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Summary

¢ Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which
is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from
thawing permafrost has the potential to change vegetation composition and increase produc-
tivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits,
RAF, and access to permafrost N is uncertain.

¢ We investigated the relationships between RAF, species-specific root traits, and uptake of
N from the permafrost boundary by tundra plants experimentally warmed for nearly three
decades at Toolik Lake, Alaska.

e Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF
community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was
impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte,
ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs.
Overall, a greater proportion of variation in permafrost N uptake was related to root traits
than RAF.

e Our findings suggest that warming Arctic ecosystems will result in interactions between
roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate
system through mechanisms of carbon and N cycling.

Introduction

Striking vegetation transformations have been observed across
the circumarctic in recent decades (Sturm et al, 2001; Tape
et al., 2006; Elmendorf ez al., 2012). These shifts have the poten-
tial to amplify or moderate feedbacks to the climate system (Cha-
pin ez al., 2005; McGuire ez al., 2006; Blok et al., 2010; Pearson
et al., 2013), yet the underlying mechanisms that facilitate vegeta-
tion change with warming are not clear. The strong nutrient lim-
itation of tundra ecosystems (Chapin & Shaver, 1985; Mack
et al., 2004; DeMarco ez al., 2014) suggests that plant traits influ-
encing nutrient uptake will likely affect the pace and magnitude
of vegetation transitions with future warming.

Arctic tundra is underlain with permafrost soils (Brown
et al., 1997). With directional warming, the active layer, the season-
ally thawed portion of the soil profile, deepens, releasing nitrogen
(N) from previously frozen soil (Keuper ez al, 2012; Salmon
et al., 2018). As decomposition ensues, the pool of newly thawed
permafrost N matches or exceeds the pool of N in active layer soils
with upward of 1.8-3 g N'm ™ released (Mack er 4/, 2010; Keuper
et al., 2012), an amount that meets annual plant demand (Shaver
& Chapin, 1991). To access newly thawed N, plants rely on root
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proliferation and mycorrhizal fungi. Recent studies document that
the deep roots of nonmycorrhizal (NM) plants with low-growth
potential enable them to take up permafrost N late in the growing
scason when the active layer thickness is greatest (Keuper
et al., 2017; Blume-Werry et al, 2019; Hewitt er al, 2019),
whereas shallowly rooted but high-growth potential mycorrhizal
shrubs may need to rely on mycorrhizal fungi to access newly
thawed permafrost N (Hewitt ez al, 2020).

The traits of fine roots and identities of root-associated fungi
(RAF) underlie resource acquisition strategies. For root traits, this
can present as a fine-root economic spectrum, a gradient from
acquisitive to conservative strategies (Freschet er al, 2010).
Acquisitive traits, for example, low root tissue density (RTD) and
high tissue N, are suggestive of rapid acquisition of soil nutrients
and intensive resource use, that is carbon (C) currency spent, to
support high-growth potential. By contrast, conservative traits,
such as high RTD and lower tissue N are characteristics of slow
growth,
well-defended slow-cycling tissues. Increasingly, studies show

low-resource use, and greater investment in
that variation in fine-root chemical and morphological traits is
represented by multiple gradients and impacted by RAF

(Weemstra ez al., 2016; McCormack & Iversen, 2019; Weigelt
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et al., 2021), resulting in a multidimensional root economic
space (Bergmann ez al, 2020). Plants can employ a resource
acquisition strategy that ranges from nonmycotrophic, that is
reliant on root production and high specific root length (SRL), to
mycotrophic, that is nearly complete reliance on RAF and with
high diameter roots that support colonization by RAF (Berg-
mann ez al., 2020). Because mycorrhizal relationships can alter
root morphology and plant resource economics, they are asso-
ciated with variation in root traits (Peay ez al., 2011; McCormack
& Iversen, 2019; Spitzer ez al., 2021).

In tundra, ericoid (ERM) and ectomycorrhizal (ECM) fungi
along with dark septate endophytes (DSE) dominate (Newsham
et al., 2009; Timling & Taylor, 2012), are implicated in soil
nutrient acquisition (Read & Perez-Moreno, 2003; News-
ham, 2011), and exhibit taxon-specific variation in nutrient
transfer to host plants as well as costs of the symbiosis to plants
and fungi (Smith & Read, 2008). RAF species vary in traits
related to nutrient acquisition in ways akin to roots. For example,
some ECM fungi produce long-distance cords to transport nutri-
ents long distances, while others produce thinner hyphae with
higher surface area for nutrient uptake (Agerer, 2001; Chen
et al., 2018). Furthermore, there are associations between specific
plant root traits and mycorrhizal traits (Peay et al., 2011), but the
majority of research on root traits has not considered RAF
(Schaffer-Morrison & Zak, 2023), particularly at more specific
levels than broad fungal guilds.

Warming of the tundra and increasing resource availability
with newly thawed permafrost may provide conditions that pro-
mote acquisitive root traits or particular fungal associations that
facilitate permafrost N uptake. Plants may shift allocation to
building acquisitive roots with a nonmycotrophic strategy, that is
more root biomass and/or deeper exploration. Furthermore, RAF
with more acquisitive strategies may colonize more acquisitive
roots as plants and fungi are released from conservative resource
strategies that prevail with harsh conditions. Alternatively, if
plants are highly mycotrophic and reliant on RAF for resource
acquisition, root traits could show little sensitivity to warming,
maintaining some of the conservative strategies well-aligned with
low-resource conditions. We investigated the impact of nearly
three decades of experimental warming on the relationships
between fine-root traits, RAF, and uptake of permafrost N. We
sampled the longest-running tundra ecosystem warming experi-
ment at Toolik Lake, Alaska, to address the following hypotheses:
(H1) warming will be associated with more acquisitive and less
conservative root traits because in warmed conditions, plants can
allocate more resources to rapid growth; (H2) morphological
root traits related to exploration will be related to N uptake from
the permafrost boundary, particularly for NM plants, (H3)
whereas for ERM and ECM plants, traits associated with the root
tip environment where fungi occur, that is diameter, and specific
RAF associations will shift to more acquisitive strategies; and
lastly (H4) RAF that are proficient at permafrost N uptake will
primarily associate with ECM shrubs that dominate with warm-
ing. Overall, we predict that the root traits and the specific RAF
will shift to more acquisitive strategies with strong implications
for C and N cycling as warming occurs.
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Materials and Methods

