneous velocity at the time 

at which the imaging portion of the sequence is at the center of k-space, (d and i) instantaneous 

velocity at the time at the center of the bipolar gradients, (e and j) particle velocities taken at the 

instant in the center of the bipolar gradients, but particle positions taken later when the imaging 

gradients are in the center of k-space 
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Fig. 10. Vertical velocity (Vz) obtained from JEMRIS (top row), CFD-DEM (a-e), and the 

corresponding difference plots (f-j), for 1 mm particles, and jet velocity of 40 m/s. (a and b) 

time-averaged velocity over the time frame of the entire pulse sequence, (c and d) time-averaged 

velocity over the time frame of the bipolar gradients, (e and f) instantaneous velocity at the time 

at which the imaging portion of the sequence is at the center of k-space, (i and j) instantaneous 

velocity at the time at the center of the bipolar gradients, (k and l) particle velocities taken at the 

instant in the center of the bipolar gradients, but particle positions taken later when the imaging 

gradients are in the center of k-space. 
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Fig. 11. Time-series images of signal intensity obtained from CFD-DEM post-processing on a 

central slice with a thickness of 10 mm for the case of (a) 3 mm particles, and (b) 1 mm particles. 

Signal intensity in MRI simulation is equivalent to average number of particles in each cell in 

CFD-DEM post-processing.  

4 Conclusion 
Rapid MRI and MRV offer some novel opportunities to non-invasively measure unsteady flow 

dynamics in opaque multiphase flow systems, and rapid MRI measurements have recently been 

used to assess the accuracy of flow simulations of fluidized beds 25,46. The insights on flow physics 

gained from comparisons between MRI and flow simulations is limited by the potential artifacts 

in MRI measurements and the fact that identifying the best way to compare flow simulation data 

with MRI measurements is non-trivial. Here, we have first demonstrated through MRV simulation 

that an MRV measurement does not inherently introduce significant artifacts into velocity field, as 

seen by the comparison between CFD-DEM simulation and MRV simulation of steady flow. At 

the same time, the nature of MRV measurements makes it such that comparing an MRV 

measurement of an unsteady flow with flow simulation data from a single instant or averaged over 

the duration of the pulse sequence does not provide a fair assessment of the accuracy of the flow 

simulation if velocity fluctuations are much faster than the pulse sequence. Instead, the most 

accurate comparison of MRV measurements with CFD simulations comes from processing 

velocity data from the CFD data at a time corresponding to the center of the flow encoding 

gradients while taking position data at a later time corresponding to the center of k-space. This 

insight also highlights that rapid MRV measurements can only be approximated as instantaneous 

measurements of a flow field if the flow field is evolving much slower than the measurement 

duration. More rapid flow fluctuations in a multiphase flow make it more difficult to compare 

rapid MRV measurements with flow simulations. 
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Future work can expand upon this study in a number of ways. First, other pulse sequences, 

sources of noise and post-processing techniques can be incorporated to capture the physics of more 

advanced MRI techniques, such as partial Fourier scanning 47 and SENSE reconstruction 48. These 

developments to the MRI simulations would allow for higher temporal resolution while also 

incorporating new sources of artifacts in MRI measurements. Further, the k-space signal produced 

by a single spherical or ellipsoidal particle (as demonstrated in 49) could be calculated and 

integrated into the MRI simulation framework presented here. Utilizing the Fourier shift theorem, 

the signal generated by moving particles could be modeled by incorporating this shape factor into 

the simulation of moving points presented here. This approach has the potential to increase the 

accuracy of k-space simulation and therefore improve the accuracy of the MRI simulations. 

Additionally, a recent work by Clarke et al. 50, has shown that rotation motion of particles can lead 

to substantial signal attenuation and hence to an amplified velocity variance. In the present work 

we did not take into account the effect of rotational motion on the MRI measurements. In future 

works, this effect could be incorporated into the simulation framework to increase its accuracy 

further. Further, the effect of slice-selecting gradients on flow measurement could be quantified in 

future studies as well as how these artifacts can be reduced by changing the shape of the slice-

selecting gradients. Finally, flow and MRI simulations could be compared across a wider range of 

flow systems to view the effects studied here on MRI and CFD studies of e.g. dense suspensions, 

polymer solutions and hopper flows. As such, the framework provided by this paper can enable 

further insights into how to improve MRI measurements, flow simulations and the insights drawn 

from comparing MRI and CFD.    
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