Experimental design

To investigate the effects of long-term warming on belowground
dynamics of moist acidic tussock tundra, we sampled the whole
ecosystem warming experiment established in 1989 at the Arctic
Long Term Ecological Research site (68°38'N, 149°36'W), Too-
lik Lake, Alaska, in August 2016. The experiment has four repli-
cate blocks, each containing a glasshouse and control plot, for a
total of four replicate warmed glasshouse (z=4) and ambient
control (n=4) plots. Glasshouses are made of wooden frames
(dimensions 5 x 2.5m footprint and 1.5m in height) with a
0.15 mm polyethylene cover mounted after snowmelt each grow-
ing season and removed for the fall, winter, and spring. In the
ambient plots, the vegetation biomass is equally distributed
between NM graminoids (the tussock forming sedge, Eriophorum
vaginatum L.), ERM evergreen (Rhododendron tomentosum Har-
maja, Vaccinium vitis-idaea L., Empetrum nigrum L., Cassiope tet-
ragona (L) D.Don) and ERM deciduous shrubs
(Vaccinium uliginosum L.), ECM deciduous shrubs (Betula nana
L., Salix pulchra Cham.), the abundant NM forb (Rubus chamae-
morus L.), and mosses (Sphagnum spp., Hylocomium splendens
(Hedw.) Schimp., and Awulacomnium spp., Shaver & Cha-
pin, 1991). The NM forb Pedicularis oederi Vahl occurs at lower
abundances. Previous studies demonstrated that experimental
warming resulted in greater vascular aboveground and rhizome
biomass, mostly due to increases in the deciduous shrub B. nana,
but also by other functional groups like forbs (R. chamaemorus)
with losses of mosses and lichens (Chapin et al, 1995; Sistla
et al., 2013; Dunleavy & Mack, 2021). The mean growing sea-
son air temperature in warmed plots is 2°C higher, and the soil
temperature at 10—40 cm depth is 1-2°C higher than in control
plots (Deslippe et al, 2011; Sistla et al, 2013; Dunleavy &
Mack, 2021). Warming increases thaw depth (¢. 58 £ 6 cm com-
pared with ¢. 41 £ 2 cm in control plots) and reduces precipita-
tion but does not alter soil moisture (Clemmensen ez 4l., 2006;
Deslippe et al., 2011; Dunleavy & Mack, 2021).

Isotope addition

In warmed and ambient plots, we applied 98 atom % '°N
ammonium chloride directly above the permafrost table in
August when the active layer was mostly thawed. In ambient
plots, additions were made at 13 injection points within a 1 m”
plot by inserting a frost probe, recording active layer thickness,
and then inserting a sheathed stainless-steel needle (custom-built
at Jon’s Machine Shop, Fairbanks, Alaska) into the hole created
by the frost probe. When the needle hit the permafrost table, the
sheath was retracted, uncovering pin holes at the tip of the nee-
dle. A syringe was connected to the far end of the needle, tracer
was injected, the needle was then retracted into the sheath, and
the whole injection system was retracted from the soil. The
sheath ensured that labeling occurred at maximum active layer
depth by preventing the tracer from bleeding out as the needle
was retracted. In ambient plots, this resulted in 250 mg of 5N
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applied to the 1 m* plot. Due to space constraints in the glass-
house structures, our tracer addition was scaled to five injection
points (Supporting Information Fig. S1). Twenty-four hours
after application of the label, we harvested roots and mycorrhizas
from active layer organic and mineral soils.

Belowground harvest

We harvested an organic soil monolith (10 x 10 cm) with a
depth of the full organic horizon. Below the monolith, we cored
mineral soils (7 cm diameter core) until we hit the ice at the per-
mafrost boundary. The soil monolith and core dimensions were
measured in the field and transported back to the laboratory, and
the monolith and cores were separated by depth increments (0-5,
5-15, 1525, 25-35 cm, and so on). The transition from organic
to mineral soils was noted, and mineral soils were separated from
organic soils.

Root processing

Live roots and rhizomes were removed from organic and mineral
soils at each depth increment by hand. Roots and rhizomes were
separated by size class (> or <2 mm) and then into plant species
morphotype groups based on color, texture, and branching pat-
tern. Live roots were separated from dead roots based on turgid-
ity, color, and tensile strength. Using microscopy (x10—40), we
further assessed the consistency of appearance within species mor-
photype pools and removed any remaining dead roots. From this
cleaned root sample, we subsampled the fine roots (<2 mm) to
analyze traits, C and N content and isotopes, and RAF taxa. First,
the wet weight of a root subsample (c. 200 mg) was measured;
these roots were scanned using WINRHIZO (Regent Instruments
Inc., Quebec, QC, Canada) to determine root length, projected
area, and the number of tips and forks, dried at 60°C for 48 h
and reweighed to obtain the dry weight. Second, from the
cleaned root sample, 10 fine-root segments were preserved in
RNAlater (Ambion Inc., Austin, TX, USA) for molecular verifi-
cation of the plant species identity and characterization of the
RAF community following methods described previously
(Hewitt et al, 2019, 2020) and in brief below. Third, the
remaining root biomass was weighed wet, dried at 60°C, and
reweighed dry. Percent C and N and isotopes were measured on
a subsample, dried at 60°C for 48 h, ground, and run for C and
N analysis on an Isotope Ratio Mass Spectrometer (IRMS, Delta
Advantage; Thermo Fisher Scientific, Waltham, MA, USA)
coupled to an Elemental Combustion Analyzer (ECS4010; Cost-
ech, Valencia, CA, USA) at Northern Arizona University.

Root identity and fungal analyses

Plant and fungal DNAs were extracted from a small section of
each of the 10 root segments from each species morphotype sam-
ple using the Qiagen DNEasy Plant Mini Kit following the man-
ufacturer’s instructions with the exception of the addition of a
proteinase K incubation to release DNA from protein complexes

for 4 h at 55°C before step 9. We amplified the entire ITS region
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of the plant DNA with the primers ITSIP and ITS4 (White
et al., 1990). PCR products were incubated overnight at 60°C
with the restriction enzyme BStul (New England Biolabs, Ips-
wich, MA, USA). The digested amplicons were then run in a 3%
agarose gel with control samples to assess ITS restriction frag-
ment length polymorphism, as detailed in Hewitt er 2/ (2019).
After root sample identity was confirmed, the gDNA from each
species at each depth was pooled into roughly equal concentra-
tions. The fungal ITS2 region of the pooled gDNAs was then
amplified using 5.85_FUN and ITS4_FUN (Taylor er al,
2016). Fungal amplicons were sequenced using a v.3 600 cycle
kit on the Illumina MiSeq (Illumina, San Diego, CA, USA) at
the University of New Mexico; sequencing methods are detailed
in Hewitt et al. (2020) and DeVan et al. (2023).

Bioinformatics

All bioinformatics steps were completed with the UPARSE pipeline
primarily using UsearcH v.9.2.64_i86linux64 (Edgar, 2013).
Paired ends were merged using the fastq_mergepairs command
with a minimum overlap of 50 and maximum mismatch of 10%.
Barcodes and adaptors were removed using the fastx_truncate
command. We used the fastq_eestats2 command to find the opti-
mum length for global trimming to maximize the number of
high-quality reads. Reads were trimmed to 310 base pairs using
fastx_truncate and filtered to have a maximum expected error of
1.0 using the fastq_filter command. Reads were dereplicated and
counted using fastx_uniques before clustering OTUs with the
cluster_otus command. PhiX was removed using the filter_phix
command. Taxonomy was assigned to USEARCH sin_tax using the
UNITE database with an 80% confidence cut-off. For OTUs
with poorly classified taxonomy, we also used the Warcup data-
base with the RDP classifier online (Deshpande ez 2/., 2016) and
blasted the most abundant taxa on NCBI Brastn excluding
uncultured/environmental sample sequences. If a match to a type
specimen was found with at least 97% identity to our sample, the
taxonomy was assigned to genus or if there was at least 90% iden-
tity to our sample, the taxonomy was assigned to family following
Timling ez al. (2012). Query cover was always >99%. Guilds
were assigned to OTUs using FUNGUILD and investigator
knowledge (Nguyen ez al., 2016).

Statistics

Variation in tundra root traits To provide an integrated pic-
ture of the variation in all measured root traits (Table 1) and
determine whether root traits in the experiment are arrayed
along multiple gradients in a multidimensional root economic
space, we used principal components analysis (PCA, Good-
all, 1954). We used PCA because it is an ideal technique for
data with approximately linear relationships among variables
(McCune & Grace, 2002) and, therefore, complements the
mixed effects models described below. To meet assumptions of
normality, variables were log-transformed. The PCA was per-
formed on the cross-product matrix that consisted of correla-
tion coefficients, that is the variables were scaled. To interpret
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Table 1 Root traits measured in ambient control and warmed glasshouse plots at Toolik Lake, Alaska.

Trait Abbreviation Ecological significance
Morphological Root tissue density (g cm~3) RTD Tissue quality
Specific root area (cm? g ") SRA Nutrient absorption
Specific root length (cm g~ ") SRL Soil exploration
Specific root tip abundance (tips g~ SRTA Soil exploration
Specific root fork abundance (forks g~ ") SRFA Soil exploration
Maximum depth (cm) Depth Proximity to permafrost N
Diameter (mm) Diameter Space for mycorrhizal colonization
Chemical %N %N Tissue quality
%C %C Tissue quality
Ecosystem Root density (g cm™) Density Indicator of allocation to resource uptake
Root biomass (g m~2) Biomass Indicator of allocation to resource uptake
Root N pool (g N m~2) N pool Indicator of N cost for resource uptake
Root C pool (gCm~2) C pool Indicator of C cost for resource uptake

gradients in root traits, we evaluated Pearson correlation coeffi-
cients between the first two principal components (axes 1 and
2) and the individual root traits. We tested whether variation in
root traits differed by host species, mycorrhizal status (NM,
ERM, and ECM), warming treatment, and the goodness of fit
between variation in root traits and permafrost N uptake
(g 5N g71 root, H1-3) with the envfit function in the VEGAN
package (Oksanen et al, 2022) and using the Benjamini—
Hochberg procedure for P-value adjustment for multiple com-
parisons (Benjamini & Hochberg, 1995).

To test whether root traits responded to experimental warming
(H1), we built generalized linear mixed effects models with the
LME4 (Bates et al, 2015) and GLMMTMB (Brooks ez al., 2017)
packages. For each model, mycorrhizal stacus (NM, ERM, and
ECM) and treatment (ambient vs warmed) were the fixed factors,
the root trait was the response variable, and species nested in
block was the random factor to account for spatial nonindepen-
dence and variance within mycorrhizal status attributed to species
level differences. For each species in each plot, we calculated mor-
phological and chemical root traits (RTD, SRL, specific root area
(SRA), diameter, specific root fork abundance (SRFA), specific
root tip abundance (SRTA), %C, and %N) as plot means of the
traits observed in each soil layer and ecosystem traits (biomass,
density, N pool, and C pool) were calculated as plot sums of the
traits observed in each soil layer, and maximum root depth was
calculated as the plot maximum (Table 1). To improve model fit
and meet model assumptions of normality and homogeneity of
variance, we implemented a dispersion parameter of block in five
of the models and a zero-inflation parameter in three (Table S1)
based on the assessment of model residuals using the DHARMA
package (Hartig, 2020). To determine the significance of fixed
factors, we evaluated the small sample corrected Akaike informa-
tion criterion (AICc), comparing the full model to a reduced
model and the null model (Zuur ez 4l., 2009). Because we tested
13 traits with the same experimental units, we also assessed the
log-likelihood ratio of the final model compared with the null at
a reduced o0=0.01 and greater delta-AICc> 10 to reduce Type 1
error. We conducted post hoc tests of the fixed factors with the
EMMEANS package (Lenth, 2022) and corrected P-values by
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controlling for the false discovery rates with the Benjamini—
Hochberg procedure (Benjamini & Hochberg, 1995).

Relationships between root-associated fungi, root traits, and N
uptake We tested whether variation in RAF composition among
our root samples was related to root traits and N uptake (H3,
H4) using nonmetric multidimensional scaling (NMDS) ordina-
tions (Kruskal, 1964) in the VEGAN package. We used NMDS
because it is well-suited to nonnormal data and the most effective
ordination method for ecological community data (McCune &
Grace, 2002). We subset the full OTU matrix by OTUs in the
guilds ECM, ERM, and DSE, the most likely to be involved in
N uptake (Read & Perez-Moreno, 2003; Newsham, 2011). After
graphical analysis of an initial ordination biplot that indicated
strong separation of ERM and ECM hosts in ordination space,
we separately ordinated ERM and ECM host plants to analyze
relationships with root traits and permafrost N uptake. Each sam-
ple in the OTU matrix was relativized by total number of OTUs
per sample. We used the Bray—Curtis distance matrix and 500
iterations. Correlations between RAF composition, root traits,
warming treatment, and permafrost N uptake were assessed using
the envfit function in the VEGAN package separately for ERM and
ECM host plants (H3, H4). We also tested for strong gradients
in RAF abundance that correlated with the variation in overall
RAF composition. Lastly, we evaluated Spearman correlations
between the relative abundance of individual RAF taxa and per-
mafrost N uptake. For taxa that were observed to be significantly
correlated with permafrost N uptake, we assessed whether they
were indicators of the ambient control or warmed treatment
using the INDICSPECIES package (De Caceres & Legendre, 2009).

Relative importance of root traits and RAF composition to per-
mafrost N access We evaluated the importance of individual
root traits and for mycorrhizal plants RAF associations on the
uptake of permafrost N for NM (n=62), ERM (n=49), and
ECM (n=26) plants separately (H2—4) using random forest
regression trees (Breiman, 2001). First, we ranked and eliminated
variables with small importance from the full suite of measured
root traits, and in the case of mycorrhizal host plants, NMDS
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axes using the VSURF_thres function in the VSURF package
(Genuer ez al., 2015). Next, we identified variables for interpreta-
tion in the random forest model by selecting variables with the
smallest out-of-bag error with the VSURF_interp function. We
computed variable importance scores for each selected predictor
of permafrost N uptake for all plants together and individually
by mycorrhizal status (NM, ERM, and ECM) using the RANDOM-
FoREsT package (Liaw & Wiener, 2002). We then visually inter-
preted partial dependence plots of the selected variables.

To evaluate the variance in permafrost N uptake explained by
RAF composition and root traits, we used variance partitioning
analysis (Borcard ez al, 1992) for ERM host plants and ECM
host plants separately (H3, H4) using the varpart function in the
VEGAN package. We rank-transformed the response variables and
z-transformed the predictor variables to meet model assumptions.
The three NMDS axes represented the RAF contribution, while
the 13 root traits represented the root trait contribution.

Results

Warming impacts on root traits

The first two axes of the PCA explained 72.25% of the variation
in root traits with axes 1 and 2 explaining 59.52% and 12.73%
of the variance, respectively. Variation in root chemical and mor-
phological traits occurred along two main axes (Fig. 1), suggest-
ing a multidimensional root economic space instead of a single
root economic spectrum, for example %C with axis 1 and %N
with axis 2. Axis 1 was positively correlated with several morpho-
logical traits like SRL, SRA, SRTA, depth, and SRFA and nega-
tively with ecosystem variables like biomass, density, and C and
N pools. Axis 2 was most strongly correlated with tissue %N
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and diameter. Root traits varied by host species (#*=0.30,
P=0.001), mycorrhizal status (#=0.15, P=0.001), and mar-
ginally by warming treatment (* =0.02, P=0.03, H1).

Opverall, warming promoted more acquisitive traits for plants
regardless of mycorrhizal status (Figs 2, S2; Table S2), supporting
H1. For NM plants, warming increased the SRTA, depth, and
tissue %N, but lowered the root N pool (all contrasts 2<0.05).
For ECM plants, warming increased RTD, SRA, SRL, SRTA,
SRFA, biomass, %N, and N and C pools (all contrasts P<0.01).
ERM showed similar responses to ECM plants with the excep-
tion of increased rooting depth but no change in RTD or %N.
We generally observed a significant interaction between plant
mycorrhizal status and warming treatment for each root trait
(Figs 2, S2; Table S2, all contrasts P<0.05) except for fine-root
diameter and %C. An additive model of treatment and mycorrhi-
zal status was the best fit for %C with NM having lower tissue %
C than ERM or ECM plants, but mycorrhizal plants not differ-
ing from each other and fine roots in the warmed plots having
lower %C than those in ambient plots (Fig. S2, all contrasts
P<0.01). For root diameter, the model with warming treatment
alone had the best fit compared with the full additive model
including mycorrhizal status, and all plants responded similarly
with a decline in root diameter in warmed plots (Fig. 2, all con-
trasts 2<0.001). The fine-root density model had the lowest
delta AIC 5.48 between the null model and the best model and
thus was excluded from our interpretation because it did not
meet the criteria of AICc>10. Within ambient and warmed
plots, NM plants displayed greater fine-root SRA, SRL, SRTA,
and STFA and deeper roots than ERM and ECM plants but
lower RTD (Table S2, all contrasts 2<0.001). In ambient plots,
ERM plants had higher RTD but lower SRA, SRL, and SRFA
than ECM plants, but these patterns did not hold in warmed
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Fig. 2 Impact of experimental warming on six morphological, chemical, and ecosystem fine root traits (a—f) of non-mycorrhizal (NM), ericoid mycorrhizal
(ERM) and ectomycorrhizal (ECM) host plants in ambient and warmed plots of the Arctic LTER whole ecosystem warming experiment. The lower and upper
bounds of the boxplot show the first and third quartiles (the 25 and 75™ percentiles), the middle line shows the median, whiskers above and below the
boxplot indicate 1.5 x inter-quartile range, and points beyond the whiskers indicate outlying points. Specific root area (cm? g, SRA); root tissue density
(gcm™3, RTD); root tissue percent nitrogen (%N). Generalized linear mixed effects models indicated a significant interaction between mycorrhizal status
(NM, ERM, and ECM) and treatment (ambient vs warmed) with the exception of diameter (final model predictor treatment alone). Red asterisks indicate
significant contrasts between ambient and warmed plots: *, P <0.05; **, P<0.01; ***, P<0.001. See also Fig. S2 for seven additional traits not depicted

here and Table S2 for post hoc contrasts.

plots. Instead, within warmed plots, ERM showed greater root
depth than ECM but lower %N than NM and ECM (Table S2,
all contrasts P<0.05).

Relationships between root-associated fungi, root traits,
and N uptake

Opverall, variation in root traits was related to N uptake from the
permafrost boundary (72 =0.09, P<0.01, Fig. 1). The root traits
strongly correlated with axis 1 of the PCA biplot suggests deeper
roots with lower tissue density and biomass but greater SRL,
SRA, SRTA, and SRFA were correlated with greater N uptake.
The final ordination of RAF community composition asso-
ciated with ERM hosts had three dimensions, a stress of 0.14
indicating a fair fit, a nonmetric fit R*=0.98, and a linear fit
R=0.90. RAF composition of ERM shrubs varied with the
warming treatment and strongly correlated with root diameter
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and %N (Fig. 3a; Table S3) supporting H3. Higher abundances
of DSE taxa, Phialocephala fortinii and Cadophora finlandica, and
ERM taxa, Meliniomyces vraolstadiae and Pezoloma ericae, were
associated with lower diameter and higher %N root tissue,
whereas greater abundance of another ERM taxon, Rbizoscyphus
ericae, was associated with high diameter and lower %N roots
(Fig. 3a,c). The final ordination of RAF community composition
associated with ECM hosts had three dimensions, a stress of 0.13
indicating a fair fit, a nonmetric fit R=0.98, and a linear fit
R =0.89. RAF composition of ECM shrubs was marginally cor-
related with warming treatment but did not correlate with fine-
root traits (Fig. 3b; Table S3). The RAF composition of ECM
(#=0.45) but not ERM (#=0.01) hosts correlated strongly
with the uptake of permafrost N (Fig. 3a,b; Table S3) supporting
H4. The uptake of permafrost N by ECM shrubs was positively
correlated with greater abundances of the RAF taxa identified as
Helotiaceae sp. and Hymenoscyphus tetracladius (Fig. 3b,d).
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(a)

OTU122 Phialocephala oblonga
**QTU11 Hyaloscypha sp.
QOTU58 Lactarius mammosus
OTU752 Pezoloma ericae
*OTUB8O7 Cortinarius biformis
OTU957 Acephala sp.

*OTU24 Hyaloscypha britannica
OTU7 Phialocephala bamuru
OTU8 Meliniomyces variabilis
QOTUG6 Cortinarius biformis

(b) OTU87 Hyaloscyphaceae sp.
OTU52 Hymenoscyphus tetracladius
OTU799 Pezoloma sp.
OTU45 Hyaloscypha aureliella
OTU730 Helotiaceae sp.
OTU93 Meliniomyces bicolor
OTU97 Sebacina vermifera
OTU818 Meliniomyces sp.
OTU7 Phialocephala bamuru @
OTU19 Sebacina vermifera O

Fig. 4 Spearman correlation coefficients
between the relative abundance of root-
associated fungal taxa and N uptake (g "°N g™
root) for (a) ericoid and (b) ectomycorrhizal host
plants. The highest positive and negative corre-
lations are shown here for dark septate endo-
phyte (DSE), ectomycorrhizal (ECM) and ericoid
mycorrhizal (ERM) fungi; see also Supporting
Information Table S4 for all significantly corre-
lated taxa. **, Control plot; *, warmed plot indi-
cator species.

There were 29 RAF taxa that were significantly positively or
negatively correlated (P-value <0.05) with the permafrost N uptake
by ERM host plants (Fig. 4a; Table S4), the majority of which were
in the Helotiales and including taxa identified in the genera Meli-
niomyces, Hyaloscypha, Acephala, Phialocephala,  Oidiodendron,
Capronia, and Pezoloma (5 DSE, 14 ERM) additionally, there were
10 ECM taxa, Sebacina sp. (n=4), Lactarius, Russula, Tricholoma,
and Cortinarius (n=13), that were mostly negatively correlated with
N uptake. For ERM hosts, of the top taxa positively correlated with
permafrost N uptake, OTU11 Hyaloscypha sp. was an indicator of
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the control plots, and of the taxa negatively correlated with N
uptake, OTUs 24 Hyaloscypha britannica and 807 Cortinarius bifor-
mis were indicators of the warmed plots. Twenty-six RAF taxa were
significantdy positively or negatively correlated (P-value <0.05)
with  ECM  host plant permafrost N uptake (Fig. 4b,
Basidiomycota=10, Ascomycota=16). For ECM taxa, correla-
tions with N uptake were positive and negative for taxa in the gen-
era Sebacina and Cortinarius, and positive for Laccaria and Russula.
For DSE taxa, taxa in the genera Cadophora had positive but Phia-
locephala had negative correlations with N uptake. Lastly, for the
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Fig.5 Variable importance plots from random
forest models explaining variation in permafrost

nitrogen (N) uptake (g "N g~ root) for (a) all
plants, (b) nonmycorrhizal, (c) ericoid
mycorrhizal, and (d) ectomycorrhizal plant
species. Variable importance is reported as the
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percentage increase in mean squared error
(MSE). Variables shown were identified for
inclusion in the final model for each group of
plants (a—d). Root tissue density (g cm~3, RTD);
specific root area (cm? g, SRA); specific root
length (cm g~", SRL); specific root tip abundance
(tips g~", SRTA); specific root fork abundance
(forks g*1, SRFA); maximum depth (cm, Depth);
diameter (mm); root biomass (g m~2, Biomass);

0
Variable importance (% increase MSE)

14 ERM taxa, taxa identified as Helotiaceae sp., Hyaloscypha,
Hymenoscyphus, and Pezoloma had positive correlations, Oidioden-
dron had negative, and Meliniomyces and taxa identified as Hyalos-
cyphaceae sp. had both positive and negative correlations with N
uptake (Figs 3d, 4b; Table S4). The relative abundances of other
NM taxa such as pathogens and saprotrophs were also correlated

with permafrost N uptake (Table S4).

Relative importance of root traits and RAF composition to
permafrost N uptake

We identified variables for interpretation with random forest
models predicting permafrost N uptake for all plants and then
separately based on mycorrhizal status. For the RF model with all
plants, 36.18% of the variance in permafrost N uptake was
explained with fine-root %C showing an inverse and depth and
SRA showing positive relationships with permafrost N uptake
(Figs 5a, S3). For NM plants, the ecosystem root traits, C pool,
and biomass, were most related to permafrost N uptake with
16.19% of the variance explained (Fig. 5b) but interestingly
with inverse associations (C pool positive and biomass modestly
negative, Fig. S4), which contrasted with H2 that morphological
traits would be instrumental to permafrost N uptake for NM
plants. Acquisition of permafrost N by ERM plants was asso-
ciated mostly with morphological traits with 37.01% variance
explained (Fig. 5¢). ERM plants had greater permafrost N uptake
with higher biomass, C pool, and SRA and lower diameter,
which are more acquisitive traits, but also higher RTD and lower
SRFA, which are more conservative traits (Fig. S5). The variance
explained for ECM permafrost N uptake was low (6.88%) and
was related to both root traits and RAF composition (Fig. 5d),
supporting H3 and H4. ECM shrub access to permafrost N
showed contrasting relationships between root traits compared
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4 6 root N pool (g N m~2, N pool); root carbon pool
(g Cm~2, C pool); root density (g cm™3, Density);
root tissue percent C (% C); root tissue percent N
(%N); root-associated fungi (NMDS axis 1, RAF).

with ERM and NM plants, for example SRA and biomass
(Figs S4-56), potentially due to the important role of RAF for
ECM shrubs.

For both ERM and ECM shrubs, root traits explained a
greater proportion of the variation in permafrost N uptake than
RAF community composition (Fig. 6a,b). There was notably low
shared variance explained between root traits and RAF composi-
tion. RAF composition explains a greater amount of variance for
ECM than for ERM shrubs, supporting what was observed in the
RF modeling and NMDS ordination biplots and supporting H4.

Discussion

This study shows that nearly 30 yr of experimental warming in
tundra resulted in changes in fine-root chemical, morphological,
and ecosystem traits indicative of more acquisitive resource
uptake strategies (Fig. 7), supporting H1. RAF composition of
ERM shrubs changed with warming and was correlated with root
diameter and %N, while RAF associated with ECM shrubs were
not as responsive to warming or variation in root traits, providing
partial support for H3. Deciduous ECM shrubs have increased in
dominance with warming, and their plant-fungal interactions
correlate with N uptake from the permafrost boundary, support-
ing H4. Specifically, fungi implicated in the uptake of permafrost
N were DSE and ERM in addition to ECM, similar to observa-
tions from the more southerly permafrost zone where these fungi
were observed beyond the root zone at the permafrost boundary
(Hewitt et al., 2020).

Warming impacts on root traits and plant-RAF associations
Plant response to warming via shifts in root traits was strong and

ecologically important to permafrost N uptake. We observed a
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(a) ERM

Fig. 6 Venn diagram displaying the partitioning
of the variance in permafrost nitrogen (N) uptake
explained by root traits and the composition of
root-associated fungi (RAF) for (a) ericoid mycor-
rhizal (ERM) and (b) ectomycorrhizal (ECM)
shrubs. Values indicate adjusted R? values. Nega-
tive adjusted R? values indicate no explanatory
power of the potentially shared variance
explained between RAF and root traits on perma-
frost N uptake.

Root trait
Residuals = 50.10

Ambient

(b) ECM
0 =

RAF Root trait RAF
Residuals = 32.5

Warmed

Active layer

Permafrost

Fig. 7 Conceptual figure depicting the
observations of root traits of nonmycorrhizal
(NM) and mycorrhizal tundra plants and root-
associated fungi (RAF) of ectomycorrhizal (ECM)

Conservative root traits

Acquisitive root traits

and ericoid mycorrhizal (ERM) shrubs in response
to long-term warming. Variance in permafrost
nitrogen (N) uptake was primarily related to eco-
system fine-root traits for NM plants (light purple
arrow), whereas RAF also had an important influ- NM
ence on N acquisition by ERM (light green arrow)
and, more so, ECM (light yellow arrow) shrubs.
RAF composition of ERM shrubs but not ECM
shrubs was correlated with root traits (black
arrows). ECM, ERM, and dark septate endophyte
(DSE) fungi were associated with variation in N
uptake measured in the fine-root tissue of host
mycorrhizal plants (black arrows).

transition toward more acquisitive root traits with warming on
the level of plant species (PCA) and grouped by mycorrhizal sta-
tus (NM, ERM, and ECM). Opverall, acquisitive traits were asso-
ciated with greater uptake of N from the permafrost boundary.
In a global meta-analysis, chemical root traits shifted to more
acquisitive strategies with experimental warming with pro-
nounced shifts in cold ecosystems (Wang e a/., 2021). Our study
showed similar findings and additionally that morphological
traits shifted toward more acquisitive strategies, and this was con-
sistently the pattern for mycorrhizal shrubs more so than NM
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plants. For NM plants, warming resulted in greater depth and %
N, supportive of observations of high N content in root tissue to
maintain high metabolic rates (Bloom ez al, 1985; Reich, 2014)
and rapid growth associated with soil exploration as the thaw
front deepens (Blume-Werry et al., 2019; Hewitt ez al., 2019).
The uptake of N from the permafrost boundary for NM plants
was related to ecosystem traits (greater C pool), whereas for ERM
shrubs, morphological traits (greater SRA and smaller diameter,
but also greater RTD), and for ECM shrubs, RAF, and RAF
impacts on root traits (higher %N, lower SRL) were key to N
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uptake, which contrasted with H2 but supported H3. We
observed weak relationships between RAF community composi-
tion and root traits, especially for ECM plants. This could reflect
the long-term warming of these plots and the importance of per-
ennial plant tissues, while fungi likely turnover much faster,
obscuring their response to warming and contribution to nutrient
uptake.

Our analysis of RAF composition and root traits supports the
idea of a multidimensional space of root trait variation (Berg-
mann ¢t al., 2020), particularly for ERM hosts. Our findings
showed root diameter and %N, the only traits that correlated
with RAF, loading on PCA axis 2, while most other traits loaded
on PCA axis 1; this is well-aligned with findings that show a
mycotrophic gradient orthogonal to the primary acquisitive to
conservative root economic spectrum. RAF of ERM plants
responded to variation in traits that others have observed related
to fungal colonization (diameter, %N, Freschet et al, 2010;
Bergmann ez al., 2020). For ERM hosts, lower root diameter
and higher root %N were correlated with higher abundances of
P. fortinii, C. finlandica, M. vraolstadiae, and P. ericae. This sug-
gests that when plants build more narrow, high N content
absorptive roots, indicative or more acquisitive and less myco-
trophic strategies (Bergmann ez al., 2020), they are in association
with these DSE and ERM taxa, whereas lower abundances of
these taxa and higher abundance of R ericae, another OTU
of the same fungal aggregate, are associated with a more conser-
vative and mycotrophic strategy where plants are more reliant
on their fungal partners for soil resource acquisition. Of note,
here, the suite of root traits that create a multidimensional root
economic space do not fully mirror those observed in other stu-
dies, that is a mycotrophic gradient with tradeoffs between SRL
and diameter and an acquisitive-conservative gradient with tra-
deoffs between RTD and root N (Bergmann ez al., 2020; Wei-
gelt et al., 2021). RAF of ECM shrubs showed less sensitivity to
warming and root traits than RAF of ERM. Instead, as root
traits of ECM plants become more acquisitive with warming,
RAF composition (this study) or metrics of diversity
(DeVan, 2019) did not respond. The similarity in ECM root
tip communities between ambient control and warmed plots
was also observed in a separate investigation of ECM enzymatic
function during the same timeframe of this study (Dunleavy &
Mack, 2021), but contrasts with findings of increased ECM
diversity observed 10yr earlier in the warmed plots (Deslippe
et al., 2011), indicating temporal variation in RAF responses to
warming,.

Trait estimates for RAF, especially RAF other than arbuscular
mycorrhizal (AM) and ECM fungi, are in their infancy, con-
straining our ability to assess whether RAF colonizing acquisitive
roots are themselves acquisitive (Schaffer-Morrison & Zak, 2023
and references within). Despite a limited understanding of the C
costs of ascomycetes in ERM and DSE guilds, in culture, these
fungi are faster growing and more versatile in supplementing host
C with saprotrophic capabilities than basidiomycetous ECM
(Lukesova et al., 2015; Vohnik, 2020). Our observations could
represent an expansion of the more mycotrophic strategy where
the shrub builds more acquisitive roots to expand opportunities
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of colonization by RAF that are associated with N uptake. Alter-
natively, the transition to more acquisitive root traits with warm-
ing may indicate a shift from primarily more mycotrophic to less
mycotrophic strategies; quantifying RAF colonization of root tips
could inform these interpretations. Our findings suggest that a
greater focus on traits of ERM and DSE fungi, in addition to the
better-studied AM and ECM, is needed to elucidate the full
structure of the root economic space, including a mycotrophic
gradient.

RAF important to uptake of permafrost N

Ericoid mycorrhizal RAF taxa had strong correlations with the
uptake of N from the permafrost boundary for both ERM and
ECM host plants. Evidence is building that ERM RAF are asso-
ciated with ECM hosts (Vralstad et 2/, 2000; Chambers
et al., 2008; Hewitt et al., 2017). ERM RAF are important to N
uptake in cold, strongly N-limited ecosystems like tundra and
boreal forest biomes (Ward ez al., 2022 and references therein),
and have been documented to facilitate uptake of permafrost N
in more southerly subarctic tundra (Hewitt ez 4/, 2020). In this
study, most of the RAF that significantly correlated with the per-
mafrost N uptake were in the Helodales, with key taxa in the
genera Meliniomyces, Hyaloscypha, Hymenoscyphus, Phialocephala,
and Pezoloma, suggesting an important role in the ecological
function of non-ECM RAF (i.e. DSE and ERM) that is surpris-
ing given the dominance aboveground of ECM host plants as
tundra warms. Furthermore, ECM taxa were observed on ERM
shrubs as in other ecosystems (Smith ez 2/, 1995; Vralstad, 2004)
and correlated both positively and negatively with N uptake;
careful further investigation documenting the anatomy of fungal
interactions in the root system is needed to elucidate the func-
tional implications. The relative abundances of pathogens and
saprotrophs were also correlated with permafrost N uptake, indi-
cating cascading effects of permafrost N acquisition throughout
the fungal community, which may suggest rapid assimilation of
new N sources in this N-limited system.

Implications for C and N cycling

A better understanding of the responses of fine roots and RAF to
warming is key to improving the accuracy of predictions of cli-
mate change impacts in tundra ecosystems. Mycorrhizal fungi
can increase N accumulation in host tissues, as seen in roots in
warmed plots here, and lead to faster growth in roots and shoots
(Rains & Bledsoe, 2007). Some RAF taxa were negatively corre-
lated with the transfer of permafrost N to ERM plants and were
indicators of warmed plots. This suggests that fungi responding
to warming soils may play an important role in ecosystem reten-
tion of N through accumulation in plant or fungal biomass.
Fungi can hold on to N and allocate a fraction of it to host plants
over long periods of time, especially as resource availability
increases (Nasholm ez a4/, 2013). The fate of this N as either
transferred to plants or allocated to fungal growth is uncertain
but likely important to the cycling of soil C and N and related to
fungal identity.
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Warming in tundra ecosystems results in changes in perma-
frost dynamics influencing fine-root traits and plant-fungal inter-
actions; these, in turn, are critical to the cycling of C and N that
influence terrestrial feedbacks to the climate system. Increasing
evidence suggests that fine-root-derived C inputs as litter and
exudates along with RAF are important contributors to stored C
and ecosystem C balance in cold ecosystems (Clemmensen
et al., 2013; lIversen et al, 2015; Jackson, 2017; Adamczyk
et al., 2019). Root litter of more acquisitive roots has higher turn-
over rates (Freschet et al, 2010) than those with conservative
traits; these faster cycling tissues along with exudates may either
facilitate positive priming of soil C, especially in deeper near-
permafrost soils (Pegoraro et al., 2019) or alternatively be micro-
bially processed into stabilized soil C (Cotrufo e al., 2013; Sokol
& Bradford, 2019). Furthermore, the ascomycetous RAF
observed in warmed plots and the taxa implicated in the uptake
of N from the permafrost boundary, are correlated with soil C
accumulation, while some of the basidiomycetes are correlated
with fast cycling of soil C (Clemmensen ez al., 2013, 2021). Our
research highlights the importance of these belowground shifts in
root traits and RAF communities to estimates of ecosystem C
and N balance.
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Fig. S1 Schematic of field methods employed to apply nitrogen
isotope tracer to the base of the active layer at the permafrost
boundary in ambient control plots and warmed glasshouse plots

at Toolik Lake, Alaska.

Fig. S2 Boxplots of seven morphological, chemical, and ecosys-
tem fine-root traits of nonmycorrhizal, ericoid mycorrhizal, and
ectomycorrhizal host plants in ambient control plots and warmed
glasshouse plots of the Arctic LTER whole ecosystem warming
experiment.

Fig. S3 Partial dependence plots from the random forest model
of permafrost nitrogen uptake in relation to root traits for all
plants.

Fig. S4 Partial dependence plots from the random forest model
of permafrost nitrogen uptake in relation to root traits for non-
mycorrhizal plants.

Fig. S5 Partial dependence plots from the random forest model
of permafrost nitrogen uptake in relation to root traits and
mycorrhizal associations for ericoid mycorrhizal plants.

Fig. S6 Partial dependence plots from the random forest model
of permafrost nitrogen uptake in relation to fine-root traits and
mycorrhizal associations for ectomycorrhizal plants.

Table S1 Generalized linear mixed effects model structure used
to test variation in each root trait in relation to warming treat-
ment and plant mycorrhizal status.

Table S2 Trait contrasts from generalized linear mixed effects
model post hoc tests for root traits with the interaction between
mycorrhizal status and warming treatment.

Table S3 Correlation coefficients between root-associated fungal
composition, root traits, and permafrost nitrogen uptake for eri-
coid and ectomycorrhizal host plants.

Table S4 Correlations between permafrost nitrogen uptake and
the relative abundance of specific root-associated fungal opera-
tional taxonomic units.
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